tree.c 142.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/trace_events.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71 72 73 74 75 76 77 78
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
79 80
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
81
static char sname##_varname[] = #sname; \
82 83 84 85 86 87 88 89 90
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
91
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92
struct rcu_state sname##_state = { \
93
	.level = { &sname##_state.node[0] }, \
94
	.rda = &sname##_data, \
95
	.call = cr, \
96
	.gp_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
97 98
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
99
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 101
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
102
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103
	.name = RCU_STATE_NAME(sname), \
104
	.abbr = sabbr, \
105
}
106

107 108
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109

110
static struct rcu_state *const rcu_state_p;
111
LIST_HEAD(rcu_struct_flavors);
112

113 114 115
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
116 117 118
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
119 120
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121
module_param(rcu_fanout_leaf, int, 0444);
122
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 124
/* Number of rcu_nodes at specified level. */
static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 126
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

127 128 129 130
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
131
 * optimize synchronize_sched() to a simple barrier().  When this variable
132 133 134 135
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
136 137 138
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

153 154
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
155
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
156 157
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
158 159
static void rcu_report_exp_rdp(struct rcu_state *rsp,
			       struct rcu_data *rdp, bool wake);
160

161
/* rcuc/rcub kthread realtime priority */
162
#ifdef CONFIG_RCU_KTHREAD_PRIO
163
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
164 165 166
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
167 168
module_param(kthread_prio, int, 0644);

169
/* Delay in jiffies for grace-period initialization delays, debug only. */
170 171 172 173 174 175 176 177

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

178 179
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
180
module_param(gp_init_delay, int, 0644);
181 182 183
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
184

185 186 187 188 189 190 191
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

192 193 194 195 196 197 198 199 200 201
/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
202

203 204 205 206 207 208 209 210 211 212 213 214
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

215 216 217 218 219 220 221 222
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
223
	return READ_ONCE(rnp->qsmaskinitnext);
224 225
}

226
/*
227
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
228 229 230 231 232
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
233
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
234 235
}

236
/*
237
 * Note a quiescent state.  Because we do not need to know
238
 * how many quiescent states passed, just if there was at least
239
 * one since the start of the grace period, this just sets a flag.
240
 * The caller must have disabled preemption.
241
 */
242
void rcu_sched_qs(void)
243
{
244 245 246 247 248 249 250 251
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
		return;
	trace_rcu_grace_period(TPS("rcu_sched"),
			       __this_cpu_read(rcu_sched_data.gpnum),
			       TPS("cpuqs"));
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
252 253 254
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(&rcu_sched_data), true);
255 256
}

257
void rcu_bh_qs(void)
258
{
259
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
260 261 262
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
263
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
264
	}
265
}
266

267 268 269 270 271 272 273 274 275 276 277
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

278 279 280
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

281 282 283 284 285 286 287 288 289 290
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
291 292
 *
 * The caller must have disabled interrupts.
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
 */
static void rcu_momentary_dyntick_idle(void)
{
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
314 315
		if (READ_ONCE(rdp->mynode->completed) !=
		    READ_ONCE(rdp->cond_resched_completed))
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
}

332 333 334
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
335
 * The caller must have disabled interrupts.
336
 */
337
void rcu_note_context_switch(void)
338
{
339
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
340
	trace_rcu_utilization(TPS("Start context switch"));
341
	rcu_sched_qs();
342
	rcu_preempt_note_context_switch();
343 344
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
345
	trace_rcu_utilization(TPS("End context switch"));
346
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
347
}
348
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
349

350
/*
351
 * Register a quiescent state for all RCU flavors.  If there is an
352 353
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
354
 * RCU flavors in desperate need of a quiescent state, which will normally
355 356
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
357 358 359 360 361
 *
 * The barrier() calls are redundant in the common case when this is
 * called externally, but just in case this is called from within this
 * file.
 *
362 363 364
 */
void rcu_all_qs(void)
{
365 366
	unsigned long flags;

367
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
368 369
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
		local_irq_save(flags);
370
		rcu_momentary_dyntick_idle();
371 372
		local_irq_restore(flags);
	}
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
		/*
		 * Yes, we just checked a per-CPU variable with preemption
		 * enabled, so we might be migrated to some other CPU at
		 * this point.  That is OK because in that case, the
		 * migration will supply the needed quiescent state.
		 * We might end up needlessly disabling preemption and
		 * invoking rcu_sched_qs() on the destination CPU, but
		 * the probability and cost are both quite low, so this
		 * should not be a problem in practice.
		 */
		preempt_disable();
		rcu_sched_qs();
		preempt_enable();
	}
388
	this_cpu_inc(rcu_qs_ctr);
389
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
390 391 392
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
393 394 395
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
396

E
Eric Dumazet 已提交
397 398 399
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
400

401 402
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
403 404 405 406

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

407 408 409 410 411 412 413
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

414
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
415
				  struct rcu_data *rdp);
416 417 418 419
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
420
static void force_quiescent_state(struct rcu_state *rsp);
421
static int rcu_pending(void);
422 423

/*
424
 * Return the number of RCU batches started thus far for debug & stats.
425
 */
426 427 428 429 430 431 432 433
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
434
 */
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
461
 */
462
unsigned long rcu_batches_completed_sched(void)
463
{
464
	return rcu_sched_state.completed;
465
}
466
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
467 468

/*
469
 * Return the number of RCU BH batches completed thus far for debug & stats.
470
 */
471
unsigned long rcu_batches_completed_bh(void)
472 473 474 475 476
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

477 478 479 480 481
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
482
	force_quiescent_state(rcu_state_p);
483 484 485
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

486 487 488 489 490
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
491
	force_quiescent_state(&rcu_bh_state);
492 493 494
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

495 496 497 498 499 500 501 502 503
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

519 520 521 522 523 524 525 526 527 528 529 530 531 532
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

533 534 535 536 537 538 539 540 541 542
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
543
		rsp = rcu_state_p;
544 545 546 547 548 549 550 551 552 553 554
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
555 556 557
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
558 559 560 561 562 563 564 565
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

566 567 568 569 570 571 572 573 574 575 576
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

577 578 579 580 581 582
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
583 584
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
585 586
}

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
603
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
604 605
	int *fp = &rnp->need_future_gp[idx];

606
	return READ_ONCE(*fp);
607 608
}

609
/*
610 611 612
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
613
 */
614
static bool
615 616
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
617
	int i;
P
Paul E. McKenney 已提交
618

619
	if (rcu_gp_in_progress(rsp))
620
		return false;  /* No, a grace period is already in progress. */
621
	if (rcu_future_needs_gp(rsp))
622
		return true;  /* Yes, a no-CBs CPU needs one. */
623
	if (!rdp->nxttail[RCU_NEXT_TAIL])
624
		return false;  /* No, this is a no-CBs (or offline) CPU. */
625
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
626
		return true;  /* Yes, CPU has newly registered callbacks. */
627 628
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
629
		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
630
				 rdp->nxtcompleted[i]))
631 632
			return true;  /* Yes, CBs for future grace period. */
	return false; /* No grace period needed. */
633 634
}

635
/*
636
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
637 638 639 640 641
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
642
static void rcu_eqs_enter_common(long long oldval, bool user)
643
{
644 645
	struct rcu_state *rsp;
	struct rcu_data *rdp;
646
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
647

648
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
649 650
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
651 652
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
653

654
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
655
		rcu_ftrace_dump(DUMP_ORIG);
656 657 658
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
659
	}
660 661 662 663
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
664
	rcu_prepare_for_idle();
665
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
666
	smp_mb__before_atomic();  /* See above. */
667
	atomic_inc(&rdtp->dynticks);
668
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
669 670
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     atomic_read(&rdtp->dynticks) & 0x1);
671
	rcu_dynticks_task_enter();
672 673

	/*
674
	 * It is illegal to enter an extended quiescent state while
675 676
	 * in an RCU read-side critical section.
	 */
677 678 679 680 681 682
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal idle entry in RCU read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
			 "Illegal idle entry in RCU-bh read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
			 "Illegal idle entry in RCU-sched read-side critical section.");
683
}
684

685 686 687
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
688
 */
689
static void rcu_eqs_enter(bool user)
690
{
691
	long long oldval;
692 693
	struct rcu_dynticks *rdtp;

694
	rdtp = this_cpu_ptr(&rcu_dynticks);
695
	oldval = rdtp->dynticks_nesting;
696 697
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
698
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
699
		rdtp->dynticks_nesting = 0;
700
		rcu_eqs_enter_common(oldval, user);
701
	} else {
702
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
703
	}
704
}
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
720 721 722
	unsigned long flags;

	local_irq_save(flags);
723
	rcu_eqs_enter(false);
724
	rcu_sysidle_enter(0);
725
	local_irq_restore(flags);
726
}
727
EXPORT_SYMBOL_GPL(rcu_idle_enter);
728

729
#ifdef CONFIG_NO_HZ_FULL
730 731 732 733 734 735 736 737 738 739
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
740
	rcu_eqs_enter(1);
741
}
742
#endif /* CONFIG_NO_HZ_FULL */
743

744 745 746 747 748
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
749
 * sections can occur.  The caller must have disabled interrupts.
750
 *
751 752 753 754 755 756 757 758
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
759
 */
760
void rcu_irq_exit(void)
761
{
762
	long long oldval;
763 764
	struct rcu_dynticks *rdtp;

765
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
766
	rdtp = this_cpu_ptr(&rcu_dynticks);
767
	oldval = rdtp->dynticks_nesting;
768
	rdtp->dynticks_nesting--;
769 770
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting < 0);
771
	if (rdtp->dynticks_nesting)
772
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
773
	else
774 775
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
776 777 778 779 780 781 782 783 784 785 786
}

/*
 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 */
void rcu_irq_exit_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_exit();
787 788 789 790
	local_irq_restore(flags);
}

/*
791
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
792 793 794 795 796
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
797
static void rcu_eqs_exit_common(long long oldval, int user)
798
{
799 800
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

