tree.c 143.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/trace_events.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71 72 73 74 75 76 77 78
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
79 80
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
81
static char sname##_varname[] = #sname; \
82 83 84 85 86 87 88 89 90
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
91
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92
struct rcu_state sname##_state = { \
93
	.level = { &sname##_state.node[0] }, \
94
	.rda = &sname##_data, \
95
	.call = cr, \
96
	.gp_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
97 98
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
99
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 101
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
102
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103
	.name = RCU_STATE_NAME(sname), \
104
	.abbr = sabbr, \
105
	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106
}
107

108 109
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
110

111
static struct rcu_state *const rcu_state_p;
112
LIST_HEAD(rcu_struct_flavors);
113

114 115 116
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
117 118 119
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
120 121
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
122
module_param(rcu_fanout_leaf, int, 0444);
123
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
124 125
/* Number of rcu_nodes at specified level. */
static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
126 127
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

128 129 130 131
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
132
 * optimize synchronize_sched() to a simple barrier().  When this variable
133 134 135 136
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
137 138 139
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

154 155
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
156
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
157 158
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
159 160
static void rcu_report_exp_rdp(struct rcu_state *rsp,
			       struct rcu_data *rdp, bool wake);
161

162
/* rcuc/rcub kthread realtime priority */
163
#ifdef CONFIG_RCU_KTHREAD_PRIO
164
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
165 166 167
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
168 169
module_param(kthread_prio, int, 0644);

170
/* Delay in jiffies for grace-period initialization delays, debug only. */
171 172 173 174 175 176 177 178

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

179 180
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
181
module_param(gp_init_delay, int, 0644);
182 183 184
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
185

186 187 188 189 190 191 192
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

193 194 195 196 197 198 199 200 201 202
/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
203

204 205 206 207 208 209 210 211 212 213 214 215
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

216 217 218 219 220 221 222 223
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
224
	return READ_ONCE(rnp->qsmaskinitnext);
225 226
}

227
/*
228
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
229 230 231 232 233
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
234
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
235 236
}

237
/*
238
 * Note a quiescent state.  Because we do not need to know
239
 * how many quiescent states passed, just if there was at least
240
 * one since the start of the grace period, this just sets a flag.
241
 * The caller must have disabled preemption.
242
 */
243
void rcu_sched_qs(void)
244
{
245 246 247 248 249 250 251 252
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
		return;
	trace_rcu_grace_period(TPS("rcu_sched"),
			       __this_cpu_read(rcu_sched_data.gpnum),
			       TPS("cpuqs"));
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
253 254 255
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(&rcu_sched_data), true);
256 257
}

258
void rcu_bh_qs(void)
259
{
260
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
261 262 263
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
264
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
265
	}
266
}
267

268 269 270 271 272 273 274 275 276 277 278
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

279 280 281
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

282 283 284 285 286 287 288 289 290 291
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
292 293
 *
 * The caller must have disabled interrupts.
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
 */
static void rcu_momentary_dyntick_idle(void)
{
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
315 316
		if (READ_ONCE(rdp->mynode->completed) !=
		    READ_ONCE(rdp->cond_resched_completed))
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
}

333 334 335
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
336
 * The caller must have disabled interrupts.
337
 */
338
void rcu_note_context_switch(void)
339
{
340
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
341
	trace_rcu_utilization(TPS("Start context switch"));
342
	rcu_sched_qs();
343
	rcu_preempt_note_context_switch();
344 345
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
346
	trace_rcu_utilization(TPS("End context switch"));
347
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
348
}
349
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
350

351
/*
352
 * Register a quiescent state for all RCU flavors.  If there is an
353 354
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
355
 * RCU flavors in desperate need of a quiescent state, which will normally
356 357
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
358 359 360 361 362
 *
 * The barrier() calls are redundant in the common case when this is
 * called externally, but just in case this is called from within this
 * file.
 *
363 364 365
 */
void rcu_all_qs(void)
{
366 367
	unsigned long flags;

368
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
369 370
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
		local_irq_save(flags);
371
		rcu_momentary_dyntick_idle();
372 373
		local_irq_restore(flags);
	}
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
		/*
		 * Yes, we just checked a per-CPU variable with preemption
		 * enabled, so we might be migrated to some other CPU at
		 * this point.  That is OK because in that case, the
		 * migration will supply the needed quiescent state.
		 * We might end up needlessly disabling preemption and
		 * invoking rcu_sched_qs() on the destination CPU, but
		 * the probability and cost are both quite low, so this
		 * should not be a problem in practice.
		 */
		preempt_disable();
		rcu_sched_qs();
		preempt_enable();
	}
389
	this_cpu_inc(rcu_qs_ctr);
390
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
391 392 393
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
394 395 396
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
397

E
Eric Dumazet 已提交
398 399 400
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
401

402 403
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
404 405 406 407

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

408 409 410 411 412 413 414
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

415
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
416
				  struct rcu_data *rdp);
417 418 419 420
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
421
static void force_quiescent_state(struct rcu_state *rsp);
422
static int rcu_pending(void);
423 424

/*
425
 * Return the number of RCU batches started thus far for debug & stats.
426
 */
427 428 429 430 431 432 433 434
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
435
 */
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
462
 */
463
unsigned long rcu_batches_completed_sched(void)
464
{
465
	return rcu_sched_state.completed;
466
}
467
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
468 469

/*
470
 * Return the number of RCU BH batches completed thus far for debug & stats.
471
 */
472
unsigned long rcu_batches_completed_bh(void)
473 474 475 476 477
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

478 479 480 481 482
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
483
	force_quiescent_state(rcu_state_p);
484 485 486
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

487 488 489 490 491
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
492
	force_quiescent_state(&rcu_bh_state);
493 494 495
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

496 497 498 499 500 501 502 503 504
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

520 521 522 523 524 525 526 527 528 529 530 531 532 533
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

534 535 536 537 538 539 540 541 542 543
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
544
		rsp = rcu_state_p;
545 546 547 548 549 550 551 552 553 554 555
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
556 557 558
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
559 560 561 562 563 564 565 566
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

567 568 569 570 571 572 573 574 575 576 577
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

578 579 580 581 582 583
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
584 585
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
586 587
}

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
604
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
605 606
	int *fp = &rnp->need_future_gp[idx];

607
	return READ_ONCE(*fp);
608 609
}

610
/*
611 612 613
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
614
 */
615
static bool
616 617
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
618
	int i;
P
Paul E. McKenney 已提交
619

620
	if (rcu_gp_in_progress(rsp))
621
		return false;  /* No, a grace period is already in progress. */
622
	if (rcu_future_needs_gp(rsp))
623
		return true;  /* Yes, a no-CBs CPU needs one. */
624
	if (!rdp->nxttail[RCU_NEXT_TAIL])
625
		return false;  /* No, this is a no-CBs (or offline) CPU. */
626
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
627
		return true;  /* Yes, CPU has newly registered callbacks. */
628 629
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
630
		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
631
				 rdp->nxtcompleted[i]))
632 633
			return true;  /* Yes, CBs for future grace period. */
	return false; /* No grace period needed. */
634 635
}

636
/*
637
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
638 639 640 641 642
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
643
static void rcu_eqs_enter_common(long long oldval, bool user)
644
{
645 646
	struct rcu_state *rsp;
	struct rcu_data *rdp;
647
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
648

649
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
650 651
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
652 653
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
654

655
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
656
		rcu_ftrace_dump(DUMP_ORIG);
657 658 659
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
660
	}
661 662 663 664
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
665
	rcu_prepare_for_idle();
666
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
667
	smp_mb__before_atomic();  /* See above. */
668
	atomic_inc(&rdtp->dynticks);
669
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
670 671
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     atomic_read(&rdtp->dynticks) & 0x1);
672
	rcu_dynticks_task_enter();
673 674

	/*
675
	 * It is illegal to enter an extended quiescent state while
676 677
	 * in an RCU read-side critical section.
	 */
678 679 680 681 682 683
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal idle entry in RCU read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
			 "Illegal idle entry in RCU-bh read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
			 "Illegal idle entry in RCU-sched read-side critical section.");
684
}
685

686 687 688
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
689
 */
690
static void rcu_eqs_enter(bool user)
691
{
692
	long long oldval;
693 694
	struct rcu_dynticks *rdtp;

695
	rdtp = this_cpu_ptr(&rcu_dynticks);
696
	oldval = rdtp->dynticks_nesting;
697 698
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
699
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
700
		rdtp->dynticks_nesting = 0;
701
		rcu_eqs_enter_common(oldval, user);
702
	} else {
703
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
704
	}
705
}
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
721 722 723
	unsigned long flags;

	local_irq_save(flags);
724
	rcu_eqs_enter(false);
725
	rcu_sysidle_enter(0);
726
	local_irq_restore(flags);
727
}
728
EXPORT_SYMBOL_GPL(rcu_idle_enter);
729

730
#ifdef CONFIG_NO_HZ_FULL
731 732 733 734 735 736 737 738 739 740
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
741
	rcu_eqs_enter(1);
742
}
743
#endif /* CONFIG_NO_HZ_FULL */
744

745 746 747 748 749
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
750
 * sections can occur.  The caller must have disabled interrupts.
751
 *
752 753 754 755 756 757 758 759
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
760
 */
761
void rcu_irq_exit(void)
762
{
763
	long long oldval;
764 765
	struct rcu_dynticks *rdtp;

766
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
767
	rdtp = this_cpu_ptr(&rcu_dynticks);
768
	oldval = rdtp->dynticks_nesting;
769
	rdtp->dynticks_nesting--;
770 771
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting < 0);
772
	if (rdtp->dynticks_nesting)
773
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
774
	else
775 776
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
777 778 779 780 781 782 783 784 785 786 787
}

/*
 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 */
void rcu_irq_exit_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_exit();
788 789 790 791
	local_irq_restore(flags);
}

/*
792
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
793 794 795 796 797
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
798
static void rcu_eqs_exit_common(long long oldval, int user)
799
{
800 801
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

802
	rcu_dynticks_task_exit();
803
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
804 805
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
806
	smp_mb__after_atomic();  /* See above. */
807 808
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(atomic_read(&rdtp->dynticks) & 0x1));
809
	rcu_cleanup_after_idle();
810
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
811 812
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
813 814
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
815

