tree.c 130.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/trace_events.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73

74 75 76 77 78 79 80 81
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
82 83
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
84
static char sname##_varname[] = #sname; \
85 86 87 88 89 90 91 92 93
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
94
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
95
struct rcu_state sname##_state = { \
96
	.level = { &sname##_state.node[0] }, \
97
	.rda = &sname##_data, \
98
	.call = cr, \
99
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
100 101
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
102
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
103 104
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
105
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
106
	.name = RCU_STATE_NAME(sname), \
107
	.abbr = sabbr, \
108
}
109

110 111
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112

113
static struct rcu_state *const rcu_state_p;
114
static struct rcu_data __percpu *const rcu_data_p;
115
LIST_HEAD(rcu_struct_flavors);
116

117 118 119
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
120 121 122
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
123 124
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
125
module_param(rcu_fanout_leaf, int, 0444);
126 127 128 129 130 131 132 133 134 135
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

136 137 138 139
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
140
 * optimize synchronize_sched() to a simple barrier().  When this variable
141 142 143 144
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
145 146 147
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

148 149 150 151 152 153 154 155 156 157 158 159 160 161
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

162 163
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
164
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
165 166
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
167

168
/* rcuc/rcub kthread realtime priority */
169
#ifdef CONFIG_RCU_KTHREAD_PRIO
170
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
171 172 173
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
174 175
module_param(kthread_prio, int, 0644);

176
/* Delay in jiffies for grace-period initialization delays, debug only. */
177 178 179 180 181 182 183 184

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

185 186
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
187
module_param(gp_init_delay, int, 0644);
188 189 190
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
191

192 193 194 195 196 197 198
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

199 200 201 202 203 204 205 206 207 208
/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
209

210 211 212 213 214 215 216 217 218 219 220 221
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

222 223 224 225 226 227 228 229
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
230
	return READ_ONCE(rnp->qsmaskinitnext);
231 232
}

233
/*
234
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
235 236 237 238 239
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
240
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
241 242
}

243
/*
244
 * Note a quiescent state.  Because we do not need to know
245
 * how many quiescent states passed, just if there was at least
246
 * one since the start of the grace period, this just sets a flag.
247
 * The caller must have disabled preemption.
248
 */
249
void rcu_sched_qs(void)
250
{
251 252 253 254 255 256
	if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_sched"),
				       __this_cpu_read(rcu_sched_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_sched_data.passed_quiesce, 1);
	}
257 258
}

259
void rcu_bh_qs(void)
260
{
261 262 263 264 265 266
	if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_bh_data.passed_quiesce, 1);
	}
267
}
268

269 270 271 272 273 274 275 276 277 278 279
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

280 281 282
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
 */
static void rcu_momentary_dyntick_idle(void)
{
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	local_irq_save(flags);

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
317 318
		if (READ_ONCE(rdp->mynode->completed) !=
		    READ_ONCE(rdp->cond_resched_completed))
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
	local_irq_restore(flags);
}

336 337 338
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
339
 * The caller must have disabled preemption.
340
 */
341
void rcu_note_context_switch(void)
342
{
343
	trace_rcu_utilization(TPS("Start context switch"));
344
	rcu_sched_qs();
345
	rcu_preempt_note_context_switch();
346 347
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
348
	trace_rcu_utilization(TPS("End context switch"));
349
}
350
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
351

352
/*
353
 * Register a quiescent state for all RCU flavors.  If there is an
354 355
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
356
 * RCU flavors in desperate need of a quiescent state, which will normally
357 358 359 360 361 362 363 364 365 366 367
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
 */
void rcu_all_qs(void)
{
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
	this_cpu_inc(rcu_qs_ctr);
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
368 369 370
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
371

E
Eric Dumazet 已提交
372 373 374
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
375

376 377
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
378 379 380 381

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

382 383 384 385 386 387 388
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

389
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
390
				  struct rcu_data *rdp);
391 392 393 394
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
395
static void force_quiescent_state(struct rcu_state *rsp);
396
static int rcu_pending(void);
397 398

/*
399
 * Return the number of RCU batches started thus far for debug & stats.
400
 */
401 402 403 404 405 406 407 408
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
409
 */
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
436
 */
437
unsigned long rcu_batches_completed_sched(void)
438
{
439
	return rcu_sched_state.completed;
440
}
441
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
442 443

/*
444
 * Return the number of RCU BH batches completed thus far for debug & stats.
445
 */
446
unsigned long rcu_batches_completed_bh(void)
447 448 449 450 451
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

452 453 454 455 456
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
457
	force_quiescent_state(rcu_state_p);
458 459 460
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

461 462 463 464 465
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
466
	force_quiescent_state(&rcu_bh_state);
467 468 469
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

470 471 472 473 474 475 476 477 478
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

494 495 496 497 498 499 500 501 502 503 504 505 506 507
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

508 509 510 511 512 513 514 515 516 517
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
518
		rsp = rcu_state_p;
519 520 521 522 523 524 525 526 527 528 529
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
530 531 532
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
533 534 535 536 537 538 539 540
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

541 542 543 544 545 546 547 548 549 550 551
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

552 553 554 555 556 557
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
558 559
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
560 561
}

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
578
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
579 580
	int *fp = &rnp->need_future_gp[idx];

581
	return READ_ONCE(*fp);
582 583
}

584
/*
585 586 587
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
588 589 590 591
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
592
	int i;
P
Paul E. McKenney 已提交
593

594 595
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
596
	if (rcu_future_needs_gp(rsp))
597
		return 1;  /* Yes, a no-CBs CPU needs one. */
598 599 600 601 602 603
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
604
		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
605 606 607
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
608 609
}

610
/*
611
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
612 613 614 615 616
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
617
static void rcu_eqs_enter_common(long long oldval, bool user)
618
{
619 620
	struct rcu_state *rsp;
	struct rcu_data *rdp;
621
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
622

623
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
624 625
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
626 627
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
628

629
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
630
		ftrace_dump(DUMP_ORIG);
631 632 633
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
634
	}
635 636 637 638
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
639
	rcu_prepare_for_idle();
640
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
641
	smp_mb__before_atomic();  /* See above. */
642
	atomic_inc(&rdtp->dynticks);
643
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
644 645
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     atomic_read(&rdtp->dynticks) & 0x1);
646
	rcu_dynticks_task_enter();
647 648

	/*
649
	 * It is illegal to enter an extended quiescent state while
650 651 652 653 654 655 656 657
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
658
}
659

660 661 662
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
663
 */
664
static void rcu_eqs_enter(bool user)
665
{
666
	long long oldval;
667 668
	struct rcu_dynticks *rdtp;

669
	rdtp = this_cpu_ptr(&rcu_dynticks);
670
	oldval = rdtp->dynticks_nesting;
671 672
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
673
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
674
		rdtp->dynticks_nesting = 0;
675
		rcu_eqs_enter_common(oldval, user);
676
	} else {
677
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
678
	}
679
}
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
695 696 697
	unsigned long flags;

	local_irq_save(flags);
698
	rcu_eqs_enter(false);
699
	rcu_sysidle_enter(0);
700
	local_irq_restore(flags);
701
}
702
EXPORT_SYMBOL_GPL(rcu_idle_enter);
703

704
#ifdef CONFIG_RCU_USER_QS
705 706 707 708 709 710 711 712 713 714
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
715
	rcu_eqs_enter(1);
716
}
717
#endif /* CONFIG_RCU_USER_QS */
718

