tree.c 142.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/trace_events.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71 72 73 74 75 76 77 78
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
79 80
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
81
static char sname##_varname[] = #sname; \
82 83 84 85 86 87 88 89 90
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
91
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92
struct rcu_state sname##_state = { \
93
	.level = { &sname##_state.node[0] }, \
94
	.rda = &sname##_data, \
95
	.call = cr, \
96
	.gp_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
97 98
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
99
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 101
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
102
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103
	.name = RCU_STATE_NAME(sname), \
104
	.abbr = sabbr, \
105
}
106

107 108
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109

110
static struct rcu_state *const rcu_state_p;
111
LIST_HEAD(rcu_struct_flavors);
112

113 114 115
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
116 117 118
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
119 120
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121
module_param(rcu_fanout_leaf, int, 0444);
122
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 124
/* Number of rcu_nodes at specified level. */
static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 126
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

127 128 129 130
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
131
 * optimize synchronize_sched() to a simple barrier().  When this variable
132 133 134 135
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
136 137 138
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

153 154
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
155
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
156 157
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
158 159
static void rcu_report_exp_rdp(struct rcu_state *rsp,
			       struct rcu_data *rdp, bool wake);
160

161
/* rcuc/rcub kthread realtime priority */
162
#ifdef CONFIG_RCU_KTHREAD_PRIO
163
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
164 165 166
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
167 168
module_param(kthread_prio, int, 0644);

169
/* Delay in jiffies for grace-period initialization delays, debug only. */
170 171 172 173 174 175 176 177

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

178 179
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
180
module_param(gp_init_delay, int, 0644);
181 182 183
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
184

185 186 187 188 189 190 191
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

192 193 194 195 196 197 198 199 200 201
/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
202

203 204 205 206 207 208 209 210 211 212 213 214
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

215 216 217 218 219 220 221 222
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
223
	return READ_ONCE(rnp->qsmaskinitnext);
224 225
}

226
/*
227
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
228 229 230 231 232
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
233
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
234 235
}

236
/*
237
 * Note a quiescent state.  Because we do not need to know
238
 * how many quiescent states passed, just if there was at least
239
 * one since the start of the grace period, this just sets a flag.
240
 * The caller must have disabled preemption.
241
 */
242
void rcu_sched_qs(void)
243
{
244 245 246 247 248 249 250 251
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
		return;
	trace_rcu_grace_period(TPS("rcu_sched"),
			       __this_cpu_read(rcu_sched_data.gpnum),
			       TPS("cpuqs"));
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
252 253 254
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(&rcu_sched_data), true);
255 256
}

257
void rcu_bh_qs(void)
258
{
259
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
260 261 262
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
263
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
264
	}
265
}
266

267 268 269 270 271 272 273 274 275 276 277
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

278 279 280
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

281 282 283 284 285 286 287 288 289 290
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
291 292
 *
 * The caller must have disabled interrupts.
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
 */
static void rcu_momentary_dyntick_idle(void)
{
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
314 315
		if (READ_ONCE(rdp->mynode->completed) !=
		    READ_ONCE(rdp->cond_resched_completed))
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
}

332 333 334
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
335
 * The caller must have disabled interrupts.
336
 */
337
void rcu_note_context_switch(void)
338
{
339
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
340
	trace_rcu_utilization(TPS("Start context switch"));
341
	rcu_sched_qs();
342
	rcu_preempt_note_context_switch();
343 344
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
345
	trace_rcu_utilization(TPS("End context switch"));
346
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
347
}
348
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
349

350
/*
351
 * Register a quiescent state for all RCU flavors.  If there is an
352 353
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
354
 * RCU flavors in desperate need of a quiescent state, which will normally
355 356
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
357 358 359 360 361
 *
 * The barrier() calls are redundant in the common case when this is
 * called externally, but just in case this is called from within this
 * file.
 *
362 363 364
 */
void rcu_all_qs(void)
{
365 366
	unsigned long flags;

367
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
368 369
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
		local_irq_save(flags);
370
		rcu_momentary_dyntick_idle();
371 372
		local_irq_restore(flags);
	}
373
	this_cpu_inc(rcu_qs_ctr);
374
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
375 376 377
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
378 379 380
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
381

E
Eric Dumazet 已提交
382 383 384
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
385

386 387
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
388 389 390 391

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

392 393 394 395 396 397 398
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

399
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
400
				  struct rcu_data *rdp);
401 402 403 404
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
405
static void force_quiescent_state(struct rcu_state *rsp);
406
static int rcu_pending(void);
407 408

/*
409
 * Return the number of RCU batches started thus far for debug & stats.
410
 */
411 412 413 414 415 416 417 418
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
419
 */
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
446
 */
447
unsigned long rcu_batches_completed_sched(void)
448
{
449
	return rcu_sched_state.completed;
450
}
451
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
452 453

/*
454
 * Return the number of RCU BH batches completed thus far for debug & stats.
455
 */
456
unsigned long rcu_batches_completed_bh(void)
457 458 459 460 461
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

462 463 464 465 466
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
467
	force_quiescent_state(rcu_state_p);
468 469 470
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

471 472 473 474 475
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
476
	force_quiescent_state(&rcu_bh_state);
477 478 479
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

480 481 482 483 484 485 486 487 488
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

504 505 506 507 508 509 510 511 512 513 514 515 516 517
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

518 519 520 521 522 523 524 525 526 527
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
528
		rsp = rcu_state_p;
529 530 531 532 533 534 535 536 537 538 539
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
540 541 542
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
543 544 545 546 547 548 549 550
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

551 552 553 554 555 556 557 558 559 560 561
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

562 563 564 565 566 567
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
568 569
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
570 571
}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
588
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
589 590
	int *fp = &rnp->need_future_gp[idx];

591
	return READ_ONCE(*fp);
592 593
}

594
/*
595 596 597
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
598
 */
599
static bool
600 601
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
602
	int i;
P
Paul E. McKenney 已提交
603

604
	if (rcu_gp_in_progress(rsp))
605
		return false;  /* No, a grace period is already in progress. */
606
	if (rcu_future_needs_gp(rsp))
607
		return true;  /* Yes, a no-CBs CPU needs one. */
608
	if (!rdp->nxttail[RCU_NEXT_TAIL])
609
		return false;  /* No, this is a no-CBs (or offline) CPU. */
610
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
611
		return true;  /* Yes, CPU has newly registered callbacks. */
612 613
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
614
		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
615
				 rdp->nxtcompleted[i]))
616 617
			return true;  /* Yes, CBs for future grace period. */
	return false; /* No grace period needed. */
618 619
}

620
/*
621
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
622 623 624 625 626
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
627
static void rcu_eqs_enter_common(long long oldval, bool user)
628
{
629 630
	struct rcu_state *rsp;
	struct rcu_data *rdp;
631
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
632

633
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
634 635
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
636 637
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
638

639
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
640
		ftrace_dump(DUMP_ORIG);
641 642 643
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
644
	}
645 646 647 648
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
649
	rcu_prepare_for_idle();
650
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
651
	smp_mb__before_atomic();  /* See above. */
652
	atomic_inc(&rdtp->dynticks);
653
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
654 655
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     atomic_read(&rdtp->dynticks) & 0x1);
656
	rcu_dynticks_task_enter();
657 658