816
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
817
				  oldval, rdtp->dynticks_nesting);
818
		rcu_ftrace_dump(DUMP_ORIG);
819 820 821
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
822 823 824
	}
}

825 826 827
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
828
 */
829
static void rcu_eqs_exit(bool user)
830 831 832 833
{
	struct rcu_dynticks *rdtp;
	long long oldval;

834
	rdtp = this_cpu_ptr(&rcu_dynticks);
835
	oldval = rdtp->dynticks_nesting;
836
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
837
	if (oldval & DYNTICK_TASK_NEST_MASK) {
838
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
839
	} else {
840
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
841
		rcu_eqs_exit_common(oldval, user);
842
	}
843
}
844 845 846 847 848 849 850 851 852 853 854 855 856 857

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
858 859 860
	unsigned long flags;

	local_irq_save(flags);
861
	rcu_eqs_exit(false);
862
	rcu_sysidle_exit(0);
863
	local_irq_restore(flags);
864
}
865
EXPORT_SYMBOL_GPL(rcu_idle_exit);
866

867
#ifdef CONFIG_NO_HZ_FULL
868 869 870 871 872 873 874 875
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
876
	rcu_eqs_exit(1);
877
}
878
#endif /* CONFIG_NO_HZ_FULL */
879

880 881 882 883 884
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
885
 * sections can occur.  The caller must have disabled interrupts.
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	struct rcu_dynticks *rdtp;
	long long oldval;

904
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
905
	rdtp = this_cpu_ptr(&rcu_dynticks);
906 907
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
908 909
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
910
	if (oldval)
911
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
912
	else
913 914
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
915 916 917 918 919 920 921 922 923 924 925
}

/*
 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 */
void rcu_irq_enter_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_enter();
926 927 928 929 930 931
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
932 933 934 935 936
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
937 938 939
 */
void rcu_nmi_enter(void)
{
940
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
941
	int incby = 2;
942

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
964 965 966 967 968
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
969 970 971 972
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
973 974 975
 */
void rcu_nmi_exit(void)
{
976
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
977

978 979 980 981 982 983 984 985 986 987 988 989 990 991
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
992
		return;
993 994 995 996
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
997
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
998
	smp_mb__before_atomic();  /* See above. */
999
	atomic_inc(&rdtp->dynticks);
1000
	smp_mb__after_atomic();  /* Force delay to next write. */
1001
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
1002 1003 1004
}

/**
1005 1006 1007 1008 1009 1010 1011
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
1012
bool notrace __rcu_is_watching(void)
1013 1014 1015 1016 1017 1018
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1019
 *
1020
 * If the current CPU is in its idle loop and is neither in an interrupt
1021
 * or NMI handler, return true.
1022
 */
1023
bool notrace rcu_is_watching(void)
1024
{
1025
	bool ret;
1026

1027
	preempt_disable_notrace();
1028
	ret = __rcu_is_watching();
1029
	preempt_enable_notrace();
1030
	return ret;
1031
}
1032
EXPORT_SYMBOL_GPL(rcu_is_watching);
1033

1034
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1035 1036 1037 1038 1039 1040 1041

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1053 1054 1055 1056 1057 1058
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1059 1060
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1061 1062 1063
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1064
		return true;
1065
	preempt_disable();
1066
	rdp = this_cpu_ptr(&rcu_sched_data);
1067
	rnp = rdp->mynode;
1068
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1069 1070 1071 1072 1073 1074
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1075
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1076

1077
/**
1078
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1079
 *
1080 1081 1082
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1083
 */
1084
static int rcu_is_cpu_rrupt_from_idle(void)
1085
{
1086
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1087 1088 1089 1090 1091
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1092
 * is in dynticks idle mode, which is an extended quiescent state.
1093
 */
1094 1095
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1096
{
1097
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1098
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1099 1100
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1101
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1102
				 rdp->mynode->gpnum))
1103
			WRITE_ONCE(rdp->gpwrap, true);
1104
		return 1;
1105
	}
1106
	return 0;
1107 1108 1109 1110 1111 1112
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1113
 * for this same CPU, or by virtue of having been offline.
1114
 */
1115 1116
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1117
{
1118
	unsigned int curr;
1119
	int *rcrmp;
1120
	unsigned int snap;
1121

1122 1123
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
1124 1125 1126 1127 1128 1129 1130 1131 1132

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1133
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1134
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1135 1136 1137 1138
		rdp->dynticks_fqs++;
		return 1;
	}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
1154
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1155 1156 1157
		rdp->offline_fqs++;
		return 1;
	}
1158 1159

	/*
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1179
	 */
1180 1181 1182
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1183
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1184 1185 1186
		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			WRITE_ONCE(rdp->cond_resched_completed,
				   READ_ONCE(rdp->mynode->completed));
1187
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1188 1189
			WRITE_ONCE(*rcrmp,
				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1190
		}
1191
		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1192 1193
	}

1194 1195 1196 1197 1198 1199
	/* And if it has been a really long time, kick the CPU as well. */
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
	    ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
		resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */

1200
	return 0;
1201 1202 1203 1204
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1205
	unsigned long j = jiffies;
1206
	unsigned long j1;
1207 1208 1209

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1210
	j1 = rcu_jiffies_till_stall_check();
1211
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1212
	rsp->jiffies_resched = j + j1 / 2;
1213
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1214 1215
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
/*
 * Convert a ->gp_state value to a character string.
 */
static const char *gp_state_getname(short gs)
{
	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
		return "???";
	return gp_state_names[gs];
}

1226 1227 1228 1229 1230 1231 1232 1233 1234
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1235
	gpa = READ_ONCE(rsp->gp_activity);
1236
	if (j - gpa > 2 * HZ) {
1237
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1238
		       rsp->name, j - gpa,
1239
		       rsp->gpnum, rsp->completed,
1240 1241
		       rsp->gp_flags,
		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1242
		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1243 1244 1245
		if (rsp->gp_kthread)
			sched_show_task(rsp->gp_kthread);
	}
1246 1247
}

1248
/*
1249
 * Dump stacks of all tasks running on stalled CPUs.
1250 1251 1252 1253 1254 1255 1256 1257
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
1258
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1259 1260 1261 1262 1263
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
B
Boqun Feng 已提交
1264
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1265 1266 1267
	}
}

1268
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1269 1270 1271 1272
{
	int cpu;
	long delta;
	unsigned long flags;
1273 1274
	unsigned long gpa;
	unsigned long j;
1275
	int ndetected = 0;
1276
	struct rcu_node *rnp = rcu_get_root(rsp);
1277
	long totqlen = 0;
1278 1279 1280

	/* Only let one CPU complain about others per time interval. */

1281
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1282
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1283
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
B
Boqun Feng 已提交
1284
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1285 1286
		return;
	}
1287 1288
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1289
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1290

1291 1292 1293 1294 1295
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1296
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1297
	       rsp->name);
1298
	print_cpu_stall_info_begin();
1299
	rcu_for_each_leaf_node(rsp, rnp) {
1300
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1301
		ndetected += rcu_print_task_stall(rnp);
1302 1303 1304 1305 1306 1307 1308 1309
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
B
Boqun Feng 已提交
1310
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1311
	}
1312 1313

	print_cpu_stall_info_end();
1314 1315
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1316
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1317
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1318
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1319
	if (ndetected) {
1320
		rcu_dump_cpu_stacks(rsp);
1321
	} else {
1322 1323
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1324 1325 1326
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1327
			gpa = READ_ONCE(rsp->gp_activity);
1328
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1329
			       rsp->name, j - gpa, j, gpa,
1330 1331
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1332 1333 1334 1335
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1336

1337
	/* Complain about tasks blocking the grace period. */
1338 1339
	rcu_print_detail_task_stall(rsp);

1340 1341
	rcu_check_gp_kthread_starvation(rsp);

1342
	force_quiescent_state(rsp);  /* Kick them all. */
1343 1344 1345 1346
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1347
	int cpu;
1348 1349
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1350
	long totqlen = 0;
1351

1352 1353 1354 1355 1356
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1357
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1358 1359 1360
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1361 1362
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1363 1364 1365
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1366 1367 1368

	rcu_check_gp_kthread_starvation(rsp);

1369
	rcu_dump_cpu_stacks(rsp);
1370

1371
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1372 1373 1374
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1375
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1376

1377 1378 1379 1380 1381 1382 1383 1384
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1385 1386 1387 1388
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1389 1390 1391
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1392 1393
	unsigned long j;
	unsigned long js;
1394 1395
	struct rcu_node *rnp;

1396
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1397
		return;
1398
	j = jiffies;
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1417
	gpnum = READ_ONCE(rsp->gpnum);
1418
	smp_rmb(); /* Pick up ->gpnum first... */
1419
	js = READ_ONCE(rsp->jiffies_stall);
1420
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1421
	gps = READ_ONCE(rsp->gp_start);
1422
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1423
	completed = READ_ONCE(rsp->completed);
1424 1425 1426 1427
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1428
	rnp = rdp->mynode;
1429
	if (rcu_gp_in_progress(rsp) &&
1430
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1431 1432 1433 1434

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1435 1436
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1437

1438
		/* They had a few time units to dump stack, so complain. */
1439
		print_other_cpu_stall(rsp, gpnum);
1440 1441 1442
	}
}

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1454 1455 1456
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1457
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1458 1459
}

1460
/*
1461 1462 1463
 * Initialize the specified rcu_data structure's default callback list
 * to empty.  The default callback list is the one that is not used by
 * no-callbacks CPUs.
1464
 */
1465
static void init_default_callback_list(struct rcu_data *rdp)
1466 1467 1468 1469 1470 1471 1472 1473
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	if (init_nocb_callback_list(rdp))
		return;
	init_default_callback_list(rdp);
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1513 1514 1515 1516 1517
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1518
				unsigned long c, const char *s)
1519 1520 1521 1522 1523 1524 1525 1526 1527
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1528 1529
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1530 1531 1532
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1533 1534 1535
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1536 1537 1538
{
	unsigned long c;
	int i;
1539
	bool ret = false;
1540 1541 1542 1543 1544 1545 1546
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1547
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1548
	if (rnp->need_future_gp[c & 0x1]) {
1549
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1550
		goto out;
1551 1552 1553 1554 1555 1556 1557
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1558 1559 1560 1561 1562 1563 1564
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1565 1566
	 */
	if (rnp->gpnum != rnp->completed ||
1567
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1568
		rnp->need_future_gp[c & 0x1]++;
1569
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1570
		goto out;
1571 1572 1573 1574 1575 1576 1577
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1578 1579
	if (rnp != rnp_root)
		raw_spin_lock_rcu_node(rnp_root);
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1597
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1598 1599 1600 1601 1602 1603 1604 1605
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1606
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1607
	} else {
1608
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1609
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1610 1611 1612
	}
unlock_out:
	if (rnp != rnp_root)
B
Boqun Feng 已提交
1613
		raw_spin_unlock_rcu_node(rnp_root);
1614 1615 1616 1617
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1634 1635
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1636 1637 1638
	return needmore;
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1649
	    !READ_ONCE(rsp->gp_flags) ||
1650 1651
	    !rsp->gp_kthread)
		return;
1652
	swake_up(&rsp->gp_wq);
1653 1654
}