801
	rcu_dynticks_task_exit();
802
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
803 804
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
805
	smp_mb__after_atomic();  /* See above. */
806 807
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(atomic_read(&rdtp->dynticks) & 0x1));
808
	rcu_cleanup_after_idle();
809
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
810 811
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
812 813
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
814

815
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
816
				  oldval, rdtp->dynticks_nesting);
817
		rcu_ftrace_dump(DUMP_ORIG);
818 819 820
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
821 822 823
	}
}

824 825 826
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
827
 */
828
static void rcu_eqs_exit(bool user)
829 830 831 832
{
	struct rcu_dynticks *rdtp;
	long long oldval;

833
	rdtp = this_cpu_ptr(&rcu_dynticks);
834
	oldval = rdtp->dynticks_nesting;
835
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
836
	if (oldval & DYNTICK_TASK_NEST_MASK) {
837
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
838
	} else {
839
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
840
		rcu_eqs_exit_common(oldval, user);
841
	}
842
}
843 844 845 846 847 848 849 850 851 852 853 854 855 856

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
857 858 859
	unsigned long flags;

	local_irq_save(flags);
860
	rcu_eqs_exit(false);
861
	rcu_sysidle_exit(0);
862
	local_irq_restore(flags);
863
}
864
EXPORT_SYMBOL_GPL(rcu_idle_exit);
865

866
#ifdef CONFIG_NO_HZ_FULL
867 868 869 870 871 872 873 874
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
875
	rcu_eqs_exit(1);
876
}
877
#endif /* CONFIG_NO_HZ_FULL */
878

879 880 881 882 883
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
884
 * sections can occur.  The caller must have disabled interrupts.
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	struct rcu_dynticks *rdtp;
	long long oldval;

903
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
904
	rdtp = this_cpu_ptr(&rcu_dynticks);
905 906
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
907 908
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
909
	if (oldval)
910
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
911
	else
912 913
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
914 915 916 917 918 919 920 921 922 923 924
}

/*
 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 */
void rcu_irq_enter_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_enter();
925 926 927 928 929 930
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
931 932 933 934 935
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
936 937 938
 */
void rcu_nmi_enter(void)
{
939
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
940
	int incby = 2;
941

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
963 964 965 966 967
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
968 969 970 971
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
972 973 974
 */
void rcu_nmi_exit(void)
{
975
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
976

977 978 979 980 981 982 983 984 985 986 987 988 989 990
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
991
		return;
992 993 994 995
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
996
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
997
	smp_mb__before_atomic();  /* See above. */
998
	atomic_inc(&rdtp->dynticks);
999
	smp_mb__after_atomic();  /* Force delay to next write. */
1000
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
1001 1002 1003
}

/**
1004 1005 1006 1007 1008 1009 1010
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
1011
bool notrace __rcu_is_watching(void)
1012 1013 1014 1015 1016 1017
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1018
 *
1019
 * If the current CPU is in its idle loop and is neither in an interrupt
1020
 * or NMI handler, return true.
1021
 */
1022
bool notrace rcu_is_watching(void)
1023
{
1024
	bool ret;
1025

1026
	preempt_disable_notrace();
1027
	ret = __rcu_is_watching();
1028
	preempt_enable_notrace();
1029
	return ret;
1030
}
1031
EXPORT_SYMBOL_GPL(rcu_is_watching);
1032

1033
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1034 1035 1036 1037 1038 1039 1040

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1052 1053 1054 1055 1056 1057
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1058 1059
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1060 1061 1062
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1063
		return true;
1064
	preempt_disable();
1065
	rdp = this_cpu_ptr(&rcu_sched_data);
1066
	rnp = rdp->mynode;
1067
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1068 1069 1070 1071 1072 1073
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1074
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1075

1076
/**
1077
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1078
 *
1079 1080 1081
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1082
 */
1083
static int rcu_is_cpu_rrupt_from_idle(void)
1084
{
1085
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1086 1087 1088 1089 1090
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1091
 * is in dynticks idle mode, which is an extended quiescent state.
1092
 */
1093 1094
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1095
{
1096
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1097
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1098 1099
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1100
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1101
				 rdp->mynode->gpnum))
1102
			WRITE_ONCE(rdp->gpwrap, true);
1103
		return 1;
1104
	}
1105
	return 0;
1106 1107 1108 1109 1110 1111
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1112
 * for this same CPU, or by virtue of having been offline.
1113
 */
1114 1115
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1116
{
1117
	unsigned int curr;
1118
	int *rcrmp;
1119
	unsigned int snap;
1120

1121 1122
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
1123 1124 1125 1126 1127 1128 1129 1130 1131

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1132
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1133
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1134 1135 1136 1137
		rdp->dynticks_fqs++;
		return 1;
	}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
1153
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1154 1155 1156
		rdp->offline_fqs++;
		return 1;
	}
1157 1158

	/*
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1178
	 */
1179 1180 1181
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1182
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1183 1184 1185
		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			WRITE_ONCE(rdp->cond_resched_completed,
				   READ_ONCE(rdp->mynode->completed));
1186
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1187 1188
			WRITE_ONCE(*rcrmp,
				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1189
		}
1190
		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1191 1192
	}

1193 1194 1195 1196 1197 1198
	/* And if it has been a really long time, kick the CPU as well. */
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
	    ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
		resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */

1199
	return 0;
1200 1201 1202 1203
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1204
	unsigned long j = jiffies;
1205
	unsigned long j1;
1206 1207 1208

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1209
	j1 = rcu_jiffies_till_stall_check();
1210
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1211
	rsp->jiffies_resched = j + j1 / 2;
1212
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1213 1214
}

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
/*
 * Convert a ->gp_state value to a character string.
 */
static const char *gp_state_getname(short gs)
{
	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
		return "???";
	return gp_state_names[gs];
}

1225 1226 1227 1228 1229 1230 1231 1232 1233
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1234
	gpa = READ_ONCE(rsp->gp_activity);
1235
	if (j - gpa > 2 * HZ) {
1236
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1237
		       rsp->name, j - gpa,
1238
		       rsp->gpnum, rsp->completed,
1239 1240
		       rsp->gp_flags,
		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1241
		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1242 1243 1244
		if (rsp->gp_kthread)
			sched_show_task(rsp->gp_kthread);
	}
1245 1246
}

1247
/*
1248
 * Dump stacks of all tasks running on stalled CPUs.
1249 1250 1251 1252 1253 1254 1255 1256
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
1257
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1258 1259 1260 1261 1262
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
B
Boqun Feng 已提交
1263
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1264 1265 1266
	}
}

1267
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1268 1269 1270 1271
{
	int cpu;
	long delta;
	unsigned long flags;
1272 1273
	unsigned long gpa;
	unsigned long j;
1274
	int ndetected = 0;
1275
	struct rcu_node *rnp = rcu_get_root(rsp);
1276
	long totqlen = 0;
1277 1278 1279

	/* Only let one CPU complain about others per time interval. */

1280
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1281
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1282
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
B
Boqun Feng 已提交
1283
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1284 1285
		return;
	}
1286 1287
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1288
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1289

1290 1291 1292 1293 1294
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1295
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1296
	       rsp->name);
1297
	print_cpu_stall_info_begin();
1298
	rcu_for_each_leaf_node(rsp, rnp) {
1299
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1300
		ndetected += rcu_print_task_stall(rnp);
1301 1302 1303 1304 1305 1306 1307 1308
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
B
Boqun Feng 已提交
1309
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1310
	}
1311 1312

	print_cpu_stall_info_end();
1313 1314
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1315
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1316
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1317
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1318
	if (ndetected) {
1319
		rcu_dump_cpu_stacks(rsp);
1320
	} else {
1321 1322
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1323 1324 1325
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1326
			gpa = READ_ONCE(rsp->gp_activity);
1327
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1328
			       rsp->name, j - gpa, j, gpa,
1329 1330
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1331 1332 1333 1334
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1335

1336
	/* Complain about tasks blocking the grace period. */
1337 1338
	rcu_print_detail_task_stall(rsp);

1339 1340
	rcu_check_gp_kthread_starvation(rsp);

1341
	force_quiescent_state(rsp);  /* Kick them all. */
1342 1343 1344 1345
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1346
	int cpu;
1347 1348
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1349
	long totqlen = 0;
1350

1351 1352 1353 1354 1355
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1356
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1357 1358 1359
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1360 1361
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1362 1363 1364
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1365 1366 1367

	rcu_check_gp_kthread_starvation(rsp);

1368
	rcu_dump_cpu_stacks(rsp);
1369

1370
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1371 1372 1373
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1374
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1375

1376 1377 1378 1379 1380 1381 1382 1383
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1384 1385 1386 1387
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1388 1389 1390
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1391 1392
	unsigned long j;
	unsigned long js;
1393 1394
	struct rcu_node *rnp;

1395
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1396
		return;
1397
	j = jiffies;
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1416
	gpnum = READ_ONCE(rsp->gpnum);
1417
	smp_rmb(); /* Pick up ->gpnum first... */
1418
	js = READ_ONCE(rsp->jiffies_stall);
1419
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1420
	gps = READ_ONCE(rsp->gp_start);
1421
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1422
	completed = READ_ONCE(rsp->completed);
1423 1424 1425 1426
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1427
	rnp = rdp->mynode;
1428
	if (rcu_gp_in_progress(rsp) &&
1429
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1430 1431 1432 1433

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1434 1435
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1436

1437
		/* They had a few time units to dump stack, so complain. */
1438
		print_other_cpu_stall(rsp, gpnum);
1439 1440 1441
	}
}

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1453 1454 1455
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1456
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1457 1458
}

1459
/*
1460 1461 1462
 * Initialize the specified rcu_data structure's default callback list
 * to empty.  The default callback list is the one that is not used by
 * no-callbacks CPUs.
1463
 */
1464
static void init_default_callback_list(struct rcu_data *rdp)
1465 1466 1467 1468 1469 1470 1471 1472
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	if (init_nocb_callback_list(rdp))
		return;
	init_default_callback_list(rdp);
}

