tree.c 118.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/ftrace_event.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73

74 75 76 77 78 79 80 81
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
82 83
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
84
static char sname##_varname[] = #sname; \
85 86 87 88 89 90 91 92 93
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
94
struct rcu_state sname##_state = { \
95
	.level = { &sname##_state.node[0] }, \
96
	.call = cr, \
97
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
98 99
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
100
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 102
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
103
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104
	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
105
	.name = RCU_STATE_NAME(sname), \
106
	.abbr = sabbr, \
107
}; \
108
DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data)
109

110 111
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112

113
static struct rcu_state *rcu_state_p;
114
LIST_HEAD(rcu_struct_flavors);
115

116 117
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
118
module_param(rcu_fanout_leaf, int, 0444);
119 120 121 122 123 124 125 126 127 128
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

129 130 131 132
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
133
 * optimize synchronize_sched() to a simple barrier().  When this variable
134 135 136 137
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
138 139 140
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

141 142 143 144 145 146 147 148 149 150 151 152 153 154
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

T
Thomas Gleixner 已提交
155
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
156 157
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
158

159 160 161 162 163 164 165 166 167 168 169 170
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

171 172 173 174 175 176 177 178 179 180
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

181
/*
182
 * Note a quiescent state.  Because we do not need to know
183
 * how many quiescent states passed, just if there was at least
184
 * one since the start of the grace period, this just sets a flag.
185
 * The caller must have disabled preemption.
186
 */
187
void rcu_sched_qs(void)
188
{
189 190 191 192 193 194
	if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_sched"),
				       __this_cpu_read(rcu_sched_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_sched_data.passed_quiesce, 1);
	}
195 196
}

197
void rcu_bh_qs(void)
198
{
199 200 201 202 203 204
	if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_bh_data.passed_quiesce, 1);
	}
205
}
206

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
 */
static void rcu_momentary_dyntick_idle(void)
{
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	local_irq_save(flags);

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
		if (ACCESS_ONCE(rdp->mynode->completed) !=
		    ACCESS_ONCE(rdp->cond_resched_completed))
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
	local_irq_restore(flags);
}

271 272 273
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
274
 * The caller must have disabled preemption.
275
 */
276
void rcu_note_context_switch(void)
277
{
278
	trace_rcu_utilization(TPS("Start context switch"));
279
	rcu_sched_qs();
280
	rcu_preempt_note_context_switch();
281 282
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
283
	trace_rcu_utilization(TPS("End context switch"));
284
}
285
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
286

E
Eric Dumazet 已提交
287 288 289
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
290

E
Eric Dumazet 已提交
291 292 293
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
294

295 296
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
297 298 299 300

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

301 302 303 304 305 306 307
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

308
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
309
				  struct rcu_data *rdp);
310 311 312 313
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
314
static void force_quiescent_state(struct rcu_state *rsp);
315
static int rcu_pending(void);
316 317

/*
318
 * Return the number of RCU-sched batches processed thus far for debug & stats.
319
 */
320
long rcu_batches_completed_sched(void)
321
{
322
	return rcu_sched_state.completed;
323
}
324
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
325 326 327 328 329 330 331 332 333 334

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

335 336 337 338 339
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
340
	force_quiescent_state(rcu_state_p);
341 342 343
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

344 345 346 347 348
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
349
	force_quiescent_state(&rcu_bh_state);
350 351 352
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

368 369 370 371 372 373 374 375 376 377 378 379 380 381
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

382 383 384 385 386 387 388 389 390 391
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
392
		rsp = rcu_state_p;
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
		*flags = ACCESS_ONCE(rsp->gp_flags);
		*gpnum = ACCESS_ONCE(rsp->gpnum);
		*completed = ACCESS_ONCE(rsp->completed);
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

415 416 417 418 419 420 421 422 423 424 425
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

426 427 428 429 430
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
431
	force_quiescent_state(&rcu_sched_state);
432 433 434
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

435 436 437 438 439 440
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
441 442
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
443 444
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
	int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
	int *fp = &rnp->need_future_gp[idx];

	return ACCESS_ONCE(*fp);
}

467
/*
468 469 470
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
471 472 473 474
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
475
	int i;
P
Paul E. McKenney 已提交
476

477 478
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
479
	if (rcu_future_needs_gp(rsp))
480
		return 1;  /* Yes, a no-CBs CPU needs one. */
481 482 483 484 485 486 487 488 489 490
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
491 492
}

493
/*
494
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
495 496 497 498 499
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
500
static void rcu_eqs_enter_common(long long oldval, bool user)
501
{
502 503
	struct rcu_state *rsp;
	struct rcu_data *rdp;
504
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
505

506
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
507
	if (!user && !is_idle_task(current)) {
508 509
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
510

511
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
512
		ftrace_dump(DUMP_ORIG);
513 514 515
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
516
	}
517 518 519 520
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
521
	rcu_prepare_for_idle();
522
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
523
	smp_mb__before_atomic();  /* See above. */
524
	atomic_inc(&rdtp->dynticks);
525
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
526
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
527
	rcu_dynticks_task_enter();
528 529

	/*
530
	 * It is illegal to enter an extended quiescent state while
531 532 533 534 535 536 537 538
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
539
}
540

541 542 543
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
544
 */
545
static void rcu_eqs_enter(bool user)
546
{
547
	long long oldval;
548 549
	struct rcu_dynticks *rdtp;

550
	rdtp = this_cpu_ptr(&rcu_dynticks);
551
	oldval = rdtp->dynticks_nesting;
552
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
553
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
554
		rdtp->dynticks_nesting = 0;
555
		rcu_eqs_enter_common(oldval, user);
556
	} else {
557
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
558
	}
559
}
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
575 576 577
	unsigned long flags;

	local_irq_save(flags);
578
	rcu_eqs_enter(false);
579
	rcu_sysidle_enter(0);
580
	local_irq_restore(flags);
581
}
582
EXPORT_SYMBOL_GPL(rcu_idle_enter);
583

584
#ifdef CONFIG_RCU_USER_QS
585 586 587 588 589 590 591 592 593 594
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
595
	rcu_eqs_enter(1);
596
}
597
#endif /* CONFIG_RCU_USER_QS */
598

599 600 601 602 603 604
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
605
 *
606 607 608 609 610 611 612 613
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
614
 */
615
void rcu_irq_exit(void)
616 617
{
	unsigned long flags;
618
	long long oldval;
619 620 621
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
622
	rdtp = this_cpu_ptr(&rcu_dynticks);
623
	oldval = rdtp->dynticks_nesting;
624 625
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
626
	if (rdtp->dynticks_nesting)
627
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
628
	else
629 630
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
631 632 633 634
	local_irq_restore(flags);
}

/*
635
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
636 637 638 639 640
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
641
static void rcu_eqs_exit_common(long long oldval, int user)
642
{
643 644
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

