tree.c 119.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/ftrace_event.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73

74 75 76 77 78 79 80 81
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
82 83
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
84
static char sname##_varname[] = #sname; \
85 86 87 88 89 90 91 92 93
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
94
struct rcu_state sname##_state = { \
95
	.level = { &sname##_state.node[0] }, \
96
	.call = cr, \
97
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
98 99
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
100
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 102
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
103
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104
	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
105
	.name = RCU_STATE_NAME(sname), \
106
	.abbr = sabbr, \
107
}; \
108
DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data)
109

110 111
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112

113
static struct rcu_state *rcu_state_p;
114
LIST_HEAD(rcu_struct_flavors);
115

116 117
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
118
module_param(rcu_fanout_leaf, int, 0444);
119 120 121 122 123 124 125 126 127 128
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

129 130 131 132
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
133
 * optimize synchronize_sched() to a simple barrier().  When this variable
134 135 136 137
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
138 139 140
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

141 142 143 144 145 146 147 148 149 150 151 152 153 154
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

T
Thomas Gleixner 已提交
155
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
156 157
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
158

159 160 161 162
/* rcuc/rcub kthread realtime priority */
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
module_param(kthread_prio, int, 0644);

163 164 165 166 167 168 169 170 171 172 173 174
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

175 176 177 178 179 180 181 182 183 184
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

185
/*
186
 * Note a quiescent state.  Because we do not need to know
187
 * how many quiescent states passed, just if there was at least
188
 * one since the start of the grace period, this just sets a flag.
189
 * The caller must have disabled preemption.
190
 */
191
void rcu_sched_qs(void)
192
{
193 194 195 196 197 198
	if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_sched"),
				       __this_cpu_read(rcu_sched_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_sched_data.passed_quiesce, 1);
	}
199 200
}

201
void rcu_bh_qs(void)
202
{
203 204 205 206 207 208
	if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_bh_data.passed_quiesce, 1);
	}
209
}
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
 */
static void rcu_momentary_dyntick_idle(void)
{
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	local_irq_save(flags);

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
		if (ACCESS_ONCE(rdp->mynode->completed) !=
		    ACCESS_ONCE(rdp->cond_resched_completed))
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
	local_irq_restore(flags);
}

275 276 277
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
278
 * The caller must have disabled preemption.
279
 */
280
void rcu_note_context_switch(void)
281
{
282
	trace_rcu_utilization(TPS("Start context switch"));
283
	rcu_sched_qs();
284
	rcu_preempt_note_context_switch();
285 286
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
287
	trace_rcu_utilization(TPS("End context switch"));
288
}
289
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
290

E
Eric Dumazet 已提交
291 292 293
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
294

E
Eric Dumazet 已提交
295 296 297
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
298

299 300
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
301 302 303 304

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

305 306 307 308 309 310 311
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

312
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
313
				  struct rcu_data *rdp);
314 315 316 317
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
318
static void force_quiescent_state(struct rcu_state *rsp);
319
static int rcu_pending(void);
320 321

/*
322
 * Return the number of RCU-sched batches processed thus far for debug & stats.
323
 */
324
long rcu_batches_completed_sched(void)
325
{
326
	return rcu_sched_state.completed;
327
}
328
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
329 330 331 332 333 334 335 336 337 338

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

339 340 341 342 343
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
344
	force_quiescent_state(rcu_state_p);
345 346 347
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

348 349 350 351 352
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
353
	force_quiescent_state(&rcu_bh_state);
354 355 356
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

372 373 374 375 376 377 378 379 380 381 382 383 384 385
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

386 387 388 389 390 391 392 393 394 395
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
396
		rsp = rcu_state_p;
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
		*flags = ACCESS_ONCE(rsp->gp_flags);
		*gpnum = ACCESS_ONCE(rsp->gpnum);
		*completed = ACCESS_ONCE(rsp->completed);
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

419 420 421 422 423 424 425 426 427 428 429
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

430 431 432 433 434
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
435
	force_quiescent_state(&rcu_sched_state);
436 437 438
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

439 440 441 442 443 444
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
445 446
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
447 448
}

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
	int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
	int *fp = &rnp->need_future_gp[idx];

	return ACCESS_ONCE(*fp);
}

471
/*
472 473 474
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
475 476 477 478
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
479
	int i;
P
Paul E. McKenney 已提交
480

481 482
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
483
	if (rcu_future_needs_gp(rsp))
484
		return 1;  /* Yes, a no-CBs CPU needs one. */
485 486 487 488 489 490 491 492 493 494
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
495 496
}

497
/*
498
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
499 500 501 502 503
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
504
static void rcu_eqs_enter_common(long long oldval, bool user)
505
{
506 507
	struct rcu_state *rsp;
	struct rcu_data *rdp;
508
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
509

510
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
511
	if (!user && !is_idle_task(current)) {
512 513
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
514

515
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
516
		ftrace_dump(DUMP_ORIG);
517 518 519
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
520
	}
521 522 523 524
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
525
	rcu_prepare_for_idle();
526
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
527
	smp_mb__before_atomic();  /* See above. */
528
	atomic_inc(&rdtp->dynticks);
529
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
530
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
531
	rcu_dynticks_task_enter();
532 533

	/*
534
	 * It is illegal to enter an extended quiescent state while
535 536 537 538 539 540 541 542
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
543
}
544

545 546 547
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
548
 */
549
static void rcu_eqs_enter(bool user)
550
{
551
	long long oldval;
552 553
	struct rcu_dynticks *rdtp;

554
	rdtp = this_cpu_ptr(&rcu_dynticks);
555
	oldval = rdtp->dynticks_nesting;
556
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
557
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
558
		rdtp->dynticks_nesting = 0;
559
		rcu_eqs_enter_common(oldval, user);
560
	} else {
561
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
562
	}
563
}
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
579 580 581
	unsigned long flags;

	local_irq_save(flags);
582
	rcu_eqs_enter(false);
583
	rcu_sysidle_enter(0);
584
	local_irq_restore(flags);
585
}
586
EXPORT_SYMBOL_GPL(rcu_idle_enter);
587

588
#ifdef CONFIG_RCU_USER_QS
589 590 591 592 593 594 595 596 597 598
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
599
	rcu_eqs_enter(1);
600
}
601
#endif /* CONFIG_RCU_USER_QS */
602

603 604 605 606 607 608
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
609
 *
610 611 612 613 614 615 616 617
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
618
 */
619
void rcu_irq_exit(void)
620 621
{
	unsigned long flags;
622
	long long oldval;
623 624 625
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
626
	rdtp = this_cpu_ptr(&rcu_dynticks);
627
	oldval = rdtp->dynticks_nesting;
628 629
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
630
	if (rdtp->dynticks_nesting)
631
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
632
	else
633 634
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
635 636 637 638
	local_irq_restore(flags);
}

/*
639
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
640 641 642 643 644
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
645
static void rcu_eqs_exit_common(long long oldval, int user)
646
{
647 648
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

649
	rcu_dynticks_task_exit();
650
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
651 652
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
653
	smp_mb__after_atomic();  /* See above. */
654
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
655
	rcu_cleanup_after_idle();
656
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
657
	if (!user && !is_idle_task(current)) {
658 659
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
660