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1512 1513 1514 1515 1516
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1517
				unsigned long c, const char *s)
1518 1519 1520 1521 1522 1523 1524 1525 1526
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1527 1528
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1529 1530 1531
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1532 1533 1534
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1535 1536 1537
{
	unsigned long c;
	int i;
1538
	bool ret = false;
1539 1540 1541 1542 1543 1544 1545
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1546
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1547
	if (rnp->need_future_gp[c & 0x1]) {
1548
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1549
		goto out;
1550 1551 1552 1553 1554 1555 1556
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1557 1558 1559 1560 1561 1562 1563
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1564 1565
	 */
	if (rnp->gpnum != rnp->completed ||
1566
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1567
		rnp->need_future_gp[c & 0x1]++;
1568
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1569
		goto out;
1570 1571 1572 1573 1574 1575 1576
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1577 1578
	if (rnp != rnp_root)
		raw_spin_lock_rcu_node(rnp_root);
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1596
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1597 1598 1599 1600 1601 1602 1603 1604
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1605
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1606
	} else {
1607
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1608
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1609 1610 1611
	}
unlock_out:
	if (rnp != rnp_root)
B
Boqun Feng 已提交
1612
		raw_spin_unlock_rcu_node(rnp_root);
1613 1614 1615 1616
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1633 1634
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1635 1636 1637
	return needmore;
}

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1648
	    !READ_ONCE(rsp->gp_flags) ||
1649 1650
	    !rsp->gp_kthread)
		return;
1651
	swake_up(&rsp->gp_wq);
1652 1653
}

1654 1655 1656 1657 1658 1659 1660
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1661 1662
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1663 1664 1665
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1666
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1667 1668 1669 1670
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1671
	bool ret;
1672 1673 1674

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1675
		return false;
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1704
		return false;
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1715
	/* Record any needed additional grace periods. */
1716
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1717 1718 1719

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1720
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1721
	else
1722
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1723
	return ret;
1724 1725 1726 1727 1728 1729 1730 1731
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1732
 * Returns true if the RCU grace-period kthread needs to be awakened.
1733 1734 1735
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1736
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1737 1738 1739 1740 1741 1742
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1743
		return false;
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1767
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1768 1769
}

1770
/*
1771 1772 1773
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1774
 * Returns true if the grace-period kthread needs to be awakened.
1775
 */
1776 1777
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1778
{
1779 1780
	bool ret;

1781
	/* Handle the ends of any preceding grace periods first. */
1782
	if (rdp->completed == rnp->completed &&
1783
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1784

1785
		/* No grace period end, so just accelerate recent callbacks. */
1786
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1787

1788 1789 1790
	} else {

		/* Advance callbacks. */
1791
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1792 1793 1794

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1795
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1796
	}
1797

1798
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1799 1800 1801 1802 1803 1804
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1805
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1806
		rdp->cpu_no_qs.b.norm = true;
1807
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1808
		rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1809
		zero_cpu_stall_ticks(rdp);
1810
		WRITE_ONCE(rdp->gpwrap, false);
1811
	}
1812
	return ret;
1813 1814
}

1815
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1816 1817
{
	unsigned long flags;
1818
	bool needwake;
1819 1820 1821 1822
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1823 1824 1825
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1826
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1827 1828 1829
		local_irq_restore(flags);
		return;
	}
1830
	needwake = __note_gp_changes(rsp, rnp, rdp);
B
Boqun Feng 已提交
1831
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1832 1833
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1834 1835
}

1836 1837 1838 1839 1840 1841 1842
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

1843
/*
1844
 * Initialize a new grace period.  Return false if no grace period required.
1845
 */
1846
static bool rcu_gp_init(struct rcu_state *rsp)
1847
{
1848
	unsigned long oldmask;
1849
	struct rcu_data *rdp;
1850
	struct rcu_node *rnp = rcu_get_root(rsp);
1851

1852
	WRITE_ONCE(rsp->gp_activity, jiffies);
1853
	raw_spin_lock_irq_rcu_node(rnp);
1854
	if (!READ_ONCE(rsp->gp_flags)) {
1855
		/* Spurious wakeup, tell caller to go back to sleep.  */
B
Boqun Feng 已提交
1856
		raw_spin_unlock_irq_rcu_node(rnp);
1857
		return false;
1858
	}
1859
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1860

1861 1862 1863 1864 1865
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
B
Boqun Feng 已提交
1866
		raw_spin_unlock_irq_rcu_node(rnp);
1867
		return false;
1868 1869 1870
	}

	/* Advance to a new grace period and initialize state. */
1871
	record_gp_stall_check_time(rsp);
1872 1873
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1874
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
B
Boqun Feng 已提交
1875
	raw_spin_unlock_irq_rcu_node(rnp);
1876

1877 1878 1879 1880 1881 1882 1883
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
1884
		rcu_gp_slow(rsp, gp_preinit_delay);
1885
		raw_spin_lock_irq_rcu_node(rnp);
1886 1887 1888
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
B
Boqun Feng 已提交
1889
			raw_spin_unlock_irq_rcu_node(rnp);
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

B
Boqun Feng 已提交
1923
		raw_spin_unlock_irq_rcu_node(rnp);
1924
	}
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1940
		rcu_gp_slow(rsp, gp_init_delay);
1941
		raw_spin_lock_irq_rcu_node(rnp);
1942
		rdp = this_cpu_ptr(rsp->rda);
1943 1944
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1945
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1946
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1947
			WRITE_ONCE(rnp->completed, rsp->completed);
1948
		if (rnp == rdp->mynode)
1949
			(void)__note_gp_changes(rsp, rnp, rdp);
1950 1951 1952 1953
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
B
Boqun Feng 已提交
1954
		raw_spin_unlock_irq_rcu_node(rnp);
1955
		cond_resched_rcu_qs();
1956
		WRITE_ONCE(rsp->gp_activity, jiffies);
1957
	}
1958

1959
	return true;
1960
}
1961

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
/*
 * Helper function for wait_event_interruptible_timeout() wakeup
 * at force-quiescent-state time.
 */
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rsp->gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

1982 1983 1984
/*
 * Do one round of quiescent-state forcing.
 */
1985
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
1986
{
1987 1988
	bool isidle = false;
	unsigned long maxj;
1989 1990
	struct rcu_node *rnp = rcu_get_root(rsp);

1991
	WRITE_ONCE(rsp->gp_activity, jiffies);
1992
	rsp->n_force_qs++;
1993
	if (first_time) {
1994
		/* Collect dyntick-idle snapshots. */
1995
		if (is_sysidle_rcu_state(rsp)) {
1996
			isidle = true;
1997 1998
			maxj = jiffies - ULONG_MAX / 4;
		}
1999 2000
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
2001
		rcu_sysidle_report_gp(rsp, isidle, maxj);
2002 2003
	} else {
		/* Handle dyntick-idle and offline CPUs. */
2004
		isidle = true;
2005
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2006 2007
	}
	/* Clear flag to prevent immediate re-entry. */
2008
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2009
		raw_spin_lock_irq_rcu_node(rnp);
2010 2011
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2012
		raw_spin_unlock_irq_rcu_node(rnp);
2013 2014 2015
	}
}

2016 2017 2018
/*
 * Clean up after the old grace period.
 */
2019
static void rcu_gp_cleanup(struct rcu_state *rsp)
2020 2021
{
	unsigned long gp_duration;
2022
	bool needgp = false;
2023
	int nocb = 0;
2024 2025
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
2026
	struct swait_queue_head *sq;
2027

2028
	WRITE_ONCE(rsp->gp_activity, jiffies);
2029
	raw_spin_lock_irq_rcu_node(rnp);
2030 2031 2032
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
2033

2034 2035 2036 2037 2038 2039 2040 2041
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
B
Boqun Feng 已提交
2042
	raw_spin_unlock_irq_rcu_node(rnp);
2043

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2054
		raw_spin_lock_irq_rcu_node(rnp);
2055 2056
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
2057
		WRITE_ONCE(rnp->completed, rsp->gpnum);
2058 2059
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
2060
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2061
		/* smp_mb() provided by prior unlock-lock pair. */
2062
		nocb += rcu_future_gp_cleanup(rsp, rnp);
2063
		sq = rcu_nocb_gp_get(rnp);
B
Boqun Feng 已提交
2064
		raw_spin_unlock_irq_rcu_node(rnp);
2065
		rcu_nocb_gp_cleanup(sq);
2066
		cond_resched_rcu_qs();
2067
		WRITE_ONCE(rsp->gp_activity, jiffies);
2068
		rcu_gp_slow(rsp, gp_cleanup_delay);
2069
	}
2070
	rnp = rcu_get_root(rsp);
2071
	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2072
	rcu_nocb_gp_set(rnp, nocb);
2073

2074
	/* Declare grace period done. */
2075
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2076
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2077
	rsp->gp_state = RCU_GP_IDLE;
2078
	rdp = this_cpu_ptr(rsp->rda);
2079 2080 2081
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2082
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2083
		trace_rcu_grace_period(rsp->name,
2084
				       READ_ONCE(rsp->gpnum),
2085 2086
				       TPS("newreq"));
	}
B
Boqun Feng 已提交
2087
	raw_spin_unlock_irq_rcu_node(rnp);
2088 2089 2090 2091 2092 2093 2094
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2095
	bool first_gp_fqs;
2096
	int gf;
2097
	unsigned long j;
2098
	int ret;
2099 2100 2101
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2102
	rcu_bind_gp_kthread();
2103 2104 2105 2106
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2107
			trace_rcu_grace_period(rsp->name,
2108
					       READ_ONCE(rsp->gpnum),
2109
					       TPS("reqwait"));
2110
			rsp->gp_state = RCU_GP_WAIT_GPS;
2111
			swait_event_interruptible(rsp->gp_wq,
2112
						 READ_ONCE(rsp->gp_flags) &
2113
						 RCU_GP_FLAG_INIT);
2114
			rsp->gp_state = RCU_GP_DONE_GPS;
2115
			/* Locking provides needed memory barrier. */
2116
			if (rcu_gp_init(rsp))
2117
				break;
2118
			cond_resched_rcu_qs();
2119
			WRITE_ONCE(rsp->gp_activity, jiffies);
2120
			WARN_ON(signal_pending(current));
2121
			trace_rcu_grace_period(rsp->name,
2122
					       READ_ONCE(rsp->gpnum),
2123
					       TPS("reqwaitsig"));
2124
		}
2125