	/*
659
	 * It is illegal to enter an extended quiescent state while
660 661
	 * in an RCU read-side critical section.
	 */
662 663 664 665 666 667
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal idle entry in RCU read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
			 "Illegal idle entry in RCU-bh read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
			 "Illegal idle entry in RCU-sched read-side critical section.");
668
}
669

670 671 672
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
673
 */
674
static void rcu_eqs_enter(bool user)
675
{
676
	long long oldval;
677 678
	struct rcu_dynticks *rdtp;

679
	rdtp = this_cpu_ptr(&rcu_dynticks);
680
	oldval = rdtp->dynticks_nesting;
681 682
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
683
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
684
		rdtp->dynticks_nesting = 0;
685
		rcu_eqs_enter_common(oldval, user);
686
	} else {
687
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
688
	}
689
}
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
705 706 707
	unsigned long flags;

	local_irq_save(flags);
708
	rcu_eqs_enter(false);
709
	rcu_sysidle_enter(0);
710
	local_irq_restore(flags);
711
}
712
EXPORT_SYMBOL_GPL(rcu_idle_enter);
713

714
#ifdef CONFIG_NO_HZ_FULL
715 716 717 718 719 720 721 722 723 724
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
725
	rcu_eqs_enter(1);
726
}
727
#endif /* CONFIG_NO_HZ_FULL */
728

729 730 731 732 733
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
734
 * sections can occur.  The caller must have disabled interrupts.
735
 *
736 737 738 739 740 741 742 743
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
744
 */
745
void rcu_irq_exit(void)
746
{
747
	long long oldval;
748 749
	struct rcu_dynticks *rdtp;

750
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
751
	rdtp = this_cpu_ptr(&rcu_dynticks);
752
	oldval = rdtp->dynticks_nesting;
753
	rdtp->dynticks_nesting--;
754 755
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting < 0);
756
	if (rdtp->dynticks_nesting)
757
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
758
	else
759 760
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
761 762 763 764 765 766 767 768 769 770 771
}

/*
 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 */
void rcu_irq_exit_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_exit();
772 773 774 775
	local_irq_restore(flags);
}

/*
776
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
777 778 779 780 781
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
782
static void rcu_eqs_exit_common(long long oldval, int user)
783
{
784 785
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

786
	rcu_dynticks_task_exit();
787
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
788 789
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
790
	smp_mb__after_atomic();  /* See above. */
791 792
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(atomic_read(&rdtp->dynticks) & 0x1));
793
	rcu_cleanup_after_idle();
794
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
795 796
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
797 798
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
799

800
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
801
				  oldval, rdtp->dynticks_nesting);
802
		ftrace_dump(DUMP_ORIG);
803 804 805
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
806 807 808
	}
}

809 810 811
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
812
 */
813
static void rcu_eqs_exit(bool user)
814 815 816 817
{
	struct rcu_dynticks *rdtp;
	long long oldval;

818
	rdtp = this_cpu_ptr(&rcu_dynticks);
819
	oldval = rdtp->dynticks_nesting;
820
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
821
	if (oldval & DYNTICK_TASK_NEST_MASK) {
822
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
823
	} else {
824
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
825
		rcu_eqs_exit_common(oldval, user);
826
	}
827
}
828 829 830 831 832 833 834 835 836 837 838 839 840 841

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
842 843 844
	unsigned long flags;

	local_irq_save(flags);
845
	rcu_eqs_exit(false);
846
	rcu_sysidle_exit(0);
847
	local_irq_restore(flags);
848
}
849
EXPORT_SYMBOL_GPL(rcu_idle_exit);
850

851
#ifdef CONFIG_NO_HZ_FULL
852 853 854 855 856 857 858 859
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
860
	rcu_eqs_exit(1);
861
}
862
#endif /* CONFIG_NO_HZ_FULL */
863

864 865 866 867 868
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
869
 * sections can occur.  The caller must have disabled interrupts.
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	struct rcu_dynticks *rdtp;
	long long oldval;

888
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
889
	rdtp = this_cpu_ptr(&rcu_dynticks);
890 891
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
892 893
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
894
	if (oldval)
895
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
896
	else
897 898
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
899 900 901 902 903 904 905 906 907 908 909
}

/*
 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 */
void rcu_irq_enter_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_enter();
910 911 912 913 914 915
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
916 917 918 919 920
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
921 922 923
 */
void rcu_nmi_enter(void)
{
924
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
925
	int incby = 2;
926

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
948 949 950 951 952
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
953 954 955 956
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
957 958 959
 */
void rcu_nmi_exit(void)
{
960
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
961

962 963 964 965 966 967 968 969 970 971 972 973 974 975
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
976
		return;
977 978 979 980
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
981
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
982
	smp_mb__before_atomic();  /* See above. */
983
	atomic_inc(&rdtp->dynticks);
984
	smp_mb__after_atomic();  /* Force delay to next write. */
985
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
986 987 988
}

/**
989 990 991 992 993 994 995
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
996
bool notrace __rcu_is_watching(void)
997 998 999 1000 1001 1002
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1003
 *
1004
 * If the current CPU is in its idle loop and is neither in an interrupt
1005
 * or NMI handler, return true.
1006
 */
1007
bool notrace rcu_is_watching(void)
1008
{
1009
	bool ret;
1010

1011
	preempt_disable_notrace();
1012
	ret = __rcu_is_watching();
1013
	preempt_enable_notrace();
1014
	return ret;
1015
}
1016
EXPORT_SYMBOL_GPL(rcu_is_watching);
1017

1018
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1019 1020 1021 1022 1023 1024 1025

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1037 1038 1039 1040 1041 1042
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1043 1044
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1045 1046 1047
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1048
		return true;
1049
	preempt_disable();
1050
	rdp = this_cpu_ptr(&rcu_sched_data);
1051
	rnp = rdp->mynode;
1052
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1053 1054 1055 1056 1057 1058
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1059
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1060

1061
/**
1062
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1063
 *
1064 1065 1066
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1067
 */
1068
static int rcu_is_cpu_rrupt_from_idle(void)
1069
{
1070
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1071 1072 1073 1074 1075
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1076
 * is in dynticks idle mode, which is an extended quiescent state.
1077
 */
1078 1079
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1080
{
1081
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1082
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1083 1084
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1085
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1086
				 rdp->mynode->gpnum))
1087
			WRITE_ONCE(rdp->gpwrap, true);
1088
		return 1;
1089
	}
1090
	return 0;
1091 1092 1093 1094 1095 1096
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1097
 * for this same CPU, or by virtue of having been offline.
1098
 */
1099 1100
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1101
{
1102
	unsigned int curr;
1103
	int *rcrmp;
1104
	unsigned int snap;
1105

1106 1107
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
1108 1109 1110 1111 1112 1113 1114 1115 1116

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1117
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1118
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1119 1120 1121 1122
		rdp->dynticks_fqs++;
		return 1;
	}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
1138
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1139 1140 1141
		rdp->offline_fqs++;
		return 1;
	}
1142 1143

	/*
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1163
	 */
1164 1165 1166
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1167
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1168 1169 1170
		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			WRITE_ONCE(rdp->cond_resched_completed,
				   READ_ONCE(rdp->mynode->completed));
1171
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1172 1173
			WRITE_ONCE(*rcrmp,
				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1174
		}
1175
		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1176 1177
	}