661
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
662
				  oldval, rdtp->dynticks_nesting);
663
		ftrace_dump(DUMP_ORIG);
664 665 666
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
667 668 669
	}
}

670 671 672
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
673
 */
674
static void rcu_eqs_exit(bool user)
675 676 677 678
{
	struct rcu_dynticks *rdtp;
	long long oldval;

679
	rdtp = this_cpu_ptr(&rcu_dynticks);
680
	oldval = rdtp->dynticks_nesting;
681
	WARN_ON_ONCE(oldval < 0);
682
	if (oldval & DYNTICK_TASK_NEST_MASK) {
683
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
684
	} else {
685
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
686
		rcu_eqs_exit_common(oldval, user);
687
	}
688
}
689 690 691 692 693 694 695 696 697 698 699 700 701 702

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
703 704 705
	unsigned long flags;

	local_irq_save(flags);
706
	rcu_eqs_exit(false);
707
	rcu_sysidle_exit(0);
708
	local_irq_restore(flags);
709
}
710
EXPORT_SYMBOL_GPL(rcu_idle_exit);
711

712
#ifdef CONFIG_RCU_USER_QS
713 714 715 716 717 718 719 720
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
721
	rcu_eqs_exit(1);
722
}
723
#endif /* CONFIG_RCU_USER_QS */
724

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
751
	rdtp = this_cpu_ptr(&rcu_dynticks);
752 753 754
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
755
	if (oldval)
756
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
757
	else
758 759
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
760 761 762 763 764 765
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
766 767 768 769 770
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
771 772 773
 */
void rcu_nmi_enter(void)
{
774
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
775
	int incby = 2;
776

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
798 799 800 801 802
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
803 804 805 806
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
807 808 809
 */
void rcu_nmi_exit(void)
{
810
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
811

812 813 814 815 816 817 818 819 820 821 822 823 824 825
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
826
		return;
827 828 829 830
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
831
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
832
	smp_mb__before_atomic();  /* See above. */
833
	atomic_inc(&rdtp->dynticks);
834
	smp_mb__after_atomic();  /* Force delay to next write. */
835
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
836 837 838
}

/**
839 840 841 842 843 844 845
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
846
bool notrace __rcu_is_watching(void)
847 848 849 850 851 852
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
853
 *
854
 * If the current CPU is in its idle loop and is neither in an interrupt
855
 * or NMI handler, return true.
856
 */
857
bool notrace rcu_is_watching(void)
858
{
859
	bool ret;
860 861

	preempt_disable();
862
	ret = __rcu_is_watching();
863 864
	preempt_enable();
	return ret;
865
}
866
EXPORT_SYMBOL_GPL(rcu_is_watching);
867

868
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
869 870 871 872 873 874 875

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
876 877 878 879 880 881 882 883 884 885 886
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
887 888 889 890 891 892
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
893 894
	struct rcu_data *rdp;
	struct rcu_node *rnp;
895 896 897
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
898
		return true;
899
	preempt_disable();
900
	rdp = this_cpu_ptr(&rcu_sched_data);
901 902
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
903 904 905 906 907 908
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

909
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
910

911
/**
912
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
913
 *
914 915 916
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
917
 */
918
static int rcu_is_cpu_rrupt_from_idle(void)
919
{
920
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
921 922 923 924 925
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
926
 * is in dynticks idle mode, which is an extended quiescent state.
927
 */
928 929
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
930
{
931
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
932
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
933 934 935 936
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
		return 1;
	} else {
937 938 939
		if (ULONG_CMP_LT(ACCESS_ONCE(rdp->gpnum) + ULONG_MAX / 4,
				 rdp->mynode->gpnum))
			ACCESS_ONCE(rdp->gpwrap) = true;
940 941
		return 0;
	}
942 943
}

944 945 946 947 948 949
/*
 * This function really isn't for public consumption, but RCU is special in
 * that context switches can allow the state machine to make progress.
 */
extern void resched_cpu(int cpu);

950 951 952 953
/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
954
 * for this same CPU, or by virtue of having been offline.
955
 */
956 957
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
958
{
959
	unsigned int curr;
960
	int *rcrmp;
961
	unsigned int snap;
962

963 964
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
965 966 967 968 969 970 971 972 973

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
974
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
975
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
976 977 978 979
		rdp->dynticks_fqs++;
		return 1;
	}

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
995
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
996 997 998
		rdp->offline_fqs++;
		return 1;
	}
999 1000

	/*
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1020
	 */
1021 1022 1023
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1024
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			ACCESS_ONCE(rdp->cond_resched_completed) =
				ACCESS_ONCE(rdp->mynode->completed);
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
			ACCESS_ONCE(*rcrmp) =
				ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
			/* Time to beat on that CPU again! */
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
		}
1038 1039
	}

1040
	return 0;
1041 1042 1043 1044
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1045
	unsigned long j = jiffies;
1046
	unsigned long j1;
1047 1048 1049

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1050
	j1 = rcu_jiffies_till_stall_check();
1051
	ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
1052
	rsp->jiffies_resched = j + j1 / 2;
1053
	rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs);
1054 1055
}

1056
/*
1057
 * Dump stacks of all tasks running on stalled CPUs.
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

1076
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1077 1078 1079 1080
{
	int cpu;
	long delta;
	unsigned long flags;
1081 1082
	unsigned long gpa;
	unsigned long j;
1083
	int ndetected = 0;
1084
	struct rcu_node *rnp = rcu_get_root(rsp);
1085
	long totqlen = 0;
1086 1087 1088

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
1089
	raw_spin_lock_irqsave(&rnp->lock, flags);
1090
	delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
1091
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1092
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1093 1094
		return;
	}
1095
	ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
1096
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1097

1098 1099 1100 1101 1102
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1103
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1104
	       rsp->name);
1105
	print_cpu_stall_info_begin();
1106
	rcu_for_each_leaf_node(rsp, rnp) {
1107
		raw_spin_lock_irqsave(&rnp->lock, flags);
1108
		ndetected += rcu_print_task_stall(rnp);
1109 1110 1111 1112 1113 1114 1115 1116
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
1117
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1118
	}
1119 1120 1121 1122 1123 1124 1125

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
1126
	ndetected += rcu_print_task_stall(rnp);
1127 1128 1129
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
1130 1131
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1132
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1133
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1134
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1135
	if (ndetected) {
1136
		rcu_dump_cpu_stacks(rsp);
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	} else {
		if (ACCESS_ONCE(rsp->gpnum) != gpnum ||
		    ACCESS_ONCE(rsp->completed) == gpnum) {
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
			gpa = ACCESS_ONCE(rsp->gp_activity);
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld\n",
			       rsp->name, j - gpa, j, gpa,
			       jiffies_till_next_fqs);
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1151

1152
	/* Complain about tasks blocking the grace period. */
1153 1154 1155

	rcu_print_detail_task_stall(rsp);

1156
	force_quiescent_state(rsp);  /* Kick them all. */
1157 1158 1159 1160
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1161
	int cpu;
1162 1163
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1164
	long totqlen = 0;
1165