2126
		/* Handle quiescent-state forcing. */
2127
		first_gp_fqs = true;
2128 2129 2130 2131 2132
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2133
		ret = 0;
2134
		for (;;) {
2135 2136
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
2137
			trace_rcu_grace_period(rsp->name,
2138
					       READ_ONCE(rsp->gpnum),
2139
					       TPS("fqswait"));
2140
			rsp->gp_state = RCU_GP_WAIT_FQS;
2141
			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2142
					rcu_gp_fqs_check_wake(rsp, &gf), j);
2143
			rsp->gp_state = RCU_GP_DOING_FQS;
2144
			/* Locking provides needed memory barriers. */
2145
			/* If grace period done, leave loop. */
2146
			if (!READ_ONCE(rnp->qsmask) &&
2147
			    !rcu_preempt_blocked_readers_cgp(rnp))
2148
				break;
2149
			/* If time for quiescent-state forcing, do it. */
2150 2151
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2152
				trace_rcu_grace_period(rsp->name,
2153
						       READ_ONCE(rsp->gpnum),
2154
						       TPS("fqsstart"));
2155 2156
				rcu_gp_fqs(rsp, first_gp_fqs);
				first_gp_fqs = false;
2157
				trace_rcu_grace_period(rsp->name,
2158
						       READ_ONCE(rsp->gpnum),
2159
						       TPS("fqsend"));
2160
				cond_resched_rcu_qs();
2161
				WRITE_ONCE(rsp->gp_activity, jiffies);
2162 2163
			} else {
				/* Deal with stray signal. */
2164
				cond_resched_rcu_qs();
2165
				WRITE_ONCE(rsp->gp_activity, jiffies);
2166
				WARN_ON(signal_pending(current));
2167
				trace_rcu_grace_period(rsp->name,
2168
						       READ_ONCE(rsp->gpnum),
2169
						       TPS("fqswaitsig"));
2170
			}
2171 2172 2173 2174 2175 2176 2177 2178
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
2179
		}
2180 2181

		/* Handle grace-period end. */
2182
		rsp->gp_state = RCU_GP_CLEANUP;
2183
		rcu_gp_cleanup(rsp);
2184
		rsp->gp_state = RCU_GP_CLEANED;
2185 2186 2187
	}
}

2188 2189 2190
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2191
 * the root node's ->lock and hard irqs must be disabled.
2192 2193 2194 2195
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2196 2197
 *
 * Returns true if the grace-period kthread must be awakened.
2198
 */
2199
static bool
2200 2201
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2202
{
2203
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2204
		/*
2205
		 * Either we have not yet spawned the grace-period
2206 2207
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2208
		 * Either way, don't start a new grace period.
2209
		 */
2210
		return false;
2211
	}
2212 2213
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2214
			       TPS("newreq"));
2215

2216 2217
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2218
	 * could cause possible deadlocks with the rq->lock. Defer
2219
	 * the wakeup to our caller.
2220
	 */
2221
	return true;
2222 2223
}

2224 2225 2226 2227 2228 2229
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2230 2231
 *
 * Returns true if the grace-period kthread needs to be awakened.
2232
 */
2233
static bool rcu_start_gp(struct rcu_state *rsp)
2234 2235 2236
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2237
	bool ret = false;
2238 2239 2240 2241 2242 2243 2244 2245 2246

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2247 2248 2249
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2250 2251
}

2252
/*
2253 2254 2255 2256 2257 2258 2259
 * Report a full set of quiescent states to the specified rcu_state data
 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
 * kthread if another grace period is required.  Whether we wake
 * the grace-period kthread or it awakens itself for the next round
 * of quiescent-state forcing, that kthread will clean up after the
 * just-completed grace period.  Note that the caller must hold rnp->lock,
 * which is released before return.
2260
 */
P
Paul E. McKenney 已提交
2261
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2262
	__releases(rcu_get_root(rsp)->lock)
2263
{
2264
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2265
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2266
	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2267
	swake_up(&rsp->gp_wq);  /* Memory barrier implied by swake_up() path. */
2268 2269
}

2270
/*
P
Paul E. McKenney 已提交
2271 2272 2273
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2274 2275 2276 2277 2278
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2279 2280
 */
static void
P
Paul E. McKenney 已提交
2281
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2282
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2283 2284
	__releases(rnp->lock)
{
2285
	unsigned long oldmask = 0;
2286 2287
	struct rcu_node *rnp_c;

2288 2289
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2290
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2291

2292 2293 2294 2295
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
B
Boqun Feng 已提交
2296
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2297 2298
			return;
		}
2299
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2300
		rnp->qsmask &= ~mask;
2301 2302 2303 2304
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2305
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2306 2307

			/* Other bits still set at this level, so done. */
B
Boqun Feng 已提交
2308
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2309 2310 2311 2312 2313 2314 2315 2316 2317
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
B
Boqun Feng 已提交
2318
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2319
		rnp_c = rnp;
2320
		rnp = rnp->parent;
2321
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2322
		oldmask = rnp_c->qsmask;
2323 2324 2325 2326
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2327
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2328
	 * to clean up and start the next grace period if one is needed.
2329
	 */
P
Paul E. McKenney 已提交
2330
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2331 2332
}

2333 2334 2335 2336 2337 2338 2339
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2340
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2341 2342 2343
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2344
	unsigned long gps;
2345 2346 2347
	unsigned long mask;
	struct rcu_node *rnp_p;

2348 2349
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
B
Boqun Feng 已提交
2350
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2351 2352 2353 2354 2355 2356
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2357 2358
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2359 2360 2361 2362 2363
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2364 2365
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2366
	mask = rnp->grpmask;
B
Boqun Feng 已提交
2367
	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2368
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2369
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2370 2371
}

2372
/*
P
Paul E. McKenney 已提交
2373
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2374
 * structure.  This must be called from the specified CPU.
2375 2376
 */
static void
2377
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2378 2379 2380
{
	unsigned long flags;
	unsigned long mask;
2381
	bool needwake;
2382 2383 2384
	struct rcu_node *rnp;

	rnp = rdp->mynode;
2385
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2386
	if ((rdp->cpu_no_qs.b.norm &&
2387 2388 2389
	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
	    rdp->gpwrap) {
2390 2391

		/*
2392 2393 2394 2395
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2396
		 */
2397
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2398
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
B
Boqun Feng 已提交
2399
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2400 2401 2402 2403
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
B
Boqun Feng 已提交
2404
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2405
	} else {
2406
		rdp->core_needs_qs = false;
2407 2408 2409 2410 2411

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2412
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2413

2414 2415
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2416 2417
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2430 2431
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2432 2433 2434 2435 2436

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
2437
	if (!rdp->core_needs_qs)
2438 2439 2440 2441 2442 2443
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2444
	if (rdp->cpu_no_qs.b.norm &&
2445
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2446 2447
		return;

P
Paul E. McKenney 已提交
2448 2449 2450 2451
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2452
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2453 2454
}

2455
/*
2456 2457
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2458
 * ->orphan_lock.
2459
 */
2460 2461 2462
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2463
{
P
Paul E. McKenney 已提交
2464
	/* No-CBs CPUs do not have orphanable callbacks. */
2465
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2466 2467
		return;

2468 2469
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2470 2471
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2472
	 */
2473
	if (rdp->nxtlist != NULL) {
2474 2475 2476
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2477
		rdp->qlen_lazy = 0;
2478
		WRITE_ONCE(rdp->qlen, 0);
2479 2480 2481
	}

	/*
2482 2483 2484 2485 2486 2487 2488
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2489
	 */
2490 2491 2492 2493
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2494 2495 2496
	}

	/*
2497 2498 2499
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2500
	 */
2501
	if (rdp->nxtlist != NULL) {
2502 2503
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2504
	}
2505

2506 2507 2508 2509
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2510
	init_callback_list(rdp);
2511
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2512 2513 2514 2515
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2516
 * orphanage.  The caller must hold the ->orphan_lock.
2517
 */
2518
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2519 2520
{
	int i;
2521
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2522

P
Paul E. McKenney 已提交
2523
	/* No-CBs CPUs are handled specially. */
2524 2525
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2526 2527
		return;

2528 2529 2530 2531
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2532 2533
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

2572 2573 2574
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2575
	RCU_TRACE(mask = rdp->grpmask);
2576 2577
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2578
			       TPS("cpuofl"));
2579 2580
}

2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2603 2604
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2605 2606 2607 2608 2609 2610
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
2611
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2612
		rnp->qsmaskinit &= ~mask;
2613
		rnp->qsmask &= ~mask;
2614
		if (rnp->qsmaskinit) {
B
Boqun Feng 已提交
2615 2616
			raw_spin_unlock_rcu_node(rnp);
			/* irqs remain disabled. */
2617 2618
			return;
		}
B
Boqun Feng 已提交
2619
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2620 2621 2622
	}
}

2623
/*
2624
 * The CPU has been completely removed, and some other CPU is reporting
2625 2626
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2627 2628
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2629
 */
2630
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2631
{
2632
	unsigned long flags;
2633
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2634
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2635

2636 2637 2638
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2639
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2640
	rcu_boost_kthread_setaffinity(rnp, -1);
2641

2642
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2643
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2644
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2645
	rcu_adopt_orphan_cbs(rsp, flags);
2646
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2647

2648 2649 2650
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2651 2652 2653 2654 2655 2656
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2657
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2658 2659 2660
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2661 2662
	long bl, count, count_lazy;
	int i;
2663

2664
	/* If no callbacks are ready, just return. */
2665
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2666
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2667
		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2668 2669
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2670
		return;
2671
	}
2672 2673 2674 2675 2676 2677

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2678
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2679
	bl = rdp->blimit;
2680
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2681 2682 2683 2684
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2685 2686 2687
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2688 2689 2690
	local_irq_restore(flags);