719 720 721 722 723 724
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
725
 *
726 727 728 729 730 731 732 733
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
734
 */
735
void rcu_irq_exit(void)
736 737
{
	unsigned long flags;
738
	long long oldval;
739 740 741
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
742
	rdtp = this_cpu_ptr(&rcu_dynticks);
743
	oldval = rdtp->dynticks_nesting;
744
	rdtp->dynticks_nesting--;
745 746
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting < 0);
747
	if (rdtp->dynticks_nesting)
748
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
749
	else
750 751
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
752 753 754 755
	local_irq_restore(flags);
}

/*
756
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
757 758 759 760 761
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
762
static void rcu_eqs_exit_common(long long oldval, int user)
763
{
764 765
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

766
	rcu_dynticks_task_exit();
767
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
768 769
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
770
	smp_mb__after_atomic();  /* See above. */
771 772
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(atomic_read(&rdtp->dynticks) & 0x1));
773
	rcu_cleanup_after_idle();
774
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
775 776
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
777 778
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
779

780
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
781
				  oldval, rdtp->dynticks_nesting);
782
		ftrace_dump(DUMP_ORIG);
783 784 785
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
786 787 788
	}
}

789 790 791
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
792
 */
793
static void rcu_eqs_exit(bool user)
794 795 796 797
{
	struct rcu_dynticks *rdtp;
	long long oldval;

798
	rdtp = this_cpu_ptr(&rcu_dynticks);
799
	oldval = rdtp->dynticks_nesting;
800
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
801
	if (oldval & DYNTICK_TASK_NEST_MASK) {
802
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
803
	} else {
804
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
805
		rcu_eqs_exit_common(oldval, user);
806
	}
807
}
808 809 810 811 812 813 814 815 816 817 818 819 820 821

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
822 823 824
	unsigned long flags;

	local_irq_save(flags);
825
	rcu_eqs_exit(false);
826
	rcu_sysidle_exit(0);
827
	local_irq_restore(flags);
828
}
829
EXPORT_SYMBOL_GPL(rcu_idle_exit);
830

831
#ifdef CONFIG_RCU_USER_QS
832 833 834 835 836 837 838 839
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
840
	rcu_eqs_exit(1);
841
}
842
#endif /* CONFIG_RCU_USER_QS */
843

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
870
	rdtp = this_cpu_ptr(&rcu_dynticks);
871 872
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
873 874
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
875
	if (oldval)
876
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
877
	else
878 879
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
880 881 882 883 884 885
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
886 887 888 889 890
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
891 892 893
 */
void rcu_nmi_enter(void)
{
894
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
895
	int incby = 2;
896

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
918 919 920 921 922
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
923 924 925 926
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
927 928 929
 */
void rcu_nmi_exit(void)
{
930
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
931

932 933 934 935 936 937 938 939 940 941 942 943 944 945
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
946
		return;
947 948 949 950
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
951
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
952
	smp_mb__before_atomic();  /* See above. */
953
	atomic_inc(&rdtp->dynticks);
954
	smp_mb__after_atomic();  /* Force delay to next write. */
955
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
956 957 958
}

/**
959 960 961 962 963 964 965
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
966
bool notrace __rcu_is_watching(void)
967 968 969 970 971 972
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
973
 *
974
 * If the current CPU is in its idle loop and is neither in an interrupt
975
 * or NMI handler, return true.
976
 */
977
bool notrace rcu_is_watching(void)
978
{
979
	bool ret;
980 981

	preempt_disable();
982
	ret = __rcu_is_watching();
983 984
	preempt_enable();
	return ret;
985
}
986
EXPORT_SYMBOL_GPL(rcu_is_watching);
987

988
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
989 990 991 992 993 994 995

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
996 997 998 999 1000 1001 1002 1003 1004 1005 1006
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1007 1008 1009 1010 1011 1012
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1013 1014
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1015 1016 1017
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1018
		return true;
1019
	preempt_disable();
1020
	rdp = this_cpu_ptr(&rcu_sched_data);
1021
	rnp = rdp->mynode;
1022
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1023 1024 1025 1026 1027 1028
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1029
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1030

1031
/**
1032
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1033
 *
1034 1035 1036
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1037
 */
1038
static int rcu_is_cpu_rrupt_from_idle(void)
1039
{
1040
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1041 1042 1043 1044 1045
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1046
 * is in dynticks idle mode, which is an extended quiescent state.
1047
 */
1048 1049
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1050
{
1051
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1052
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1053 1054 1055 1056
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
		return 1;
	} else {
1057
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1058
				 rdp->mynode->gpnum))
1059
			WRITE_ONCE(rdp->gpwrap, true);
1060 1061
		return 0;
	}
1062 1063 1064 1065 1066 1067
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1068
 * for this same CPU, or by virtue of having been offline.
1069
 */
1070 1071
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1072
{
1073
	unsigned int curr;
1074
	int *rcrmp;
1075
	unsigned int snap;
1076

1077 1078
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
1079 1080 1081 1082 1083 1084 1085 1086 1087

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1088
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1089
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1090 1091 1092 1093
		rdp->dynticks_fqs++;
		return 1;
	}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
1109
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1110 1111 1112
		rdp->offline_fqs++;
		return 1;
	}
1113 1114

	/*
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1134
	 */
1135 1136 1137
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1138
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1139 1140 1141
		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			WRITE_ONCE(rdp->cond_resched_completed,
				   READ_ONCE(rdp->mynode->completed));
1142
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1143 1144
			WRITE_ONCE(*rcrmp,
				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1145 1146 1147 1148 1149 1150 1151
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
			/* Time to beat on that CPU again! */
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
		}
1152 1153
	}

1154
	return 0;
1155 1156 1157 1158
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1159
	unsigned long j = jiffies;
1160
	unsigned long j1;
1161 1162 1163

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1164
	j1 = rcu_jiffies_till_stall_check();
1165
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1166
	rsp->jiffies_resched = j + j1 / 2;
1167
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1168 1169
}

1170 1171 1172 1173 1174 1175 1176 1177 1178
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1179
	gpa = READ_ONCE(rsp->gp_activity);
1180
	if (j - gpa > 2 * HZ)
1181
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x s%d ->state=%#lx\n",
1182
		       rsp->name, j - gpa,
1183 1184 1185
		       rsp->gpnum, rsp->completed,
		       rsp->gp_flags, rsp->gp_state,
		       rsp->gp_kthread ? rsp->gp_kthread->state : 0);
1186 1187
}

1188
/*
1189
 * Dump stacks of all tasks running on stalled CPUs.
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

1208
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1209 1210 1211 1212
{
	int cpu;
	long delta;
	unsigned long flags;
1213 1214
	unsigned long gpa;
	unsigned long j;
1215
	int ndetected = 0;
1216
	struct rcu_node *rnp = rcu_get_root(rsp);
1217
	long totqlen = 0;
1218 1219 1220

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
1221
	raw_spin_lock_irqsave(&rnp->lock, flags);
1222
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1223
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1224
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1225 1226
		return;
	}
1227 1228
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1229
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1230

1231 1232 1233 1234 1235
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1236
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1237
	       rsp->name);
1238
	print_cpu_stall_info_begin();
1239
	rcu_for_each_leaf_node(rsp, rnp) {
1240
		raw_spin_lock_irqsave(&rnp->lock, flags);
1241
		ndetected += rcu_print_task_stall(rnp);
1242 1243 1244 1245 1246 1247 1248 1249
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
1250
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1251
	}
1252 1253

	print_cpu_stall_info_end();
1254 1255
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1256
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1257
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1258
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1259
	if (ndetected) {
1260
		rcu_dump_cpu_stacks(rsp);
1261
	} else {
1262 1263
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1264 1265 1266
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1267
			gpa = READ_ONCE(rsp->gp_activity);
1268
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1269
			       rsp->name, j - gpa, j, gpa,
1270 1271
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1272 1273 1274 1275
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1276