645
	rcu_dynticks_task_exit();
646
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
647 648
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
649
	smp_mb__after_atomic();  /* See above. */
650
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
651
	rcu_cleanup_after_idle();
652
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
653
	if (!user && !is_idle_task(current)) {
654 655
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
656

657
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
658
				  oldval, rdtp->dynticks_nesting);
659
		ftrace_dump(DUMP_ORIG);
660 661 662
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
663 664 665
	}
}

666 667 668
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
669
 */
670
static void rcu_eqs_exit(bool user)
671 672 673 674
{
	struct rcu_dynticks *rdtp;
	long long oldval;

675
	rdtp = this_cpu_ptr(&rcu_dynticks);
676
	oldval = rdtp->dynticks_nesting;
677
	WARN_ON_ONCE(oldval < 0);
678
	if (oldval & DYNTICK_TASK_NEST_MASK) {
679
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
680
	} else {
681
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
682
		rcu_eqs_exit_common(oldval, user);
683
	}
684
}
685 686 687 688 689 690 691 692 693 694 695 696 697 698

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
699 700 701
	unsigned long flags;

	local_irq_save(flags);
702
	rcu_eqs_exit(false);
703
	rcu_sysidle_exit(0);
704
	local_irq_restore(flags);
705
}
706
EXPORT_SYMBOL_GPL(rcu_idle_exit);
707

708
#ifdef CONFIG_RCU_USER_QS
709 710 711 712 713 714 715 716
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
717
	rcu_eqs_exit(1);
718
}
719
#endif /* CONFIG_RCU_USER_QS */
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
747
	rdtp = this_cpu_ptr(&rcu_dynticks);
748 749 750
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
751
	if (oldval)
752
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
753
	else
754 755
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
756 757 758 759 760 761
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
762 763 764 765 766
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
767 768 769
 */
void rcu_nmi_enter(void)
{
770
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
771
	int incby = 2;
772

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
794 795 796 797 798
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
799 800 801 802
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
803 804 805
 */
void rcu_nmi_exit(void)
{
806
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
807

808 809 810 811 812 813 814 815 816 817 818 819 820 821
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
822
		return;
823 824 825 826
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
827
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
828
	smp_mb__before_atomic();  /* See above. */
829
	atomic_inc(&rdtp->dynticks);
830
	smp_mb__after_atomic();  /* Force delay to next write. */
831
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
832 833 834
}

/**
835 836 837 838 839 840 841
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
842
bool notrace __rcu_is_watching(void)
843 844 845 846 847 848
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
849
 *
850
 * If the current CPU is in its idle loop and is neither in an interrupt
851
 * or NMI handler, return true.
852
 */
853
bool notrace rcu_is_watching(void)
854
{
855
	bool ret;
856 857

	preempt_disable();
858
	ret = __rcu_is_watching();
859 860
	preempt_enable();
	return ret;
861
}
862
EXPORT_SYMBOL_GPL(rcu_is_watching);
863

864
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
865 866 867 868 869 870 871

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
872 873 874 875 876 877 878 879 880 881 882
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
883 884 885 886 887 888
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
889 890
	struct rcu_data *rdp;
	struct rcu_node *rnp;
891 892 893
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
894
		return true;
895
	preempt_disable();
896
	rdp = this_cpu_ptr(&rcu_sched_data);
897 898
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
899 900 901 902 903 904
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

905
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
906

907
/**
908
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
909
 *
910 911 912
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
913
 */
914
static int rcu_is_cpu_rrupt_from_idle(void)
915
{
916
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
917 918 919 920 921
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
922
 * is in dynticks idle mode, which is an extended quiescent state.
923
 */
924 925
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
926
{
927
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
928
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
929 930 931 932 933 934
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
		return 1;
	} else {
		return 0;
	}
935 936
}

937 938 939 940 941 942
/*
 * This function really isn't for public consumption, but RCU is special in
 * that context switches can allow the state machine to make progress.
 */
extern void resched_cpu(int cpu);

943 944 945 946
/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
947
 * for this same CPU, or by virtue of having been offline.
948
 */
949 950
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
951
{
952
	unsigned int curr;
953
	int *rcrmp;
954
	unsigned int snap;
955

956 957
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
958 959 960 961 962 963 964 965 966

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
967
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
968
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
969 970 971 972
		rdp->dynticks_fqs++;
		return 1;
	}

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
988
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
989 990 991
		rdp->offline_fqs++;
		return 1;
	}
992 993

	/*
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1013
	 */
1014 1015 1016
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1017
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
		if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			ACCESS_ONCE(rdp->cond_resched_completed) =
				ACCESS_ONCE(rdp->mynode->completed);
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
			ACCESS_ONCE(*rcrmp) =
				ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
			/* Time to beat on that CPU again! */
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
		}
1031 1032
	}

1033
	return 0;
1034 1035 1036 1037
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1038
	unsigned long j = jiffies;
1039
	unsigned long j1;
1040 1041 1042

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1043
	j1 = rcu_jiffies_till_stall_check();
1044
	ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
1045
	rsp->jiffies_resched = j + j1 / 2;
1046
	rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs);
1047 1048
}

1049
/*
1050
 * Dump stacks of all tasks running on stalled CPUs.
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

1069 1070 1071 1072 1073
static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
1074
	int ndetected = 0;
1075
	struct rcu_node *rnp = rcu_get_root(rsp);
1076
	long totqlen = 0;
1077 1078 1079

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
1080
	raw_spin_lock_irqsave(&rnp->lock, flags);
1081
	delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
1082
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1083
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1084 1085
		return;
	}
1086
	ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
1087
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1088

1089 1090 1091 1092 1093
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1094
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1095
	       rsp->name);
1096
	print_cpu_stall_info_begin();
1097
	rcu_for_each_leaf_node(rsp, rnp) {
1098
		raw_spin_lock_irqsave(&rnp->lock, flags);
1099
		ndetected += rcu_print_task_stall(rnp);
1100 1101 1102 1103 1104 1105 1106 1107
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
1108
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1109
	}
1110 1111 1112 1113 1114 1115 1116

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
1117
	ndetected += rcu_print_task_stall(rnp);
1118 1119 1120
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
1121 1122
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1123
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1124
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1125
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1126
	if (ndetected == 0)
1127
		pr_err("INFO: Stall ended before state dump start\n");
1128
	else
1129
		rcu_dump_cpu_stacks(rsp);
1130

1131
	/* Complain about tasks blocking the grace period. */
1132 1133 1134

	rcu_print_detail_task_stall(rsp);

1135
	force_quiescent_state(rsp);  /* Kick them all. */
1136 1137 1138 1139
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1140
	int cpu;
1141 1142
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1143
	long totqlen = 0;
1144

1145 1146 1147 1148 1149
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1150
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1151 1152 1153
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1154 1155
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1156 1157 1158
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1159
	rcu_dump_cpu_stacks(rsp);
1160