1166 1167 1168 1169 1170
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1171
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1172 1173 1174
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1175 1176
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1177 1178 1179
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1180
	rcu_dump_cpu_stacks(rsp);
1181

P
Paul E. McKenney 已提交
1182
	raw_spin_lock_irqsave(&rnp->lock, flags);
1183 1184
	if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
		ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1185
				     3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
1186
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1187

1188 1189 1190 1191 1192 1193 1194 1195
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1196 1197 1198 1199
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1200 1201 1202
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1203 1204
	unsigned long j;
	unsigned long js;
1205 1206
	struct rcu_node *rnp;

1207
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1208
		return;
1209
	j = jiffies;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
	gpnum = ACCESS_ONCE(rsp->gpnum);
	smp_rmb(); /* Pick up ->gpnum first... */
1230
	js = ACCESS_ONCE(rsp->jiffies_stall);
1231 1232 1233 1234 1235 1236 1237 1238
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
	gps = ACCESS_ONCE(rsp->gp_start);
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
	completed = ACCESS_ONCE(rsp->completed);
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1239
	rnp = rdp->mynode;
1240
	if (rcu_gp_in_progress(rsp) &&
1241
	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1242 1243 1244 1245

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1246 1247
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1248

1249
		/* They had a few time units to dump stack, so complain. */
1250
		print_other_cpu_stall(rsp, gpnum);
1251 1252 1253
	}
}

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1265 1266 1267
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1268
		ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1269 1270
}

1271 1272 1273 1274 1275 1276 1277
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

1278 1279
	if (init_nocb_callback_list(rdp))
		return;
1280 1281 1282 1283 1284
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1314 1315 1316 1317 1318
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1319
				unsigned long c, const char *s)
1320 1321 1322 1323 1324 1325 1326 1327 1328
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1329 1330
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1331 1332 1333
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1334 1335 1336
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1337 1338 1339
{
	unsigned long c;
	int i;
1340
	bool ret = false;
1341 1342 1343 1344 1345 1346 1347
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1348
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1349
	if (rnp->need_future_gp[c & 0x1]) {
1350
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1351
		goto out;
1352 1353 1354 1355 1356 1357 1358
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1359 1360 1361 1362 1363 1364 1365
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1366 1367
	 */
	if (rnp->gpnum != rnp->completed ||
1368
	    ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
1369
		rnp->need_future_gp[c & 0x1]++;
1370
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1371
		goto out;
1372 1373 1374 1375 1376 1377 1378
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1379
	if (rnp != rnp_root) {
1380
		raw_spin_lock(&rnp_root->lock);
1381 1382
		smp_mb__after_unlock_lock();
	}
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1400
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1401 1402 1403 1404 1405 1406 1407 1408
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1409
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1410
	} else {
1411
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1412
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1413 1414 1415 1416
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
1417 1418 1419 1420
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1438 1439
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1440 1441 1442
	return needmore;
}

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
	    !ACCESS_ONCE(rsp->gp_flags) ||
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1459 1460 1461 1462 1463 1464 1465
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1466 1467
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1468 1469 1470
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1471
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1472 1473 1474 1475
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1476
	bool ret;
1477 1478 1479

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1480
		return false;
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1509
		return false;
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1520
	/* Record any needed additional grace periods. */
1521
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1522 1523 1524

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1525
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1526
	else
1527
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1528
	return ret;
1529 1530 1531 1532 1533 1534 1535 1536
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1537
 * Returns true if the RCU grace-period kthread needs to be awakened.
1538 1539 1540
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1541
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1542 1543 1544 1545 1546 1547
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1548
		return false;
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1572
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1573 1574
}

1575
/*
1576 1577 1578
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1579
 * Returns true if the grace-period kthread needs to be awakened.
1580
 */
1581 1582
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1583
{
1584 1585
	bool ret;

1586
	/* Handle the ends of any preceding grace periods first. */
1587 1588
	if (rdp->completed == rnp->completed &&
	    !unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1589

1590
		/* No grace period end, so just accelerate recent callbacks. */
1591
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1592

1593 1594 1595
	} else {

		/* Advance callbacks. */
1596
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1597 1598 1599

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1600
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1601
	}
1602

1603
	if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1604 1605 1606 1607 1608 1609
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1610
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1611 1612 1613
		rdp->passed_quiesce = 0;
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
		zero_cpu_stall_ticks(rdp);
1614
		ACCESS_ONCE(rdp->gpwrap) = false;
1615
	}
1616
	return ret;
1617 1618
}

1619
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1620 1621
{
	unsigned long flags;
1622
	bool needwake;
1623 1624 1625 1626
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1627
	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1628 1629
	     rdp->completed == ACCESS_ONCE(rnp->completed) &&
	     !unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */
1630 1631 1632 1633
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1634
	smp_mb__after_unlock_lock();
1635
	needwake = __note_gp_changes(rsp, rnp, rdp);
1636
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1637 1638
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1639 1640
}

1641
/*
1642
 * Initialize a new grace period.  Return 0 if no grace period required.
1643
 */
1644
static int rcu_gp_init(struct rcu_state *rsp)
1645 1646
{
	struct rcu_data *rdp;
1647
	struct rcu_node *rnp = rcu_get_root(rsp);
1648

1649
	ACCESS_ONCE(rsp->gp_activity) = jiffies;
1650
	rcu_bind_gp_kthread();
1651
	raw_spin_lock_irq(&rnp->lock);
1652
	smp_mb__after_unlock_lock();
1653
	if (!ACCESS_ONCE(rsp->gp_flags)) {
1654 1655 1656 1657
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1658
	ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1659

1660 1661 1662 1663 1664
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1665 1666 1667 1668 1669
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1670
	record_gp_stall_check_time(rsp);
1671 1672
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1673
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1674 1675 1676
	raw_spin_unlock_irq(&rnp->lock);

	/* Exclude any concurrent CPU-hotplug operations. */
1677
	mutex_lock(&rsp->onoff_mutex);
1678
	smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1694
		raw_spin_lock_irq(&rnp->lock);
1695
		smp_mb__after_unlock_lock();
1696
		rdp = this_cpu_ptr(rsp->rda);
1697 1698
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1699
		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1700
		WARN_ON_ONCE(rnp->completed != rsp->completed);
1701
		ACCESS_ONCE(rnp->completed) = rsp->completed;
1702
		if (rnp == rdp->mynode)
1703
			(void)__note_gp_changes(rsp, rnp, rdp);
1704 1705 1706 1707 1708
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1709
		cond_resched_rcu_qs();
1710
		ACCESS_ONCE(rsp->gp_activity) = jiffies;
1711
	}
1712

1713
	mutex_unlock(&rsp->onoff_mutex);
1714 1715
	return 1;
}
1716

1717 1718 1719
/*
 * Do one round of quiescent-state forcing.
 */
1720
static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1721 1722
{
	int fqs_state = fqs_state_in;
1723 1724
	bool isidle = false;
	unsigned long maxj;
1725 1726
	struct rcu_node *rnp = rcu_get_root(rsp);