1178 1179 1180 1181 1182 1183
	/* And if it has been a really long time, kick the CPU as well. */
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
	    ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
		resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */

1184
	return 0;
1185 1186 1187 1188
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1189
	unsigned long j = jiffies;
1190
	unsigned long j1;
1191 1192 1193

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1194
	j1 = rcu_jiffies_till_stall_check();
1195
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1196
	rsp->jiffies_resched = j + j1 / 2;
1197
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1198 1199
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
/*
 * Convert a ->gp_state value to a character string.
 */
static const char *gp_state_getname(short gs)
{
	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
		return "???";
	return gp_state_names[gs];
}

1210 1211 1212 1213 1214 1215 1216 1217 1218
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1219
	gpa = READ_ONCE(rsp->gp_activity);
1220
	if (j - gpa > 2 * HZ) {
1221
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1222
		       rsp->name, j - gpa,
1223
		       rsp->gpnum, rsp->completed,
1224 1225
		       rsp->gp_flags,
		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1226
		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1227 1228 1229
		if (rsp->gp_kthread)
			sched_show_task(rsp->gp_kthread);
	}
1230 1231
}

1232
/*
1233
 * Dump stacks of all tasks running on stalled CPUs.
1234 1235 1236 1237 1238 1239 1240 1241
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
1242
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1243 1244 1245 1246 1247
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
B
Boqun Feng 已提交
1248
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1249 1250 1251
	}
}

1252
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1253 1254 1255 1256
{
	int cpu;
	long delta;
	unsigned long flags;
1257 1258
	unsigned long gpa;
	unsigned long j;
1259
	int ndetected = 0;
1260
	struct rcu_node *rnp = rcu_get_root(rsp);
1261
	long totqlen = 0;
1262 1263 1264

	/* Only let one CPU complain about others per time interval. */

1265
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1266
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1267
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
B
Boqun Feng 已提交
1268
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1269 1270
		return;
	}
1271 1272
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1273
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1274

1275 1276 1277 1278 1279
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1280
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1281
	       rsp->name);
1282
	print_cpu_stall_info_begin();
1283
	rcu_for_each_leaf_node(rsp, rnp) {
1284
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1285
		ndetected += rcu_print_task_stall(rnp);
1286 1287 1288 1289 1290 1291 1292 1293
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
B
Boqun Feng 已提交
1294
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1295
	}
1296 1297

	print_cpu_stall_info_end();
1298 1299
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1300
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1301
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1302
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1303
	if (ndetected) {
1304
		rcu_dump_cpu_stacks(rsp);
1305
	} else {
1306 1307
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1308 1309 1310
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1311
			gpa = READ_ONCE(rsp->gp_activity);
1312
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1313
			       rsp->name, j - gpa, j, gpa,
1314 1315
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1316 1317 1318 1319
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1320

1321
	/* Complain about tasks blocking the grace period. */
1322 1323
	rcu_print_detail_task_stall(rsp);

1324 1325
	rcu_check_gp_kthread_starvation(rsp);

1326
	force_quiescent_state(rsp);  /* Kick them all. */
1327 1328 1329 1330
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1331
	int cpu;
1332 1333
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1334
	long totqlen = 0;
1335

1336 1337 1338 1339 1340
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1341
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1342 1343 1344
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1345 1346
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1347 1348 1349
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1350 1351 1352

	rcu_check_gp_kthread_starvation(rsp);

1353
	rcu_dump_cpu_stacks(rsp);
1354

1355
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1356 1357 1358
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1359
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1360

1361 1362 1363 1364 1365 1366 1367 1368
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1369 1370 1371 1372
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1373 1374 1375
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1376 1377
	unsigned long j;
	unsigned long js;
1378 1379
	struct rcu_node *rnp;

1380
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1381
		return;
1382
	j = jiffies;
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1401
	gpnum = READ_ONCE(rsp->gpnum);
1402
	smp_rmb(); /* Pick up ->gpnum first... */
1403
	js = READ_ONCE(rsp->jiffies_stall);
1404
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1405
	gps = READ_ONCE(rsp->gp_start);
1406
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1407
	completed = READ_ONCE(rsp->completed);
1408 1409 1410 1411
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1412
	rnp = rdp->mynode;
1413
	if (rcu_gp_in_progress(rsp) &&
1414
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1415 1416 1417 1418

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1419 1420
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1421

1422
		/* They had a few time units to dump stack, so complain. */
1423
		print_other_cpu_stall(rsp, gpnum);
1424 1425 1426
	}
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1438 1439 1440
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1441
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1442 1443
}

1444
/*
1445 1446 1447
 * Initialize the specified rcu_data structure's default callback list
 * to empty.  The default callback list is the one that is not used by
 * no-callbacks CPUs.
1448
 */
1449
static void init_default_callback_list(struct rcu_data *rdp)
1450 1451 1452 1453 1454 1455 1456 1457
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	if (init_nocb_callback_list(rdp))
		return;
	init_default_callback_list(rdp);
}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1497 1498 1499 1500 1501
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1502
				unsigned long c, const char *s)
1503 1504 1505 1506 1507 1508 1509 1510 1511
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1512 1513
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1514 1515 1516
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1517 1518 1519
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1520 1521 1522
{
	unsigned long c;
	int i;
1523
	bool ret = false;
1524 1525 1526 1527 1528 1529 1530
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1531
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1532
	if (rnp->need_future_gp[c & 0x1]) {
1533
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1534
		goto out;
1535 1536 1537 1538 1539 1540 1541
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1542 1543 1544 1545 1546 1547 1548
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1549 1550
	 */
	if (rnp->gpnum != rnp->completed ||
1551
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1552
		rnp->need_future_gp[c & 0x1]++;
1553
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1554
		goto out;
1555 1556 1557 1558 1559 1560 1561
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1562 1563
	if (rnp != rnp_root)
		raw_spin_lock_rcu_node(rnp_root);
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1581
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1582 1583 1584 1585 1586 1587 1588 1589
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1590
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1591
	} else {
1592
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1593
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1594 1595 1596
	}
unlock_out:
	if (rnp != rnp_root)
B
Boqun Feng 已提交
1597
		raw_spin_unlock_rcu_node(rnp_root);
1598 1599 1600 1601
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1619 1620
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1621 1622 1623
	return needmore;
}

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1634
	    !READ_ONCE(rsp->gp_flags) ||
1635 1636 1637 1638 1639
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1640 1641 1642 1643 1644 1645 1646
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1647 1648
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1649 1650 1651
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1652
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1653 1654 1655 1656
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1657
	bool ret;
1658 1659 1660

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1661
		return false;
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1690
		return false;
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1701
	/* Record any needed additional grace periods. */
1702
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1703 1704 1705

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1706
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1707
	else
1708
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1709
	return ret;
1710 1711 1712 1713 1714 1715 1716 1717
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1718
 * Returns true if the RCU grace-period kthread needs to be awakened.
1719 1720 1721
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1722
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1723 1724 1725 1726 1727 1728
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1729
		return false;
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1753
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1754 1755
}

1756
/*
1757 1758 1759
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1760
 * Returns true if the grace-period kthread needs to be awakened.
1761
 */
1762 1763
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1764
{
1765 1766
	bool ret;