	/* Invoke callbacks. */
2691
	count = count_lazy = 0;
2692 2693 2694
	while (list) {
		next = list->next;
		prefetch(next);
2695
		debug_rcu_head_unqueue(list);
2696 2697
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2698
		list = next;
2699 2700 2701 2702
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2703 2704 2705 2706
			break;
	}

	local_irq_save(flags);
2707 2708 2709
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2710 2711 2712 2713 2714

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2715 2716 2717
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2718 2719 2720
			else
				break;
	}
2721 2722
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2723
	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2724
	rdp->n_cbs_invoked += count;
2725 2726 2727 2728 2729

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2730 2731 2732 2733 2734 2735
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2736
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2737

2738 2739
	local_irq_restore(flags);

2740
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2741
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2742
		invoke_rcu_core();
2743 2744 2745 2746 2747
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2748
 * Also schedule RCU core processing.
2749
 *
2750
 * This function must be called from hardirq context.  It is normally
2751 2752 2753
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2754
void rcu_check_callbacks(int user)
2755
{
2756
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2757
	increment_cpu_stall_ticks();
2758
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2759 2760 2761 2762 2763

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2764
		 * a quiescent state, so note it.
2765 2766
		 *
		 * No memory barrier is required here because both
2767 2768 2769
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2770 2771
		 */

2772 2773
		rcu_sched_qs();
		rcu_bh_qs();
2774 2775 2776 2777 2778 2779 2780

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2781
		 * critical section, so note it.
2782 2783
		 */

2784
		rcu_bh_qs();
2785
	}
2786
	rcu_preempt_check_callbacks();
2787
	if (rcu_pending())
2788
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2789 2790
	if (user)
		rcu_note_voluntary_context_switch(current);
2791
	trace_rcu_utilization(TPS("End scheduler-tick"));
2792 2793 2794 2795 2796
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2797 2798
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2799
 * The caller must have suppressed start of new grace periods.
2800
 */
2801 2802 2803 2804
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2805 2806 2807 2808 2809
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2810
	struct rcu_node *rnp;
2811

2812
	rcu_for_each_leaf_node(rsp, rnp) {
2813
		cond_resched_rcu_qs();
2814
		mask = 0;
2815
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2816
		if (rnp->qsmask == 0) {
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2840
		}
2841
		cpu = rnp->grplo;
2842
		bit = 1;
2843
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2844 2845 2846 2847
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2848
		}
2849
		if (mask != 0) {
2850 2851
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2852 2853
		} else {
			/* Nothing to do here, so just drop the lock. */
B
Boqun Feng 已提交
2854
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2855 2856 2857 2858 2859 2860 2861 2862
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2863
static void force_quiescent_state(struct rcu_state *rsp)
2864 2865
{
	unsigned long flags;
2866 2867 2868 2869 2870
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2871
	rnp = __this_cpu_read(rsp->rda->mynode);
2872
	for (; rnp != NULL; rnp = rnp->parent) {
2873
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2874 2875 2876 2877
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2878
			rsp->n_force_qs_lh++;
2879 2880 2881 2882 2883
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2884

2885
	/* Reached the root of the rcu_node tree, acquire lock. */
2886
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2887
	raw_spin_unlock(&rnp_old->fqslock);
2888
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2889
		rsp->n_force_qs_lh++;
B
Boqun Feng 已提交
2890
		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2891
		return;  /* Someone beat us to it. */
2892
	}
2893
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2894
	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2895
	swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
2896 2897 2898
}

/*
2899 2900 2901
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2902 2903
 */
static void
2904
__rcu_process_callbacks(struct rcu_state *rsp)
2905 2906
{
	unsigned long flags;
2907
	bool needwake;
2908
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2909

2910 2911
	WARN_ON_ONCE(rdp->beenonline == 0);

2912 2913 2914 2915
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2916
	local_irq_save(flags);
2917
	if (cpu_needs_another_gp(rsp, rdp)) {
2918
		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2919
		needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
2920
		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2921 2922
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2923 2924
	} else {
		local_irq_restore(flags);
2925 2926 2927
	}

	/* If there are callbacks ready, invoke them. */
2928
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2929
		invoke_rcu_callbacks(rsp, rdp);
2930 2931 2932

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2933 2934
}

2935
/*
2936
 * Do RCU core processing for the current CPU.
2937
 */
2938
static void rcu_process_callbacks(struct softirq_action *unused)
2939
{
2940 2941
	struct rcu_state *rsp;

2942 2943
	if (cpu_is_offline(smp_processor_id()))
		return;
2944
	trace_rcu_utilization(TPS("Start RCU core"));
2945 2946
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2947
	trace_rcu_utilization(TPS("End RCU core"));
2948 2949
}

2950
/*
2951 2952 2953
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2954
 * are running on the current CPU with softirqs disabled, the
2955
 * rcu_cpu_kthread_task cannot disappear out from under us.
2956
 */
2957
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2958
{
2959
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2960
		return;
2961 2962
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2963 2964
		return;
	}
2965
	invoke_rcu_callbacks_kthread();
2966 2967
}

2968
static void invoke_rcu_core(void)
2969
{
2970 2971
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2972 2973
}

2974 2975 2976 2977 2978
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2979
{
2980 2981
	bool needwake;

2982 2983 2984 2985
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2986
	if (!rcu_is_watching())
2987 2988
		invoke_rcu_core();

2989
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2990
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2991
		return;
2992

2993 2994 2995 2996 2997 2998 2999
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
3000
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3001 3002

		/* Are we ignoring a completed grace period? */
3003
		note_gp_changes(rsp, rdp);
3004 3005 3006 3007 3008

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

3009
			raw_spin_lock_rcu_node(rnp_root);
3010
			needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3011
			raw_spin_unlock_rcu_node(rnp_root);
3012 3013
			if (needwake)
				rcu_gp_kthread_wake(rsp);
3014 3015 3016 3017 3018
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3019
				force_quiescent_state(rsp);
3020 3021 3022
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
3023
	}
3024 3025
}

3026 3027 3028 3029 3030 3031 3032
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3033 3034 3035 3036 3037 3038
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3039
static void
3040
__call_rcu(struct rcu_head *head, rcu_callback_t func,
P
Paul E. McKenney 已提交
3041
	   struct rcu_state *rsp, int cpu, bool lazy)
3042 3043 3044 3045
{
	unsigned long flags;
	struct rcu_data *rdp;

3046
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3047 3048
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3049
		WRITE_ONCE(head->func, rcu_leak_callback);
3050 3051 3052
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
3063
	rdp = this_cpu_ptr(rsp->rda);
3064 3065

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
3066 3067 3068 3069 3070
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3084
		WARN_ON_ONCE(!rcu_is_watching());
3085 3086
		if (!likely(rdp->nxtlist))
			init_default_callback_list(rdp);
3087
	}
3088
	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3089 3090
	if (lazy)
		rdp->qlen_lazy++;
3091 3092
	else
		rcu_idle_count_callbacks_posted();
3093 3094 3095
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3096

3097 3098
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3099
					 rdp->qlen_lazy, rdp->qlen);
3100
	else
3101
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3102

3103 3104
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3105 3106 3107 3108
	local_irq_restore(flags);
}

/*
3109
 * Queue an RCU-sched callback for invocation after a grace period.
3110
 */
3111
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3112
{
P
Paul E. McKenney 已提交
3113
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3114
}
3115
EXPORT_SYMBOL_GPL(call_rcu_sched);
3116 3117

/*
3118
 * Queue an RCU callback for invocation after a quicker grace period.
3119
 */
3120
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3121
{
P
Paul E. McKenney 已提交
3122
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3123 3124 3125
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3126 3127 3128 3129 3130 3131 3132 3133
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
3134
		    rcu_callback_t func)
3135
{
3136
	__call_rcu(head, func, rcu_state_p, -1, 1);
3137 3138 3139
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3151 3152
	int ret;

3153
	might_sleep();  /* Check for RCU read-side critical section. */
3154 3155 3156 3157
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3158 3159
}

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3194 3195 3196 3197 3198 3199 3200 3201 3202
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3203 3204 3205 3206
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3207 3208
	if (rcu_blocking_is_gp())
		return;
3209
	if (rcu_gp_is_expedited())
3210 3211 3212
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3224 3225 3226
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3227 3228 3229
 */
void synchronize_rcu_bh(void)
{
3230 3231 3232 3233
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3234 3235
	if (rcu_blocking_is_gp())
		return;
3236
	if (rcu_gp_is_expedited())
3237 3238 3239
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3240 3241 3242
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3263
	return smp_load_acquire(&rcu_state_p->gpnum);
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3289
	newstate = smp_load_acquire(&rcu_state_p->completed);
3290 3291 3292 3293 3294
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
/**
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_sched(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_sched()
	 * and cond_synchronize_sched().
	 */
	return smp_load_acquire(&rcu_sched_state.gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);

/**
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 *
 * If a full RCU-sched grace period has elapsed since the earlier call to
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 * synchronize_sched() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_sched(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_sched_state.completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(cond_synchronize_sched);

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
/* Adjust sequence number for start of update-side operation. */
static void rcu_seq_start(unsigned long *sp)
{
	WRITE_ONCE(*sp, *sp + 1);
	smp_mb(); /* Ensure update-side operation after counter increment. */
	WARN_ON_ONCE(!(*sp & 0x1));
}

/* Adjust sequence number for end of update-side operation. */
static void rcu_seq_end(unsigned long *sp)
{
	smp_mb(); /* Ensure update-side operation before counter increment. */
	WRITE_ONCE(*sp, *sp + 1);
	WARN_ON_ONCE(*sp & 0x1);
}

/* Take a snapshot of the update side's sequence number. */
static unsigned long rcu_seq_snap(unsigned long *sp)
{
	unsigned long s;

	s = (READ_ONCE(*sp) + 3) & ~0x1;
	smp_mb(); /* Above access must not bleed into critical section. */
	return s;
}

/*
 * Given a snapshot from rcu_seq_snap(), determine whether or not a
 * full update-side operation has occurred.
 */
static bool rcu_seq_done(unsigned long *sp, unsigned long s)
{
	return ULONG_CMP_GE(READ_ONCE(*sp), s);
}