1727
	ACCESS_ONCE(rsp->gp_activity) = jiffies;
1728 1729 1730
	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
1731
		if (is_sysidle_rcu_state(rsp)) {
1732
			isidle = true;
1733 1734
			maxj = jiffies - ULONG_MAX / 4;
		}
1735 1736
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1737
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1738 1739 1740
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1741
		isidle = false;
1742
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1743 1744 1745 1746
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
1747
		smp_mb__after_unlock_lock();
1748 1749
		ACCESS_ONCE(rsp->gp_flags) =
			ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
1750 1751 1752 1753 1754
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1755 1756 1757
/*
 * Clean up after the old grace period.
 */
1758
static void rcu_gp_cleanup(struct rcu_state *rsp)
1759 1760
{
	unsigned long gp_duration;
1761
	bool needgp = false;
1762
	int nocb = 0;
1763 1764
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1765

1766
	ACCESS_ONCE(rsp->gp_activity) = jiffies;
1767
	raw_spin_lock_irq(&rnp->lock);
1768
	smp_mb__after_unlock_lock();
1769 1770 1771
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1772

1773 1774 1775 1776 1777 1778 1779 1780
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1781
	raw_spin_unlock_irq(&rnp->lock);
1782

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1793
		raw_spin_lock_irq(&rnp->lock);
1794
		smp_mb__after_unlock_lock();
1795
		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1796 1797
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
1798
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1799
		/* smp_mb() provided by prior unlock-lock pair. */
1800
		nocb += rcu_future_gp_cleanup(rsp, rnp);
1801
		raw_spin_unlock_irq(&rnp->lock);
1802
		cond_resched_rcu_qs();
1803
		ACCESS_ONCE(rsp->gp_activity) = jiffies;
1804
	}
1805 1806
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1807
	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1808
	rcu_nocb_gp_set(rnp, nocb);
1809

1810 1811
	/* Declare grace period done. */
	ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1812
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1813
	rsp->fqs_state = RCU_GP_IDLE;
1814
	rdp = this_cpu_ptr(rsp->rda);
1815 1816 1817
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1818
		ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1819 1820 1821 1822
		trace_rcu_grace_period(rsp->name,
				       ACCESS_ONCE(rsp->gpnum),
				       TPS("newreq"));
	}
1823 1824 1825 1826 1827 1828 1829 1830
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1831
	int fqs_state;
1832
	int gf;
1833
	unsigned long j;
1834
	int ret;
1835 1836 1837 1838 1839 1840 1841
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1842 1843 1844
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwait"));
1845
			rsp->gp_state = RCU_GP_WAIT_GPS;
1846
			wait_event_interruptible(rsp->gp_wq,
1847
						 ACCESS_ONCE(rsp->gp_flags) &
1848
						 RCU_GP_FLAG_INIT);
1849
			/* Locking provides needed memory barrier. */
1850
			if (rcu_gp_init(rsp))
1851
				break;
1852
			cond_resched_rcu_qs();
1853
			ACCESS_ONCE(rsp->gp_activity) = jiffies;
1854
			WARN_ON(signal_pending(current));
1855 1856 1857
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwaitsig"));
1858
		}
1859

1860 1861
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1862 1863 1864 1865 1866
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1867
		ret = 0;
1868
		for (;;) {
1869 1870
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
1871 1872 1873
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("fqswait"));
1874
			rsp->gp_state = RCU_GP_WAIT_FQS;
1875
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
1876 1877
					((gf = ACCESS_ONCE(rsp->gp_flags)) &
					 RCU_GP_FLAG_FQS) ||
1878 1879
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
1880
					j);
1881
			/* Locking provides needed memory barriers. */
1882
			/* If grace period done, leave loop. */
1883
			if (!ACCESS_ONCE(rnp->qsmask) &&
1884
			    !rcu_preempt_blocked_readers_cgp(rnp))
1885
				break;
1886
			/* If time for quiescent-state forcing, do it. */
1887 1888
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
1889 1890 1891
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsstart"));
1892
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
1893 1894 1895
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsend"));
1896
				cond_resched_rcu_qs();
1897
				ACCESS_ONCE(rsp->gp_activity) = jiffies;
1898 1899
			} else {
				/* Deal with stray signal. */
1900
				cond_resched_rcu_qs();
1901
				ACCESS_ONCE(rsp->gp_activity) = jiffies;
1902
				WARN_ON(signal_pending(current));
1903 1904 1905
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqswaitsig"));
1906
			}
1907 1908 1909 1910 1911 1912 1913 1914
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
1915
		}
1916 1917 1918

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
1919 1920 1921
	}
}

1922 1923 1924
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
1925
 * the root node's ->lock and hard irqs must be disabled.
1926 1927 1928 1929
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1930 1931
 *
 * Returns true if the grace-period kthread must be awakened.
1932
 */
1933
static bool
1934 1935
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
1936
{
1937
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1938
		/*
1939
		 * Either we have not yet spawned the grace-period
1940 1941
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
1942
		 * Either way, don't start a new grace period.
1943
		 */
1944
		return false;
1945
	}
1946
	ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1947 1948
	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
			       TPS("newreq"));
1949

1950 1951
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
1952
	 * could cause possible deadlocks with the rq->lock. Defer
1953
	 * the wakeup to our caller.
1954
	 */
1955
	return true;
1956 1957
}

1958 1959 1960 1961 1962 1963
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
1964 1965
 *
 * Returns true if the grace-period kthread needs to be awakened.
1966
 */
1967
static bool rcu_start_gp(struct rcu_state *rsp)
1968 1969 1970
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
1971
	bool ret = false;
1972 1973 1974 1975 1976 1977 1978 1979 1980

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
1981 1982 1983
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
1984 1985
}

1986
/*
P
Paul E. McKenney 已提交
1987 1988 1989
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
1990 1991
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
1992
 */
P
Paul E. McKenney 已提交
1993
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1994
	__releases(rcu_get_root(rsp)->lock)
1995
{
1996
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1997
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1998
	rcu_gp_kthread_wake(rsp);
1999 2000
}

2001
/*
P
Paul E. McKenney 已提交
2002 2003 2004 2005 2006 2007
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
2008 2009
 */
static void
P
Paul E. McKenney 已提交
2010 2011
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
2012 2013
	__releases(rnp->lock)
{
2014 2015
	struct rcu_node *rnp_c;

2016 2017 2018 2019 2020
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
2021
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2022 2023 2024
			return;
		}
		rnp->qsmask &= ~mask;
2025 2026 2027 2028
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2029
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2030 2031

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
2032
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2033 2034 2035 2036 2037 2038 2039 2040 2041
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
2042
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2043
		rnp_c = rnp;
2044
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
2045
		raw_spin_lock_irqsave(&rnp->lock, flags);
2046
		smp_mb__after_unlock_lock();
2047
		WARN_ON_ONCE(rnp_c->qsmask);
2048 2049 2050 2051
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2052
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2053
	 * to clean up and start the next grace period if one is needed.
2054
	 */
P
Paul E. McKenney 已提交
2055
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2056 2057 2058
}