1767
	/* Handle the ends of any preceding grace periods first. */
1768
	if (rdp->completed == rnp->completed &&
1769
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1770

1771
		/* No grace period end, so just accelerate recent callbacks. */
1772
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1773

1774 1775 1776
	} else {

		/* Advance callbacks. */
1777
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1778 1779 1780

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1781
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1782
	}
1783

1784
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1785 1786 1787 1788 1789 1790
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1791
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1792
		rdp->cpu_no_qs.b.norm = true;
1793
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1794
		rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1795
		zero_cpu_stall_ticks(rdp);
1796
		WRITE_ONCE(rdp->gpwrap, false);
1797
	}
1798
	return ret;
1799 1800
}

1801
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1802 1803
{
	unsigned long flags;
1804
	bool needwake;
1805 1806 1807 1808
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1809 1810 1811
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1812
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1813 1814 1815
		local_irq_restore(flags);
		return;
	}
1816
	needwake = __note_gp_changes(rsp, rnp, rdp);
B
Boqun Feng 已提交
1817
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1818 1819
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1820 1821
}

1822 1823 1824 1825 1826 1827 1828
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

1829
/*
1830
 * Initialize a new grace period.  Return false if no grace period required.
1831
 */
1832
static bool rcu_gp_init(struct rcu_state *rsp)
1833
{
1834
	unsigned long oldmask;
1835
	struct rcu_data *rdp;
1836
	struct rcu_node *rnp = rcu_get_root(rsp);
1837

1838
	WRITE_ONCE(rsp->gp_activity, jiffies);
1839
	raw_spin_lock_irq_rcu_node(rnp);
1840
	if (!READ_ONCE(rsp->gp_flags)) {
1841
		/* Spurious wakeup, tell caller to go back to sleep.  */
B
Boqun Feng 已提交
1842
		raw_spin_unlock_irq_rcu_node(rnp);
1843
		return false;
1844
	}
1845
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1846

1847 1848 1849 1850 1851
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
B
Boqun Feng 已提交
1852
		raw_spin_unlock_irq_rcu_node(rnp);
1853
		return false;
1854 1855 1856
	}

	/* Advance to a new grace period and initialize state. */
1857
	record_gp_stall_check_time(rsp);
1858 1859
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1860
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
B
Boqun Feng 已提交
1861
	raw_spin_unlock_irq_rcu_node(rnp);
1862

1863 1864 1865 1866 1867 1868 1869
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
1870
		rcu_gp_slow(rsp, gp_preinit_delay);
1871
		raw_spin_lock_irq_rcu_node(rnp);
1872 1873 1874
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
B
Boqun Feng 已提交
1875
			raw_spin_unlock_irq_rcu_node(rnp);
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

B
Boqun Feng 已提交
1909
		raw_spin_unlock_irq_rcu_node(rnp);
1910
	}
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1926
		rcu_gp_slow(rsp, gp_init_delay);
1927
		raw_spin_lock_irq_rcu_node(rnp);
1928
		rdp = this_cpu_ptr(rsp->rda);
1929 1930
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1931
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1932
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1933
			WRITE_ONCE(rnp->completed, rsp->completed);
1934
		if (rnp == rdp->mynode)
1935
			(void)__note_gp_changes(rsp, rnp, rdp);
1936 1937 1938 1939
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
B
Boqun Feng 已提交
1940
		raw_spin_unlock_irq_rcu_node(rnp);
1941
		cond_resched_rcu_qs();
1942
		WRITE_ONCE(rsp->gp_activity, jiffies);
1943
	}
1944

1945
	return true;
1946
}
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
/*
 * Helper function for wait_event_interruptible_timeout() wakeup
 * at force-quiescent-state time.
 */
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rsp->gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

1968 1969 1970
/*
 * Do one round of quiescent-state forcing.
 */
1971
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
1972
{
1973 1974
	bool isidle = false;
	unsigned long maxj;
1975 1976
	struct rcu_node *rnp = rcu_get_root(rsp);

1977
	WRITE_ONCE(rsp->gp_activity, jiffies);
1978
	rsp->n_force_qs++;
1979
	if (first_time) {
1980
		/* Collect dyntick-idle snapshots. */
1981
		if (is_sysidle_rcu_state(rsp)) {
1982
			isidle = true;
1983 1984
			maxj = jiffies - ULONG_MAX / 4;
		}
1985 1986
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1987
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1988 1989
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1990
		isidle = true;
1991
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1992 1993
	}
	/* Clear flag to prevent immediate re-entry. */
1994
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1995
		raw_spin_lock_irq_rcu_node(rnp);
1996 1997
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
1998
		raw_spin_unlock_irq_rcu_node(rnp);
1999 2000 2001
	}
}

2002 2003 2004
/*
 * Clean up after the old grace period.
 */
2005
static void rcu_gp_cleanup(struct rcu_state *rsp)
2006 2007
{
	unsigned long gp_duration;
2008
	bool needgp = false;
2009
	int nocb = 0;
2010 2011
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
2012

2013
	WRITE_ONCE(rsp->gp_activity, jiffies);
2014
	raw_spin_lock_irq_rcu_node(rnp);
2015 2016 2017
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
2018

2019 2020 2021 2022 2023 2024 2025 2026
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
B
Boqun Feng 已提交
2027
	raw_spin_unlock_irq_rcu_node(rnp);
2028

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2039
		raw_spin_lock_irq_rcu_node(rnp);
2040 2041
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
2042
		WRITE_ONCE(rnp->completed, rsp->gpnum);
2043 2044
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
2045
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2046
		/* smp_mb() provided by prior unlock-lock pair. */
2047
		nocb += rcu_future_gp_cleanup(rsp, rnp);
B
Boqun Feng 已提交
2048
		raw_spin_unlock_irq_rcu_node(rnp);
2049
		cond_resched_rcu_qs();
2050
		WRITE_ONCE(rsp->gp_activity, jiffies);
2051
		rcu_gp_slow(rsp, gp_cleanup_delay);
2052
	}
2053
	rnp = rcu_get_root(rsp);
2054
	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2055
	rcu_nocb_gp_set(rnp, nocb);
2056

2057
	/* Declare grace period done. */
2058
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2059
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2060
	rsp->gp_state = RCU_GP_IDLE;
2061
	rdp = this_cpu_ptr(rsp->rda);
2062 2063 2064
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2065
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2066
		trace_rcu_grace_period(rsp->name,
2067
				       READ_ONCE(rsp->gpnum),
2068 2069
				       TPS("newreq"));
	}
B
Boqun Feng 已提交
2070
	raw_spin_unlock_irq_rcu_node(rnp);
2071 2072 2073 2074 2075 2076 2077
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2078
	bool first_gp_fqs;
2079
	int gf;
2080
	unsigned long j;
2081
	int ret;
2082 2083 2084
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2085
	rcu_bind_gp_kthread();
2086 2087 2088 2089
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2090
			trace_rcu_grace_period(rsp->name,
2091
					       READ_ONCE(rsp->gpnum),
2092
					       TPS("reqwait"));
2093
			rsp->gp_state = RCU_GP_WAIT_GPS;
2094
			wait_event_interruptible(rsp->gp_wq,
2095
						 READ_ONCE(rsp->gp_flags) &
2096
						 RCU_GP_FLAG_INIT);
2097
			rsp->gp_state = RCU_GP_DONE_GPS;
2098
			/* Locking provides needed memory barrier. */
2099
			if (rcu_gp_init(rsp))
2100
				break;
2101
			cond_resched_rcu_qs();
2102
			WRITE_ONCE(rsp->gp_activity, jiffies);
2103
			WARN_ON(signal_pending(current));
2104
			trace_rcu_grace_period(rsp->name,
2105
					       READ_ONCE(rsp->gpnum),
2106
					       TPS("reqwaitsig"));
2107
		}
2108