/* Wrapper functions for expedited grace periods.  */
static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
{
	rcu_seq_start(&rsp->expedited_sequence);
}
static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
{
	rcu_seq_end(&rsp->expedited_sequence);
3390
	smp_mb(); /* Ensure that consecutive grace periods serialize. */
3391 3392 3393
}
static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
{
3394
	smp_mb(); /* Caller's modifications seen first by other CPUs. */
3395 3396 3397 3398 3399 3400 3401
	return rcu_seq_snap(&rsp->expedited_sequence);
}
static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
{
	return rcu_seq_done(&rsp->expedited_sequence, s);
}

3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
/*
 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
 * recent CPU-online activity.  Note that these masks are not cleared
 * when CPUs go offline, so they reflect the union of all CPUs that have
 * ever been online.  This means that this function normally takes its
 * no-work-to-do fastpath.
 */
static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
{
	bool done;
	unsigned long flags;
	unsigned long mask;
	unsigned long oldmask;
	int ncpus = READ_ONCE(rsp->ncpus);
	struct rcu_node *rnp;
	struct rcu_node *rnp_up;

	/* If no new CPUs onlined since last time, nothing to do. */
	if (likely(ncpus == rsp->ncpus_snap))
		return;
	rsp->ncpus_snap = ncpus;

	/*
	 * Each pass through the following loop propagates newly onlined
	 * CPUs for the current rcu_node structure up the rcu_node tree.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
3429
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3430
		if (rnp->expmaskinit == rnp->expmaskinitnext) {
B
Boqun Feng 已提交
3431
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3432 3433 3434 3435 3436 3437
			continue;  /* No new CPUs, nothing to do. */
		}

		/* Update this node's mask, track old value for propagation. */
		oldmask = rnp->expmaskinit;
		rnp->expmaskinit = rnp->expmaskinitnext;
B
Boqun Feng 已提交
3438
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448

		/* If was already nonzero, nothing to propagate. */
		if (oldmask)
			continue;

		/* Propagate the new CPU up the tree. */
		mask = rnp->grpmask;
		rnp_up = rnp->parent;
		done = false;
		while (rnp_up) {
3449
			raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
3450 3451 3452
			if (rnp_up->expmaskinit)
				done = true;
			rnp_up->expmaskinit |= mask;
B
Boqun Feng 已提交
3453
			raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags);
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
			if (done)
				break;
			mask = rnp_up->grpmask;
			rnp_up = rnp_up->parent;
		}
	}
}

/*
 * Reset the ->expmask values in the rcu_node tree in preparation for
 * a new expedited grace period.
 */
static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	sync_exp_reset_tree_hotplug(rsp);
	rcu_for_each_node_breadth_first(rsp, rnp) {
3473
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3474 3475
		WARN_ON_ONCE(rnp->expmask);
		rnp->expmask = rnp->expmaskinit;
B
Boqun Feng 已提交
3476
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3477 3478 3479
	}
}

3480
/*
3481
 * Return non-zero if there is no RCU expedited grace period in progress
3482 3483 3484 3485 3486 3487 3488 3489 3490
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
3491
	return rnp->exp_tasks == NULL &&
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
	       READ_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
3503 3504
 * Caller must hold the root rcu_node's exp_funnel_mutex and the
 * specified rcu_node structure's ->lock.
3505
 */
3506 3507 3508
static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
				 bool wake, unsigned long flags)
	__releases(rnp->lock)
3509 3510 3511 3512 3513
{
	unsigned long mask;

	for (;;) {
		if (!sync_rcu_preempt_exp_done(rnp)) {
3514 3515 3516
			if (!rnp->expmask)
				rcu_initiate_boost(rnp, flags);
			else
B
Boqun Feng 已提交
3517
				raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3518 3519 3520
			break;
		}
		if (rnp->parent == NULL) {
B
Boqun Feng 已提交
3521
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3522 3523
			if (wake) {
				smp_mb(); /* EGP done before wake_up(). */
3524
				swake_up(&rsp->expedited_wq);
3525 3526 3527 3528
			}
			break;
		}
		mask = rnp->grpmask;
B
Boqun Feng 已提交
3529
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */
3530
		rnp = rnp->parent;
3531
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
3532
		WARN_ON_ONCE(!(rnp->expmask & mask));
3533 3534 3535 3536
		rnp->expmask &= ~mask;
	}
}

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
/*
 * Report expedited quiescent state for specified node.  This is a
 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
 *
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
					      struct rcu_node *rnp, bool wake)
{
	unsigned long flags;

3548
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
	__rcu_report_exp_rnp(rsp, rnp, wake, flags);
}

/*
 * Report expedited quiescent state for multiple CPUs, all covered by the
 * specified leaf rcu_node structure.  Caller must hold the root
 * rcu_node's exp_funnel_mutex.
 */
static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
				    unsigned long mask, bool wake)
{
	unsigned long flags;

3562
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3563
	if (!(rnp->expmask & mask)) {
B
Boqun Feng 已提交
3564
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3565 3566
		return;
	}
3567 3568 3569 3570 3571 3572 3573 3574
	rnp->expmask &= ~mask;
	__rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
}

/*
 * Report expedited quiescent state for specified rcu_data (CPU).
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
3575 3576
static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
			       bool wake)
3577 3578 3579 3580
{
	rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
}

3581 3582
/* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
3583
			       struct rcu_data *rdp,
3584
			       atomic_long_t *stat, unsigned long s)
3585
{
3586
	if (rcu_exp_gp_seq_done(rsp, s)) {
3587 3588
		if (rnp)
			mutex_unlock(&rnp->exp_funnel_mutex);
3589 3590
		else if (rdp)
			mutex_unlock(&rdp->exp_funnel_mutex);
3591 3592 3593 3594 3595 3596 3597 3598
		/* Ensure test happens before caller kfree(). */
		smp_mb__before_atomic(); /* ^^^ */
		atomic_long_inc(stat);
		return true;
	}
	return false;
}

3599 3600 3601 3602 3603 3604 3605
/*
 * Funnel-lock acquisition for expedited grace periods.  Returns a
 * pointer to the root rcu_node structure, or NULL if some other
 * task did the expedited grace period for us.
 */
static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
{
3606
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3607 3608 3609
	struct rcu_node *rnp0;
	struct rcu_node *rnp1 = NULL;

3610
	/*
3611 3612 3613 3614
	 * First try directly acquiring the root lock in order to reduce
	 * latency in the common case where expedited grace periods are
	 * rare.  We check mutex_is_locked() to avoid pathological levels of
	 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3615
	 */
3616 3617 3618 3619
	rnp0 = rcu_get_root(rsp);
	if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
		if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
			if (sync_exp_work_done(rsp, rnp0, NULL,
3620
					       &rdp->expedited_workdone0, s))
3621 3622 3623 3624 3625
				return NULL;
			return rnp0;
		}
	}

3626 3627 3628 3629 3630 3631 3632 3633
	/*
	 * Each pass through the following loop works its way
	 * up the rcu_node tree, returning if others have done the
	 * work or otherwise falls through holding the root rnp's
	 * ->exp_funnel_mutex.  The mapping from CPU to rcu_node structure
	 * can be inexact, as it is just promoting locality and is not
	 * strictly needed for correctness.
	 */
3634
	if (sync_exp_work_done(rsp, NULL, NULL, &rdp->expedited_workdone1, s))
3635 3636 3637
		return NULL;
	mutex_lock(&rdp->exp_funnel_mutex);
	rnp0 = rdp->mynode;
3638
	for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3639
		if (sync_exp_work_done(rsp, rnp1, rdp,
3640
				       &rdp->expedited_workdone2, s))
3641 3642 3643 3644
			return NULL;
		mutex_lock(&rnp0->exp_funnel_mutex);
		if (rnp1)
			mutex_unlock(&rnp1->exp_funnel_mutex);
3645 3646
		else
			mutex_unlock(&rdp->exp_funnel_mutex);
3647 3648
		rnp1 = rnp0;
	}
3649
	if (sync_exp_work_done(rsp, rnp1, rdp,
3650
			       &rdp->expedited_workdone3, s))
3651 3652 3653 3654
		return NULL;
	return rnp1;
}

3655
/* Invoked on each online non-idle CPU for expedited quiescent state. */
3656
static void sync_sched_exp_handler(void *data)
3657
{
3658 3659 3660
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp = data;
3661

3662 3663 3664 3665 3666
	rdp = this_cpu_ptr(rsp->rda);
	rnp = rdp->mynode;
	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
	    __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
3667 3668 3669 3670 3671
	if (rcu_is_cpu_rrupt_from_idle()) {
		rcu_report_exp_rdp(&rcu_sched_state,
				   this_cpu_ptr(&rcu_sched_data), true);
		return;
	}
3672 3673
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
	resched_cpu(smp_processor_id());
3674 3675
}

3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
/* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
static void sync_sched_exp_online_cleanup(int cpu)
{
	struct rcu_data *rdp;
	int ret;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_sched_state;

	rdp = per_cpu_ptr(rsp->rda, cpu);
	rnp = rdp->mynode;
	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
		return;
	ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
	WARN_ON_ONCE(ret);
}

3692 3693 3694 3695
/*
 * Select the nodes that the upcoming expedited grace period needs
 * to wait for.
 */
3696 3697
static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
				     smp_call_func_t func)
3698 3699 3700 3701 3702 3703
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
	unsigned long mask_ofl_test;
	unsigned long mask_ofl_ipi;
3704
	int ret;
3705 3706 3707 3708
	struct rcu_node *rnp;

	sync_exp_reset_tree(rsp);
	rcu_for_each_leaf_node(rsp, rnp) {
3709
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729

		/* Each pass checks a CPU for identity, offline, and idle. */
		mask_ofl_test = 0;
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

			if (raw_smp_processor_id() == cpu ||
			    !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
				mask_ofl_test |= rdp->grpmask;
		}
		mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;