/*
P
Paul E. McKenney 已提交
2059 2060 2061 2062 2063 2064 2065
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
2066 2067
 */
static void
2068
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2069 2070 2071
{
	unsigned long flags;
	unsigned long mask;
2072
	bool needwake;
2073 2074 2075
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
2076
	raw_spin_lock_irqsave(&rnp->lock, flags);
2077
	smp_mb__after_unlock_lock();
2078
	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
2079
	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2080 2081

		/*
2082 2083 2084 2085
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2086
		 */
2087
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
2088
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2089 2090 2091 2092
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
2093
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2094 2095 2096 2097 2098 2099 2100
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2101
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2102

P
Paul E. McKenney 已提交
2103
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
2104 2105
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2118 2119
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2132
	if (!rdp->passed_quiesce)
2133 2134
		return;

P
Paul E. McKenney 已提交
2135 2136 2137 2138
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2139
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2140 2141 2142 2143
}

#ifdef CONFIG_HOTPLUG_CPU

2144
/*
2145 2146
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2147
 * ->orphan_lock.
2148
 */
2149 2150 2151
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2152
{
P
Paul E. McKenney 已提交
2153
	/* No-CBs CPUs do not have orphanable callbacks. */
2154
	if (rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2155 2156
		return;

2157 2158
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2159 2160
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2161
	 */
2162
	if (rdp->nxtlist != NULL) {
2163 2164 2165
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2166
		rdp->qlen_lazy = 0;
2167
		ACCESS_ONCE(rdp->qlen) = 0;
2168 2169 2170
	}

	/*
2171 2172 2173 2174 2175 2176 2177
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2178
	 */
2179 2180 2181 2182
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2183 2184 2185
	}

	/*
2186 2187 2188
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2189
	 */
2190
	if (rdp->nxtlist != NULL) {
2191 2192
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2193
	}
2194

2195
	/* Finally, initialize the rcu_data structure's list to empty.  */
2196
	init_callback_list(rdp);
2197 2198 2199 2200
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2201
 * orphanage.  The caller must hold the ->orphan_lock.
2202
 */
2203
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2204 2205
{
	int i;
2206
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2207

P
Paul E. McKenney 已提交
2208
	/* No-CBs CPUs are handled specially. */
2209
	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2210 2211
		return;

2212 2213 2214 2215
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2216 2217
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
2257 2258
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2259
			       TPS("cpuofl"));
2260 2261 2262
}

/*
2263
 * The CPU has been completely removed, and some other CPU is reporting
2264 2265
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2266 2267
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2268
 */
2269
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2270
{
2271 2272 2273
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
2274
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2275
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2276

2277
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2278
	rcu_boost_kthread_setaffinity(rnp, -1);
2279 2280

	/* Exclude any attempts to start a new grace period. */
2281
	mutex_lock(&rsp->onoff_mutex);
2282
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2283

2284 2285
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2286
	rcu_adopt_orphan_cbs(rsp, flags);
2287

2288 2289 2290 2291
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2292
		smp_mb__after_unlock_lock();
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
2310
	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2311 2312
	 * held leads to deadlock.
	 */
2313
	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2314 2315 2316 2317 2318 2319 2320
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
2321 2322 2323
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2324 2325 2326
	init_callback_list(rdp);
	/* Disallow further callbacks on this CPU. */
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2327
	mutex_unlock(&rsp->onoff_mutex);
2328 2329 2330 2331
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

2332
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2333 2334 2335
{
}

2336
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2337 2338 2339 2340 2341 2342 2343 2344 2345
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2346
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2347 2348 2349
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2350 2351
	long bl, count, count_lazy;
	int i;
2352

2353
	/* If no callbacks are ready, just return. */
2354
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2355
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2356 2357 2358
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2359
		return;
2360
	}
2361 2362 2363 2364 2365 2366

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2367
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2368
	bl = rdp->blimit;
2369
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2370 2371 2372 2373
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2374 2375 2376
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2377 2378 2379
	local_irq_restore(flags);

	/* Invoke callbacks. */
2380
	count = count_lazy = 0;
2381 2382 2383
	while (list) {
		next = list->next;
		prefetch(next);
2384
		debug_rcu_head_unqueue(list);
2385 2386
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2387
		list = next;
2388 2389 2390 2391
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2392 2393 2394 2395
			break;
	}

	local_irq_save(flags);
2396 2397 2398
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2399 2400 2401 2402 2403

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2404 2405 2406
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2407 2408 2409
			else
				break;
	}
2410 2411
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2412
	ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
2413
	rdp->n_cbs_invoked += count;
2414 2415 2416 2417 2418

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2419 2420 2421 2422 2423 2424
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2425
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2426

2427 2428
	local_irq_restore(flags);

2429
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2430
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2431
		invoke_rcu_core();
2432 2433 2434 2435 2436
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2437
 * Also schedule RCU core processing.
2438
 *
2439
 * This function must be called from hardirq context.  It is normally
2440 2441 2442
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2443
void rcu_check_callbacks(int user)
2444
{
2445
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2446
	increment_cpu_stall_ticks();
2447
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2448 2449 2450 2451 2452

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2453
		 * a quiescent state, so note it.
2454 2455
		 *
		 * No memory barrier is required here because both
2456 2457 2458
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2459 2460
		 */

2461 2462
		rcu_sched_qs();
		rcu_bh_qs();
2463 2464 2465 2466 2467 2468 2469

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2470
		 * critical section, so note it.
2471 2472
		 */

2473
		rcu_bh_qs();
2474
	}
2475
	rcu_preempt_check_callbacks();
2476
	if (rcu_pending())
2477
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2478 2479
	if (user)
		rcu_note_voluntary_context_switch(current);
2480
	trace_rcu_utilization(TPS("End scheduler-tick"));
2481 2482 2483 2484 2485
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2486 2487
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2488
 * The caller must have suppressed start of new grace periods.
2489
 */
2490 2491 2492 2493
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2494 2495 2496 2497 2498
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2499
	struct rcu_node *rnp;
2500

2501
	rcu_for_each_leaf_node(rsp, rnp) {
2502
		cond_resched_rcu_qs();
2503
		mask = 0;
P
Paul E. McKenney 已提交
2504
		raw_spin_lock_irqsave(&rnp->lock, flags);
2505
		smp_mb__after_unlock_lock();
2506
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
2507
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2508
			return;
2509
		}
2510
		if (rnp->qsmask == 0) {
2511
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2512 2513
			continue;
		}
2514
		cpu = rnp->grplo;
2515
		bit = 1;
2516
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2517 2518
			if ((rnp->qsmask & bit) != 0) {
				if ((rnp->qsmaskinit & bit) != 0)
2519
					*isidle = false;
2520 2521 2522
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2523
		}
2524
		if (mask != 0) {
2525

P
Paul E. McKenney 已提交
2526 2527
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2528 2529
			continue;
		}
P
Paul E. McKenney 已提交
2530
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2531
	}
2532
	rnp = rcu_get_root(rsp);
2533 2534
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
2535
		smp_mb__after_unlock_lock();
2536 2537
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
2538 2539 2540 2541 2542 2543
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2544
static void force_quiescent_state(struct rcu_state *rsp)
2545 2546
{
	unsigned long flags;
2547 2548 2549 2550 2551
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2552
	rnp = __this_cpu_read(rsp->rda->mynode);
2553 2554 2555 2556 2557 2558
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2559
			rsp->n_force_qs_lh++;
2560 2561 2562 2563 2564
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2565