1655 1656 1657 1658 1659 1660 1661
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1662 1663
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1664 1665 1666
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1667
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1668 1669 1670 1671
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1672
	bool ret;
1673 1674 1675

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1676
		return false;
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1705
		return false;
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1716
	/* Record any needed additional grace periods. */
1717
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1718 1719 1720

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1721
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1722
	else
1723
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1724
	return ret;
1725 1726 1727 1728 1729 1730 1731 1732
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1733
 * Returns true if the RCU grace-period kthread needs to be awakened.
1734 1735 1736
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1737
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1738 1739 1740 1741 1742 1743
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1744
		return false;
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1768
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1769 1770
}

1771
/*
1772 1773 1774
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1775
 * Returns true if the grace-period kthread needs to be awakened.
1776
 */
1777 1778
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1779
{
1780 1781
	bool ret;

1782
	/* Handle the ends of any preceding grace periods first. */
1783
	if (rdp->completed == rnp->completed &&
1784
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1785

1786
		/* No grace period end, so just accelerate recent callbacks. */
1787
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1788

1789 1790 1791
	} else {

		/* Advance callbacks. */
1792
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1793 1794 1795

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1796
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1797
	}
1798

1799
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1800 1801 1802 1803 1804 1805
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1806
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1807
		rdp->cpu_no_qs.b.norm = true;
1808
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1809
		rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1810
		zero_cpu_stall_ticks(rdp);
1811
		WRITE_ONCE(rdp->gpwrap, false);
1812
	}
1813
	return ret;
1814 1815
}

1816
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1817 1818
{
	unsigned long flags;
1819
	bool needwake;
1820 1821 1822 1823
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1824 1825 1826
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1827
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1828 1829 1830
		local_irq_restore(flags);
		return;
	}
1831
	needwake = __note_gp_changes(rsp, rnp, rdp);
B
Boqun Feng 已提交
1832
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1833 1834
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1835 1836
}

1837 1838 1839 1840 1841 1842 1843
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

1844
/*
1845
 * Initialize a new grace period.  Return false if no grace period required.
1846
 */
1847
static bool rcu_gp_init(struct rcu_state *rsp)
1848
{
1849
	unsigned long oldmask;
1850
	struct rcu_data *rdp;
1851
	struct rcu_node *rnp = rcu_get_root(rsp);
1852

1853
	WRITE_ONCE(rsp->gp_activity, jiffies);
1854
	raw_spin_lock_irq_rcu_node(rnp);
1855
	if (!READ_ONCE(rsp->gp_flags)) {
1856
		/* Spurious wakeup, tell caller to go back to sleep.  */
B
Boqun Feng 已提交
1857
		raw_spin_unlock_irq_rcu_node(rnp);
1858
		return false;
1859
	}
1860
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1861

1862 1863 1864 1865 1866
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
B
Boqun Feng 已提交
1867
		raw_spin_unlock_irq_rcu_node(rnp);
1868
		return false;
1869 1870 1871
	}

	/* Advance to a new grace period and initialize state. */
1872
	record_gp_stall_check_time(rsp);
1873 1874
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1875
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
B
Boqun Feng 已提交
1876
	raw_spin_unlock_irq_rcu_node(rnp);
1877

1878 1879 1880 1881 1882 1883 1884
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
1885
		rcu_gp_slow(rsp, gp_preinit_delay);
1886
		raw_spin_lock_irq_rcu_node(rnp);
1887 1888 1889
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
B
Boqun Feng 已提交
1890
			raw_spin_unlock_irq_rcu_node(rnp);
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

B
Boqun Feng 已提交
1924
		raw_spin_unlock_irq_rcu_node(rnp);
1925
	}
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1941
		rcu_gp_slow(rsp, gp_init_delay);
1942
		raw_spin_lock_irq_rcu_node(rnp);
1943
		rdp = this_cpu_ptr(rsp->rda);
1944 1945
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1946
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1947
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1948
			WRITE_ONCE(rnp->completed, rsp->completed);
1949
		if (rnp == rdp->mynode)
1950
			(void)__note_gp_changes(rsp, rnp, rdp);
1951 1952 1953 1954
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
B
Boqun Feng 已提交
1955
		raw_spin_unlock_irq_rcu_node(rnp);
1956
		cond_resched_rcu_qs();
1957
		WRITE_ONCE(rsp->gp_activity, jiffies);
1958
	}
1959

1960
	return true;
1961
}
1962

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
/*
 * Helper function for wait_event_interruptible_timeout() wakeup
 * at force-quiescent-state time.
 */
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rsp->gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

1983 1984 1985
/*
 * Do one round of quiescent-state forcing.
 */
1986
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
1987
{
1988 1989
	bool isidle = false;
	unsigned long maxj;
1990 1991
	struct rcu_node *rnp = rcu_get_root(rsp);

1992
	WRITE_ONCE(rsp->gp_activity, jiffies);
1993
	rsp->n_force_qs++;
1994
	if (first_time) {
1995
		/* Collect dyntick-idle snapshots. */
1996
		if (is_sysidle_rcu_state(rsp)) {
1997
			isidle = true;
1998 1999
			maxj = jiffies - ULONG_MAX / 4;
		}
2000 2001
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
2002
		rcu_sysidle_report_gp(rsp, isidle, maxj);
2003 2004
	} else {
		/* Handle dyntick-idle and offline CPUs. */
2005
		isidle = true;
2006
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2007 2008
	}
	/* Clear flag to prevent immediate re-entry. */
2009
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2010
		raw_spin_lock_irq_rcu_node(rnp);
2011 2012
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2013
		raw_spin_unlock_irq_rcu_node(rnp);
2014 2015 2016
	}
}

2017 2018 2019
/*
 * Clean up after the old grace period.
 */
2020
static void rcu_gp_cleanup(struct rcu_state *rsp)
2021 2022
{
	unsigned long gp_duration;
2023
	bool needgp = false;
2024
	int nocb = 0;
2025 2026
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
2027
	struct swait_queue_head *sq;
2028

2029
	WRITE_ONCE(rsp->gp_activity, jiffies);
2030
	raw_spin_lock_irq_rcu_node(rnp);
2031 2032 2033
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
2034

2035 2036 2037 2038 2039 2040 2041 2042
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
B
Boqun Feng 已提交
2043
	raw_spin_unlock_irq_rcu_node(rnp);
2044

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2055
		raw_spin_lock_irq_rcu_node(rnp);
2056 2057
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
2058
		WRITE_ONCE(rnp->completed, rsp->gpnum);
2059 2060
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
2061
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2062
		/* smp_mb() provided by prior unlock-lock pair. */
2063
		nocb += rcu_future_gp_cleanup(rsp, rnp);
2064
		sq = rcu_nocb_gp_get(rnp);
B
Boqun Feng 已提交
2065
		raw_spin_unlock_irq_rcu_node(rnp);
2066
		rcu_nocb_gp_cleanup(sq);
2067
		cond_resched_rcu_qs();
2068
		WRITE_ONCE(rsp->gp_activity, jiffies);
2069
		rcu_gp_slow(rsp, gp_cleanup_delay);
2070
	}
2071
	rnp = rcu_get_root(rsp);
2072
	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2073
	rcu_nocb_gp_set(rnp, nocb);
2074

2075
	/* Declare grace period done. */
2076
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2077
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2078
	rsp->gp_state = RCU_GP_IDLE;
2079
	rdp = this_cpu_ptr(rsp->rda);
2080 2081 2082
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2083
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2084
		trace_rcu_grace_period(rsp->name,
2085
				       READ_ONCE(rsp->gpnum),
2086 2087
				       TPS("newreq"));
	}
B
Boqun Feng 已提交
2088
	raw_spin_unlock_irq_rcu_node(rnp);
2089 2090 2091 2092 2093 2094 2095
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2096
	bool first_gp_fqs;
2097
	int gf;
2098
	unsigned long j;
2099
	int ret;
2100 2101 2102
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2103
	rcu_bind_gp_kthread();
2104 2105 2106 2107
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2108
			trace_rcu_grace_period(rsp->name,
2109
					       READ_ONCE(rsp->gpnum),
2110
					       TPS("reqwait"));
2111
			rsp->gp_state = RCU_GP_WAIT_GPS;
2112
			swait_event_interruptible(rsp->gp_wq,
2113
						 READ_ONCE(rsp->gp_flags) &
2114
						 RCU_GP_FLAG_INIT);
2115
			rsp->gp_state = RCU_GP_DONE_GPS;
2116
			/* Locking provides needed memory barrier. */
2117
			if (rcu_gp_init(rsp))
2118
				break;
2119
			cond_resched_rcu_qs();
2120
			WRITE_ONCE(rsp->gp_activity, jiffies);
2121
			WARN_ON(signal_pending(current));
2122
			trace_rcu_grace_period(rsp->name,
2123
					       READ_ONCE(rsp->gpnum),
2124
					       TPS("reqwaitsig"));
2125
		}
2126