2109
		/* Handle quiescent-state forcing. */
2110
		first_gp_fqs = true;
2111 2112 2113 2114 2115
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2116
		ret = 0;
2117
		for (;;) {
2118 2119
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
2120
			trace_rcu_grace_period(rsp->name,
2121
					       READ_ONCE(rsp->gpnum),
2122
					       TPS("fqswait"));
2123
			rsp->gp_state = RCU_GP_WAIT_FQS;
2124
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
2125
					rcu_gp_fqs_check_wake(rsp, &gf), j);
2126
			rsp->gp_state = RCU_GP_DOING_FQS;
2127
			/* Locking provides needed memory barriers. */
2128
			/* If grace period done, leave loop. */
2129
			if (!READ_ONCE(rnp->qsmask) &&
2130
			    !rcu_preempt_blocked_readers_cgp(rnp))
2131
				break;
2132
			/* If time for quiescent-state forcing, do it. */
2133 2134
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2135
				trace_rcu_grace_period(rsp->name,
2136
						       READ_ONCE(rsp->gpnum),
2137
						       TPS("fqsstart"));
2138 2139
				rcu_gp_fqs(rsp, first_gp_fqs);
				first_gp_fqs = false;
2140
				trace_rcu_grace_period(rsp->name,
2141
						       READ_ONCE(rsp->gpnum),
2142
						       TPS("fqsend"));
2143
				cond_resched_rcu_qs();
2144
				WRITE_ONCE(rsp->gp_activity, jiffies);
2145 2146
			} else {
				/* Deal with stray signal. */
2147
				cond_resched_rcu_qs();
2148
				WRITE_ONCE(rsp->gp_activity, jiffies);
2149
				WARN_ON(signal_pending(current));
2150
				trace_rcu_grace_period(rsp->name,
2151
						       READ_ONCE(rsp->gpnum),
2152
						       TPS("fqswaitsig"));
2153
			}
2154 2155 2156 2157 2158 2159 2160 2161
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
2162
		}
2163 2164

		/* Handle grace-period end. */
2165
		rsp->gp_state = RCU_GP_CLEANUP;
2166
		rcu_gp_cleanup(rsp);
2167
		rsp->gp_state = RCU_GP_CLEANED;
2168 2169 2170
	}
}

2171 2172 2173
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2174
 * the root node's ->lock and hard irqs must be disabled.
2175 2176 2177 2178
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2179 2180
 *
 * Returns true if the grace-period kthread must be awakened.
2181
 */
2182
static bool
2183 2184
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2185
{
2186
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2187
		/*
2188
		 * Either we have not yet spawned the grace-period
2189 2190
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2191
		 * Either way, don't start a new grace period.
2192
		 */
2193
		return false;
2194
	}
2195 2196
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2197
			       TPS("newreq"));
2198

2199 2200
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2201
	 * could cause possible deadlocks with the rq->lock. Defer
2202
	 * the wakeup to our caller.
2203
	 */
2204
	return true;
2205 2206
}

2207 2208 2209 2210 2211 2212
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2213 2214
 *
 * Returns true if the grace-period kthread needs to be awakened.
2215
 */
2216
static bool rcu_start_gp(struct rcu_state *rsp)
2217 2218 2219
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2220
	bool ret = false;
2221 2222 2223 2224 2225 2226 2227 2228 2229

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2230 2231 2232
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2233 2234
}

2235
/*
2236 2237 2238 2239 2240 2241 2242
 * Report a full set of quiescent states to the specified rcu_state data
 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
 * kthread if another grace period is required.  Whether we wake
 * the grace-period kthread or it awakens itself for the next round
 * of quiescent-state forcing, that kthread will clean up after the
 * just-completed grace period.  Note that the caller must hold rnp->lock,
 * which is released before return.
2243
 */
P
Paul E. McKenney 已提交
2244
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2245
	__releases(rcu_get_root(rsp)->lock)
2246
{
2247
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2248
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2249
	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2250
	rcu_gp_kthread_wake(rsp);
2251 2252
}

2253
/*
P
Paul E. McKenney 已提交
2254 2255 2256
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2257 2258 2259 2260 2261
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2262 2263
 */
static void
P
Paul E. McKenney 已提交
2264
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2265
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2266 2267
	__releases(rnp->lock)
{
2268
	unsigned long oldmask = 0;
2269 2270
	struct rcu_node *rnp_c;

2271 2272
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2273
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2274

2275 2276 2277 2278
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
B
Boqun Feng 已提交
2279
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2280 2281
			return;
		}
2282
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2283
		rnp->qsmask &= ~mask;
2284 2285 2286 2287
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2288
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2289 2290

			/* Other bits still set at this level, so done. */
B
Boqun Feng 已提交
2291
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2292 2293 2294 2295 2296 2297 2298 2299 2300
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
B
Boqun Feng 已提交
2301
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2302
		rnp_c = rnp;
2303
		rnp = rnp->parent;
2304
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2305
		oldmask = rnp_c->qsmask;
2306 2307 2308 2309
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2310
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2311
	 * to clean up and start the next grace period if one is needed.
2312
	 */
P
Paul E. McKenney 已提交
2313
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2314 2315
}

2316 2317 2318 2319 2320 2321 2322
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2323
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2324 2325 2326
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2327
	unsigned long gps;
2328 2329 2330
	unsigned long mask;
	struct rcu_node *rnp_p;

2331 2332
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
B
Boqun Feng 已提交
2333
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2334 2335 2336 2337 2338 2339
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2340 2341
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2342 2343 2344 2345 2346
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2347 2348
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2349
	mask = rnp->grpmask;
B
Boqun Feng 已提交
2350
	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2351
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2352
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2353 2354
}

2355
/*
P
Paul E. McKenney 已提交
2356 2357 2358 2359 2360 2361 2362
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
2363 2364
 */
static void
2365
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2366 2367 2368
{
	unsigned long flags;
	unsigned long mask;
2369
	bool needwake;
2370 2371 2372
	struct rcu_node *rnp;

	rnp = rdp->mynode;
2373
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2374
	if ((rdp->cpu_no_qs.b.norm &&
2375 2376 2377
	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
	    rdp->gpwrap) {
2378 2379

		/*
2380 2381 2382 2383
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2384
		 */
2385
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2386
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
B
Boqun Feng 已提交
2387
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2388 2389 2390 2391
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
B
Boqun Feng 已提交
2392
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2393
	} else {
2394
		rdp->core_needs_qs = false;
2395 2396 2397 2398 2399

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2400
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2401

2402 2403
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2404 2405
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2418 2419
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2420 2421 2422 2423 2424

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
2425
	if (!rdp->core_needs_qs)
2426 2427 2428 2429 2430 2431
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2432
	if (rdp->cpu_no_qs.b.norm &&
2433
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2434 2435
		return;