2566 2567
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2568
	smp_mb__after_unlock_lock();
2569 2570
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2571
		rsp->n_force_qs_lh++;
2572
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2573
		return;  /* Someone beat us to it. */
2574
	}
2575 2576
	ACCESS_ONCE(rsp->gp_flags) =
		ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
2577
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2578
	rcu_gp_kthread_wake(rsp);
2579 2580 2581
}

/*
2582 2583 2584
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2585 2586
 */
static void
2587
__rcu_process_callbacks(struct rcu_state *rsp)
2588 2589
{
	unsigned long flags;
2590
	bool needwake;
2591
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2592

2593 2594
	WARN_ON_ONCE(rdp->beenonline == 0);

2595 2596 2597 2598
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2599
	local_irq_save(flags);
2600
	if (cpu_needs_another_gp(rsp, rdp)) {
2601
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2602
		needwake = rcu_start_gp(rsp);
2603
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2604 2605
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2606 2607
	} else {
		local_irq_restore(flags);
2608 2609 2610
	}

	/* If there are callbacks ready, invoke them. */
2611
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2612
		invoke_rcu_callbacks(rsp, rdp);
2613 2614 2615

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2616 2617
}

2618
/*
2619
 * Do RCU core processing for the current CPU.
2620
 */
2621
static void rcu_process_callbacks(struct softirq_action *unused)
2622
{
2623 2624
	struct rcu_state *rsp;

2625 2626
	if (cpu_is_offline(smp_processor_id()))
		return;
2627
	trace_rcu_utilization(TPS("Start RCU core"));
2628 2629
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2630
	trace_rcu_utilization(TPS("End RCU core"));
2631 2632
}

2633
/*
2634 2635 2636 2637 2638
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
2639
 */
2640
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2641
{
2642 2643
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
2644 2645
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2646 2647
		return;
	}
2648
	invoke_rcu_callbacks_kthread();
2649 2650
}

2651
static void invoke_rcu_core(void)
2652
{
2653 2654
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2655 2656
}

2657 2658 2659 2660 2661
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2662
{
2663 2664
	bool needwake;

2665 2666 2667 2668
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2669
	if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2670 2671
		invoke_rcu_core();

2672
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2673
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2674
		return;
2675

2676 2677 2678 2679 2680 2681 2682
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2683
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2684 2685

		/* Are we ignoring a completed grace period? */
2686
		note_gp_changes(rsp, rdp);
2687 2688 2689 2690 2691

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2692
			raw_spin_lock(&rnp_root->lock);
2693
			smp_mb__after_unlock_lock();
2694
			needwake = rcu_start_gp(rsp);
2695
			raw_spin_unlock(&rnp_root->lock);
2696 2697
			if (needwake)
				rcu_gp_kthread_wake(rsp);
2698 2699 2700 2701 2702
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2703
				force_quiescent_state(rsp);
2704 2705 2706
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2707
	}
2708 2709
}

2710 2711 2712 2713 2714 2715 2716
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
2717 2718 2719 2720 2721 2722
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
2723 2724
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
2725
	   struct rcu_state *rsp, int cpu, bool lazy)
2726 2727 2728 2729
{
	unsigned long flags;
	struct rcu_data *rdp;

2730
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2731 2732 2733 2734 2735 2736
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
		ACCESS_ONCE(head->func) = rcu_leak_callback;
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
2747
	rdp = this_cpu_ptr(rsp->rda);
2748 2749

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
2750 2751 2752 2753 2754
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
2755
		offline = !__call_rcu_nocb(rdp, head, lazy, flags);
P
Paul E. McKenney 已提交
2756
		WARN_ON_ONCE(offline);
2757 2758 2759 2760
		/* _call_rcu() is illegal on offline CPU; leak the callback. */
		local_irq_restore(flags);
		return;
	}
2761
	ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
2762 2763
	if (lazy)
		rdp->qlen_lazy++;
2764 2765
	else
		rcu_idle_count_callbacks_posted();
2766 2767 2768
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2769

2770 2771
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2772
					 rdp->qlen_lazy, rdp->qlen);
2773
	else
2774
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2775

2776 2777
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2778 2779 2780 2781
	local_irq_restore(flags);
}

/*
2782
 * Queue an RCU-sched callback for invocation after a grace period.
2783
 */
2784
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2785
{
P
Paul E. McKenney 已提交
2786
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2787
}
2788
EXPORT_SYMBOL_GPL(call_rcu_sched);
2789 2790

/*
2791
 * Queue an RCU callback for invocation after a quicker grace period.
2792 2793 2794
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
2795
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2796 2797 2798
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
2809
	__call_rcu(head, func, rcu_state_p, -1, 1);
2810 2811 2812
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2824 2825
	int ret;

2826
	might_sleep();  /* Check for RCU read-side critical section. */
2827 2828 2829 2830
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2831 2832
}

2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
2867 2868 2869 2870 2871 2872 2873 2874 2875
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2876 2877 2878 2879
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2880 2881
	if (rcu_blocking_is_gp())
		return;
2882 2883 2884 2885
	if (rcu_expedited)
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
2897 2898 2899
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
2900 2901 2902
 */
void synchronize_rcu_bh(void)
{
2903 2904 2905 2906
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2907 2908
	if (rcu_blocking_is_gp())
		return;
2909 2910 2911 2912
	if (rcu_expedited)
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
2913 2914 2915
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
2936
	return smp_load_acquire(&rcu_state_p->gpnum);
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
2962
	newstate = smp_load_acquire(&rcu_state_p->completed);
2963 2964 2965 2966 2967
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
3019 3020 3021
	cpumask_var_t cm;
	bool cma = false;
	int cpu;
3022 3023
	long firstsnap, s, snap;
	int trycount = 0;
3024
	struct rcu_state *rsp = &rcu_sched_state;
3025

3026 3027 3028 3029 3030 3031 3032 3033
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
3034 3035
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
3036 3037
			 ULONG_MAX / 8)) {
		synchronize_sched();
3038
		atomic_long_inc(&rsp->expedited_wrap);
3039 3040
		return;
	}
3041

3042 3043 3044 3045
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
3046
	snap = atomic_long_inc_return(&rsp->expedited_start);
3047
	firstsnap = snap;
3048 3049 3050 3051 3052 3053
	if (!try_get_online_cpus()) {
		/* CPU hotplug operation in flight, fall back to normal GP. */
		wait_rcu_gp(call_rcu_sched);
		atomic_long_inc(&rsp->expedited_normal);
		return;
	}
3054
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3055

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
	/* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
	cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
	if (cma) {
		cpumask_copy(cm, cpu_online_mask);
		cpumask_clear_cpu(raw_smp_processor_id(), cm);
		for_each_cpu(cpu, cm) {
			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

			if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
				cpumask_clear_cpu(cpu, cm);
		}
		if (cpumask_weight(cm) == 0)
			goto all_cpus_idle;
	}