P
Paul E. McKenney 已提交
1161
	raw_spin_lock_irqsave(&rnp->lock, flags);
1162 1163
	if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
		ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1164
				     3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
1165
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1166

1167 1168 1169 1170 1171 1172 1173 1174
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1175 1176 1177 1178
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1179 1180 1181
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1182 1183
	unsigned long j;
	unsigned long js;
1184 1185
	struct rcu_node *rnp;

1186
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1187
		return;
1188
	j = jiffies;
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
	gpnum = ACCESS_ONCE(rsp->gpnum);
	smp_rmb(); /* Pick up ->gpnum first... */
1209
	js = ACCESS_ONCE(rsp->jiffies_stall);
1210 1211 1212 1213 1214 1215 1216 1217
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
	gps = ACCESS_ONCE(rsp->gp_start);
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
	completed = ACCESS_ONCE(rsp->completed);
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1218
	rnp = rdp->mynode;
1219
	if (rcu_gp_in_progress(rsp) &&
1220
	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1221 1222 1223 1224

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1225 1226
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1227

1228
		/* They had a few time units to dump stack, so complain. */
1229 1230 1231 1232
		print_other_cpu_stall(rsp);
	}
}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1244 1245 1246
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1247
		ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1248 1249
}

1250 1251 1252 1253 1254 1255 1256
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

1257 1258
	if (init_nocb_callback_list(rdp))
		return;
1259 1260 1261 1262 1263
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1293 1294 1295 1296 1297
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1298
				unsigned long c, const char *s)
1299 1300 1301 1302 1303 1304 1305 1306 1307
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1308 1309
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1310 1311 1312
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1313 1314 1315
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1316 1317 1318
{
	unsigned long c;
	int i;
1319
	bool ret = false;
1320 1321 1322 1323 1324 1325 1326
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1327
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1328
	if (rnp->need_future_gp[c & 0x1]) {
1329
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1330
		goto out;
1331 1332 1333 1334 1335 1336 1337
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1338 1339 1340 1341 1342 1343 1344
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1345 1346
	 */
	if (rnp->gpnum != rnp->completed ||
1347
	    ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
1348
		rnp->need_future_gp[c & 0x1]++;
1349
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1350
		goto out;
1351 1352 1353 1354 1355 1356 1357
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1358
	if (rnp != rnp_root) {
1359
		raw_spin_lock(&rnp_root->lock);
1360 1361
		smp_mb__after_unlock_lock();
	}
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1379
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1380 1381 1382 1383 1384 1385 1386 1387
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1388
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1389
	} else {
1390
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1391
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1392 1393 1394 1395
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
1396 1397 1398 1399
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1417 1418
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1419 1420 1421
	return needmore;
}

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
	    !ACCESS_ONCE(rsp->gp_flags) ||
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1438 1439 1440 1441 1442 1443 1444
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1445 1446
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1447 1448 1449
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1450
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1451 1452 1453 1454
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1455
	bool ret;
1456 1457 1458

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1459
		return false;
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1488
		return false;
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1499
	/* Record any needed additional grace periods. */
1500
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1501 1502 1503

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1504
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1505
	else
1506
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1507
	return ret;
1508 1509 1510 1511 1512 1513 1514 1515
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1516
 * Returns true if the RCU grace-period kthread needs to be awakened.
1517 1518 1519
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1520
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1521 1522 1523 1524 1525 1526
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1527
		return false;
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1551
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1552 1553
}

1554
/*
1555 1556 1557
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1558
 * Returns true if the grace-period kthread needs to be awakened.
1559
 */
1560 1561
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1562
{
1563 1564
	bool ret;

1565
	/* Handle the ends of any preceding grace periods first. */
1566
	if (rdp->completed == rnp->completed) {
1567

1568
		/* No grace period end, so just accelerate recent callbacks. */
1569
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1570

1571 1572 1573
	} else {

		/* Advance callbacks. */
1574
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1575 1576 1577

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1578
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1579
	}
1580

1581 1582 1583 1584 1585 1586 1587
	if (rdp->gpnum != rnp->gpnum) {
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1588
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1589 1590 1591 1592
		rdp->passed_quiesce = 0;
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
		zero_cpu_stall_ticks(rdp);
	}
1593
	return ret;
1594 1595
}

1596
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1597 1598
{
	unsigned long flags;
1599
	bool needwake;
1600 1601 1602 1603
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1604 1605
	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
	     rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1606 1607 1608 1609
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1610
	smp_mb__after_unlock_lock();
1611
	needwake = __note_gp_changes(rsp, rnp, rdp);
1612
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1613 1614
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1615 1616
}

1617
/*
1618
 * Initialize a new grace period.  Return 0 if no grace period required.
1619
 */
1620
static int rcu_gp_init(struct rcu_state *rsp)
1621 1622
{
	struct rcu_data *rdp;
1623
	struct rcu_node *rnp = rcu_get_root(rsp);
1624

1625
	rcu_bind_gp_kthread();
1626
	raw_spin_lock_irq(&rnp->lock);
1627
	smp_mb__after_unlock_lock();
1628
	if (!ACCESS_ONCE(rsp->gp_flags)) {
1629 1630 1631 1632
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1633
	ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1634

1635 1636 1637 1638 1639
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1640 1641 1642 1643 1644
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1645
	record_gp_stall_check_time(rsp);
1646 1647
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1648
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1649 1650 1651
	raw_spin_unlock_irq(&rnp->lock);

	/* Exclude any concurrent CPU-hotplug operations. */
1652
	mutex_lock(&rsp->onoff_mutex);
1653
	smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1669
		raw_spin_lock_irq(&rnp->lock);
1670
		smp_mb__after_unlock_lock();
1671
		rdp = this_cpu_ptr(rsp->rda);
1672 1673
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1674
		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1675
		WARN_ON_ONCE(rnp->completed != rsp->completed);
1676
		ACCESS_ONCE(rnp->completed) = rsp->completed;
1677
		if (rnp == rdp->mynode)
1678
			(void)__note_gp_changes(rsp, rnp, rdp);
1679 1680 1681 1682 1683
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1684
		cond_resched_rcu_qs();
1685
	}
1686

1687
	mutex_unlock(&rsp->onoff_mutex);
1688 1689
	return 1;
}
1690

1691 1692 1693
/*
 * Do one round of quiescent-state forcing.
 */
1694
static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1695 1696
{
	int fqs_state = fqs_state_in;
1697 1698
	bool isidle = false;
	unsigned long maxj;
1699 1700 1701 1702 1703
	struct rcu_node *rnp = rcu_get_root(rsp);

	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
1704
		if (is_sysidle_rcu_state(rsp)) {
1705
			isidle = true;
1706 1707
			maxj = jiffies - ULONG_MAX / 4;
		}
1708 1709
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1710
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1711 1712 1713
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1714
		isidle = false;
1715
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1716 1717 1718 1719
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
1720
		smp_mb__after_unlock_lock();
1721 1722
		ACCESS_ONCE(rsp->gp_flags) =
			ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
1723 1724 1725 1726 1727
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1728 1729 1730
/*
 * Clean up after the old grace period.
 */
1731
static void rcu_gp_cleanup(struct rcu_state *rsp)
1732 1733
{
	unsigned long gp_duration;
1734
	bool needgp = false;
1735
	int nocb = 0;
1736 1737
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1738