		/*
		 * Need to wait for any blocked tasks as well.  Note that
		 * additional blocking tasks will also block the expedited
		 * GP until such time as the ->expmask bits are cleared.
		 */
		if (rcu_preempt_has_tasks(rnp))
			rnp->exp_tasks = rnp->blkd_tasks.next;
B
Boqun Feng 已提交
3730
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3731 3732 3733 3734 3735 3736

		/* IPI the remaining CPUs for expedited quiescent state. */
		mask = 1;
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
			if (!(mask_ofl_ipi & mask))
				continue;
3737
retry_ipi:
3738
			ret = smp_call_function_single(cpu, func, rsp, 0);
3739
			if (!ret) {
3740
				mask_ofl_ipi &= ~mask;
3741 3742 3743 3744 3745 3746
				continue;
			}
			/* Failed, raced with offline. */
			raw_spin_lock_irqsave_rcu_node(rnp, flags);
			if (cpu_online(cpu) &&
			    (rnp->expmask & mask)) {
B
Boqun Feng 已提交
3747
				raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3748 3749 3750 3751 3752
				schedule_timeout_uninterruptible(1);
				if (cpu_online(cpu) &&
				    (rnp->expmask & mask))
					goto retry_ipi;
				raw_spin_lock_irqsave_rcu_node(rnp, flags);
3753
			}
3754 3755
			if (!(rnp->expmask & mask))
				mask_ofl_ipi &= ~mask;
B
Boqun Feng 已提交
3756
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3757 3758 3759 3760 3761 3762
		}
		/* Report quiescent states for those that went offline. */
		mask_ofl_test |= mask_ofl_ipi;
		if (mask_ofl_test)
			rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
	}
3763 3764
}

3765 3766 3767 3768 3769
static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
{
	int cpu;
	unsigned long jiffies_stall;
	unsigned long jiffies_start;
3770
	unsigned long mask;
3771
	int ndetected;
3772 3773
	struct rcu_node *rnp;
	struct rcu_node *rnp_root = rcu_get_root(rsp);
3774 3775 3776 3777 3778 3779
	int ret;

	jiffies_stall = rcu_jiffies_till_stall_check();
	jiffies_start = jiffies;

	for (;;) {
3780
		ret = swait_event_timeout(
3781
				rsp->expedited_wq,
3782
				sync_rcu_preempt_exp_done(rnp_root),
3783
				jiffies_stall);
3784
		if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root))
3785 3786 3787
			return;
		if (ret < 0) {
			/* Hit a signal, disable CPU stall warnings. */
3788
			swait_event(rsp->expedited_wq,
3789
				   sync_rcu_preempt_exp_done(rnp_root));
3790 3791
			return;
		}
3792
		pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3793
		       rsp->name);
3794
		ndetected = 0;
3795
		rcu_for_each_leaf_node(rsp, rnp) {
3796
			ndetected += rcu_print_task_exp_stall(rnp);
3797 3798
			mask = 1;
			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3799 3800
				struct rcu_data *rdp;

3801 3802
				if (!(rnp->expmask & mask))
					continue;
3803
				ndetected++;
3804 3805 3806 3807 3808
				rdp = per_cpu_ptr(rsp->rda, cpu);
				pr_cont(" %d-%c%c%c", cpu,
					"O."[cpu_online(cpu)],
					"o."[!!(rdp->grpmask & rnp->expmaskinit)],
					"N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
3809 3810
			}
			mask <<= 1;
3811
		}
3812 3813 3814
		pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
			jiffies - jiffies_start, rsp->expedited_sequence,
			rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
3815
		if (ndetected) {
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
			pr_err("blocking rcu_node structures:");
			rcu_for_each_node_breadth_first(rsp, rnp) {
				if (rnp == rnp_root)
					continue; /* printed unconditionally */
				if (sync_rcu_preempt_exp_done(rnp))
					continue;
				pr_cont(" l=%u:%d-%d:%#lx/%c",
					rnp->level, rnp->grplo, rnp->grphi,
					rnp->expmask,
					".T"[!!rnp->exp_tasks]);
			}
			pr_cont("\n");
		}
3829 3830 3831 3832 3833 3834 3835
		rcu_for_each_leaf_node(rsp, rnp) {
			mask = 1;
			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
				if (!(rnp->expmask & mask))
					continue;
				dump_cpu_task(cpu);
			}
3836 3837 3838 3839 3840
		}
		jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
	}
}

3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
3851
 *
3852 3853 3854
 * This implementation can be thought of as an application of sequence
 * locking to expedited grace periods, but using the sequence counter to
 * determine when someone else has already done the work instead of for
3855
 * retrying readers.
3856 3857 3858
 */
void synchronize_sched_expedited(void)
{
3859
	unsigned long s;
3860
	struct rcu_node *rnp;
3861
	struct rcu_state *rsp = &rcu_sched_state;
3862

3863 3864 3865 3866
	/* If only one CPU, this is automatically a grace period. */
	if (rcu_blocking_is_gp())
		return;

3867 3868 3869 3870 3871 3872
	/* If expedited grace periods are prohibited, fall back to normal. */
	if (rcu_gp_is_normal()) {
		wait_rcu_gp(call_rcu_sched);
		return;
	}

3873
	/* Take a snapshot of the sequence number.  */
3874
	s = rcu_exp_gp_seq_snap(rsp);
3875

3876
	rnp = exp_funnel_lock(rsp, s);
3877
	if (rnp == NULL)
3878
		return;  /* Someone else did our work for us. */
3879

3880
	rcu_exp_gp_seq_start(rsp);
3881
	sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
3882
	synchronize_sched_expedited_wait(rsp);
3883

3884
	rcu_exp_gp_seq_end(rsp);
3885
	mutex_unlock(&rnp->exp_funnel_mutex);
3886 3887 3888
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3889 3890 3891 3892 3893 3894 3895 3896 3897
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3898 3899
	struct rcu_node *rnp = rdp->mynode;

3900 3901 3902 3903 3904
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3905 3906 3907 3908
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3909
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3910
	if (rcu_scheduler_fully_active &&
3911
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3912
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3913 3914
		rdp->n_rp_core_needs_qs++;
	} else if (rdp->core_needs_qs &&
3915
		   (!rdp->cpu_no_qs.b.norm ||
3916
		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3917
		rdp->n_rp_report_qs++;
3918
		return 1;
3919
	}
3920 3921

	/* Does this CPU have callbacks ready to invoke? */
3922 3923
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3924
		return 1;
3925
	}
3926 3927

	/* Has RCU gone idle with this CPU needing another grace period? */
3928 3929
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3930
		return 1;
3931
	}
3932 3933

	/* Has another RCU grace period completed?  */
3934
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3935
		rdp->n_rp_gp_completed++;
3936
		return 1;
3937
	}
3938 3939

	/* Has a new RCU grace period started? */
3940 3941
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3942
		rdp->n_rp_gp_started++;
3943
		return 1;
3944
	}
3945

3946 3947 3948 3949 3950 3951
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3952
	/* nothing to do */
3953
	rdp->n_rp_need_nothing++;
3954 3955 3956 3957 3958 3959 3960 3961
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3962
static int rcu_pending(void)
3963
{
3964 3965 3966
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3967
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3968 3969
			return 1;
	return 0;
3970 3971 3972
}

/*
3973 3974 3975
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3976
 */
3977
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3978
{
3979 3980 3981
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3982 3983
	struct rcu_state *rsp;

3984
	for_each_rcu_flavor(rsp) {
3985
		rdp = this_cpu_ptr(rsp->rda);
3986 3987 3988 3989
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3990
			al = false;
3991 3992
			break;
		}
3993 3994 3995 3996
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3997 3998
}

3999 4000 4001 4002
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
4003
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
4004 4005 4006 4007 4008 4009
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

4010 4011 4012 4013
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
4014
static void rcu_barrier_callback(struct rcu_head *rhp)
4015
{
4016 4017 4018
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

4019
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4020
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
4021
		complete(&rsp->barrier_completion);
4022
	} else {
4023
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
4024
	}
4025 4026 4027 4028 4029 4030 4031
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
4032
	struct rcu_state *rsp = type;
4033
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
4034

4035
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
4036
	atomic_inc(&rsp->barrier_cpu_count);
4037
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
4038 4039 4040 4041 4042 4043
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
4044
static void _rcu_barrier(struct rcu_state *rsp)
4045
{
4046 4047
	int cpu;
	struct rcu_data *rdp;
4048
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
4049

4050
	_rcu_barrier_trace(rsp, "Begin", -1, s);
4051

4052
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4053
	mutex_lock(&rsp->barrier_mutex);
4054

4055 4056 4057
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
4058 4059 4060 4061 4062
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

4063 4064 4065
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
4066

4067
	/*
4068 4069
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
4070 4071
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
4072
	 */
4073
	init_completion(&rsp->barrier_completion);
4074
	atomic_set(&rsp->barrier_cpu_count, 1);
4075
	get_online_cpus();
4076 4077

	/*
4078 4079 4080
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
4081
	 */
P
Paul E. McKenney 已提交
4082
	for_each_possible_cpu(cpu) {
4083
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
4084
			continue;
4085
		rdp = per_cpu_ptr(rsp->rda, cpu);
4086
		if (rcu_is_nocb_cpu(cpu)) {
4087 4088
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4089
						   rsp->barrier_sequence);
4090 4091
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4092
						   rsp->barrier_sequence);
4093
				smp_mb__before_atomic();
4094 4095 4096 4097
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
4098
		} else if (READ_ONCE(rdp->qlen)) {
4099
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
4100
					   rsp->barrier_sequence);
4101
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4102
		} else {
4103
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4104
					   rsp->barrier_sequence);
4105 4106
		}
	}
4107
	put_online_cpus();
4108 4109 4110 4111 4112

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
4113
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4114
		complete(&rsp->barrier_completion);
4115 4116

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4117
	wait_for_completion(&rsp->barrier_completion);
4118

4119 4120 4121 4122
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

4123
	/* Other rcu_barrier() invocations can now safely proceed. */
4124
	mutex_unlock(&rsp->barrier_mutex);
4125 4126 4127 4128 4129 4130 4131
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
4132
	_rcu_barrier(&rcu_bh_state);
4133 4134 4135 4136 4137 4138 4139 4140
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
4141
	_rcu_barrier(&rcu_sched_state);
4142 4143 4144
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
4161
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4162
		rnp->qsmaskinit |= mask;
B
Boqun Feng 已提交
4163
		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4164 4165 4166
	}
}