3071 3072 3073 3074
	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
3075
	while (try_stop_cpus(cma ? cm : cpu_online_mask,
3076 3077 3078
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
3079
		atomic_long_inc(&rsp->expedited_tryfail);
3080

3081
		/* Check to see if someone else did our work for us. */
3082
		s = atomic_long_read(&rsp->expedited_done);
3083
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3084
			/* ensure test happens before caller kfree */
3085
			smp_mb__before_atomic(); /* ^^^ */
3086
			atomic_long_inc(&rsp->expedited_workdone1);
3087
			free_cpumask_var(cm);
3088 3089
			return;
		}
3090 3091

		/* No joy, try again later.  Or just synchronize_sched(). */
3092
		if (trycount++ < 10) {
3093
			udelay(trycount * num_online_cpus());
3094
		} else {
3095
			wait_rcu_gp(call_rcu_sched);
3096
			atomic_long_inc(&rsp->expedited_normal);
3097
			free_cpumask_var(cm);
3098 3099 3100
			return;
		}

3101
		/* Recheck to see if someone else did our work for us. */
3102
		s = atomic_long_read(&rsp->expedited_done);
3103
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3104
			/* ensure test happens before caller kfree */
3105
			smp_mb__before_atomic(); /* ^^^ */
3106
			atomic_long_inc(&rsp->expedited_workdone2);
3107
			free_cpumask_var(cm);
3108 3109 3110 3111 3112
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
3113 3114 3115 3116
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
3117
		 */
3118 3119 3120 3121
		if (!try_get_online_cpus()) {
			/* CPU hotplug operation in flight, use normal GP. */
			wait_rcu_gp(call_rcu_sched);
			atomic_long_inc(&rsp->expedited_normal);
3122
			free_cpumask_var(cm);
3123 3124
			return;
		}
3125
		snap = atomic_long_read(&rsp->expedited_start);
3126 3127
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
3128
	atomic_long_inc(&rsp->expedited_stoppedcpus);
3129

3130 3131 3132
all_cpus_idle:
	free_cpumask_var(cm);

3133 3134 3135 3136
	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
3137
	 * than we did already did their update.
3138 3139
	 */
	do {
3140
		atomic_long_inc(&rsp->expedited_done_tries);
3141
		s = atomic_long_read(&rsp->expedited_done);
3142
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3143
			/* ensure test happens before caller kfree */
3144
			smp_mb__before_atomic(); /* ^^^ */
3145
			atomic_long_inc(&rsp->expedited_done_lost);
3146 3147
			break;
		}
3148
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3149
	atomic_long_inc(&rsp->expedited_done_exit);
3150 3151 3152 3153 3154

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3155 3156 3157 3158 3159 3160 3161 3162 3163
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3164 3165
	struct rcu_node *rnp = rdp->mynode;

3166 3167 3168 3169 3170
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3171 3172 3173 3174
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3175
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3176 3177
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
3178
		rdp->n_rp_qs_pending++;
3179
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
3180
		rdp->n_rp_report_qs++;
3181
		return 1;
3182
	}
3183 3184

	/* Does this CPU have callbacks ready to invoke? */
3185 3186
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3187
		return 1;
3188
	}
3189 3190

	/* Has RCU gone idle with this CPU needing another grace period? */
3191 3192
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3193
		return 1;
3194
	}
3195 3196

	/* Has another RCU grace period completed?  */
3197
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3198
		rdp->n_rp_gp_completed++;
3199
		return 1;
3200
	}
3201 3202

	/* Has a new RCU grace period started? */
3203 3204
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(ACCESS_ONCE(rdp->gpwrap))) { /* outside lock */
3205
		rdp->n_rp_gp_started++;
3206
		return 1;
3207
	}
3208

3209 3210 3211 3212 3213 3214
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3215
	/* nothing to do */
3216
	rdp->n_rp_need_nothing++;
3217 3218 3219 3220 3221 3222 3223 3224
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3225
static int rcu_pending(void)
3226
{
3227 3228 3229
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3230
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3231 3232
			return 1;
	return 0;
3233 3234 3235
}

/*
3236 3237 3238
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3239
 */
3240
static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3241
{
3242 3243 3244
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3245 3246
	struct rcu_state *rsp;

3247
	for_each_rcu_flavor(rsp) {
3248
		rdp = this_cpu_ptr(rsp->rda);
3249 3250 3251 3252
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3253
			al = false;
3254 3255
			break;
		}
3256 3257 3258 3259
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3260 3261
}

3262 3263 3264 3265
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3266
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3267 3268 3269 3270 3271 3272
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3273 3274 3275 3276
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3277
static void rcu_barrier_callback(struct rcu_head *rhp)
3278
{
3279 3280 3281
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3282 3283
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3284
		complete(&rsp->barrier_completion);
3285 3286 3287
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
3288 3289 3290 3291 3292 3293 3294
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3295
	struct rcu_state *rsp = type;
3296
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3297

3298
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3299
	atomic_inc(&rsp->barrier_cpu_count);
3300
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3301 3302 3303 3304 3305 3306
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3307
static void _rcu_barrier(struct rcu_state *rsp)
3308
{
3309 3310
	int cpu;
	struct rcu_data *rdp;
3311 3312
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
3313

3314
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3315

3316
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3317
	mutex_lock(&rsp->barrier_mutex);
3318

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
3331
	snap_done = rsp->n_barrier_done;
3332
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344

	/*
	 * If the value in snap is odd, we needed to wait for the current
	 * rcu_barrier() to complete, then wait for the next one, in other
	 * words, we need the value of snap_done to be three larger than
	 * the value of snap.  On the other hand, if the value in snap is
	 * even, we only had to wait for the next rcu_barrier() to complete,
	 * in other words, we need the value of snap_done to be only two
	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
	 * this for us (thank you, Linus!).
	 */
	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3345
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
3356
	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3357
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3358
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3359
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3360

3361
	/*
3362 3363
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3364 3365
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3366
	 */
3367
	init_completion(&rsp->barrier_completion);
3368
	atomic_set(&rsp->barrier_cpu_count, 1);
3369
	get_online_cpus();
3370 3371

	/*
3372 3373 3374
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3375
	 */
P
Paul E. McKenney 已提交
3376
	for_each_possible_cpu(cpu) {
3377
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3378
			continue;
3379
		rdp = per_cpu_ptr(rsp->rda, cpu);
3380
		if (rcu_is_nocb_cpu(cpu)) {
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
						   rsp->n_barrier_done);
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
						   rsp->n_barrier_done);
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
P
Paul E. McKenney 已提交
3391
		} else if (ACCESS_ONCE(rdp->qlen)) {
3392 3393
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
3394
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3395
		} else {
3396 3397
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
3398 3399
		}
	}
3400
	put_online_cpus();
3401 3402 3403 3404 3405

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3406
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3407
		complete(&rsp->barrier_completion);
3408

3409 3410
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
3411
	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3412
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3413
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3414 3415
	smp_mb(); /* Keep increment before caller's subsequent code. */

3416
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3417
	wait_for_completion(&rsp->barrier_completion);
3418 3419