1277
	/* Complain about tasks blocking the grace period. */
1278 1279
	rcu_print_detail_task_stall(rsp);

1280 1281
	rcu_check_gp_kthread_starvation(rsp);

1282
	force_quiescent_state(rsp);  /* Kick them all. */
1283 1284 1285 1286
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1287
	int cpu;
1288 1289
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1290
	long totqlen = 0;
1291

1292 1293 1294 1295 1296
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1297
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1298 1299 1300
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1301 1302
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1303 1304 1305
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1306 1307 1308

	rcu_check_gp_kthread_starvation(rsp);

1309
	rcu_dump_cpu_stacks(rsp);
1310

P
Paul E. McKenney 已提交
1311
	raw_spin_lock_irqsave(&rnp->lock, flags);
1312 1313 1314
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1315
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1316

1317 1318 1319 1320 1321 1322 1323 1324
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1325 1326 1327 1328
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1329 1330 1331
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1332 1333
	unsigned long j;
	unsigned long js;
1334 1335
	struct rcu_node *rnp;

1336
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1337
		return;
1338
	j = jiffies;
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1357
	gpnum = READ_ONCE(rsp->gpnum);
1358
	smp_rmb(); /* Pick up ->gpnum first... */
1359
	js = READ_ONCE(rsp->jiffies_stall);
1360
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1361
	gps = READ_ONCE(rsp->gp_start);
1362
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1363
	completed = READ_ONCE(rsp->completed);
1364 1365 1366 1367
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1368
	rnp = rdp->mynode;
1369
	if (rcu_gp_in_progress(rsp) &&
1370
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1371 1372 1373 1374

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1375 1376
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1377

1378
		/* They had a few time units to dump stack, so complain. */
1379
		print_other_cpu_stall(rsp, gpnum);
1380 1381 1382
	}
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1394 1395 1396
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1397
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1398 1399
}

1400
/*
1401 1402 1403
 * Initialize the specified rcu_data structure's default callback list
 * to empty.  The default callback list is the one that is not used by
 * no-callbacks CPUs.
1404
 */
1405
static void init_default_callback_list(struct rcu_data *rdp)
1406 1407 1408 1409 1410 1411 1412 1413
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	if (init_nocb_callback_list(rdp))
		return;
	init_default_callback_list(rdp);
}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1453 1454 1455 1456 1457
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1458
				unsigned long c, const char *s)
1459 1460 1461 1462 1463 1464 1465 1466 1467
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1468 1469
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1470 1471 1472
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1473 1474 1475
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1476 1477 1478
{
	unsigned long c;
	int i;
1479
	bool ret = false;
1480 1481 1482 1483 1484 1485 1486
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1487
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1488
	if (rnp->need_future_gp[c & 0x1]) {
1489
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1490
		goto out;
1491 1492 1493 1494 1495 1496 1497
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1498 1499 1500 1501 1502 1503 1504
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1505 1506
	 */
	if (rnp->gpnum != rnp->completed ||
1507
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1508
		rnp->need_future_gp[c & 0x1]++;
1509
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1510
		goto out;
1511 1512 1513 1514 1515 1516 1517
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1518
	if (rnp != rnp_root) {
1519
		raw_spin_lock(&rnp_root->lock);
1520 1521
		smp_mb__after_unlock_lock();
	}
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1539
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1540 1541 1542 1543 1544 1545 1546 1547
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1548
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1549
	} else {
1550
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1551
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1552 1553 1554 1555
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
1556 1557 1558 1559
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1577 1578
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1579 1580 1581
	return needmore;
}

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1592
	    !READ_ONCE(rsp->gp_flags) ||
1593 1594 1595 1596 1597
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1598 1599 1600 1601 1602 1603 1604
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1605 1606
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1607 1608 1609
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1610
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1611 1612 1613 1614
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1615
	bool ret;
1616 1617 1618

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1619
		return false;
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1648
		return false;
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1659
	/* Record any needed additional grace periods. */
1660
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1661 1662 1663

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1664
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1665
	else
1666
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1667
	return ret;
1668 1669 1670 1671 1672 1673 1674 1675
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1676
 * Returns true if the RCU grace-period kthread needs to be awakened.
1677 1678 1679
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1680
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1681 1682 1683 1684 1685 1686
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1687
		return false;
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1711
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1712 1713
}

1714
/*
1715 1716 1717
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1718
 * Returns true if the grace-period kthread needs to be awakened.
1719
 */
1720 1721
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1722
{
1723 1724
	bool ret;

1725
	/* Handle the ends of any preceding grace periods first. */
1726
	if (rdp->completed == rnp->completed &&
1727
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1728

1729
		/* No grace period end, so just accelerate recent callbacks. */
1730
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1731

1732 1733 1734
	} else {

		/* Advance callbacks. */
1735
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1736 1737 1738

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1739
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1740
	}
1741

1742
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1743 1744 1745 1746 1747 1748
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1749
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1750
		rdp->passed_quiesce = 0;
1751
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1752 1753
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
		zero_cpu_stall_ticks(rdp);
1754
		WRITE_ONCE(rdp->gpwrap, false);
1755
	}
1756
	return ret;
1757 1758
}

1759
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1760 1761
{
	unsigned long flags;
1762
	bool needwake;
1763 1764 1765 1766
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1767 1768 1769
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1770 1771 1772 1773
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1774
	smp_mb__after_unlock_lock();
1775
	needwake = __note_gp_changes(rsp, rnp, rdp);
1776
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1777 1778
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1779 1780
}

1781 1782 1783 1784 1785 1786 1787
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

1788
/*
1789
 * Initialize a new grace period.  Return 0 if no grace period required.
1790
 */
1791
static int rcu_gp_init(struct rcu_state *rsp)
1792
{
1793
	unsigned long oldmask;
1794
	struct rcu_data *rdp;
1795
	struct rcu_node *rnp = rcu_get_root(rsp);
1796

1797
	WRITE_ONCE(rsp->gp_activity, jiffies);
1798
	raw_spin_lock_irq(&rnp->lock);
1799
	smp_mb__after_unlock_lock();
1800
	if (!READ_ONCE(rsp->gp_flags)) {
1801 1802 1803 1804
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1805
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1806

1807 1808 1809 1810 1811
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1812 1813 1814 1815 1816
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1817
	record_gp_stall_check_time(rsp);
1818 1819
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1820
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1821 1822
	raw_spin_unlock_irq(&rnp->lock);

1823 1824 1825 1826 1827 1828 1829
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
1830
		rcu_gp_slow(rsp, gp_preinit_delay);
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
		raw_spin_lock_irq(&rnp->lock);
		smp_mb__after_unlock_lock();
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
			raw_spin_unlock_irq(&rnp->lock);
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

		raw_spin_unlock_irq(&rnp->lock);
	}
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1887
		rcu_gp_slow(rsp, gp_init_delay);
1888
		raw_spin_lock_irq(&rnp->lock);
1889
		smp_mb__after_unlock_lock();
1890
		rdp = this_cpu_ptr(rsp->rda);
1891 1892
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1893
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1894
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1895
			WRITE_ONCE(rnp->completed, rsp->completed);
1896
		if (rnp == rdp->mynode)
1897
			(void)__note_gp_changes(rsp, rnp, rdp);
1898 1899 1900 1901 1902
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1903
		cond_resched_rcu_qs();
1904
		WRITE_ONCE(rsp->gp_activity, jiffies);
1905
	}
1906

1907 1908
	return 1;
}
1909

1910 1911 1912
/*
 * Do one round of quiescent-state forcing.
 */
1913
static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1914 1915
{
	int fqs_state = fqs_state_in;
1916 1917
	bool isidle = false;
	unsigned long maxj;
1918 1919
	struct rcu_node *rnp = rcu_get_root(rsp);