2127
		/* Handle quiescent-state forcing. */
2128
		first_gp_fqs = true;
2129 2130 2131 2132 2133
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2134
		ret = 0;
2135
		for (;;) {
2136 2137
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
2138
			trace_rcu_grace_period(rsp->name,
2139
					       READ_ONCE(rsp->gpnum),
2140
					       TPS("fqswait"));
2141
			rsp->gp_state = RCU_GP_WAIT_FQS;
2142
			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2143
					rcu_gp_fqs_check_wake(rsp, &gf), j);
2144
			rsp->gp_state = RCU_GP_DOING_FQS;
2145
			/* Locking provides needed memory barriers. */
2146
			/* If grace period done, leave loop. */
2147
			if (!READ_ONCE(rnp->qsmask) &&
2148
			    !rcu_preempt_blocked_readers_cgp(rnp))
2149
				break;
2150
			/* If time for quiescent-state forcing, do it. */
2151 2152
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2153
				trace_rcu_grace_period(rsp->name,
2154
						       READ_ONCE(rsp->gpnum),
2155
						       TPS("fqsstart"));
2156 2157
				rcu_gp_fqs(rsp, first_gp_fqs);
				first_gp_fqs = false;
2158
				trace_rcu_grace_period(rsp->name,
2159
						       READ_ONCE(rsp->gpnum),
2160
						       TPS("fqsend"));
2161
				cond_resched_rcu_qs();
2162
				WRITE_ONCE(rsp->gp_activity, jiffies);
2163 2164
			} else {
				/* Deal with stray signal. */
2165
				cond_resched_rcu_qs();
2166
				WRITE_ONCE(rsp->gp_activity, jiffies);
2167
				WARN_ON(signal_pending(current));
2168
				trace_rcu_grace_period(rsp->name,
2169
						       READ_ONCE(rsp->gpnum),
2170
						       TPS("fqswaitsig"));
2171
			}
2172 2173 2174 2175 2176 2177 2178 2179
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
2180
		}
2181 2182

		/* Handle grace-period end. */
2183
		rsp->gp_state = RCU_GP_CLEANUP;
2184
		rcu_gp_cleanup(rsp);
2185
		rsp->gp_state = RCU_GP_CLEANED;
2186 2187 2188
	}
}

2189 2190 2191
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2192
 * the root node's ->lock and hard irqs must be disabled.
2193 2194 2195 2196
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2197 2198
 *
 * Returns true if the grace-period kthread must be awakened.
2199
 */
2200
static bool
2201 2202
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2203
{
2204
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2205
		/*
2206
		 * Either we have not yet spawned the grace-period
2207 2208
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2209
		 * Either way, don't start a new grace period.
2210
		 */
2211
		return false;
2212
	}
2213 2214
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2215
			       TPS("newreq"));
2216

2217 2218
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2219
	 * could cause possible deadlocks with the rq->lock. Defer
2220
	 * the wakeup to our caller.
2221
	 */
2222
	return true;
2223 2224
}

2225 2226 2227 2228 2229 2230
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2231 2232
 *
 * Returns true if the grace-period kthread needs to be awakened.
2233
 */
2234
static bool rcu_start_gp(struct rcu_state *rsp)
2235 2236 2237
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2238
	bool ret = false;
2239 2240 2241 2242 2243 2244 2245 2246 2247

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2248 2249 2250
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2251 2252
}

2253
/*
2254 2255 2256 2257 2258 2259 2260
 * Report a full set of quiescent states to the specified rcu_state data
 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
 * kthread if another grace period is required.  Whether we wake
 * the grace-period kthread or it awakens itself for the next round
 * of quiescent-state forcing, that kthread will clean up after the
 * just-completed grace period.  Note that the caller must hold rnp->lock,
 * which is released before return.
2261
 */
P
Paul E. McKenney 已提交
2262
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2263
	__releases(rcu_get_root(rsp)->lock)
2264
{
2265
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2266
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2267
	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2268
	swake_up(&rsp->gp_wq);  /* Memory barrier implied by swake_up() path. */
2269 2270
}

2271
/*
P
Paul E. McKenney 已提交
2272 2273 2274
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2275 2276 2277 2278 2279
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2280 2281
 */
static void
P
Paul E. McKenney 已提交
2282
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2283
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2284 2285
	__releases(rnp->lock)
{
2286
	unsigned long oldmask = 0;
2287 2288
	struct rcu_node *rnp_c;

2289 2290
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2291
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2292

2293 2294 2295 2296
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
B
Boqun Feng 已提交
2297
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2298 2299
			return;
		}
2300
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2301
		rnp->qsmask &= ~mask;
2302 2303 2304 2305
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2306
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2307 2308

			/* Other bits still set at this level, so done. */
B
Boqun Feng 已提交
2309
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2310 2311 2312 2313 2314 2315 2316 2317 2318
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
B
Boqun Feng 已提交
2319
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2320
		rnp_c = rnp;
2321
		rnp = rnp->parent;
2322
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2323
		oldmask = rnp_c->qsmask;
2324 2325 2326 2327
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2328
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2329
	 * to clean up and start the next grace period if one is needed.
2330
	 */
P
Paul E. McKenney 已提交
2331
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2332 2333
}

2334 2335 2336 2337 2338 2339 2340
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2341
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2342 2343 2344
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2345
	unsigned long gps;
2346 2347 2348
	unsigned long mask;
	struct rcu_node *rnp_p;

2349 2350
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
B
Boqun Feng 已提交
2351
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2352 2353 2354 2355 2356 2357
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2358 2359
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2360 2361 2362 2363 2364
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2365 2366
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2367
	mask = rnp->grpmask;
B
Boqun Feng 已提交
2368
	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2369
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2370
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2371 2372
}

2373
/*
P
Paul E. McKenney 已提交
2374
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2375
 * structure.  This must be called from the specified CPU.
2376 2377
 */
static void
2378
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2379 2380 2381
{
	unsigned long flags;
	unsigned long mask;
2382
	bool needwake;
2383 2384 2385
	struct rcu_node *rnp;

	rnp = rdp->mynode;
2386
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2387
	if ((rdp->cpu_no_qs.b.norm &&
2388 2389 2390
	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
	    rdp->gpwrap) {
2391 2392

		/*
2393 2394 2395 2396
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2397
		 */
2398
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2399
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
B
Boqun Feng 已提交
2400
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2401 2402 2403 2404
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
B
Boqun Feng 已提交
2405
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2406
	} else {
2407
		rdp->core_needs_qs = false;
2408 2409 2410 2411 2412

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2413
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2414

2415 2416
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2417 2418
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2431 2432
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2433 2434 2435 2436 2437

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
2438
	if (!rdp->core_needs_qs)
2439 2440 2441 2442 2443 2444
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2445
	if (rdp->cpu_no_qs.b.norm &&
2446
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2447 2448
		return;

P
Paul E. McKenney 已提交
2449 2450 2451 2452
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2453
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2454 2455
}

2456
/*
2457 2458
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2459
 * ->orphan_lock.
2460
 */
2461 2462 2463
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2464
{
P
Paul E. McKenney 已提交
2465
	/* No-CBs CPUs do not have orphanable callbacks. */
2466
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2467 2468
		return;

2469 2470
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2471 2472
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2473
	 */
2474
	if (rdp->nxtlist != NULL) {
2475 2476 2477
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2478
		rdp->qlen_lazy = 0;
2479
		WRITE_ONCE(rdp->qlen, 0);
2480 2481 2482
	}

	/*
2483 2484 2485 2486 2487 2488 2489
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2490
	 */
2491 2492 2493 2494
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2495 2496 2497
	}

	/*
2498 2499 2500
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2501
	 */
2502
	if (rdp->nxtlist != NULL) {
2503 2504
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2505
	}
2506

2507 2508 2509 2510
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2511
	init_callback_list(rdp);
2512
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2513 2514 2515 2516
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2517
 * orphanage.  The caller must hold the ->orphan_lock.
2518
 */
2519
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2520 2521
{
	int i;
2522
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2523

P
Paul E. McKenney 已提交
2524
	/* No-CBs CPUs are handled specially. */
2525 2526
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2527 2528
		return;

2529 2530 2531 2532
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2533 2534
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

2573 2574 2575
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2576
	RCU_TRACE(mask = rdp->grpmask);
2577 2578
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2579
			       TPS("cpuofl"));
2580 2581
}

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2604 2605
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2606 2607 2608 2609 2610 2611
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
2612
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2613
		rnp->qsmaskinit &= ~mask;
2614
		rnp->qsmask &= ~mask;
2615
		if (rnp->qsmaskinit) {
B
Boqun Feng 已提交
2616 2617
			raw_spin_unlock_rcu_node(rnp);
			/* irqs remain disabled. */
2618 2619
			return;
		}
B
Boqun Feng 已提交
2620
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2621 2622 2623
	}
}

2624
/*
2625
 * The CPU has been completely removed, and some other CPU is reporting
2626 2627
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2628 2629
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2630
 */
2631
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2632
{
2633
	unsigned long flags;
2634
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2635
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2636

2637 2638 2639
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2640
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2641
	rcu_boost_kthread_setaffinity(rnp, -1);
2642

2643
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2644
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2645
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2646
	rcu_adopt_orphan_cbs(rsp, flags);
2647
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2648

2649 2650 2651
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2652 2653 2654 2655 2656 2657
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2658
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2659 2660 2661
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2662 2663
	long bl, count, count_lazy;
	int i;
2664

2665
	/* If no callbacks are ready, just return. */
2666
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2667
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2668
		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2669 2670
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2671
		return;
2672
	}
2673 2674 2675 2676 2677 2678

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2679
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2680
	bl = rdp->blimit;
2681
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2682 2683 2684 2685
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2686 2687 2688
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2689 2690 2691
	local_irq_restore(flags);

	/* Invoke callbacks. */
2692
	count = count_lazy = 0;
2693 2694 2695
	while (list) {
		next = list->next;
		prefetch(next);
2696
		debug_rcu_head_unqueue(list);
2697 2698
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2699
		list = next;
2700 2701 2702 2703
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2704 2705 2706 2707
			break;
	}

	local_irq_save(flags);
2708 2709 2710
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2711 2712 2713 2714 2715

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2716 2717 2718
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2719 2720 2721
			else
				break;
	}
2722 2723
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2724
	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2725
	rdp->n_cbs_invoked += count;
2726 2727 2728 2729 2730

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2731 2732 2733 2734 2735 2736
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2737
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2738

2739 2740
	local_irq_restore(flags);

2741
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2742
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2743
		invoke_rcu_core();
2744 2745 2746 2747 2748
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2749
 * Also schedule RCU core processing.
2750
 *
2751
 * This function must be called from hardirq context.  It is normally
2752 2753 2754
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2755
void rcu_check_callbacks(int user)
2756
{
2757
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2758
	increment_cpu_stall_ticks();
2759
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2760 2761 2762 2763 2764