	/* Other rcu_barrier() invocations can now safely proceed. */
3420
	mutex_unlock(&rsp->barrier_mutex);
3421 3422 3423 3424 3425 3426 3427
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3428
	_rcu_barrier(&rcu_bh_state);
3429 3430 3431 3432 3433 3434 3435 3436
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3437
	_rcu_barrier(&rcu_sched_state);
3438 3439 3440
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3441
/*
3442
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3443
 */
3444 3445
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3446 3447
{
	unsigned long flags;
3448
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3449 3450 3451
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3452
	raw_spin_lock_irqsave(&rnp->lock, flags);
3453
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3454
	init_callback_list(rdp);
3455
	rdp->qlen_lazy = 0;
3456
	ACCESS_ONCE(rdp->qlen) = 0;
3457
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3458
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3459
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3460
	rdp->cpu = cpu;
3461
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3462
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
3463
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3464 3465 3466 3467 3468 3469 3470
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3471
 */
3472
static void
3473
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3474 3475 3476
{
	unsigned long flags;
	unsigned long mask;
3477
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3478 3479
	struct rcu_node *rnp = rcu_get_root(rsp);

3480 3481 3482
	/* Exclude new grace periods. */
	mutex_lock(&rsp->onoff_mutex);

3483
	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3484
	raw_spin_lock_irqsave(&rnp->lock, flags);
3485
	rdp->beenonline = 1;	 /* We have now been online. */
3486 3487
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3488
	rdp->blimit = blimit;
3489
	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3490
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3491
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3492 3493
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
3494
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3495 3496 3497 3498 3499 3500

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
3501
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
3502 3503
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
3504
		if (rnp == rdp->mynode) {
3505 3506 3507 3508 3509 3510
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
3511
			rdp->completed = rnp->completed;
3512 3513
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
3514
			trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3515
		}
P
Paul E. McKenney 已提交
3516
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3517 3518
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
3519
	local_irq_restore(flags);
3520

3521
	mutex_unlock(&rsp->onoff_mutex);
3522 3523
}

3524
static void rcu_prepare_cpu(int cpu)
3525
{
3526 3527 3528
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3529
		rcu_init_percpu_data(cpu, rsp);
3530 3531 3532
}

/*
3533
 * Handle CPU online/offline notification events.
3534
 */
3535
static int rcu_cpu_notify(struct notifier_block *self,
3536
				    unsigned long action, void *hcpu)
3537 3538
{
	long cpu = (long)hcpu;
3539
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3540
	struct rcu_node *rnp = rdp->mynode;
3541
	struct rcu_state *rsp;
3542

3543
	trace_rcu_utilization(TPS("Start CPU hotplug"));
3544 3545 3546
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
3547 3548
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
3549
		rcu_spawn_all_nocb_kthreads(cpu);
3550 3551
		break;
	case CPU_ONLINE:
3552
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
3553
		rcu_boost_kthread_setaffinity(rnp, -1);
3554 3555
		break;
	case CPU_DOWN_PREPARE:
3556
		rcu_boost_kthread_setaffinity(rnp, cpu);
3557
		break;
3558 3559
	case CPU_DYING:
	case CPU_DYING_FROZEN:
3560 3561
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
3562
		break;
3563 3564 3565 3566
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
3567
		for_each_rcu_flavor(rsp) {
3568
			rcu_cleanup_dead_cpu(cpu, rsp);
3569 3570
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
3571 3572 3573 3574
		break;
	default:
		break;
	}
3575
	trace_rcu_utilization(TPS("End CPU hotplug"));
3576
	return NOTIFY_OK;
3577 3578
}

3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_expedited = 1;
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
		rcu_expedited = 0;
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3598
/*
3599
 * Spawn the kthreads that handle each RCU flavor's grace periods.
3600 3601 3602 3603
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
3604
	int kthread_prio_in = kthread_prio;
3605 3606
	struct rcu_node *rnp;
	struct rcu_state *rsp;
3607
	struct sched_param sp;
3608 3609
	struct task_struct *t;

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

3621
	rcu_scheduler_fully_active = 1;
3622
	for_each_rcu_flavor(rsp) {
3623
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3624 3625 3626 3627
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
3628 3629 3630 3631 3632
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
		wake_up_process(t);
3633 3634
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
3635
	rcu_spawn_nocb_kthreads();
3636
	rcu_spawn_boost_kthreads();
3637 3638 3639 3640
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

3656 3657 3658 3659 3660 3661 3662 3663 3664
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

3665 3666
	rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
	for (i = rcu_num_lvls - 2; i >= 0; i--)
3667 3668 3669 3670 3671 3672 3673 3674 3675
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

3676
	cprv = nr_cpu_ids;
3677
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3688 3689
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3690
{
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
	static const char * const buf[] = {
		"rcu_node_0",
		"rcu_node_1",
		"rcu_node_2",
		"rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static const char * const fqs[] = {
		"rcu_node_fqs_0",
		"rcu_node_fqs_1",
		"rcu_node_fqs_2",
		"rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3701
	static u8 fl_mask = 0x1;
3702 3703 3704 3705 3706
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

3707 3708
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

3709 3710 3711 3712
	/* Silence gcc 4.8 warning about array index out of range. */
	if (rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls overflow");

3713 3714
	/* Initialize the level-tracking arrays. */

3715 3716 3717
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
3718 3719
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);
3720 3721
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
3722 3723 3724

	/* Initialize the elements themselves, starting from the leaves. */

3725
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3726 3727 3728
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
3729
			raw_spin_lock_init(&rnp->lock);
3730 3731
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
3732 3733 3734
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
3735 3736
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
3737 3738 3739 3740
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
3741 3742
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
3754
			INIT_LIST_HEAD(&rnp->blkd_tasks);
3755
			rcu_init_one_nocb(rnp);
3756 3757
		}
	}
3758

3759
	rsp->rda = rda;
3760
	init_waitqueue_head(&rsp->gp_wq);
3761
	rnp = rsp->level[rcu_num_lvls - 1];
3762
	for_each_possible_cpu(i) {
3763
		while (i > rnp->grphi)
3764
			rnp++;
3765
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3766 3767
		rcu_boot_init_percpu_data(i, rsp);
	}
3768
	list_add(&rsp->flavors, &rcu_struct_flavors);
3769 3770
}

3771 3772
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3773
 * replace the definitions in tree.h because those are needed to size
3774 3775 3776 3777
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
3778
	ulong d;
3779 3780
	int i;
	int j;
3781
	int n = nr_cpu_ids;
3782 3783
	int rcu_capacity[MAX_RCU_LVLS + 1];

3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

3797
	/* If the compile-time values are accurate, just leave. */
3798 3799
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
3800
		return;
3801 3802
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

3848
void __init rcu_init(void)
3849
{
P
Paul E. McKenney 已提交
3850
	int cpu;
3851

3852
	rcu_bootup_announce();
3853
	rcu_init_geometry();
3854
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3855
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3856
	__rcu_init_preempt();
J
Jiang Fang 已提交
3857
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3858 3859 3860 3861 3862 3863 3864

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
3865
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
3866 3867
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3868 3869

	rcu_early_boot_tests();
3870 3871
}

3872
#include "tree_plugin.h"