1920
	WRITE_ONCE(rsp->gp_activity, jiffies);
1921 1922 1923
	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
1924
		if (is_sysidle_rcu_state(rsp)) {
1925
			isidle = true;
1926 1927
			maxj = jiffies - ULONG_MAX / 4;
		}
1928 1929
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1930
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1931 1932 1933
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1934
		isidle = true;
1935
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1936 1937
	}
	/* Clear flag to prevent immediate re-entry. */
1938
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1939
		raw_spin_lock_irq(&rnp->lock);
1940
		smp_mb__after_unlock_lock();
1941 1942
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1943 1944 1945 1946 1947
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1948 1949 1950
/*
 * Clean up after the old grace period.
 */
1951
static void rcu_gp_cleanup(struct rcu_state *rsp)
1952 1953
{
	unsigned long gp_duration;
1954
	bool needgp = false;
1955
	int nocb = 0;
1956 1957
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1958

1959
	WRITE_ONCE(rsp->gp_activity, jiffies);
1960
	raw_spin_lock_irq(&rnp->lock);
1961
	smp_mb__after_unlock_lock();
1962 1963 1964
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1965

1966 1967 1968 1969 1970 1971 1972 1973
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1974
	raw_spin_unlock_irq(&rnp->lock);
1975

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1986
		raw_spin_lock_irq(&rnp->lock);
1987
		smp_mb__after_unlock_lock();
1988 1989
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
1990
		WRITE_ONCE(rnp->completed, rsp->gpnum);
1991 1992
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
1993
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1994
		/* smp_mb() provided by prior unlock-lock pair. */
1995
		nocb += rcu_future_gp_cleanup(rsp, rnp);
1996
		raw_spin_unlock_irq(&rnp->lock);
1997
		cond_resched_rcu_qs();
1998
		WRITE_ONCE(rsp->gp_activity, jiffies);
1999
		rcu_gp_slow(rsp, gp_cleanup_delay);
2000
	}
2001 2002
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
2003
	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
2004
	rcu_nocb_gp_set(rnp, nocb);
2005

2006
	/* Declare grace period done. */
2007
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2008
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2009
	rsp->fqs_state = RCU_GP_IDLE;
2010
	rdp = this_cpu_ptr(rsp->rda);
2011 2012 2013
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2014
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2015
		trace_rcu_grace_period(rsp->name,
2016
				       READ_ONCE(rsp->gpnum),
2017 2018
				       TPS("newreq"));
	}
2019 2020 2021 2022 2023 2024 2025 2026
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2027
	int fqs_state;
2028
	int gf;
2029
	unsigned long j;
2030
	int ret;
2031 2032 2033
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2034
	rcu_bind_gp_kthread();
2035 2036 2037 2038
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2039
			trace_rcu_grace_period(rsp->name,
2040
					       READ_ONCE(rsp->gpnum),
2041
					       TPS("reqwait"));
2042
			rsp->gp_state = RCU_GP_WAIT_GPS;
2043
			wait_event_interruptible(rsp->gp_wq,
2044
						 READ_ONCE(rsp->gp_flags) &
2045
						 RCU_GP_FLAG_INIT);
2046
			rsp->gp_state = RCU_GP_DONE_GPS;
2047
			/* Locking provides needed memory barrier. */
2048
			if (rcu_gp_init(rsp))
2049
				break;
2050
			cond_resched_rcu_qs();
2051
			WRITE_ONCE(rsp->gp_activity, jiffies);
2052
			WARN_ON(signal_pending(current));
2053
			trace_rcu_grace_period(rsp->name,
2054
					       READ_ONCE(rsp->gpnum),
2055
					       TPS("reqwaitsig"));
2056
		}
2057

2058 2059
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
2060 2061 2062 2063 2064
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2065
		ret = 0;
2066
		for (;;) {
2067 2068
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
2069
			trace_rcu_grace_period(rsp->name,
2070
					       READ_ONCE(rsp->gpnum),
2071
					       TPS("fqswait"));
2072
			rsp->gp_state = RCU_GP_WAIT_FQS;
2073
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
2074
					((gf = READ_ONCE(rsp->gp_flags)) &
2075
					 RCU_GP_FLAG_FQS) ||
2076
					(!READ_ONCE(rnp->qsmask) &&
2077
					 !rcu_preempt_blocked_readers_cgp(rnp)),
2078
					j);
2079
			rsp->gp_state = RCU_GP_DONE_FQS;
2080
			/* Locking provides needed memory barriers. */
2081
			/* If grace period done, leave loop. */
2082
			if (!READ_ONCE(rnp->qsmask) &&
2083
			    !rcu_preempt_blocked_readers_cgp(rnp))
2084
				break;
2085
			/* If time for quiescent-state forcing, do it. */
2086 2087
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2088
				trace_rcu_grace_period(rsp->name,
2089
						       READ_ONCE(rsp->gpnum),
2090
						       TPS("fqsstart"));
2091
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
2092
				trace_rcu_grace_period(rsp->name,
2093
						       READ_ONCE(rsp->gpnum),
2094
						       TPS("fqsend"));
2095
				cond_resched_rcu_qs();
2096
				WRITE_ONCE(rsp->gp_activity, jiffies);
2097 2098
			} else {
				/* Deal with stray signal. */
2099
				cond_resched_rcu_qs();
2100
				WRITE_ONCE(rsp->gp_activity, jiffies);
2101
				WARN_ON(signal_pending(current));
2102
				trace_rcu_grace_period(rsp->name,
2103
						       READ_ONCE(rsp->gpnum),
2104
						       TPS("fqswaitsig"));
2105
			}
2106 2107 2108 2109 2110 2111 2112 2113
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
2114
		}
2115 2116

		/* Handle grace-period end. */
2117
		rsp->gp_state = RCU_GP_CLEANUP;
2118
		rcu_gp_cleanup(rsp);
2119
		rsp->gp_state = RCU_GP_CLEANED;
2120 2121 2122
	}
}

2123 2124 2125
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2126
 * the root node's ->lock and hard irqs must be disabled.
2127 2128 2129 2130
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2131 2132
 *
 * Returns true if the grace-period kthread must be awakened.
2133
 */
2134
static bool
2135 2136
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2137
{
2138
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2139
		/*
2140
		 * Either we have not yet spawned the grace-period
2141 2142
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2143
		 * Either way, don't start a new grace period.
2144
		 */
2145
		return false;
2146
	}
2147 2148
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2149
			       TPS("newreq"));
2150

2151 2152
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2153
	 * could cause possible deadlocks with the rq->lock. Defer
2154
	 * the wakeup to our caller.
2155
	 */
2156
	return true;
2157 2158
}

2159 2160 2161 2162 2163 2164
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2165 2166
 *
 * Returns true if the grace-period kthread needs to be awakened.
2167
 */
2168
static bool rcu_start_gp(struct rcu_state *rsp)
2169 2170 2171
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2172
	bool ret = false;
2173 2174 2175 2176 2177 2178 2179 2180 2181

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2182 2183 2184
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2185 2186
}

2187
/*
P
Paul E. McKenney 已提交
2188 2189 2190
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
2191 2192
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
2193
 */
P
Paul E. McKenney 已提交
2194
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2195
	__releases(rcu_get_root(rsp)->lock)
2196
{
2197
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2198
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2199
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2200
	rcu_gp_kthread_wake(rsp);
2201 2202
}