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2765
		 * a quiescent state, so note it.
2766 2767
		 *
		 * No memory barrier is required here because both
2768 2769 2770
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2771 2772
		 */

2773 2774
		rcu_sched_qs();
		rcu_bh_qs();
2775 2776 2777 2778 2779 2780 2781

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2782
		 * critical section, so note it.
2783 2784
		 */

2785
		rcu_bh_qs();
2786
	}
2787
	rcu_preempt_check_callbacks();
2788
	if (rcu_pending())
2789
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2790 2791
	if (user)
		rcu_note_voluntary_context_switch(current);
2792
	trace_rcu_utilization(TPS("End scheduler-tick"));
2793 2794 2795 2796 2797
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2798 2799
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2800
 * The caller must have suppressed start of new grace periods.
2801
 */
2802 2803 2804 2805
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2806 2807 2808 2809 2810
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2811
	struct rcu_node *rnp;
2812

2813
	rcu_for_each_leaf_node(rsp, rnp) {
2814
		cond_resched_rcu_qs();
2815
		mask = 0;
2816
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2817
		if (rnp->qsmask == 0) {
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2841
		}
2842
		cpu = rnp->grplo;
2843
		bit = 1;
2844
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2845 2846 2847 2848
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2849
		}
2850
		if (mask != 0) {
2851 2852
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2853 2854
		} else {
			/* Nothing to do here, so just drop the lock. */
B
Boqun Feng 已提交
2855
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2856 2857 2858 2859 2860 2861 2862 2863
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2864
static void force_quiescent_state(struct rcu_state *rsp)
2865 2866
{
	unsigned long flags;
2867 2868 2869 2870 2871
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2872
	rnp = __this_cpu_read(rsp->rda->mynode);
2873
	for (; rnp != NULL; rnp = rnp->parent) {
2874
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2875 2876 2877 2878
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2879
			rsp->n_force_qs_lh++;
2880 2881 2882 2883 2884
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2885

2886
	/* Reached the root of the rcu_node tree, acquire lock. */
2887
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2888
	raw_spin_unlock(&rnp_old->fqslock);
2889
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2890
		rsp->n_force_qs_lh++;
B
Boqun Feng 已提交
2891
		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2892
		return;  /* Someone beat us to it. */
2893
	}
2894
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2895
	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2896
	swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
2897 2898 2899
}

/*
2900 2901 2902
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2903 2904
 */
static void
2905
__rcu_process_callbacks(struct rcu_state *rsp)
2906 2907
{
	unsigned long flags;
2908
	bool needwake;
2909
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2910

2911 2912
	WARN_ON_ONCE(rdp->beenonline == 0);

2913 2914 2915 2916
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2917
	local_irq_save(flags);
2918
	if (cpu_needs_another_gp(rsp, rdp)) {
2919
		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2920
		needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
2921
		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2922 2923
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2924 2925
	} else {
		local_irq_restore(flags);
2926 2927 2928
	}

	/* If there are callbacks ready, invoke them. */
2929
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2930
		invoke_rcu_callbacks(rsp, rdp);
2931 2932 2933

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2934 2935
}

2936
/*
2937
 * Do RCU core processing for the current CPU.
2938
 */
2939
static void rcu_process_callbacks(struct softirq_action *unused)
2940
{
2941 2942
	struct rcu_state *rsp;

2943 2944
	if (cpu_is_offline(smp_processor_id()))
		return;
2945
	trace_rcu_utilization(TPS("Start RCU core"));
2946 2947
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2948
	trace_rcu_utilization(TPS("End RCU core"));
2949 2950
}

2951
/*
2952 2953 2954
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2955
 * are running on the current CPU with softirqs disabled, the
2956
 * rcu_cpu_kthread_task cannot disappear out from under us.
2957
 */
2958
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2959
{
2960
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2961
		return;
2962 2963
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2964 2965
		return;
	}
2966
	invoke_rcu_callbacks_kthread();
2967 2968
}

2969
static void invoke_rcu_core(void)
2970
{
2971 2972
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2973 2974
}

2975 2976 2977 2978 2979
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2980
{
2981 2982
	bool needwake;

2983 2984 2985 2986
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2987
	if (!rcu_is_watching())
2988 2989
		invoke_rcu_core();

2990
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2991
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2992
		return;
2993

2994 2995 2996 2997 2998 2999 3000
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
3001
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3002 3003

		/* Are we ignoring a completed grace period? */
3004
		note_gp_changes(rsp, rdp);
3005 3006 3007 3008 3009

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

3010
			raw_spin_lock_rcu_node(rnp_root);
3011
			needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3012
			raw_spin_unlock_rcu_node(rnp_root);
3013 3014
			if (needwake)
				rcu_gp_kthread_wake(rsp);
3015 3016 3017 3018 3019
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3020
				force_quiescent_state(rsp);
3021 3022 3023
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
3024
	}
3025 3026
}

3027 3028 3029 3030 3031 3032 3033
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3034 3035 3036 3037 3038 3039
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3040
static void
3041
__call_rcu(struct rcu_head *head, rcu_callback_t func,
P
Paul E. McKenney 已提交
3042
	   struct rcu_state *rsp, int cpu, bool lazy)
3043 3044 3045 3046
{
	unsigned long flags;
	struct rcu_data *rdp;

3047
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3048 3049
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3050
		WRITE_ONCE(head->func, rcu_leak_callback);
3051 3052 3053
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
3064
	rdp = this_cpu_ptr(rsp->rda);
3065 3066

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
3067 3068 3069 3070 3071
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3085
		WARN_ON_ONCE(!rcu_is_watching());
3086 3087
		if (!likely(rdp->nxtlist))
			init_default_callback_list(rdp);
3088
	}
3089
	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3090 3091
	if (lazy)
		rdp->qlen_lazy++;
3092 3093
	else
		rcu_idle_count_callbacks_posted();
3094 3095 3096
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3097

3098 3099
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3100
					 rdp->qlen_lazy, rdp->qlen);
3101
	else
3102
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3103

3104 3105
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3106 3107 3108 3109
	local_irq_restore(flags);
}

/*
3110
 * Queue an RCU-sched callback for invocation after a grace period.
3111
 */
3112
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3113
{
P
Paul E. McKenney 已提交
3114
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3115
}
3116
EXPORT_SYMBOL_GPL(call_rcu_sched);
3117 3118

/*
3119
 * Queue an RCU callback for invocation after a quicker grace period.
3120
 */
3121
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3122
{
P
Paul E. McKenney 已提交
3123
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3124 3125 3126
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3127 3128 3129 3130 3131 3132 3133 3134
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
3135
		    rcu_callback_t func)
3136
{
3137
	__call_rcu(head, func, rcu_state_p, -1, 1);
3138 3139 3140
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3152 3153
	int ret;

3154
	might_sleep();  /* Check for RCU read-side critical section. */
3155 3156 3157 3158
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3159 3160
}

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3195 3196 3197 3198 3199 3200 3201 3202 3203
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3204 3205 3206 3207
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3208 3209
	if (rcu_blocking_is_gp())
		return;
3210
	if (rcu_gp_is_expedited())
3211 3212 3213
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3225 3226 3227
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3228 3229 3230
 */
void synchronize_rcu_bh(void)
{
3231 3232 3233 3234
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3235 3236
	if (rcu_blocking_is_gp())
		return;
3237
	if (rcu_gp_is_expedited())
3238 3239 3240
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3241 3242 3243
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3264
	return smp_load_acquire(&rcu_state_p->gpnum);
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3290
	newstate = smp_load_acquire(&rcu_state_p->completed);
3291 3292 3293 3294 3295
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
/**
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_sched(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_sched()
	 * and cond_synchronize_sched().
	 */
	return smp_load_acquire(&rcu_sched_state.gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);

/**
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 *
 * If a full RCU-sched grace period has elapsed since the earlier call to
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 * synchronize_sched() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_sched(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_sched_state.completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(cond_synchronize_sched);

3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
/* Adjust sequence number for start of update-side operation. */
static void rcu_seq_start(unsigned long *sp)
{
	WRITE_ONCE(*sp, *sp + 1);
	smp_mb(); /* Ensure update-side operation after counter increment. */
	WARN_ON_ONCE(!(*sp & 0x1));
}

/* Adjust sequence number for end of update-side operation. */
static void rcu_seq_end(unsigned long *sp)
{
	smp_mb(); /* Ensure update-side operation before counter increment. */
	WRITE_ONCE(*sp, *sp + 1);
	WARN_ON_ONCE(*sp & 0x1);
}

/* Take a snapshot of the update side's sequence number. */
static unsigned long rcu_seq_snap(unsigned long *sp)
{
	unsigned long s;

	s = (READ_ONCE(*sp) + 3) & ~0x1;
	smp_mb(); /* Above access must not bleed into critical section. */
	return s;
}

/*
 * Given a snapshot from rcu_seq_snap(), determine whether or not a
 * full update-side operation has occurred.
 */
static bool rcu_seq_done(unsigned long *sp, unsigned long s)
{
	return ULONG_CMP_GE(READ_ONCE(*sp), s);
}

/* Wrapper functions for expedited grace periods.  */
static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
{
	rcu_seq_start(&rsp->expedited_sequence);
}
static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
{
	rcu_seq_end(&rsp->expedited_sequence);
3391
	smp_mb(); /* Ensure that consecutive grace periods serialize. */
3392 3393 3394
}
static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
{
3395
	smp_mb(); /* Caller's modifications seen first by other CPUs. */
3396 3397 3398 3399 3400 3401 3402
	return rcu_seq_snap(&rsp->expedited_sequence);
}
static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
{
	return rcu_seq_done(&rsp->expedited_sequence, s);
}

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
/*
 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
 * recent CPU-online activity.  Note that these masks are not cleared
 * when CPUs go offline, so they reflect the union of all CPUs that have
 * ever been online.  This means that this function normally takes its
 * no-work-to-do fastpath.
 */
static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
{
	bool done;
	unsigned long flags;
	unsigned long mask;
	unsigned long oldmask;
	int ncpus = READ_ONCE(rsp->ncpus);
	struct rcu_node *rnp;
	struct rcu_node *rnp_up;