1739
	raw_spin_lock_irq(&rnp->lock);
1740
	smp_mb__after_unlock_lock();
1741 1742 1743
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1744

1745 1746 1747 1748 1749 1750 1751 1752
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1753
	raw_spin_unlock_irq(&rnp->lock);
1754

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1765
		raw_spin_lock_irq(&rnp->lock);
1766
		smp_mb__after_unlock_lock();
1767
		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1768 1769
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
1770
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1771
		/* smp_mb() provided by prior unlock-lock pair. */
1772
		nocb += rcu_future_gp_cleanup(rsp, rnp);
1773
		raw_spin_unlock_irq(&rnp->lock);
1774
		cond_resched_rcu_qs();
1775
	}
1776 1777
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1778
	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1779
	rcu_nocb_gp_set(rnp, nocb);
1780

1781 1782
	/* Declare grace period done. */
	ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1783
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1784
	rsp->fqs_state = RCU_GP_IDLE;
1785
	rdp = this_cpu_ptr(rsp->rda);
1786 1787 1788
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1789
		ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1790 1791 1792 1793
		trace_rcu_grace_period(rsp->name,
				       ACCESS_ONCE(rsp->gpnum),
				       TPS("newreq"));
	}
1794 1795 1796 1797 1798 1799 1800 1801
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1802
	int fqs_state;
1803
	int gf;
1804
	unsigned long j;
1805
	int ret;
1806 1807 1808 1809 1810 1811 1812
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1813 1814 1815
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwait"));
1816
			rsp->gp_state = RCU_GP_WAIT_GPS;
1817
			wait_event_interruptible(rsp->gp_wq,
1818
						 ACCESS_ONCE(rsp->gp_flags) &
1819
						 RCU_GP_FLAG_INIT);
1820
			/* Locking provides needed memory barrier. */
1821
			if (rcu_gp_init(rsp))
1822
				break;
1823
			cond_resched_rcu_qs();
1824
			WARN_ON(signal_pending(current));
1825 1826 1827
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwaitsig"));
1828
		}
1829

1830 1831
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1832 1833 1834 1835 1836
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1837
		ret = 0;
1838
		for (;;) {
1839 1840
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
1841 1842 1843
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("fqswait"));
1844
			rsp->gp_state = RCU_GP_WAIT_FQS;
1845
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
1846 1847
					((gf = ACCESS_ONCE(rsp->gp_flags)) &
					 RCU_GP_FLAG_FQS) ||
1848 1849
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
1850
					j);
1851
			/* Locking provides needed memory barriers. */
1852
			/* If grace period done, leave loop. */
1853
			if (!ACCESS_ONCE(rnp->qsmask) &&
1854
			    !rcu_preempt_blocked_readers_cgp(rnp))
1855
				break;
1856
			/* If time for quiescent-state forcing, do it. */
1857 1858
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
1859 1860 1861
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsstart"));
1862
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
1863 1864 1865
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsend"));
1866
				cond_resched_rcu_qs();
1867 1868
			} else {
				/* Deal with stray signal. */
1869
				cond_resched_rcu_qs();
1870
				WARN_ON(signal_pending(current));
1871 1872 1873
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqswaitsig"));
1874
			}
1875 1876 1877 1878 1879 1880 1881 1882
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
1883
		}
1884 1885 1886

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
1887 1888 1889
	}
}

1890 1891 1892
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
1893
 * the root node's ->lock and hard irqs must be disabled.
1894 1895 1896 1897
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1898 1899
 *
 * Returns true if the grace-period kthread must be awakened.
1900
 */
1901
static bool
1902 1903
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
1904
{
1905
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1906
		/*
1907
		 * Either we have not yet spawned the grace-period
1908 1909
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
1910
		 * Either way, don't start a new grace period.
1911
		 */
1912
		return false;
1913
	}
1914
	ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1915 1916
	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
			       TPS("newreq"));
1917

1918 1919
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
1920
	 * could cause possible deadlocks with the rq->lock. Defer
1921
	 * the wakeup to our caller.
1922
	 */
1923
	return true;
1924 1925
}

1926 1927 1928 1929 1930 1931
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
1932 1933
 *
 * Returns true if the grace-period kthread needs to be awakened.
1934
 */
1935
static bool rcu_start_gp(struct rcu_state *rsp)
1936 1937 1938
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
1939
	bool ret = false;
1940 1941 1942 1943 1944 1945 1946 1947 1948

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
1949 1950 1951
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
1952 1953
}

1954
/*
P
Paul E. McKenney 已提交
1955 1956 1957
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
1958 1959
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
1960
 */
P
Paul E. McKenney 已提交
1961
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1962
	__releases(rcu_get_root(rsp)->lock)
1963
{
1964
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1965
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1966
	rcu_gp_kthread_wake(rsp);
1967 1968
}

1969
/*
P
Paul E. McKenney 已提交
1970 1971 1972 1973 1974 1975
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1976 1977
 */
static void
P
Paul E. McKenney 已提交
1978 1979
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1980 1981
	__releases(rnp->lock)
{
1982 1983
	struct rcu_node *rnp_c;

1984 1985 1986 1987 1988
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1989
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1990 1991 1992
			return;
		}
		rnp->qsmask &= ~mask;
1993 1994 1995 1996
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1997
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1998 1999

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
2000
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2001 2002 2003 2004 2005 2006 2007 2008 2009
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
2010
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2011
		rnp_c = rnp;
2012
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
2013
		raw_spin_lock_irqsave(&rnp->lock, flags);
2014
		smp_mb__after_unlock_lock();
2015
		WARN_ON_ONCE(rnp_c->qsmask);
2016 2017 2018 2019
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2020
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2021
	 * to clean up and start the next grace period if one is needed.
2022
	 */
P
Paul E. McKenney 已提交
2023
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2024 2025 2026
}

/*
P
Paul E. McKenney 已提交
2027 2028 2029 2030 2031 2032 2033
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
2034 2035
 */
static void
2036
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2037 2038 2039
{
	unsigned long flags;
	unsigned long mask;
2040
	bool needwake;
2041 2042 2043
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
2044
	raw_spin_lock_irqsave(&rnp->lock, flags);
2045
	smp_mb__after_unlock_lock();
2046 2047
	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum) {
2048 2049

		/*
2050 2051 2052 2053
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2054
		 */
2055
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
2056
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2057 2058 2059 2060
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
2061
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2062 2063 2064 2065 2066 2067 2068
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2069
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2070

P
Paul E. McKenney 已提交
2071
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
2072 2073
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2086 2087
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2100
	if (!rdp->passed_quiesce)
2101 2102
		return;