2203
/*
P
Paul E. McKenney 已提交
2204 2205 2206
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2207 2208 2209 2210 2211
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2212 2213
 */
static void
P
Paul E. McKenney 已提交
2214
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2215
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2216 2217
	__releases(rnp->lock)
{
2218
	unsigned long oldmask = 0;
2219 2220
	struct rcu_node *rnp_c;

2221 2222
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2223
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2224

2225 2226 2227 2228
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
P
Paul E. McKenney 已提交
2229
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2230 2231
			return;
		}
2232
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2233
		rnp->qsmask &= ~mask;
2234 2235 2236 2237
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2238
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2239 2240

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
2241
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2242 2243 2244 2245 2246 2247 2248 2249 2250
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
2251
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2252
		rnp_c = rnp;
2253
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
2254
		raw_spin_lock_irqsave(&rnp->lock, flags);
2255
		smp_mb__after_unlock_lock();
2256
		oldmask = rnp_c->qsmask;
2257 2258 2259 2260
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2261
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2262
	 * to clean up and start the next grace period if one is needed.
2263
	 */
P
Paul E. McKenney 已提交
2264
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2265 2266
}

2267 2268 2269 2270 2271 2272 2273
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2274
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2275 2276 2277
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2278
	unsigned long gps;
2279 2280 2281
	unsigned long mask;
	struct rcu_node *rnp_p;

2282 2283
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2284 2285 2286 2287 2288 2289 2290
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2291 2292
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2293 2294 2295 2296 2297
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2298 2299
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2300 2301 2302 2303
	mask = rnp->grpmask;
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
	smp_mb__after_unlock_lock();
2304
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2305 2306
}

2307
/*
P
Paul E. McKenney 已提交
2308 2309 2310 2311 2312 2313 2314
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
2315 2316
 */
static void
2317
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2318 2319 2320
{
	unsigned long flags;
	unsigned long mask;
2321
	bool needwake;
2322 2323 2324
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
2325
	raw_spin_lock_irqsave(&rnp->lock, flags);
2326
	smp_mb__after_unlock_lock();
2327 2328 2329 2330
	if ((rdp->passed_quiesce == 0 &&
	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
	    rdp->gpwrap) {
2331 2332

		/*
2333 2334 2335 2336
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2337
		 */
2338
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
2339
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
P
Paul E. McKenney 已提交
2340
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2341 2342 2343 2344
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
2345
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2346 2347 2348 2349 2350 2351 2352
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2353
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2354

2355 2356
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2357 2358
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2371 2372
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2385 2386
	if (!rdp->passed_quiesce &&
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2387 2388
		return;

P
Paul E. McKenney 已提交
2389 2390 2391 2392
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2393
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2394 2395
}

2396
/*
2397 2398
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2399
 * ->orphan_lock.
2400
 */
2401 2402 2403
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2404
{
P
Paul E. McKenney 已提交
2405
	/* No-CBs CPUs do not have orphanable callbacks. */
2406
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2407 2408
		return;

2409 2410
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2411 2412
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2413
	 */
2414
	if (rdp->nxtlist != NULL) {
2415 2416 2417
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2418
		rdp->qlen_lazy = 0;
2419
		WRITE_ONCE(rdp->qlen, 0);
2420 2421 2422
	}

	/*
2423 2424 2425 2426 2427 2428 2429
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2430
	 */
2431 2432 2433 2434
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2435 2436 2437
	}

	/*
2438 2439 2440
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2441
	 */
2442
	if (rdp->nxtlist != NULL) {
2443 2444
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2445
	}
2446

2447 2448 2449 2450
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2451
	init_callback_list(rdp);
2452
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2453 2454 2455 2456
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2457
 * orphanage.  The caller must hold the ->orphan_lock.
2458
 */
2459
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2460 2461
{
	int i;
2462
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2463

P
Paul E. McKenney 已提交
2464
	/* No-CBs CPUs are handled specially. */
2465 2466
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2467 2468
		return;

2469 2470 2471 2472
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2473 2474
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

2513 2514 2515
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2516
	RCU_TRACE(mask = rdp->grpmask);
2517 2518
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2519
			       TPS("cpuofl"));
2520 2521
}

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2544 2545
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2546 2547 2548 2549 2550 2551 2552 2553 2554
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
		smp_mb__after_unlock_lock(); /* GP memory ordering. */
		rnp->qsmaskinit &= ~mask;
2555
		rnp->qsmask &= ~mask;
2556 2557 2558 2559 2560 2561 2562 2563
		if (rnp->qsmaskinit) {
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			return;
		}
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
	}
}

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
/*
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

2576 2577 2578
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2579 2580 2581 2582 2583 2584 2585 2586
	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();	/* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

2587
/*
2588
 * The CPU has been completely removed, and some other CPU is reporting
2589 2590
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2591 2592
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2593
 */
2594
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2595
{
2596
	unsigned long flags;
2597
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2598
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2599

2600 2601 2602
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2603
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2604
	rcu_boost_kthread_setaffinity(rnp, -1);
2605

2606
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2607
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2608
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2609
	rcu_adopt_orphan_cbs(rsp, flags);
2610
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2611

2612 2613 2614
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2615 2616 2617 2618 2619 2620
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2621
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2622 2623 2624
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2625 2626
	long bl, count, count_lazy;
	int i;
2627

2628
	/* If no callbacks are ready, just return. */
2629
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2630
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2631
		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2632 2633
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2634
		return;
2635
	}
2636 2637 2638 2639 2640 2641

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2642
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2643
	bl = rdp->blimit;
2644
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2645 2646 2647 2648
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2649 2650 2651
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2652 2653 2654
	local_irq_restore(flags);

	/* Invoke callbacks. */
2655
	count = count_lazy = 0;
2656 2657 2658
	while (list) {
		next = list->next;
		prefetch(next);
2659
		debug_rcu_head_unqueue(list);
2660 2661
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2662
		list = next;
2663 2664 2665 2666
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2667 2668 2669 2670
			break;
	}

	local_irq_save(flags);
2671 2672 2673
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2674 2675 2676 2677 2678

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2679 2680 2681
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2682 2683 2684
			else
				break;
	}
2685 2686
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2687
	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2688
	rdp->n_cbs_invoked += count;
2689 2690 2691 2692 2693

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2694 2695 2696 2697 2698 2699
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2700
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2701

2702 2703
	local_irq_restore(flags);

2704
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2705
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2706
		invoke_rcu_core();
2707 2708 2709 2710 2711
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2712
 * Also schedule RCU core processing.
2713
 *
2714
 * This function must be called from hardirq context.  It is normally
2715 2716 2717
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2718
void rcu_check_callbacks(int user)
2719
{
2720
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2721
	increment_cpu_stall_ticks();
2722
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2723 2724 2725 2726 2727

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2728
		 * a quiescent state, so note it.
2729 2730
		 *
		 * No memory barrier is required here because both
2731 2732 2733
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2734 2735
		 */

2736 2737
		rcu_sched_qs();
		rcu_bh_qs();
2738 2739 2740 2741 2742 2743 2744

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2745
		 * critical section, so note it.
2746 2747
		 */

2748
		rcu_bh_qs();
2749
	}
2750
	rcu_preempt_check_callbacks();
2751
	if (rcu_pending())
2752
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2753 2754
	if (user)
		rcu_note_voluntary_context_switch(current);
2755
	trace_rcu_utilization(TPS("End scheduler-tick"));
2756 2757 2758 2759 2760
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2761 2762
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2763
 * The caller must have suppressed start of new grace periods.
2764
 */
2765 2766 2767 2768
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2769 2770 2771 2772 2773
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2774
	struct rcu_node *rnp;
2775