P
Paul E. McKenney 已提交
2436 2437 2438 2439
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2440
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2441 2442
}

2443
/*
2444 2445
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2446
 * ->orphan_lock.
2447
 */
2448 2449 2450
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2451
{
P
Paul E. McKenney 已提交
2452
	/* No-CBs CPUs do not have orphanable callbacks. */
2453
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2454 2455
		return;

2456 2457
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2458 2459
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2460
	 */
2461
	if (rdp->nxtlist != NULL) {
2462 2463 2464
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2465
		rdp->qlen_lazy = 0;
2466
		WRITE_ONCE(rdp->qlen, 0);
2467 2468 2469
	}

	/*
2470 2471 2472 2473 2474 2475 2476
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2477
	 */
2478 2479 2480 2481
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2482 2483 2484
	}

	/*
2485 2486 2487
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2488
	 */
2489
	if (rdp->nxtlist != NULL) {
2490 2491
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2492
	}
2493

2494 2495 2496 2497
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2498
	init_callback_list(rdp);
2499
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2500 2501 2502 2503
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2504
 * orphanage.  The caller must hold the ->orphan_lock.
2505
 */
2506
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2507 2508
{
	int i;
2509
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2510

P
Paul E. McKenney 已提交
2511
	/* No-CBs CPUs are handled specially. */
2512 2513
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2514 2515
		return;

2516 2517 2518 2519
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2520 2521
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

2560 2561 2562
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2563
	RCU_TRACE(mask = rdp->grpmask);
2564 2565
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2566
			       TPS("cpuofl"));
2567 2568
}

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2591 2592
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2593 2594 2595 2596 2597 2598
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
2599
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2600
		rnp->qsmaskinit &= ~mask;
2601
		rnp->qsmask &= ~mask;
2602
		if (rnp->qsmaskinit) {
B
Boqun Feng 已提交
2603 2604
			raw_spin_unlock_rcu_node(rnp);
			/* irqs remain disabled. */
2605 2606
			return;
		}
B
Boqun Feng 已提交
2607
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2608 2609 2610
	}
}

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
/*
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

2623 2624 2625
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2626 2627
	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
2628
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
2629
	rnp->qsmaskinitnext &= ~mask;
B
Boqun Feng 已提交
2630
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2631 2632
}

2633
/*
2634
 * The CPU has been completely removed, and some other CPU is reporting
2635 2636
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2637 2638
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2639
 */
2640
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2641
{
2642
	unsigned long flags;
2643
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2644
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2645

2646 2647 2648
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2649
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2650
	rcu_boost_kthread_setaffinity(rnp, -1);
2651

2652
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2653
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2654
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2655
	rcu_adopt_orphan_cbs(rsp, flags);
2656
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2657

2658 2659 2660
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2661 2662 2663 2664 2665 2666
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2667
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2668 2669 2670
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2671 2672
	long bl, count, count_lazy;
	int i;
2673

2674
	/* If no callbacks are ready, just return. */
2675
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2676
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2677
		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2678 2679
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2680
		return;
2681
	}
2682 2683 2684 2685 2686 2687

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2688
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2689
	bl = rdp->blimit;
2690
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2691 2692 2693 2694
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2695 2696 2697
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2698 2699 2700
	local_irq_restore(flags);

	/* Invoke callbacks. */
2701
	count = count_lazy = 0;
2702 2703 2704
	while (list) {
		next = list->next;
		prefetch(next);
2705
		debug_rcu_head_unqueue(list);
2706 2707
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2708
		list = next;
2709 2710 2711 2712
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2713 2714 2715 2716
			break;
	}

	local_irq_save(flags);
2717 2718 2719
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2720 2721 2722 2723 2724

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2725 2726 2727
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2728 2729 2730
			else
				break;
	}
2731 2732
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2733
	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2734
	rdp->n_cbs_invoked += count;
2735 2736 2737 2738 2739

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2740 2741 2742 2743 2744 2745
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2746
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2747

2748 2749
	local_irq_restore(flags);

2750
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2751
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2752
		invoke_rcu_core();
2753 2754 2755 2756 2757
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2758
 * Also schedule RCU core processing.
2759
 *
2760
 * This function must be called from hardirq context.  It is normally
2761 2762 2763
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2764
void rcu_check_callbacks(int user)
2765
{
2766
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2767
	increment_cpu_stall_ticks();
2768
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2769 2770 2771 2772 2773

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2774
		 * a quiescent state, so note it.
2775 2776
		 *
		 * No memory barrier is required here because both
2777 2778 2779
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2780 2781
		 */

2782 2783
		rcu_sched_qs();
		rcu_bh_qs();
2784 2785 2786 2787 2788 2789 2790

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2791
		 * critical section, so note it.
2792 2793
		 */

2794
		rcu_bh_qs();
2795
	}
2796
	rcu_preempt_check_callbacks();
2797
	if (rcu_pending())
2798
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2799 2800
	if (user)
		rcu_note_voluntary_context_switch(current);
2801
	trace_rcu_utilization(TPS("End scheduler-tick"));
2802 2803 2804 2805 2806
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2807 2808
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2809
 * The caller must have suppressed start of new grace periods.
2810
 */
2811 2812 2813 2814
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2815 2816 2817 2818 2819
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2820
	struct rcu_node *rnp;
2821

2822
	rcu_for_each_leaf_node(rsp, rnp) {
2823
		cond_resched_rcu_qs();
2824
		mask = 0;
2825
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2826
		if (rnp->qsmask == 0) {
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2850
		}
2851
		cpu = rnp->grplo;
2852
		bit = 1;
2853
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2854 2855 2856 2857
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2858
		}
2859
		if (mask != 0) {
2860 2861
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2862 2863
		} else {
			/* Nothing to do here, so just drop the lock. */
B
Boqun Feng 已提交
2864
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2865 2866 2867 2868 2869 2870 2871 2872
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2873
static void force_quiescent_state(struct rcu_state *rsp)
2874 2875
{
	unsigned long flags;
2876 2877 2878 2879 2880
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2881
	rnp = __this_cpu_read(rsp->rda->mynode);
2882
	for (; rnp != NULL; rnp = rnp->parent) {
2883
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2884 2885 2886 2887
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2888
			rsp->n_force_qs_lh++;
2889 2890 2891 2892 2893
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2894

2895
	/* Reached the root of the rcu_node tree, acquire lock. */
2896
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2897
	raw_spin_unlock(&rnp_old->fqslock);
2898
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2899
		rsp->n_force_qs_lh++;
B
Boqun Feng 已提交
2900
		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2901
		return;  /* Someone beat us to it. */
2902
	}
2903
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2904
	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2905
	rcu_gp_kthread_wake(rsp);
2906 2907 2908
}

/*
2909 2910 2911
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2912 2913
 */
static void
2914
__rcu_process_callbacks(struct rcu_state *rsp)
2915 2916
{
	unsigned long flags;
2917
	bool needwake;
2918
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2919

2920 2921
	WARN_ON_ONCE(rdp->beenonline == 0);

2922 2923 2924 2925
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2926
	local_irq_save(flags);
2927
	if (cpu_needs_another_gp(rsp, rdp)) {
2928
		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2929
		needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
2930
		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2931 2932
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2933 2934
	} else {
		local_irq_restore(flags);
2935 2936 2937
	}