P
Paul E. McKenney 已提交
2103 2104 2105 2106
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2107
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2108 2109 2110 2111
}

#ifdef CONFIG_HOTPLUG_CPU

2112
/*
2113 2114
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2115
 * ->orphan_lock.
2116
 */
2117 2118 2119
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2120
{
P
Paul E. McKenney 已提交
2121
	/* No-CBs CPUs do not have orphanable callbacks. */
2122
	if (rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2123 2124
		return;

2125 2126
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2127 2128
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2129
	 */
2130
	if (rdp->nxtlist != NULL) {
2131 2132 2133
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2134
		rdp->qlen_lazy = 0;
2135
		ACCESS_ONCE(rdp->qlen) = 0;
2136 2137 2138
	}

	/*
2139 2140 2141 2142 2143 2144 2145
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2146
	 */
2147 2148 2149 2150
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2151 2152 2153
	}

	/*
2154 2155 2156
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2157
	 */
2158
	if (rdp->nxtlist != NULL) {
2159 2160
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2161
	}
2162

2163
	/* Finally, initialize the rcu_data structure's list to empty.  */
2164
	init_callback_list(rdp);
2165 2166 2167 2168
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2169
 * orphanage.  The caller must hold the ->orphan_lock.
2170
 */
2171
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2172 2173
{
	int i;
2174
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2175

P
Paul E. McKenney 已提交
2176
	/* No-CBs CPUs are handled specially. */
2177
	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2178 2179
		return;

2180 2181 2182 2183
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2184 2185
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
2225 2226
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2227
			       TPS("cpuofl"));
2228 2229 2230
}

/*
2231
 * The CPU has been completely removed, and some other CPU is reporting
2232 2233
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2234 2235
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2236
 */
2237
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2238
{
2239 2240 2241
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
2242
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2243
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2244

2245
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2246
	rcu_boost_kthread_setaffinity(rnp, -1);
2247 2248

	/* Exclude any attempts to start a new grace period. */
2249
	mutex_lock(&rsp->onoff_mutex);
2250
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2251

2252 2253
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2254
	rcu_adopt_orphan_cbs(rsp, flags);
2255

2256 2257 2258 2259
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2260
		smp_mb__after_unlock_lock();
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
2278
	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2279 2280
	 * held leads to deadlock.
	 */
2281
	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2282 2283 2284 2285 2286 2287 2288
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
2289 2290 2291
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2292 2293 2294
	init_callback_list(rdp);
	/* Disallow further callbacks on this CPU. */
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2295
	mutex_unlock(&rsp->onoff_mutex);
2296 2297 2298 2299
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

2300
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2301 2302 2303
{
}

2304
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2305 2306 2307 2308 2309 2310 2311 2312 2313
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2314
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2315 2316 2317
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2318 2319
	long bl, count, count_lazy;
	int i;
2320

2321
	/* If no callbacks are ready, just return. */
2322
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2323
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2324 2325 2326
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2327
		return;
2328
	}
2329 2330 2331 2332 2333 2334

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2335
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2336
	bl = rdp->blimit;
2337
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2338 2339 2340 2341
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2342 2343 2344
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2345 2346 2347
	local_irq_restore(flags);

	/* Invoke callbacks. */
2348
	count = count_lazy = 0;
2349 2350 2351
	while (list) {
		next = list->next;
		prefetch(next);
2352
		debug_rcu_head_unqueue(list);
2353 2354
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2355
		list = next;
2356 2357 2358 2359
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2360 2361 2362 2363
			break;
	}

	local_irq_save(flags);
2364 2365 2366
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2367 2368 2369 2370 2371

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2372 2373 2374
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2375 2376 2377
			else
				break;
	}
2378 2379
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2380
	ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
2381
	rdp->n_cbs_invoked += count;
2382 2383 2384 2385 2386

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2387 2388 2389 2390 2391 2392
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2393
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2394

2395 2396
	local_irq_restore(flags);

2397
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2398
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2399
		invoke_rcu_core();
2400 2401 2402 2403 2404
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2405
 * Also schedule RCU core processing.
2406
 *
2407
 * This function must be called from hardirq context.  It is normally
2408 2409 2410
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2411
void rcu_check_callbacks(int user)
2412
{
2413
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2414
	increment_cpu_stall_ticks();
2415
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2416 2417 2418 2419 2420

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2421
		 * a quiescent state, so note it.
2422 2423
		 *
		 * No memory barrier is required here because both
2424 2425 2426
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2427 2428
		 */

2429 2430
		rcu_sched_qs();
		rcu_bh_qs();
2431 2432 2433 2434 2435 2436 2437

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2438
		 * critical section, so note it.
2439 2440
		 */

2441
		rcu_bh_qs();
2442
	}
2443
	rcu_preempt_check_callbacks();
2444
	if (rcu_pending())
2445
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2446 2447
	if (user)
		rcu_note_voluntary_context_switch(current);
2448
	trace_rcu_utilization(TPS("End scheduler-tick"));
2449 2450 2451 2452 2453
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2454 2455
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2456
 * The caller must have suppressed start of new grace periods.
2457
 */
2458 2459 2460 2461
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2462 2463 2464 2465 2466
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2467
	struct rcu_node *rnp;
2468

2469
	rcu_for_each_leaf_node(rsp, rnp) {
2470
		cond_resched_rcu_qs();
2471
		mask = 0;
P
Paul E. McKenney 已提交
2472
		raw_spin_lock_irqsave(&rnp->lock, flags);
2473
		smp_mb__after_unlock_lock();
2474
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
2475
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2476
			return;
2477
		}
2478
		if (rnp->qsmask == 0) {
2479
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2480 2481
			continue;
		}
2482
		cpu = rnp->grplo;
2483
		bit = 1;
2484
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2485 2486
			if ((rnp->qsmask & bit) != 0) {
				if ((rnp->qsmaskinit & bit) != 0)
2487
					*isidle = false;
2488 2489 2490
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2491
		}
2492
		if (mask != 0) {
2493

P
Paul E. McKenney 已提交
2494 2495
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2496 2497
			continue;
		}
P
Paul E. McKenney 已提交
2498
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2499
	}
2500
	rnp = rcu_get_root(rsp);
2501 2502
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
2503
		smp_mb__after_unlock_lock();
2504 2505
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
2506 2507 2508 2509 2510 2511
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2512
static void force_quiescent_state(struct rcu_state *rsp)
2513 2514
{
	unsigned long flags;
2515 2516 2517 2518 2519
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2520
	rnp = __this_cpu_read(rsp->rda->mynode);
2521 2522 2523 2524 2525 2526
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2527
			rsp->n_force_qs_lh++;
2528 2529 2530 2531 2532
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2533