2776
	rcu_for_each_leaf_node(rsp, rnp) {
2777
		cond_resched_rcu_qs();
2778
		mask = 0;
P
Paul E. McKenney 已提交
2779
		raw_spin_lock_irqsave(&rnp->lock, flags);
2780
		smp_mb__after_unlock_lock();
2781
		if (rnp->qsmask == 0) {
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2805
		}
2806
		cpu = rnp->grplo;
2807
		bit = 1;
2808
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2809 2810 2811 2812
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2813
		}
2814
		if (mask != 0) {
2815 2816
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2817 2818 2819
		} else {
			/* Nothing to do here, so just drop the lock. */
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2820 2821 2822 2823 2824 2825 2826 2827
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2828
static void force_quiescent_state(struct rcu_state *rsp)
2829 2830
{
	unsigned long flags;
2831 2832 2833 2834 2835
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2836
	rnp = __this_cpu_read(rsp->rda->mynode);
2837
	for (; rnp != NULL; rnp = rnp->parent) {
2838
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2839 2840 2841 2842
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2843
			rsp->n_force_qs_lh++;
2844 2845 2846 2847 2848
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2849

2850 2851
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2852
	smp_mb__after_unlock_lock();
2853
	raw_spin_unlock(&rnp_old->fqslock);
2854
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2855
		rsp->n_force_qs_lh++;
2856
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2857
		return;  /* Someone beat us to it. */
2858
	}
2859
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2860
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2861
	rcu_gp_kthread_wake(rsp);
2862 2863 2864
}

/*
2865 2866 2867
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2868 2869
 */
static void
2870
__rcu_process_callbacks(struct rcu_state *rsp)
2871 2872
{
	unsigned long flags;
2873
	bool needwake;
2874
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2875

2876 2877
	WARN_ON_ONCE(rdp->beenonline == 0);

2878 2879 2880 2881
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2882
	local_irq_save(flags);
2883
	if (cpu_needs_another_gp(rsp, rdp)) {
2884
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2885
		needwake = rcu_start_gp(rsp);
2886
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2887 2888
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2889 2890
	} else {
		local_irq_restore(flags);
2891 2892 2893
	}

	/* If there are callbacks ready, invoke them. */
2894
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2895
		invoke_rcu_callbacks(rsp, rdp);
2896 2897 2898

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2899 2900
}

2901
/*
2902
 * Do RCU core processing for the current CPU.
2903
 */
2904
static void rcu_process_callbacks(struct softirq_action *unused)
2905
{
2906 2907
	struct rcu_state *rsp;

2908 2909
	if (cpu_is_offline(smp_processor_id()))
		return;
2910
	trace_rcu_utilization(TPS("Start RCU core"));
2911 2912
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2913
	trace_rcu_utilization(TPS("End RCU core"));
2914 2915
}

2916
/*
2917 2918 2919
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2920
 * are running on the current CPU with softirqs disabled, the
2921
 * rcu_cpu_kthread_task cannot disappear out from under us.
2922
 */
2923
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2924
{
2925
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2926
		return;
2927 2928
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2929 2930
		return;
	}
2931
	invoke_rcu_callbacks_kthread();
2932 2933
}

2934
static void invoke_rcu_core(void)
2935
{
2936 2937
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2938 2939
}

2940 2941 2942 2943 2944
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2945
{
2946 2947
	bool needwake;

2948 2949 2950 2951
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2952
	if (!rcu_is_watching())
2953 2954
		invoke_rcu_core();

2955
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2956
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2957
		return;
2958

2959 2960 2961 2962 2963 2964 2965
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2966
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2967 2968

		/* Are we ignoring a completed grace period? */
2969
		note_gp_changes(rsp, rdp);
2970 2971 2972 2973 2974

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2975
			raw_spin_lock(&rnp_root->lock);
2976
			smp_mb__after_unlock_lock();
2977
			needwake = rcu_start_gp(rsp);
2978
			raw_spin_unlock(&rnp_root->lock);
2979 2980
			if (needwake)
				rcu_gp_kthread_wake(rsp);
2981 2982 2983 2984 2985
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2986
				force_quiescent_state(rsp);
2987 2988 2989
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2990
	}
2991 2992
}

2993 2994 2995 2996 2997 2998 2999
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3000 3001 3002 3003 3004 3005
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3006 3007
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
3008
	   struct rcu_state *rsp, int cpu, bool lazy)
3009 3010 3011 3012
{
	unsigned long flags;
	struct rcu_data *rdp;

3013
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3014 3015
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3016
		WRITE_ONCE(head->func, rcu_leak_callback);
3017 3018 3019
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
3030
	rdp = this_cpu_ptr(rsp->rda);
3031 3032

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
3033 3034 3035 3036 3037
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3051
		WARN_ON_ONCE(!rcu_is_watching());
3052 3053
		if (!likely(rdp->nxtlist))
			init_default_callback_list(rdp);
3054
	}
3055
	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3056 3057
	if (lazy)
		rdp->qlen_lazy++;
3058 3059
	else
		rcu_idle_count_callbacks_posted();
3060 3061 3062
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3063

3064 3065
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3066
					 rdp->qlen_lazy, rdp->qlen);
3067
	else
3068
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3069

3070 3071
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3072 3073 3074 3075
	local_irq_restore(flags);
}

/*
3076
 * Queue an RCU-sched callback for invocation after a grace period.
3077
 */
3078
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3079
{
P
Paul E. McKenney 已提交
3080
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3081
}
3082
EXPORT_SYMBOL_GPL(call_rcu_sched);
3083 3084

/*
3085
 * Queue an RCU callback for invocation after a quicker grace period.
3086 3087 3088
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
3089
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3090 3091 3092
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
3103
	__call_rcu(head, func, rcu_state_p, -1, 1);
3104 3105 3106
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3118 3119
	int ret;

3120
	might_sleep();  /* Check for RCU read-side critical section. */
3121 3122 3123 3124
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3125 3126
}

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3161 3162 3163 3164 3165 3166 3167 3168 3169
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3170 3171 3172 3173
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
3174 3175
	if (rcu_blocking_is_gp())
		return;
3176
	if (rcu_gp_is_expedited())
3177 3178 3179
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3191 3192 3193
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3194 3195 3196
 */
void synchronize_rcu_bh(void)
{
3197 3198 3199 3200
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3201 3202
	if (rcu_blocking_is_gp())
		return;
3203
	if (rcu_gp_is_expedited())
3204 3205 3206
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3207 3208 3209
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3230
	return smp_load_acquire(&rcu_state_p->gpnum);
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3256
	newstate = smp_load_acquire(&rcu_state_p->completed);
3257 3258 3259 3260 3261
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
3313 3314 3315
	cpumask_var_t cm;
	bool cma = false;
	int cpu;
3316 3317
	long firstsnap, s, snap;
	int trycount = 0;
3318
	struct rcu_state *rsp = &rcu_sched_state;
3319

3320 3321 3322 3323 3324 3325 3326 3327
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
3328 3329
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
3330
			 ULONG_MAX / 8)) {
3331
		wait_rcu_gp(call_rcu_sched);
3332
		atomic_long_inc(&rsp->expedited_wrap);
3333 3334
		return;
	}
3335

3336 3337 3338 3339
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
3340
	snap = atomic_long_inc_return(&rsp->expedited_start);
3341
	firstsnap = snap;
3342 3343 3344 3345 3346 3347
	if (!try_get_online_cpus()) {
		/* CPU hotplug operation in flight, fall back to normal GP. */
		wait_rcu_gp(call_rcu_sched);
		atomic_long_inc(&rsp->expedited_normal);
		return;
	}
3348
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3349

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
	/* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
	cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
	if (cma) {
		cpumask_copy(cm, cpu_online_mask);
		cpumask_clear_cpu(raw_smp_processor_id(), cm);
		for_each_cpu(cpu, cm) {
			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

			if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
				cpumask_clear_cpu(cpu, cm);
		}
		if (cpumask_weight(cm) == 0)
			goto all_cpus_idle;
	}