	/* If there are callbacks ready, invoke them. */
2938
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2939
		invoke_rcu_callbacks(rsp, rdp);
2940 2941 2942

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2943 2944
}

2945
/*
2946
 * Do RCU core processing for the current CPU.
2947
 */
2948
static void rcu_process_callbacks(struct softirq_action *unused)
2949
{
2950 2951
	struct rcu_state *rsp;

2952 2953
	if (cpu_is_offline(smp_processor_id()))
		return;
2954
	trace_rcu_utilization(TPS("Start RCU core"));
2955 2956
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2957
	trace_rcu_utilization(TPS("End RCU core"));
2958 2959
}

2960
/*
2961 2962 2963
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2964
 * are running on the current CPU with softirqs disabled, the
2965
 * rcu_cpu_kthread_task cannot disappear out from under us.
2966
 */
2967
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2968
{
2969
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2970
		return;
2971 2972
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2973 2974
		return;
	}
2975
	invoke_rcu_callbacks_kthread();
2976 2977
}

2978
static void invoke_rcu_core(void)
2979
{
2980 2981
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2982 2983
}

2984 2985 2986 2987 2988
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2989
{
2990 2991
	bool needwake;

2992 2993 2994 2995
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2996
	if (!rcu_is_watching())
2997 2998
		invoke_rcu_core();

2999
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3000
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3001
		return;
3002

3003 3004 3005 3006 3007 3008 3009
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
3010
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3011 3012

		/* Are we ignoring a completed grace period? */
3013
		note_gp_changes(rsp, rdp);
3014 3015 3016 3017 3018

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

3019
			raw_spin_lock_rcu_node(rnp_root);
3020
			needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3021
			raw_spin_unlock_rcu_node(rnp_root);
3022 3023
			if (needwake)
				rcu_gp_kthread_wake(rsp);
3024 3025 3026 3027 3028
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3029
				force_quiescent_state(rsp);
3030 3031 3032
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
3033
	}
3034 3035
}

3036 3037 3038 3039 3040 3041 3042
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3043 3044 3045 3046 3047 3048
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3049
static void
3050
__call_rcu(struct rcu_head *head, rcu_callback_t func,
P
Paul E. McKenney 已提交
3051
	   struct rcu_state *rsp, int cpu, bool lazy)
3052 3053 3054 3055
{
	unsigned long flags;
	struct rcu_data *rdp;

3056
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3057 3058
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3059
		WRITE_ONCE(head->func, rcu_leak_callback);
3060 3061 3062
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
3073
	rdp = this_cpu_ptr(rsp->rda);
3074 3075

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
3076 3077 3078 3079 3080
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3094
		WARN_ON_ONCE(!rcu_is_watching());
3095 3096
		if (!likely(rdp->nxtlist))
			init_default_callback_list(rdp);
3097
	}
3098
	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3099 3100
	if (lazy)
		rdp->qlen_lazy++;
3101 3102
	else
		rcu_idle_count_callbacks_posted();
3103 3104 3105
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3106

3107 3108
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3109
					 rdp->qlen_lazy, rdp->qlen);
3110
	else
3111
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3112

3113 3114
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3115 3116 3117 3118
	local_irq_restore(flags);
}

/*
3119
 * Queue an RCU-sched callback for invocation after a grace period.
3120
 */
3121
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3122
{
P
Paul E. McKenney 已提交
3123
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3124
}
3125
EXPORT_SYMBOL_GPL(call_rcu_sched);
3126 3127

/*
3128
 * Queue an RCU callback for invocation after a quicker grace period.
3129
 */
3130
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3131
{
P
Paul E. McKenney 已提交
3132
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3133 3134 3135
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3136 3137 3138 3139 3140 3141 3142 3143
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
3144
		    rcu_callback_t func)
3145
{
3146
	__call_rcu(head, func, rcu_state_p, -1, 1);
3147 3148 3149
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3161 3162
	int ret;

3163
	might_sleep();  /* Check for RCU read-side critical section. */
3164 3165 3166 3167
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3168 3169
}

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3204 3205 3206 3207 3208 3209 3210 3211 3212
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3213 3214 3215 3216
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3217 3218
	if (rcu_blocking_is_gp())
		return;
3219
	if (rcu_gp_is_expedited())
3220 3221 3222
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3234 3235 3236
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3237 3238 3239
 */
void synchronize_rcu_bh(void)
{
3240 3241 3242 3243
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3244 3245
	if (rcu_blocking_is_gp())
		return;
3246
	if (rcu_gp_is_expedited())
3247 3248 3249
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3250 3251 3252
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3273
	return smp_load_acquire(&rcu_state_p->gpnum);
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3299
	newstate = smp_load_acquire(&rcu_state_p->completed);
3300 3301 3302 3303 3304
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
/**
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_sched(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_sched()
	 * and cond_synchronize_sched().
	 */
	return smp_load_acquire(&rcu_sched_state.gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);

/**
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 *
 * If a full RCU-sched grace period has elapsed since the earlier call to
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 * synchronize_sched() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_sched(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_sched_state.completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(cond_synchronize_sched);

3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
/* Adjust sequence number for start of update-side operation. */
static void rcu_seq_start(unsigned long *sp)
{
	WRITE_ONCE(*sp, *sp + 1);
	smp_mb(); /* Ensure update-side operation after counter increment. */
	WARN_ON_ONCE(!(*sp & 0x1));
}

/* Adjust sequence number for end of update-side operation. */
static void rcu_seq_end(unsigned long *sp)
{
	smp_mb(); /* Ensure update-side operation before counter increment. */
	WRITE_ONCE(*sp, *sp + 1);
	WARN_ON_ONCE(*sp & 0x1);
}

/* Take a snapshot of the update side's sequence number. */
static unsigned long rcu_seq_snap(unsigned long *sp)
{
	unsigned long s;

	s = (READ_ONCE(*sp) + 3) & ~0x1;
	smp_mb(); /* Above access must not bleed into critical section. */
	return s;
}

/*
 * Given a snapshot from rcu_seq_snap(), determine whether or not a
 * full update-side operation has occurred.
 */
static bool rcu_seq_done(unsigned long *sp, unsigned long s)
{
	return ULONG_CMP_GE(READ_ONCE(*sp), s);
}

/* Wrapper functions for expedited grace periods.  */
static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
{
	rcu_seq_start(&rsp->expedited_sequence);
}
static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
{
	rcu_seq_end(&rsp->expedited_sequence);
3400
	smp_mb(); /* Ensure that consecutive grace periods serialize. */
3401 3402 3403
}
static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
{
3404
	smp_mb(); /* Caller's modifications seen first by other CPUs. */
3405 3406 3407 3408 3409 3410 3411
	return rcu_seq_snap(&rsp->expedited_sequence);
}
static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
{
	return rcu_seq_done(&rsp->expedited_sequence, s);
}

3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
/*
 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
 * recent CPU-online activity.  Note that these masks are not cleared
 * when CPUs go offline, so they reflect the union of all CPUs that have
 * ever been online.  This means that this function normally takes its
 * no-work-to-do fastpath.
 */
static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
{
	bool done;
	unsigned long flags;
	unsigned long mask;
	unsigned long oldmask;
	int ncpus = READ_ONCE(rsp->ncpus);
	struct rcu_node *rnp;
	struct rcu_node *rnp_up;