2534 2535
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2536
	smp_mb__after_unlock_lock();
2537 2538
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2539
		rsp->n_force_qs_lh++;
2540
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2541
		return;  /* Someone beat us to it. */
2542
	}
2543 2544
	ACCESS_ONCE(rsp->gp_flags) =
		ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
2545
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2546
	rcu_gp_kthread_wake(rsp);
2547 2548 2549
}

/*
2550 2551 2552
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2553 2554
 */
static void
2555
__rcu_process_callbacks(struct rcu_state *rsp)
2556 2557
{
	unsigned long flags;
2558
	bool needwake;
2559
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2560

2561 2562
	WARN_ON_ONCE(rdp->beenonline == 0);

2563 2564 2565 2566
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2567
	local_irq_save(flags);
2568
	if (cpu_needs_another_gp(rsp, rdp)) {
2569
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2570
		needwake = rcu_start_gp(rsp);
2571
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2572 2573
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2574 2575
	} else {
		local_irq_restore(flags);
2576 2577 2578
	}

	/* If there are callbacks ready, invoke them. */
2579
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2580
		invoke_rcu_callbacks(rsp, rdp);
2581 2582 2583

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2584 2585
}

2586
/*
2587
 * Do RCU core processing for the current CPU.
2588
 */
2589
static void rcu_process_callbacks(struct softirq_action *unused)
2590
{
2591 2592
	struct rcu_state *rsp;

2593 2594
	if (cpu_is_offline(smp_processor_id()))
		return;
2595
	trace_rcu_utilization(TPS("Start RCU core"));
2596 2597
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2598
	trace_rcu_utilization(TPS("End RCU core"));
2599 2600
}

2601
/*
2602 2603 2604 2605 2606
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
2607
 */
2608
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2609
{
2610 2611
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
2612 2613
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2614 2615
		return;
	}
2616
	invoke_rcu_callbacks_kthread();
2617 2618
}

2619
static void invoke_rcu_core(void)
2620
{
2621 2622
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2623 2624
}

2625 2626 2627 2628 2629
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2630
{
2631 2632
	bool needwake;

2633 2634 2635 2636
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2637
	if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2638 2639
		invoke_rcu_core();

2640
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2641
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2642
		return;
2643

2644 2645 2646 2647 2648 2649 2650
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2651
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2652 2653

		/* Are we ignoring a completed grace period? */
2654
		note_gp_changes(rsp, rdp);
2655 2656 2657 2658 2659

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2660
			raw_spin_lock(&rnp_root->lock);
2661
			smp_mb__after_unlock_lock();
2662
			needwake = rcu_start_gp(rsp);
2663
			raw_spin_unlock(&rnp_root->lock);
2664 2665
			if (needwake)
				rcu_gp_kthread_wake(rsp);
2666 2667 2668 2669 2670
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2671
				force_quiescent_state(rsp);
2672 2673 2674
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2675
	}
2676 2677
}

2678 2679 2680 2681 2682 2683 2684
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
2685 2686 2687 2688 2689 2690
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
2691 2692
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
2693
	   struct rcu_state *rsp, int cpu, bool lazy)
2694 2695 2696 2697
{
	unsigned long flags;
	struct rcu_data *rdp;

2698
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2699 2700 2701 2702 2703 2704
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
		ACCESS_ONCE(head->func) = rcu_leak_callback;
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
2715
	rdp = this_cpu_ptr(rsp->rda);
2716 2717

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
2718 2719 2720 2721 2722
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
2723
		offline = !__call_rcu_nocb(rdp, head, lazy, flags);
P
Paul E. McKenney 已提交
2724
		WARN_ON_ONCE(offline);
2725 2726 2727 2728
		/* _call_rcu() is illegal on offline CPU; leak the callback. */
		local_irq_restore(flags);
		return;
	}
2729
	ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
2730 2731
	if (lazy)
		rdp->qlen_lazy++;
2732 2733
	else
		rcu_idle_count_callbacks_posted();
2734 2735 2736
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2737

2738 2739
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2740
					 rdp->qlen_lazy, rdp->qlen);
2741
	else
2742
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2743

2744 2745
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2746 2747 2748 2749
	local_irq_restore(flags);
}

/*
2750
 * Queue an RCU-sched callback for invocation after a grace period.
2751
 */
2752
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2753
{
P
Paul E. McKenney 已提交
2754
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2755
}
2756
EXPORT_SYMBOL_GPL(call_rcu_sched);
2757 2758

/*
2759
 * Queue an RCU callback for invocation after a quicker grace period.
2760 2761 2762
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
2763
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2764 2765 2766
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
2777
	__call_rcu(head, func, rcu_state_p, -1, 1);
2778 2779 2780
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2792 2793
	int ret;

2794
	might_sleep();  /* Check for RCU read-side critical section. */
2795 2796 2797 2798
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2799 2800
}

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
2835 2836 2837 2838 2839 2840 2841 2842 2843
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2844 2845 2846 2847
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2848 2849
	if (rcu_blocking_is_gp())
		return;
2850 2851 2852 2853
	if (rcu_expedited)
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
2865 2866 2867
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
2868 2869 2870
 */
void synchronize_rcu_bh(void)
{
2871 2872 2873 2874
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2875 2876
	if (rcu_blocking_is_gp())
		return;
2877 2878 2879 2880
	if (rcu_expedited)
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
2881 2882 2883
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
2904
	return smp_load_acquire(&rcu_state_p->gpnum);
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
2930
	newstate = smp_load_acquire(&rcu_state_p->completed);
2931 2932 2933 2934 2935
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
2987 2988 2989
	cpumask_var_t cm;
	bool cma = false;
	int cpu;
2990 2991
	long firstsnap, s, snap;
	int trycount = 0;
2992
	struct rcu_state *rsp = &rcu_sched_state;
2993

2994 2995 2996 2997 2998 2999 3000 3001
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
3002 3003
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
3004 3005
			 ULONG_MAX / 8)) {
		synchronize_sched();
3006
		atomic_long_inc(&rsp->expedited_wrap);
3007 3008
		return;
	}
3009

3010 3011 3012 3013
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
3014
	snap = atomic_long_inc_return(&rsp->expedited_start);
3015
	firstsnap = snap;
3016 3017 3018 3019 3020 3021
	if (!try_get_online_cpus()) {
		/* CPU hotplug operation in flight, fall back to normal GP. */
		wait_rcu_gp(call_rcu_sched);
		atomic_long_inc(&rsp->expedited_normal);
		return;
	}
3022
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3023

3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	/* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
	cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
	if (cma) {
		cpumask_copy(cm, cpu_online_mask);
		cpumask_clear_cpu(raw_smp_processor_id(), cm);
		for_each_cpu(cpu, cm) {
			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

			if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
				cpumask_clear_cpu(cpu, cm);
		}
		if (cpumask_weight(cm) == 0)
			goto all_cpus_idle;
	}

3039 3040 3041 3042
	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
3043
	while (try_stop_cpus(cma ? cm : cpu_online_mask,
3044 3045 3046
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
3047
		atomic_long_inc(&rsp->expedited_tryfail);
3048