3365 3366 3367 3368
	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
3369
	while (try_stop_cpus(cma ? cm : cpu_online_mask,
3370 3371 3372
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
3373
		atomic_long_inc(&rsp->expedited_tryfail);
3374

3375
		/* Check to see if someone else did our work for us. */
3376
		s = atomic_long_read(&rsp->expedited_done);
3377
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3378
			/* ensure test happens before caller kfree */
3379
			smp_mb__before_atomic(); /* ^^^ */
3380
			atomic_long_inc(&rsp->expedited_workdone1);
3381
			free_cpumask_var(cm);
3382 3383
			return;
		}
3384 3385

		/* No joy, try again later.  Or just synchronize_sched(). */
3386
		if (trycount++ < 10) {
3387
			udelay(trycount * num_online_cpus());
3388
		} else {
3389
			wait_rcu_gp(call_rcu_sched);
3390
			atomic_long_inc(&rsp->expedited_normal);
3391
			free_cpumask_var(cm);
3392 3393 3394
			return;
		}

3395
		/* Recheck to see if someone else did our work for us. */
3396
		s = atomic_long_read(&rsp->expedited_done);
3397
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3398
			/* ensure test happens before caller kfree */
3399
			smp_mb__before_atomic(); /* ^^^ */
3400
			atomic_long_inc(&rsp->expedited_workdone2);
3401
			free_cpumask_var(cm);
3402 3403 3404 3405 3406
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
3407 3408 3409 3410
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
3411
		 */
3412 3413 3414 3415
		if (!try_get_online_cpus()) {
			/* CPU hotplug operation in flight, use normal GP. */
			wait_rcu_gp(call_rcu_sched);
			atomic_long_inc(&rsp->expedited_normal);
3416
			free_cpumask_var(cm);
3417 3418
			return;
		}
3419
		snap = atomic_long_read(&rsp->expedited_start);
3420 3421
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
3422
	atomic_long_inc(&rsp->expedited_stoppedcpus);
3423

3424 3425 3426
all_cpus_idle:
	free_cpumask_var(cm);

3427 3428 3429 3430
	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
3431
	 * than we did already did their update.
3432 3433
	 */
	do {
3434
		atomic_long_inc(&rsp->expedited_done_tries);
3435
		s = atomic_long_read(&rsp->expedited_done);
3436
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3437
			/* ensure test happens before caller kfree */
3438
			smp_mb__before_atomic(); /* ^^^ */
3439
			atomic_long_inc(&rsp->expedited_done_lost);
3440 3441
			break;
		}
3442
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3443
	atomic_long_inc(&rsp->expedited_done_exit);
3444 3445 3446 3447 3448

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3449 3450 3451 3452 3453 3454 3455 3456 3457
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3458 3459
	struct rcu_node *rnp = rdp->mynode;

3460 3461 3462 3463 3464
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3465 3466 3467 3468
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3469
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3470
	if (rcu_scheduler_fully_active &&
3471 3472
	    rdp->qs_pending && !rdp->passed_quiesce &&
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3473
		rdp->n_rp_qs_pending++;
3474 3475 3476
	} else if (rdp->qs_pending &&
		   (rdp->passed_quiesce ||
		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3477
		rdp->n_rp_report_qs++;
3478
		return 1;
3479
	}
3480 3481

	/* Does this CPU have callbacks ready to invoke? */
3482 3483
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3484
		return 1;
3485
	}
3486 3487

	/* Has RCU gone idle with this CPU needing another grace period? */
3488 3489
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3490
		return 1;
3491
	}
3492 3493

	/* Has another RCU grace period completed?  */
3494
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3495
		rdp->n_rp_gp_completed++;
3496
		return 1;
3497
	}
3498 3499

	/* Has a new RCU grace period started? */
3500 3501
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3502
		rdp->n_rp_gp_started++;
3503
		return 1;
3504
	}
3505

3506 3507 3508 3509 3510 3511
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3512
	/* nothing to do */
3513
	rdp->n_rp_need_nothing++;
3514 3515 3516 3517 3518 3519 3520 3521
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3522
static int rcu_pending(void)
3523
{
3524 3525 3526
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3527
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3528 3529
			return 1;
	return 0;
3530 3531 3532
}

/*
3533 3534 3535
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3536
 */
3537
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3538
{
3539 3540 3541
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3542 3543
	struct rcu_state *rsp;

3544
	for_each_rcu_flavor(rsp) {
3545
		rdp = this_cpu_ptr(rsp->rda);
3546 3547 3548 3549
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3550
			al = false;
3551 3552
			break;
		}
3553 3554 3555 3556
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3557 3558
}

3559 3560 3561 3562
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3563
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3564 3565 3566 3567 3568 3569
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3570 3571 3572 3573
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3574
static void rcu_barrier_callback(struct rcu_head *rhp)
3575
{
3576 3577 3578
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3579 3580
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3581
		complete(&rsp->barrier_completion);
3582 3583 3584
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
3585 3586 3587 3588 3589 3590 3591
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3592
	struct rcu_state *rsp = type;
3593
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3594

3595
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3596
	atomic_inc(&rsp->barrier_cpu_count);
3597
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3598 3599 3600 3601 3602 3603
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3604
static void _rcu_barrier(struct rcu_state *rsp)
3605
{
3606 3607
	int cpu;
	struct rcu_data *rdp;
3608
	unsigned long snap = READ_ONCE(rsp->n_barrier_done);
3609
	unsigned long snap_done;
3610

3611
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3612

3613
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3614
	mutex_lock(&rsp->barrier_mutex);
3615

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
3628
	snap_done = rsp->n_barrier_done;
3629
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641

	/*
	 * If the value in snap is odd, we needed to wait for the current
	 * rcu_barrier() to complete, then wait for the next one, in other
	 * words, we need the value of snap_done to be three larger than
	 * the value of snap.  On the other hand, if the value in snap is
	 * even, we only had to wait for the next rcu_barrier() to complete,
	 * in other words, we need the value of snap_done to be only two
	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
	 * this for us (thank you, Linus!).
	 */
	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3642
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3643 3644 3645 3646 3647 3648 3649
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
3650
	 * WRITE_ONCE() to prevent the compiler from speculating
3651 3652
	 * the increment to precede the early-exit check.
	 */
3653
	WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3654
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3655
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3656
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3657

3658
	/*
3659 3660
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3661 3662
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3663
	 */
3664
	init_completion(&rsp->barrier_completion);
3665
	atomic_set(&rsp->barrier_cpu_count, 1);
3666
	get_online_cpus();
3667 3668

	/*
3669 3670 3671
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3672
	 */
P
Paul E. McKenney 已提交
3673
	for_each_possible_cpu(cpu) {
3674
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3675
			continue;
3676
		rdp = per_cpu_ptr(rsp->rda, cpu);
3677
		if (rcu_is_nocb_cpu(cpu)) {
3678 3679 3680 3681 3682 3683
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
						   rsp->n_barrier_done);
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
						   rsp->n_barrier_done);
3684
				smp_mb__before_atomic();
3685 3686 3687 3688
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
3689
		} else if (READ_ONCE(rdp->qlen)) {
3690 3691
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
3692
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3693
		} else {
3694 3695
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
3696 3697
		}
	}
3698
	put_online_cpus();
3699 3700 3701 3702 3703

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3704
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3705
		complete(&rsp->barrier_completion);
3706

3707 3708
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
3709
	WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3710
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3711
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3712 3713
	smp_mb(); /* Keep increment before caller's subsequent code. */