	/* If no new CPUs onlined since last time, nothing to do. */
	if (likely(ncpus == rsp->ncpus_snap))
		return;
	rsp->ncpus_snap = ncpus;

	/*
	 * Each pass through the following loop propagates newly onlined
	 * CPUs for the current rcu_node structure up the rcu_node tree.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
3430
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3431
		if (rnp->expmaskinit == rnp->expmaskinitnext) {
B
Boqun Feng 已提交
3432
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3433 3434 3435 3436 3437 3438
			continue;  /* No new CPUs, nothing to do. */
		}

		/* Update this node's mask, track old value for propagation. */
		oldmask = rnp->expmaskinit;
		rnp->expmaskinit = rnp->expmaskinitnext;
B
Boqun Feng 已提交
3439
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449

		/* If was already nonzero, nothing to propagate. */
		if (oldmask)
			continue;

		/* Propagate the new CPU up the tree. */
		mask = rnp->grpmask;
		rnp_up = rnp->parent;
		done = false;
		while (rnp_up) {
3450
			raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
3451 3452 3453
			if (rnp_up->expmaskinit)
				done = true;
			rnp_up->expmaskinit |= mask;
B
Boqun Feng 已提交
3454
			raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags);
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
			if (done)
				break;
			mask = rnp_up->grpmask;
			rnp_up = rnp_up->parent;
		}
	}
}

/*
 * Reset the ->expmask values in the rcu_node tree in preparation for
 * a new expedited grace period.
 */
static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	sync_exp_reset_tree_hotplug(rsp);
	rcu_for_each_node_breadth_first(rsp, rnp) {
3474
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3475 3476
		WARN_ON_ONCE(rnp->expmask);
		rnp->expmask = rnp->expmaskinit;
B
Boqun Feng 已提交
3477
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3478 3479 3480
	}
}

3481
/*
3482
 * Return non-zero if there is no RCU expedited grace period in progress
3483 3484 3485 3486 3487
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
3488
 * Caller must hold the rcu_state's exp_mutex.
3489 3490 3491
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
3492
	return rnp->exp_tasks == NULL &&
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
	       READ_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
3504 3505
 * Caller must hold the rcu_state's exp_mutex and the specified rcu_node
 * structure's ->lock.
3506
 */
3507 3508 3509
static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
				 bool wake, unsigned long flags)
	__releases(rnp->lock)
3510 3511 3512 3513 3514
{
	unsigned long mask;

	for (;;) {
		if (!sync_rcu_preempt_exp_done(rnp)) {
3515 3516 3517
			if (!rnp->expmask)
				rcu_initiate_boost(rnp, flags);
			else
B
Boqun Feng 已提交
3518
				raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3519 3520 3521
			break;
		}
		if (rnp->parent == NULL) {
B
Boqun Feng 已提交
3522
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3523 3524
			if (wake) {
				smp_mb(); /* EGP done before wake_up(). */
3525
				swake_up(&rsp->expedited_wq);
3526 3527 3528 3529
			}
			break;
		}
		mask = rnp->grpmask;
B
Boqun Feng 已提交
3530
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */
3531
		rnp = rnp->parent;
3532
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
3533
		WARN_ON_ONCE(!(rnp->expmask & mask));
3534 3535 3536 3537
		rnp->expmask &= ~mask;
	}
}

3538 3539 3540 3541
/*
 * Report expedited quiescent state for specified node.  This is a
 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
 *
3542
 * Caller must hold the rcu_state's exp_mutex.
3543 3544 3545 3546 3547 3548
 */
static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
					      struct rcu_node *rnp, bool wake)
{
	unsigned long flags;

3549
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3550 3551 3552 3553 3554
	__rcu_report_exp_rnp(rsp, rnp, wake, flags);
}

/*
 * Report expedited quiescent state for multiple CPUs, all covered by the
3555 3556
 * specified leaf rcu_node structure.  Caller must hold the rcu_state's
 * exp_mutex.
3557 3558 3559 3560 3561 3562
 */
static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
				    unsigned long mask, bool wake)
{
	unsigned long flags;

3563
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3564
	if (!(rnp->expmask & mask)) {
B
Boqun Feng 已提交
3565
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3566 3567
		return;
	}
3568 3569 3570 3571 3572 3573 3574
	rnp->expmask &= ~mask;
	__rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
}

/*
 * Report expedited quiescent state for specified rcu_data (CPU).
 */
3575 3576
static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
			       bool wake)
3577 3578 3579 3580
{
	rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
}

3581
/* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3582 3583
static bool sync_exp_work_done(struct rcu_state *rsp, atomic_long_t *stat,
			       unsigned long s)
3584
{
3585
	if (rcu_exp_gp_seq_done(rsp, s)) {
3586
		trace_rcu_exp_grace_period(rsp->name, s, TPS("done"));
3587 3588 3589 3590 3591 3592 3593 3594
		/* Ensure test happens before caller kfree(). */
		smp_mb__before_atomic(); /* ^^^ */
		atomic_long_inc(stat);
		return true;
	}
	return false;
}

3595
/*
3596 3597 3598 3599 3600
 * Funnel-lock acquisition for expedited grace periods.  Returns true
 * if some other task completed an expedited grace period that this task
 * can piggy-back on, and with no mutex held.  Otherwise, returns false
 * with the mutex held, indicating that the caller must actually do the
 * expedited grace period.
3601
 */
3602
static bool exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
3603
{
3604
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3605
	struct rcu_node *rnp = rdp->mynode;
3606 3607 3608 3609 3610 3611 3612 3613 3614
	struct rcu_node *rnp_root = rcu_get_root(rsp);

	/* Low-contention fastpath. */
	if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s) &&
	    (rnp == rnp_root ||
	     ULONG_CMP_LT(READ_ONCE(rnp_root->exp_seq_rq), s)) &&
	    !mutex_is_locked(&rsp->exp_mutex) &&
	    mutex_trylock(&rsp->exp_mutex))
		goto fastpath;
3615 3616

	/*
3617 3618 3619 3620 3621
	 * Each pass through the following loop works its way up
	 * the rcu_node tree, returning if others have done the work or
	 * otherwise falls through to acquire rsp->exp_mutex.  The mapping
	 * from CPU to rcu_node structure can be inexact, as it is just
	 * promoting locality and is not strictly needed for correctness.
3622
	 */
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
	for (; rnp != NULL; rnp = rnp->parent) {
		if (sync_exp_work_done(rsp, &rdp->exp_workdone1, s))
			return true;

		/* Work not done, either wait here or go up. */
		spin_lock(&rnp->exp_lock);
		if (ULONG_CMP_GE(rnp->exp_seq_rq, s)) {

			/* Someone else doing GP, so wait for them. */
			spin_unlock(&rnp->exp_lock);
			trace_rcu_exp_funnel_lock(rsp->name, rnp->level,
						  rnp->grplo, rnp->grphi,
						  TPS("wait"));
			wait_event(rnp->exp_wq[(s >> 1) & 0x1],
				   sync_exp_work_done(rsp,
						      &rdp->exp_workdone2, s));
			return true;
3640
		}
3641 3642 3643 3644
		rnp->exp_seq_rq = s; /* Followers can wait on us. */
		spin_unlock(&rnp->exp_lock);
		trace_rcu_exp_funnel_lock(rsp->name, rnp->level, rnp->grplo,
					  rnp->grphi, TPS("nxtlvl"));
3645
	}
3646
	mutex_lock(&rsp->exp_mutex);
3647
fastpath:
3648 3649 3650 3651 3652
	if (sync_exp_work_done(rsp, &rdp->exp_workdone3, s)) {
		mutex_unlock(&rsp->exp_mutex);
		return true;
	}
	return false;
3653 3654
}

3655
/* Invoked on each online non-idle CPU for expedited quiescent state. */
3656
static void sync_sched_exp_handler(void *data)
3657
{
3658 3659 3660
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp = data;
3661

3662 3663 3664 3665 3666
	rdp = this_cpu_ptr(rsp->rda);
	rnp = rdp->mynode;
	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
	    __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
3667 3668 3669 3670 3671
	if (rcu_is_cpu_rrupt_from_idle()) {
		rcu_report_exp_rdp(&rcu_sched_state,
				   this_cpu_ptr(&rcu_sched_data), true);
		return;
	}
3672 3673
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
	resched_cpu(smp_processor_id());
3674 3675
}

3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
/* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
static void sync_sched_exp_online_cleanup(int cpu)
{
	struct rcu_data *rdp;
	int ret;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_sched_state;

	rdp = per_cpu_ptr(rsp->rda, cpu);
	rnp = rdp->mynode;
	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
		return;
	ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
	WARN_ON_ONCE(ret);
}

3692 3693 3694 3695
/*
 * Select the nodes that the upcoming expedited grace period needs
 * to wait for.
 */
3696 3697
static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
				     smp_call_func_t func)
3698 3699 3700 3701 3702 3703
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
	unsigned long mask_ofl_test;
	unsigned long mask_ofl_ipi;
3704
	int ret;
3705 3706 3707 3708
	struct rcu_node *rnp;

	sync_exp_reset_tree(rsp);
	rcu_for_each_leaf_node(rsp, rnp) {
3709
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729

		/* Each pass checks a CPU for identity, offline, and idle. */
		mask_ofl_test = 0;
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

			if (raw_smp_processor_id() == cpu ||
			    !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
				mask_ofl_test |= rdp->grpmask;
		}
		mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;

		/*
		 * Need to wait for any blocked tasks as well.  Note that
		 * additional blocking tasks will also block the expedited
		 * GP until such time as the ->expmask bits are cleared.
		 */
		if (rcu_preempt_has_tasks(rnp))
			rnp->exp_tasks = rnp->blkd_tasks.next;
B
Boqun Feng 已提交
3730
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3731 3732 3733 3734 3735 3736