3049
		/* Check to see if someone else did our work for us. */
3050
		s = atomic_long_read(&rsp->expedited_done);
3051
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3052
			/* ensure test happens before caller kfree */
3053
			smp_mb__before_atomic(); /* ^^^ */
3054
			atomic_long_inc(&rsp->expedited_workdone1);
3055
			free_cpumask_var(cm);
3056 3057
			return;
		}
3058 3059

		/* No joy, try again later.  Or just synchronize_sched(). */
3060
		if (trycount++ < 10) {
3061
			udelay(trycount * num_online_cpus());
3062
		} else {
3063
			wait_rcu_gp(call_rcu_sched);
3064
			atomic_long_inc(&rsp->expedited_normal);
3065
			free_cpumask_var(cm);
3066 3067 3068
			return;
		}

3069
		/* Recheck to see if someone else did our work for us. */
3070
		s = atomic_long_read(&rsp->expedited_done);
3071
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3072
			/* ensure test happens before caller kfree */
3073
			smp_mb__before_atomic(); /* ^^^ */
3074
			atomic_long_inc(&rsp->expedited_workdone2);
3075
			free_cpumask_var(cm);
3076 3077 3078 3079 3080
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
3081 3082 3083 3084
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
3085
		 */
3086 3087 3088 3089
		if (!try_get_online_cpus()) {
			/* CPU hotplug operation in flight, use normal GP. */
			wait_rcu_gp(call_rcu_sched);
			atomic_long_inc(&rsp->expedited_normal);
3090
			free_cpumask_var(cm);
3091 3092
			return;
		}
3093
		snap = atomic_long_read(&rsp->expedited_start);
3094 3095
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
3096
	atomic_long_inc(&rsp->expedited_stoppedcpus);
3097

3098 3099 3100
all_cpus_idle:
	free_cpumask_var(cm);

3101 3102 3103 3104
	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
3105
	 * than we did already did their update.
3106 3107
	 */
	do {
3108
		atomic_long_inc(&rsp->expedited_done_tries);
3109
		s = atomic_long_read(&rsp->expedited_done);
3110
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3111
			/* ensure test happens before caller kfree */
3112
			smp_mb__before_atomic(); /* ^^^ */
3113
			atomic_long_inc(&rsp->expedited_done_lost);
3114 3115
			break;
		}
3116
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3117
	atomic_long_inc(&rsp->expedited_done_exit);
3118 3119 3120 3121 3122

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3123 3124 3125 3126 3127 3128 3129 3130 3131
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3132 3133
	struct rcu_node *rnp = rdp->mynode;

3134 3135 3136 3137 3138
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3139 3140 3141 3142
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3143
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3144 3145
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
3146
		rdp->n_rp_qs_pending++;
3147
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
3148
		rdp->n_rp_report_qs++;
3149
		return 1;
3150
	}
3151 3152

	/* Does this CPU have callbacks ready to invoke? */
3153 3154
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3155
		return 1;
3156
	}
3157 3158

	/* Has RCU gone idle with this CPU needing another grace period? */
3159 3160
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3161
		return 1;
3162
	}
3163 3164

	/* Has another RCU grace period completed?  */
3165
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3166
		rdp->n_rp_gp_completed++;
3167
		return 1;
3168
	}
3169 3170

	/* Has a new RCU grace period started? */
3171
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
3172
		rdp->n_rp_gp_started++;
3173
		return 1;
3174
	}
3175

3176 3177 3178 3179 3180 3181
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3182
	/* nothing to do */
3183
	rdp->n_rp_need_nothing++;
3184 3185 3186 3187 3188 3189 3190 3191
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3192
static int rcu_pending(void)
3193
{
3194 3195 3196
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3197
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3198 3199
			return 1;
	return 0;
3200 3201 3202
}

/*
3203 3204 3205
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3206
 */
3207
static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3208
{
3209 3210 3211
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3212 3213
	struct rcu_state *rsp;

3214
	for_each_rcu_flavor(rsp) {
3215
		rdp = this_cpu_ptr(rsp->rda);
3216 3217 3218 3219
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3220
			al = false;
3221 3222
			break;
		}
3223 3224 3225 3226
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3227 3228
}

3229 3230 3231 3232
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3233
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3234 3235 3236 3237 3238 3239
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3240 3241 3242 3243
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3244
static void rcu_barrier_callback(struct rcu_head *rhp)
3245
{
3246 3247 3248
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3249 3250
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3251
		complete(&rsp->barrier_completion);
3252 3253 3254
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
3255 3256 3257 3258 3259 3260 3261
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3262
	struct rcu_state *rsp = type;
3263
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3264

3265
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3266
	atomic_inc(&rsp->barrier_cpu_count);
3267
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3268 3269 3270 3271 3272 3273
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3274
static void _rcu_barrier(struct rcu_state *rsp)
3275
{
3276 3277
	int cpu;
	struct rcu_data *rdp;
3278 3279
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
3280

3281
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3282

3283
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3284
	mutex_lock(&rsp->barrier_mutex);
3285

3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
3298
	snap_done = rsp->n_barrier_done;
3299
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

	/*
	 * If the value in snap is odd, we needed to wait for the current
	 * rcu_barrier() to complete, then wait for the next one, in other
	 * words, we need the value of snap_done to be three larger than
	 * the value of snap.  On the other hand, if the value in snap is
	 * even, we only had to wait for the next rcu_barrier() to complete,
	 * in other words, we need the value of snap_done to be only two
	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
	 * this for us (thank you, Linus!).
	 */
	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3312
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
3323
	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3324
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3325
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3326
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3327

3328
	/*
3329 3330
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3331 3332
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3333
	 */
3334
	init_completion(&rsp->barrier_completion);
3335
	atomic_set(&rsp->barrier_cpu_count, 1);
3336
	get_online_cpus();
3337 3338

	/*
3339 3340 3341
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3342
	 */
P
Paul E. McKenney 已提交
3343
	for_each_possible_cpu(cpu) {
3344
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3345
			continue;
3346
		rdp = per_cpu_ptr(rsp->rda, cpu);
3347
		if (rcu_is_nocb_cpu(cpu)) {
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
						   rsp->n_barrier_done);
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
						   rsp->n_barrier_done);
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
P
Paul E. McKenney 已提交
3358
		} else if (ACCESS_ONCE(rdp->qlen)) {
3359 3360
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
3361
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3362
		} else {
3363 3364
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
3365 3366
		}
	}
3367
	put_online_cpus();
3368 3369 3370 3371 3372

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3373
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3374
		complete(&rsp->barrier_completion);
3375

3376 3377
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
3378
	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3379
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3380
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3381 3382
	smp_mb(); /* Keep increment before caller's subsequent code. */

3383
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3384
	wait_for_completion(&rsp->barrier_completion);
3385 3386