3714
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3715
	wait_for_completion(&rsp->barrier_completion);
3716 3717

	/* Other rcu_barrier() invocations can now safely proceed. */
3718
	mutex_unlock(&rsp->barrier_mutex);
3719 3720 3721 3722 3723 3724 3725
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3726
	_rcu_barrier(&rcu_bh_state);
3727 3728 3729 3730 3731 3732 3733 3734
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3735
	_rcu_barrier(&rcu_sched_state);
3736 3737 3738
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
		raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
		rnp->qsmaskinit |= mask;
		raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
	}
}

3761
/*
3762
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3763
 */
3764 3765
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3766 3767
{
	unsigned long flags;
3768
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3769 3770 3771
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3772
	raw_spin_lock_irqsave(&rnp->lock, flags);
3773 3774
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3775
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3776
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3777
	rdp->cpu = cpu;
3778
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3779
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
3780
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3781 3782 3783 3784 3785 3786 3787
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3788
 */
3789
static void
3790
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3791 3792 3793
{
	unsigned long flags;
	unsigned long mask;
3794
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3795 3796 3797
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3798
	raw_spin_lock_irqsave(&rnp->lock, flags);
3799
	rdp->beenonline = 1;	 /* We have now been online. */
3800 3801
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3802
	rdp->blimit = blimit;
3803 3804
	if (!rdp->nxtlist)
		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3805
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3806
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3807 3808
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
3809
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3810

3811 3812 3813 3814 3815
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
3816 3817
	rnp = rdp->mynode;
	mask = rdp->grpmask;
3818 3819 3820 3821 3822 3823
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
	smp_mb__after_unlock_lock();
	rnp->qsmaskinitnext |= mask;
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
	rdp->passed_quiesce = false;
3824
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3825 3826 3827
	rdp->qs_pending = false;
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3828 3829
}

3830
static void rcu_prepare_cpu(int cpu)
3831
{
3832 3833 3834
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3835
		rcu_init_percpu_data(cpu, rsp);
3836 3837 3838
}

/*
3839
 * Handle CPU online/offline notification events.
3840
 */
3841 3842
int rcu_cpu_notify(struct notifier_block *self,
		   unsigned long action, void *hcpu)
3843 3844
{
	long cpu = (long)hcpu;
3845
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3846
	struct rcu_node *rnp = rdp->mynode;
3847
	struct rcu_state *rsp;
3848 3849 3850 3851

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
3852 3853
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
3854
		rcu_spawn_all_nocb_kthreads(cpu);
3855 3856
		break;
	case CPU_ONLINE:
3857
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
3858
		rcu_boost_kthread_setaffinity(rnp, -1);
3859 3860
		break;
	case CPU_DOWN_PREPARE:
3861
		rcu_boost_kthread_setaffinity(rnp, cpu);
3862
		break;
3863 3864
	case CPU_DYING:
	case CPU_DYING_FROZEN:
3865 3866
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
3867
		break;
3868 3869 3870 3871 3872
	case CPU_DYING_IDLE:
		for_each_rcu_flavor(rsp) {
			rcu_cleanup_dying_idle_cpu(cpu, rsp);
		}
		break;
3873 3874 3875 3876
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
3877
		for_each_rcu_flavor(rsp) {
3878
			rcu_cleanup_dead_cpu(cpu, rsp);
3879 3880
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
3881 3882 3883 3884
		break;
	default:
		break;
	}
3885
	return NOTIFY_OK;
3886 3887
}

3888 3889 3890 3891 3892 3893 3894
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3895
			rcu_expedite_gp();
3896 3897 3898
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
3899 3900
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
3901 3902 3903 3904 3905 3906 3907
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3908
/*
3909
 * Spawn the kthreads that handle each RCU flavor's grace periods.
3910 3911 3912 3913
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
3914
	int kthread_prio_in = kthread_prio;
3915 3916
	struct rcu_node *rnp;
	struct rcu_state *rsp;
3917
	struct sched_param sp;
3918 3919
	struct task_struct *t;

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

3931
	rcu_scheduler_fully_active = 1;
3932
	for_each_rcu_flavor(rsp) {
3933
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3934 3935 3936 3937
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
3938 3939 3940 3941 3942
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
		wake_up_process(t);
3943 3944
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
3945
	rcu_spawn_nocb_kthreads();
3946
	rcu_spawn_boost_kthreads();
3947 3948 3949 3950
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

3966 3967
/*
 * Compute the per-level fanout, either using the exact fanout specified
3968
 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
3969 3970 3971 3972 3973
 */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

3974
	if (rcu_fanout_exact) {
3975 3976
		rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
		for (i = rcu_num_lvls - 2; i >= 0; i--)
3977
			rsp->levelspread[i] = RCU_FANOUT;
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
	} else {
		int ccur;
		int cprv;

		cprv = nr_cpu_ids;
		for (i = rcu_num_lvls - 1; i >= 0; i--) {
			ccur = rsp->levelcnt[i];
			rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
			cprv = ccur;
		}
3988 3989 3990 3991 3992 3993
	}
}

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3994 3995
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3996
{
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	static const char * const buf[] = {
		"rcu_node_0",
		"rcu_node_1",
		"rcu_node_2",
		"rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static const char * const fqs[] = {
		"rcu_node_fqs_0",
		"rcu_node_fqs_1",
		"rcu_node_fqs_2",
		"rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
4007
	static u8 fl_mask = 0x1;
4008 4009 4010 4011 4012
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4013 4014
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

4015 4016 4017
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4018

4019 4020
	/* Initialize the level-tracking arrays. */

4021 4022 4023
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
4024 4025
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);
4026 4027
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
4028 4029 4030

	/* Initialize the elements themselves, starting from the leaves. */

4031
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4032 4033 4034
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
4035
			raw_spin_lock_init(&rnp->lock);
4036 4037
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
4038 4039 4040
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4041 4042
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4043 4044 4045 4046
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4047 4048
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
4060
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4061
			rcu_init_one_nocb(rnp);
4062 4063
		}
	}
4064

4065
	init_waitqueue_head(&rsp->gp_wq);
4066
	rnp = rsp->level[rcu_num_lvls - 1];
4067
	for_each_possible_cpu(i) {
4068
		while (i > rnp->grphi)
4069
			rnp++;
4070
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4071 4072
		rcu_boot_init_percpu_data(i, rsp);
	}
4073
	list_add(&rsp->flavors, &rcu_struct_flavors);
4074 4075
}

4076 4077
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4078
 * replace the definitions in tree.h because those are needed to size
4079 4080 4081 4082
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4083
	ulong d;
4084 4085
	int i;
	int j;
4086
	int n = nr_cpu_ids;
4087 4088
	int rcu_capacity[MAX_RCU_LVLS + 1];

4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4102
	/* If the compile-time values are accurate, just leave. */
4103
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4104
	    nr_cpu_ids == NR_CPUS)
4105
		return;
4106 4107
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4108 4109 4110 4111 4112 4113 4114 4115 4116

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
4117
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4118 4119 4120 4121 4122 4123 4124 4125 4126

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
4127
	if (rcu_fanout_leaf < RCU_FANOUT_LEAF ||
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4175
void __init rcu_init(void)
4176
{
P
Paul E. McKenney 已提交
4177
	int cpu;
4178

4179 4180
	rcu_early_boot_tests();

4181
	rcu_bootup_announce();
4182
	rcu_init_geometry();
4183
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4184
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4185 4186
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4187
	__rcu_init_preempt();
J
Jiang Fang 已提交
4188
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4189 4190 4191 4192 4193 4194 4195

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
4196
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
4197 4198
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4199 4200
}

4201
#include "tree_plugin.h"