		/* IPI the remaining CPUs for expedited quiescent state. */
		mask = 1;
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
			if (!(mask_ofl_ipi & mask))
				continue;
3737
retry_ipi:
3738
			ret = smp_call_function_single(cpu, func, rsp, 0);
3739
			if (!ret) {
3740
				mask_ofl_ipi &= ~mask;
3741 3742 3743 3744 3745 3746
				continue;
			}
			/* Failed, raced with offline. */
			raw_spin_lock_irqsave_rcu_node(rnp, flags);
			if (cpu_online(cpu) &&
			    (rnp->expmask & mask)) {
B
Boqun Feng 已提交
3747
				raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3748 3749 3750 3751 3752
				schedule_timeout_uninterruptible(1);
				if (cpu_online(cpu) &&
				    (rnp->expmask & mask))
					goto retry_ipi;
				raw_spin_lock_irqsave_rcu_node(rnp, flags);
3753
			}
3754 3755
			if (!(rnp->expmask & mask))
				mask_ofl_ipi &= ~mask;
B
Boqun Feng 已提交
3756
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3757 3758 3759 3760 3761 3762
		}
		/* Report quiescent states for those that went offline. */
		mask_ofl_test |= mask_ofl_ipi;
		if (mask_ofl_test)
			rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
	}
3763 3764
}

3765 3766 3767 3768 3769
static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
{
	int cpu;
	unsigned long jiffies_stall;
	unsigned long jiffies_start;
3770
	unsigned long mask;
3771
	int ndetected;
3772 3773
	struct rcu_node *rnp;
	struct rcu_node *rnp_root = rcu_get_root(rsp);
3774 3775 3776 3777 3778 3779
	int ret;

	jiffies_stall = rcu_jiffies_till_stall_check();
	jiffies_start = jiffies;

	for (;;) {
3780
		ret = swait_event_timeout(
3781
				rsp->expedited_wq,
3782
				sync_rcu_preempt_exp_done(rnp_root),
3783
				jiffies_stall);
3784
		if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root))
3785 3786 3787
			return;
		if (ret < 0) {
			/* Hit a signal, disable CPU stall warnings. */
3788
			swait_event(rsp->expedited_wq,
3789
				   sync_rcu_preempt_exp_done(rnp_root));
3790 3791
			return;
		}
3792
		pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3793
		       rsp->name);
3794
		ndetected = 0;
3795
		rcu_for_each_leaf_node(rsp, rnp) {
3796
			ndetected += rcu_print_task_exp_stall(rnp);
3797 3798
			mask = 1;
			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3799 3800
				struct rcu_data *rdp;

3801 3802
				if (!(rnp->expmask & mask))
					continue;
3803
				ndetected++;
3804 3805
				rdp = per_cpu_ptr(rsp->rda, cpu);
				pr_cont(" %d-%c%c%c", cpu,
3806
					"O."[!!cpu_online(cpu)],
3807 3808
					"o."[!!(rdp->grpmask & rnp->expmaskinit)],
					"N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
3809 3810
			}
			mask <<= 1;
3811
		}
3812 3813 3814
		pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
			jiffies - jiffies_start, rsp->expedited_sequence,
			rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
3815
		if (ndetected) {
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
			pr_err("blocking rcu_node structures:");
			rcu_for_each_node_breadth_first(rsp, rnp) {
				if (rnp == rnp_root)
					continue; /* printed unconditionally */
				if (sync_rcu_preempt_exp_done(rnp))
					continue;
				pr_cont(" l=%u:%d-%d:%#lx/%c",
					rnp->level, rnp->grplo, rnp->grphi,
					rnp->expmask,
					".T"[!!rnp->exp_tasks]);
			}
			pr_cont("\n");
		}
3829 3830 3831 3832 3833 3834 3835
		rcu_for_each_leaf_node(rsp, rnp) {
			mask = 1;
			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
				if (!(rnp->expmask & mask))
					continue;
				dump_cpu_task(cpu);
			}
3836 3837 3838 3839 3840
		}
		jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
	}
}

3841
/*
3842 3843
 * Wait for the current expedited grace period to complete, and then
 * wake up everyone who piggybacked on the just-completed expedited
3844 3845 3846
 * grace period.  Also update all the ->exp_seq_rq counters as needed
 * in order to avoid counter-wrap problems.
 */
3847
static void rcu_exp_wait_wake(struct rcu_state *rsp, unsigned long s)
3848 3849 3850
{
	struct rcu_node *rnp;

3851 3852 3853
	synchronize_sched_expedited_wait(rsp);
	rcu_exp_gp_seq_end(rsp);
	trace_rcu_exp_grace_period(rsp->name, s, TPS("end"));
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s)) {
			spin_lock(&rnp->exp_lock);
			/* Recheck, avoid hang in case someone just arrived. */
			if (ULONG_CMP_LT(rnp->exp_seq_rq, s))
				rnp->exp_seq_rq = s;
			spin_unlock(&rnp->exp_lock);
		}
		wake_up_all(&rnp->exp_wq[(rsp->expedited_sequence >> 1) & 0x1]);
	}
3864 3865
	trace_rcu_exp_grace_period(rsp->name, s, TPS("endwake"));
	mutex_unlock(&rsp->exp_mutex);
3866 3867
}

3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
3878
 *
3879 3880 3881
 * This implementation can be thought of as an application of sequence
 * locking to expedited grace periods, but using the sequence counter to
 * determine when someone else has already done the work instead of for
3882
 * retrying readers.
3883 3884 3885
 */
void synchronize_sched_expedited(void)
{
3886
	unsigned long s;
3887
	struct rcu_state *rsp = &rcu_sched_state;
3888

3889 3890 3891 3892
	/* If only one CPU, this is automatically a grace period. */
	if (rcu_blocking_is_gp())
		return;

3893 3894 3895 3896 3897 3898
	/* If expedited grace periods are prohibited, fall back to normal. */
	if (rcu_gp_is_normal()) {
		wait_rcu_gp(call_rcu_sched);
		return;
	}

3899
	/* Take a snapshot of the sequence number.  */
3900
	s = rcu_exp_gp_seq_snap(rsp);
3901
	trace_rcu_exp_grace_period(rsp->name, s, TPS("snap"));
3902

3903
	if (exp_funnel_lock(rsp, s))
3904
		return;  /* Someone else did our work for us. */
3905

3906
	rcu_exp_gp_seq_start(rsp);
3907
	trace_rcu_exp_grace_period(rsp->name, s, TPS("start"));
3908 3909

	/* Initialize the rcu_node tree in preparation for the wait. */
3910
	sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
3911

3912
	/* Wait and clean up, including waking everyone. */
3913
	rcu_exp_wait_wake(rsp, s);
3914 3915 3916
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3917 3918 3919 3920 3921 3922 3923 3924 3925
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3926 3927
	struct rcu_node *rnp = rdp->mynode;

3928 3929 3930 3931 3932
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3933 3934 3935 3936
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3937
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3938
	if (rcu_scheduler_fully_active &&
3939
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3940
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3941 3942
		rdp->n_rp_core_needs_qs++;
	} else if (rdp->core_needs_qs &&
3943
		   (!rdp->cpu_no_qs.b.norm ||
3944
		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3945
		rdp->n_rp_report_qs++;
3946
		return 1;
3947
	}
3948 3949

	/* Does this CPU have callbacks ready to invoke? */
3950 3951
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3952
		return 1;
3953
	}
3954 3955

	/* Has RCU gone idle with this CPU needing another grace period? */
3956 3957
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3958
		return 1;
3959
	}
3960 3961

	/* Has another RCU grace period completed?  */
3962
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3963
		rdp->n_rp_gp_completed++;
3964
		return 1;
3965
	}
3966 3967

	/* Has a new RCU grace period started? */
3968 3969
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3970
		rdp->n_rp_gp_started++;
3971
		return 1;
3972
	}
3973

3974 3975 3976 3977 3978 3979
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3980
	/* nothing to do */
3981
	rdp->n_rp_need_nothing++;
3982 3983 3984 3985 3986 3987 3988 3989
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3990
static int rcu_pending(void)
3991
{
3992 3993 3994
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3995
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3996 3997
			return 1;
	return 0;
3998 3999 4000
}

/*
4001 4002 4003
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
4004
 */
4005
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
4006
{
4007 4008 4009
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
4010 4011
	struct rcu_state *rsp;

4012
	for_each_rcu_flavor(rsp) {
4013
		rdp = this_cpu_ptr(rsp->rda);
4014 4015 4016 4017
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
4018
			al = false;
4019 4020
			break;
		}
4021 4022 4023 4024
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
4025 4026
}

4027 4028 4029 4030
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
4031
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
4032 4033 4034 4035 4036 4037
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

4038 4039 4040 4041
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
4042
static void rcu_barrier_callback(struct rcu_head *rhp)
4043
{
4044 4045 4046
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

4047
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4048
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
4049
		complete(&rsp->barrier_completion);
4050
	} else {
4051
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
4052
	}
4053 4054 4055 4056 4057 4058 4059
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
4060
	struct rcu_state *rsp = type;
4061
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
4062

4063
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
4064
	atomic_inc(&rsp->barrier_cpu_count);
4065
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
4066 4067 4068 4069 4070 4071
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
4072
static void _rcu_barrier(struct rcu_state *rsp)
4073
{
4074 4075
	int cpu;
	struct rcu_data *rdp;
4076
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
4077

4078
	_rcu_barrier_trace(rsp, "Begin", -1, s);
4079

4080
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4081
	mutex_lock(&rsp->barrier_mutex);
4082

4083 4084 4085
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
4086 4087 4088 4089 4090
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

4091 4092 4093
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
4094

4095
	/*
4096 4097
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
4098 4099
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
4100
	 */
4101
	init_completion(&rsp->barrier_completion);
4102
	atomic_set(&rsp->barrier_cpu_count, 1);
4103
	get_online_cpus();
4104 4105

	/*
4106 4107 4108
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
4109
	 */
P
Paul E. McKenney 已提交
4110
	for_each_possible_cpu(cpu) {
4111
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
4112
			continue;
4113
		rdp = per_cpu_ptr(rsp->rda, cpu);
4114
		if (rcu_is_nocb_cpu(cpu)) {
4115 4116
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4117
						   rsp->barrier_sequence);
4118 4119
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4120
						   rsp->barrier_sequence);
4121
				smp_mb__before_atomic();
4122 4123 4124 4125
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
4126
		} else if (READ_ONCE(rdp->qlen)) {
4127
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
4128
					   rsp->barrier_sequence);
4129
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4130
		} else {
4131
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4132
					   rsp->barrier_sequence);
4133 4134
		}
	}
4135
	put_online_cpus();
4136 4137 4138 4139 4140

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
4141
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4142
		complete(&rsp->barrier_completion);
4143 4144