	/* Other rcu_barrier() invocations can now safely proceed. */
3387
	mutex_unlock(&rsp->barrier_mutex);
3388 3389 3390 3391 3392 3393 3394
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3395
	_rcu_barrier(&rcu_bh_state);
3396 3397 3398 3399 3400 3401 3402 3403
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3404
	_rcu_barrier(&rcu_sched_state);
3405 3406 3407
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3408
/*
3409
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3410
 */
3411 3412
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3413 3414
{
	unsigned long flags;
3415
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3416 3417 3418
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3419
	raw_spin_lock_irqsave(&rnp->lock, flags);
3420
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3421
	init_callback_list(rdp);
3422
	rdp->qlen_lazy = 0;
3423
	ACCESS_ONCE(rdp->qlen) = 0;
3424
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3425
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3426
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3427
	rdp->cpu = cpu;
3428
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3429
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
3430
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3431 3432 3433 3434 3435 3436 3437
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3438
 */
3439
static void
3440
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3441 3442 3443
{
	unsigned long flags;
	unsigned long mask;
3444
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3445 3446
	struct rcu_node *rnp = rcu_get_root(rsp);

3447 3448 3449
	/* Exclude new grace periods. */
	mutex_lock(&rsp->onoff_mutex);

3450
	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3451
	raw_spin_lock_irqsave(&rnp->lock, flags);
3452
	rdp->beenonline = 1;	 /* We have now been online. */
3453 3454
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3455
	rdp->blimit = blimit;
3456
	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3457
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3458
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3459 3460
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
3461
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3462 3463 3464 3465 3466 3467

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
3468
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
3469 3470
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
3471
		if (rnp == rdp->mynode) {
3472 3473 3474 3475 3476 3477
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
3478
			rdp->completed = rnp->completed;
3479 3480
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
3481
			trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3482
		}
P
Paul E. McKenney 已提交
3483
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3484 3485
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
3486
	local_irq_restore(flags);
3487

3488
	mutex_unlock(&rsp->onoff_mutex);
3489 3490
}

3491
static void rcu_prepare_cpu(int cpu)
3492
{
3493 3494 3495
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3496
		rcu_init_percpu_data(cpu, rsp);
3497 3498 3499
}

/*
3500
 * Handle CPU online/offline notification events.
3501
 */
3502
static int rcu_cpu_notify(struct notifier_block *self,
3503
				    unsigned long action, void *hcpu)
3504 3505
{
	long cpu = (long)hcpu;
3506
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3507
	struct rcu_node *rnp = rdp->mynode;
3508
	struct rcu_state *rsp;
3509

3510
	trace_rcu_utilization(TPS("Start CPU hotplug"));
3511 3512 3513
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
3514 3515
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
3516
		rcu_spawn_all_nocb_kthreads(cpu);
3517 3518
		break;
	case CPU_ONLINE:
3519
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
3520
		rcu_boost_kthread_setaffinity(rnp, -1);
3521 3522
		break;
	case CPU_DOWN_PREPARE:
3523
		rcu_boost_kthread_setaffinity(rnp, cpu);
3524
		break;
3525 3526
	case CPU_DYING:
	case CPU_DYING_FROZEN:
3527 3528
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
3529
		break;
3530 3531 3532 3533
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
3534
		for_each_rcu_flavor(rsp) {
3535
			rcu_cleanup_dead_cpu(cpu, rsp);
3536 3537
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
3538 3539 3540 3541
		break;
	default:
		break;
	}
3542
	trace_rcu_utilization(TPS("End CPU hotplug"));
3543
	return NOTIFY_OK;
3544 3545
}

3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_expedited = 1;
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
		rcu_expedited = 0;
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3565
/*
3566
 * Spawn the kthreads that handle each RCU flavor's grace periods.
3567 3568 3569 3570 3571 3572 3573 3574
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
	struct task_struct *t;

3575
	rcu_scheduler_fully_active = 1;
3576
	for_each_rcu_flavor(rsp) {
3577
		t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3578 3579 3580 3581 3582 3583
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
3584
	rcu_spawn_nocb_kthreads();
3585
	rcu_spawn_boost_kthreads();
3586 3587 3588 3589
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

3605 3606 3607 3608 3609 3610 3611 3612 3613
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

3614 3615
	rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
	for (i = rcu_num_lvls - 2; i >= 0; i--)
3616 3617 3618 3619 3620 3621 3622 3623 3624
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

3625
	cprv = nr_cpu_ids;
3626
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3637 3638
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3639
{
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
	static const char * const buf[] = {
		"rcu_node_0",
		"rcu_node_1",
		"rcu_node_2",
		"rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static const char * const fqs[] = {
		"rcu_node_fqs_0",
		"rcu_node_fqs_1",
		"rcu_node_fqs_2",
		"rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3650
	static u8 fl_mask = 0x1;
3651 3652 3653 3654 3655
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

3656 3657
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

3658 3659 3660 3661
	/* Silence gcc 4.8 warning about array index out of range. */
	if (rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls overflow");

3662 3663
	/* Initialize the level-tracking arrays. */

3664 3665 3666
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
3667 3668
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);
3669 3670
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
3671 3672 3673

	/* Initialize the elements themselves, starting from the leaves. */

3674
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3675 3676 3677
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
3678
			raw_spin_lock_init(&rnp->lock);
3679 3680
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
3681 3682 3683
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
3684 3685
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
3686 3687 3688 3689
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
3690 3691
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
3703
			INIT_LIST_HEAD(&rnp->blkd_tasks);
3704
			rcu_init_one_nocb(rnp);
3705 3706
		}
	}
3707

3708
	rsp->rda = rda;
3709
	init_waitqueue_head(&rsp->gp_wq);
3710
	rnp = rsp->level[rcu_num_lvls - 1];
3711
	for_each_possible_cpu(i) {
3712
		while (i > rnp->grphi)
3713
			rnp++;
3714
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3715 3716
		rcu_boot_init_percpu_data(i, rsp);
	}
3717
	list_add(&rsp->flavors, &rcu_struct_flavors);
3718 3719
}

3720 3721
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3722
 * replace the definitions in tree.h because those are needed to size
3723 3724 3725 3726
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
3727
	ulong d;
3728 3729
	int i;
	int j;
3730
	int n = nr_cpu_ids;
3731 3732
	int rcu_capacity[MAX_RCU_LVLS + 1];

3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

3746
	/* If the compile-time values are accurate, just leave. */
3747 3748
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
3749
		return;
3750 3751
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

3797
void __init rcu_init(void)
3798
{
P
Paul E. McKenney 已提交
3799
	int cpu;
3800

3801
	rcu_bootup_announce();
3802
	rcu_init_geometry();
3803
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3804
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3805
	__rcu_init_preempt();
J
Jiang Fang 已提交
3806
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3807 3808 3809 3810 3811 3812 3813

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
3814
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
3815 3816
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3817 3818

	rcu_early_boot_tests();
3819 3820
}

3821
#include "tree_plugin.h"