4167
/*
4168
 * Do boot-time initialization of a CPU's per-CPU RCU data.
4169
 */
4170 4171
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4172 4173
{
	unsigned long flags;
4174
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4175 4176 4177
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
4178
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4179 4180
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4181
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4182
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4183
	rdp->cpu = cpu;
4184
	rdp->rsp = rsp;
4185
	mutex_init(&rdp->exp_funnel_mutex);
P
Paul E. McKenney 已提交
4186
	rcu_boot_init_nocb_percpu_data(rdp);
B
Boqun Feng 已提交
4187
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4188 4189 4190 4191 4192 4193 4194
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4195
 */
4196
static void
4197
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4198 4199 4200
{
	unsigned long flags;
	unsigned long mask;
4201
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4202 4203 4204
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
4205
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4206 4207
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
4208
	rdp->blimit = blimit;
4209 4210
	if (!rdp->nxtlist)
		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
4211
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4212
	rcu_sysidle_init_percpu_data(rdp->dynticks);
4213 4214
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
B
Boqun Feng 已提交
4215
	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4216

4217 4218 4219 4220 4221
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
4222 4223
	rnp = rdp->mynode;
	mask = rdp->grpmask;
4224
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4225
	rnp->qsmaskinitnext |= mask;
4226 4227 4228 4229
	rnp->expmaskinitnext |= mask;
	if (!rdp->beenonline)
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
	rdp->beenonline = true;	 /* We have now been online. */
4230 4231
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
4232
	rdp->cpu_no_qs.b.norm = true;
4233
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4234
	rdp->core_needs_qs = false;
4235
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
B
Boqun Feng 已提交
4236
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4237 4238
}

4239
static void rcu_prepare_cpu(int cpu)
4240
{
4241 4242 4243
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
4244
		rcu_init_percpu_data(cpu, rsp);
4245 4246
}

4247 4248
#ifdef CONFIG_HOTPLUG_CPU
/*
4249 4250 4251
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
4270
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
}

void rcu_report_dead(unsigned int cpu)
{
	struct rcu_state *rsp;

	/* QS for any half-done expedited RCU-sched GP. */
	preempt_disable();
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(rcu_sched_state.rda), true);
	preempt_enable();
	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_idle_cpu(cpu, rsp);
}
#endif

4287
/*
4288
 * Handle CPU online/offline notification events.
4289
 */
4290 4291
int rcu_cpu_notify(struct notifier_block *self,
		   unsigned long action, void *hcpu)
4292 4293
{
	long cpu = (long)hcpu;
4294
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4295
	struct rcu_node *rnp = rdp->mynode;
4296
	struct rcu_state *rsp;
4297 4298 4299 4300

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
4301 4302
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
4303
		rcu_spawn_all_nocb_kthreads(cpu);
4304 4305
		break;
	case CPU_ONLINE:
4306
	case CPU_DOWN_FAILED:
4307
		sync_sched_exp_online_cleanup(cpu);
T
Thomas Gleixner 已提交
4308
		rcu_boost_kthread_setaffinity(rnp, -1);
4309 4310
		break;
	case CPU_DOWN_PREPARE:
4311
		rcu_boost_kthread_setaffinity(rnp, cpu);
4312
		break;
4313 4314
	case CPU_DYING:
	case CPU_DYING_FROZEN:
4315 4316
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
4317
		break;
4318 4319 4320 4321
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
4322
		for_each_rcu_flavor(rsp) {
4323
			rcu_cleanup_dead_cpu(cpu, rsp);
4324 4325
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
4326 4327 4328 4329
		break;
	default:
		break;
	}
4330
	return NOTIFY_OK;
4331 4332
}

4333 4334 4335 4336 4337 4338 4339
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4340
			rcu_expedite_gp();
4341 4342 4343
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
4344 4345
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
4346 4347 4348 4349 4350 4351 4352
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

4353
/*
4354
 * Spawn the kthreads that handle each RCU flavor's grace periods.
4355 4356 4357 4358
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
4359
	int kthread_prio_in = kthread_prio;
4360 4361
	struct rcu_node *rnp;
	struct rcu_state *rsp;
4362
	struct sched_param sp;
4363 4364
	struct task_struct *t;

4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

4376
	rcu_scheduler_fully_active = 1;
4377
	for_each_rcu_flavor(rsp) {
4378
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4379 4380
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
4381
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4382
		rsp->gp_kthread = t;
4383 4384 4385 4386
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
B
Boqun Feng 已提交
4387
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4388
		wake_up_process(t);
4389
	}
4390
	rcu_spawn_nocb_kthreads();
4391
	rcu_spawn_boost_kthreads();
4392 4393 4394 4395
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

4411 4412
/*
 * Compute the per-level fanout, either using the exact fanout specified
4413
 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4414
 */
4415
static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4416 4417 4418
{
	int i;

4419
	if (rcu_fanout_exact) {
4420
		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4421
		for (i = rcu_num_lvls - 2; i >= 0; i--)
4422
			levelspread[i] = RCU_FANOUT;
4423 4424 4425 4426 4427 4428
	} else {
		int ccur;
		int cprv;

		cprv = nr_cpu_ids;
		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4429 4430
			ccur = levelcnt[i];
			levelspread[i] = (cprv + ccur - 1) / ccur;
4431 4432
			cprv = ccur;
		}
4433 4434 4435 4436 4437 4438
	}
}

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
4439
static void __init rcu_init_one(struct rcu_state *rsp)
4440
{
4441 4442
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4443
	static const char * const exp[] = RCU_EXP_NAME_INIT;
4444 4445 4446
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
4447
	static u8 fl_mask = 0x1;
4448 4449 4450

	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4451 4452 4453 4454 4455
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4456
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4457

4458 4459 4460
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4461

4462 4463
	/* Initialize the level-tracking arrays. */

4464
	for (i = 0; i < rcu_num_lvls; i++)
4465
		levelcnt[i] = num_rcu_lvl[i];
4466
	for (i = 1; i < rcu_num_lvls; i++)
4467 4468
		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
	rcu_init_levelspread(levelspread, levelcnt);
4469 4470
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
4471 4472 4473

	/* Initialize the elements themselves, starting from the leaves. */

4474
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4475
		cpustride *= levelspread[i];
4476
		rnp = rsp->level[i];
4477
		for (j = 0; j < levelcnt[i]; j++, rnp++) {
B
Boqun Feng 已提交
4478 4479
			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4480
						   &rcu_node_class[i], buf[i]);
4481 4482 4483
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4484 4485
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4486 4487 4488 4489
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4490 4491
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4492 4493 4494 4495 4496
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4497
				rnp->grpnum = j % levelspread[i - 1];
4498 4499
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4500
					      j / levelspread[i - 1];
4501 4502
			}
			rnp->level = i;
4503
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4504
			rcu_init_one_nocb(rnp);
4505
			mutex_init(&rnp->exp_funnel_mutex);
4506 4507
			lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
						   &rcu_exp_class[i], exp[i]);
4508 4509
		}
	}
4510

4511 4512
	init_swait_queue_head(&rsp->gp_wq);
	init_swait_queue_head(&rsp->expedited_wq);
4513
	rnp = rsp->level[rcu_num_lvls - 1];
4514
	for_each_possible_cpu(i) {
4515
		while (i > rnp->grphi)
4516
			rnp++;
4517
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4518 4519
		rcu_boot_init_percpu_data(i, rsp);
	}
4520
	list_add(&rsp->flavors, &rcu_struct_flavors);
4521 4522
}

4523 4524
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4525
 * replace the definitions in tree.h because those are needed to size
4526 4527 4528 4529
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4530
	ulong d;
4531
	int i;
4532
	int rcu_capacity[RCU_NUM_LVLS];
4533

4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4547
	/* If the compile-time values are accurate, just leave. */
4548
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4549
	    nr_cpu_ids == NR_CPUS)
4550
		return;
4551 4552
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4553 4554

	/*
4555 4556 4557 4558
	 * The boot-time rcu_fanout_leaf parameter must be at least two
	 * and cannot exceed the number of bits in the rcu_node masks.
	 * Complain and fall back to the compile-time values if this
	 * limit is exceeded.
4559
	 */
4560
	if (rcu_fanout_leaf < 2 ||
4561
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4562
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4563 4564 4565 4566 4567 4568
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4569
	 * with the given number of levels.
4570
	 */
4571
	rcu_capacity[0] = rcu_fanout_leaf;
4572
	for (i = 1; i < RCU_NUM_LVLS; i++)
4573
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4574 4575

	/*
4576
	 * The tree must be able to accommodate the configured number of CPUs.
4577
	 * If this limit is exceeded, fall back to the compile-time values.
4578
	 */
4579 4580 4581 4582 4583
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}
4584

4585
	/* Calculate the number of levels in the tree. */
4586
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4587
	}
4588
	rcu_num_lvls = i + 1;
4589

4590
	/* Calculate the number of rcu_nodes at each level of the tree. */
4591
	for (i = 0; i < rcu_num_lvls; i++) {
4592
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4593 4594
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4595 4596 4597

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4598
	for (i = 0; i < rcu_num_lvls; i++)
4599 4600 4601
		rcu_num_nodes += num_rcu_lvl[i];
}

4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4624
void __init rcu_init(void)
4625
{
P
Paul E. McKenney 已提交
4626
	int cpu;
4627

4628 4629
	rcu_early_boot_tests();

4630
	rcu_bootup_announce();
4631
	rcu_init_geometry();
4632 4633
	rcu_init_one(&rcu_bh_state);
	rcu_init_one(&rcu_sched_state);
4634 4635
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4636
	__rcu_init_preempt();
J
Jiang Fang 已提交
4637
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4638 4639 4640 4641 4642 4643 4644

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
4645
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
4646 4647
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4648 4649
}

4650
#include "tree_plugin.h"