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4145
	wait_for_completion(&rsp->barrier_completion);
4146

4147 4148 4149 4150
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

4151
	/* Other rcu_barrier() invocations can now safely proceed. */
4152
	mutex_unlock(&rsp->barrier_mutex);
4153 4154 4155 4156 4157 4158 4159
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
4160
	_rcu_barrier(&rcu_bh_state);
4161 4162 4163 4164 4165 4166 4167 4168
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
4169
	_rcu_barrier(&rcu_sched_state);
4170 4171 4172
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
4189
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4190
		rnp->qsmaskinit |= mask;
B
Boqun Feng 已提交
4191
		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4192 4193 4194
	}
}

4195
/*
4196
 * Do boot-time initialization of a CPU's per-CPU RCU data.
4197
 */
4198 4199
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4200 4201
{
	unsigned long flags;
4202
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4203 4204 4205
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
4206
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4207 4208
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4209
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4210
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4211
	rdp->cpu = cpu;
4212
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
4213
	rcu_boot_init_nocb_percpu_data(rdp);
B
Boqun Feng 已提交
4214
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4215 4216 4217 4218 4219 4220 4221
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4222
 */
4223
static void
4224
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4225 4226 4227
{
	unsigned long flags;
	unsigned long mask;
4228
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4229 4230 4231
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
4232
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4233 4234
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
4235
	rdp->blimit = blimit;
4236 4237
	if (!rdp->nxtlist)
		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
4238
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4239
	rcu_sysidle_init_percpu_data(rdp->dynticks);
4240 4241
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
B
Boqun Feng 已提交
4242
	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4243

4244 4245 4246 4247 4248
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
4249 4250
	rnp = rdp->mynode;
	mask = rdp->grpmask;
4251
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4252
	rnp->qsmaskinitnext |= mask;
4253 4254 4255 4256
	rnp->expmaskinitnext |= mask;
	if (!rdp->beenonline)
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
	rdp->beenonline = true;	 /* We have now been online. */
4257 4258
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
4259
	rdp->cpu_no_qs.b.norm = true;
4260
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4261
	rdp->core_needs_qs = false;
4262
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
B
Boqun Feng 已提交
4263
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4264 4265
}

4266
static void rcu_prepare_cpu(int cpu)
4267
{
4268 4269 4270
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
4271
		rcu_init_percpu_data(cpu, rsp);
4272 4273
}

4274 4275
#ifdef CONFIG_HOTPLUG_CPU
/*
4276 4277 4278
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
4297
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
}

void rcu_report_dead(unsigned int cpu)
{
	struct rcu_state *rsp;

	/* QS for any half-done expedited RCU-sched GP. */
	preempt_disable();
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(rcu_sched_state.rda), true);
	preempt_enable();
	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_idle_cpu(cpu, rsp);
}
#endif

4314
/*
4315
 * Handle CPU online/offline notification events.
4316
 */
4317 4318
int rcu_cpu_notify(struct notifier_block *self,
		   unsigned long action, void *hcpu)
4319 4320
{
	long cpu = (long)hcpu;
4321
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4322
	struct rcu_node *rnp = rdp->mynode;
4323
	struct rcu_state *rsp;
4324 4325 4326 4327

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
4328 4329
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
4330
		rcu_spawn_all_nocb_kthreads(cpu);
4331 4332
		break;
	case CPU_ONLINE:
4333
	case CPU_DOWN_FAILED:
4334
		sync_sched_exp_online_cleanup(cpu);
T
Thomas Gleixner 已提交
4335
		rcu_boost_kthread_setaffinity(rnp, -1);
4336 4337
		break;
	case CPU_DOWN_PREPARE:
4338
		rcu_boost_kthread_setaffinity(rnp, cpu);
4339
		break;
4340 4341
	case CPU_DYING:
	case CPU_DYING_FROZEN:
4342 4343
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
4344
		break;
4345 4346 4347 4348
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
4349
		for_each_rcu_flavor(rsp) {
4350
			rcu_cleanup_dead_cpu(cpu, rsp);
4351 4352
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
4353 4354 4355 4356
		break;
	default:
		break;
	}
4357
	return NOTIFY_OK;
4358 4359
}

4360 4361 4362 4363 4364 4365 4366
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4367
			rcu_expedite_gp();
4368 4369 4370
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
4371 4372
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
4373 4374 4375 4376 4377 4378 4379
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

4380
/*
4381
 * Spawn the kthreads that handle each RCU flavor's grace periods.
4382 4383 4384 4385
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
4386
	int kthread_prio_in = kthread_prio;
4387 4388
	struct rcu_node *rnp;
	struct rcu_state *rsp;
4389
	struct sched_param sp;
4390 4391
	struct task_struct *t;

4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

4403
	rcu_scheduler_fully_active = 1;
4404
	for_each_rcu_flavor(rsp) {
4405
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4406 4407
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
4408
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4409
		rsp->gp_kthread = t;
4410 4411 4412 4413
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
B
Boqun Feng 已提交
4414
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4415
		wake_up_process(t);
4416
	}
4417
	rcu_spawn_nocb_kthreads();
4418
	rcu_spawn_boost_kthreads();
4419 4420 4421 4422
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

4438 4439
/*
 * Compute the per-level fanout, either using the exact fanout specified
4440
 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4441
 */
4442
static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4443 4444 4445
{
	int i;

4446
	if (rcu_fanout_exact) {
4447
		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4448
		for (i = rcu_num_lvls - 2; i >= 0; i--)
4449
			levelspread[i] = RCU_FANOUT;
4450 4451 4452 4453 4454 4455
	} else {
		int ccur;
		int cprv;

		cprv = nr_cpu_ids;
		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4456 4457
			ccur = levelcnt[i];
			levelspread[i] = (cprv + ccur - 1) / ccur;
4458 4459
			cprv = ccur;
		}
4460 4461 4462 4463 4464 4465
	}
}

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
4466
static void __init rcu_init_one(struct rcu_state *rsp)
4467
{
4468 4469
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4470 4471
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4472
	static u8 fl_mask = 0x1;
4473 4474 4475

	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4476 4477 4478 4479 4480
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4481
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4482

4483 4484 4485
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4486

4487 4488
	/* Initialize the level-tracking arrays. */

4489
	for (i = 0; i < rcu_num_lvls; i++)
4490
		levelcnt[i] = num_rcu_lvl[i];
4491
	for (i = 1; i < rcu_num_lvls; i++)
4492 4493
		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
	rcu_init_levelspread(levelspread, levelcnt);
4494 4495
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
4496 4497 4498

	/* Initialize the elements themselves, starting from the leaves. */

4499
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4500
		cpustride *= levelspread[i];
4501
		rnp = rsp->level[i];
4502
		for (j = 0; j < levelcnt[i]; j++, rnp++) {
B
Boqun Feng 已提交
4503 4504
			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4505
						   &rcu_node_class[i], buf[i]);
4506 4507 4508
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4509 4510
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4511 4512 4513 4514
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4515 4516
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4517 4518 4519 4520 4521
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4522
				rnp->grpnum = j % levelspread[i - 1];
4523 4524
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4525
					      j / levelspread[i - 1];
4526 4527
			}
			rnp->level = i;
4528
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4529
			rcu_init_one_nocb(rnp);
4530 4531 4532
			init_waitqueue_head(&rnp->exp_wq[0]);
			init_waitqueue_head(&rnp->exp_wq[1]);
			spin_lock_init(&rnp->exp_lock);
4533 4534
		}
	}
4535

4536 4537
	init_swait_queue_head(&rsp->gp_wq);
	init_swait_queue_head(&rsp->expedited_wq);
4538
	rnp = rsp->level[rcu_num_lvls - 1];
4539
	for_each_possible_cpu(i) {
4540
		while (i > rnp->grphi)
4541
			rnp++;
4542
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4543 4544
		rcu_boot_init_percpu_data(i, rsp);
	}
4545
	list_add(&rsp->flavors, &rcu_struct_flavors);
4546 4547
}

4548 4549
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4550
 * replace the definitions in tree.h because those are needed to size
4551 4552 4553 4554
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4555
	ulong d;
4556
	int i;
4557
	int rcu_capacity[RCU_NUM_LVLS];
4558

4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4572
	/* If the compile-time values are accurate, just leave. */
4573
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4574
	    nr_cpu_ids == NR_CPUS)
4575
		return;
4576 4577
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4578 4579

	/*
4580 4581 4582 4583
	 * The boot-time rcu_fanout_leaf parameter must be at least two
	 * and cannot exceed the number of bits in the rcu_node masks.
	 * Complain and fall back to the compile-time values if this
	 * limit is exceeded.
4584
	 */
4585
	if (rcu_fanout_leaf < 2 ||
4586
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4587
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4588 4589 4590 4591 4592 4593
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4594
	 * with the given number of levels.
4595
	 */
4596
	rcu_capacity[0] = rcu_fanout_leaf;
4597
	for (i = 1; i < RCU_NUM_LVLS; i++)
4598
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4599 4600

	/*
4601
	 * The tree must be able to accommodate the configured number of CPUs.
4602
	 * If this limit is exceeded, fall back to the compile-time values.
4603
	 */
4604 4605 4606 4607 4608
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}
4609

4610
	/* Calculate the number of levels in the tree. */
4611
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4612
	}
4613
	rcu_num_lvls = i + 1;
4614

4615
	/* Calculate the number of rcu_nodes at each level of the tree. */
4616
	for (i = 0; i < rcu_num_lvls; i++) {
4617
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4618 4619
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4620 4621 4622

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4623
	for (i = 0; i < rcu_num_lvls; i++)
4624 4625 4626
		rcu_num_nodes += num_rcu_lvl[i];
}

4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4649
void __init rcu_init(void)
4650
{
P
Paul E. McKenney 已提交
4651
	int cpu;
4652

4653 4654
	rcu_early_boot_tests();

4655
	rcu_bootup_announce();
4656
	rcu_init_geometry();
4657 4658
	rcu_init_one(&rcu_bh_state);
	rcu_init_one(&rcu_sched_state);
4659 4660
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4661
	__rcu_init_preempt();
J
Jiang Fang 已提交
4662
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4663 4664 4665 4666 4667 4668 4669

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
4670
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
4671 4672
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4673 4674
}

4675
#include "tree_plugin.h"