	/* If no new CPUs onlined since last time, nothing to do. */
	if (likely(ncpus == rsp->ncpus_snap))
		return;
	rsp->ncpus_snap = ncpus;

	/*
	 * Each pass through the following loop propagates newly onlined
	 * CPUs for the current rcu_node structure up the rcu_node tree.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
3439
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3440
		if (rnp->expmaskinit == rnp->expmaskinitnext) {
B
Boqun Feng 已提交
3441
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3442 3443 3444 3445 3446 3447
			continue;  /* No new CPUs, nothing to do. */
		}

		/* Update this node's mask, track old value for propagation. */
		oldmask = rnp->expmaskinit;
		rnp->expmaskinit = rnp->expmaskinitnext;
B
Boqun Feng 已提交
3448
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458

		/* If was already nonzero, nothing to propagate. */
		if (oldmask)
			continue;

		/* Propagate the new CPU up the tree. */
		mask = rnp->grpmask;
		rnp_up = rnp->parent;
		done = false;
		while (rnp_up) {
3459
			raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
3460 3461 3462
			if (rnp_up->expmaskinit)
				done = true;
			rnp_up->expmaskinit |= mask;
B
Boqun Feng 已提交
3463
			raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags);
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
			if (done)
				break;
			mask = rnp_up->grpmask;
			rnp_up = rnp_up->parent;
		}
	}
}

/*
 * Reset the ->expmask values in the rcu_node tree in preparation for
 * a new expedited grace period.
 */
static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	sync_exp_reset_tree_hotplug(rsp);
	rcu_for_each_node_breadth_first(rsp, rnp) {
3483
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3484 3485
		WARN_ON_ONCE(rnp->expmask);
		rnp->expmask = rnp->expmaskinit;
B
Boqun Feng 已提交
3486
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3487 3488 3489
	}
}

3490
/*
3491
 * Return non-zero if there is no RCU expedited grace period in progress
3492 3493 3494 3495 3496 3497 3498 3499 3500
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
3501
	return rnp->exp_tasks == NULL &&
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
	       READ_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
3513 3514
 * Caller must hold the root rcu_node's exp_funnel_mutex and the
 * specified rcu_node structure's ->lock.
3515
 */
3516 3517 3518
static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
				 bool wake, unsigned long flags)
	__releases(rnp->lock)
3519 3520 3521 3522 3523
{
	unsigned long mask;

	for (;;) {
		if (!sync_rcu_preempt_exp_done(rnp)) {
3524 3525 3526
			if (!rnp->expmask)
				rcu_initiate_boost(rnp, flags);
			else
B
Boqun Feng 已提交
3527
				raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3528 3529 3530
			break;
		}
		if (rnp->parent == NULL) {
B
Boqun Feng 已提交
3531
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3532 3533 3534 3535 3536 3537 3538
			if (wake) {
				smp_mb(); /* EGP done before wake_up(). */
				wake_up(&rsp->expedited_wq);
			}
			break;
		}
		mask = rnp->grpmask;
B
Boqun Feng 已提交
3539
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */
3540
		rnp = rnp->parent;
3541
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
3542
		WARN_ON_ONCE(!(rnp->expmask & mask));
3543 3544 3545 3546
		rnp->expmask &= ~mask;
	}
}

3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
/*
 * Report expedited quiescent state for specified node.  This is a
 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
 *
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
					      struct rcu_node *rnp, bool wake)
{
	unsigned long flags;

3558
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
	__rcu_report_exp_rnp(rsp, rnp, wake, flags);
}

/*
 * Report expedited quiescent state for multiple CPUs, all covered by the
 * specified leaf rcu_node structure.  Caller must hold the root
 * rcu_node's exp_funnel_mutex.
 */
static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
				    unsigned long mask, bool wake)
{
	unsigned long flags;

3572
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3573
	if (!(rnp->expmask & mask)) {
B
Boqun Feng 已提交
3574
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3575 3576
		return;
	}
3577 3578 3579 3580 3581 3582 3583 3584
	rnp->expmask &= ~mask;
	__rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
}

/*
 * Report expedited quiescent state for specified rcu_data (CPU).
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
3585 3586
static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
			       bool wake)
3587 3588 3589 3590
{
	rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
}

3591 3592
/* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
3593
			       struct rcu_data *rdp,
3594
			       atomic_long_t *stat, unsigned long s)
3595
{
3596
	if (rcu_exp_gp_seq_done(rsp, s)) {
3597 3598
		if (rnp)
			mutex_unlock(&rnp->exp_funnel_mutex);
3599 3600
		else if (rdp)
			mutex_unlock(&rdp->exp_funnel_mutex);
3601 3602 3603 3604 3605 3606 3607 3608
		/* Ensure test happens before caller kfree(). */
		smp_mb__before_atomic(); /* ^^^ */
		atomic_long_inc(stat);
		return true;
	}
	return false;
}

3609 3610 3611 3612 3613 3614 3615
/*
 * Funnel-lock acquisition for expedited grace periods.  Returns a
 * pointer to the root rcu_node structure, or NULL if some other
 * task did the expedited grace period for us.
 */
static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
{
3616
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3617 3618 3619
	struct rcu_node *rnp0;
	struct rcu_node *rnp1 = NULL;

3620
	/*
3621 3622 3623 3624
	 * First try directly acquiring the root lock in order to reduce
	 * latency in the common case where expedited grace periods are
	 * rare.  We check mutex_is_locked() to avoid pathological levels of
	 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3625
	 */
3626 3627 3628 3629
	rnp0 = rcu_get_root(rsp);
	if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
		if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
			if (sync_exp_work_done(rsp, rnp0, NULL,
3630
					       &rdp->expedited_workdone0, s))
3631 3632 3633 3634 3635
				return NULL;
			return rnp0;
		}
	}

3636 3637 3638 3639 3640 3641 3642 3643
	/*
	 * Each pass through the following loop works its way
	 * up the rcu_node tree, returning if others have done the
	 * work or otherwise falls through holding the root rnp's
	 * ->exp_funnel_mutex.  The mapping from CPU to rcu_node structure
	 * can be inexact, as it is just promoting locality and is not
	 * strictly needed for correctness.
	 */
3644
	if (sync_exp_work_done(rsp, NULL, NULL, &rdp->expedited_workdone1, s))
3645 3646 3647
		return NULL;
	mutex_lock(&rdp->exp_funnel_mutex);
	rnp0 = rdp->mynode;
3648
	for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3649
		if (sync_exp_work_done(rsp, rnp1, rdp,
3650
				       &rdp->expedited_workdone2, s))
3651 3652 3653 3654
			return NULL;
		mutex_lock(&rnp0->exp_funnel_mutex);
		if (rnp1)
			mutex_unlock(&rnp1->exp_funnel_mutex);
3655 3656
		else
			mutex_unlock(&rdp->exp_funnel_mutex);
3657 3658
		rnp1 = rnp0;
	}
3659
	if (sync_exp_work_done(rsp, rnp1, rdp,
3660
			       &rdp->expedited_workdone3, s))
3661 3662 3663 3664
		return NULL;
	return rnp1;
}

3665
/* Invoked on each online non-idle CPU for expedited quiescent state. */
3666
static void sync_sched_exp_handler(void *data)
3667
{
3668 3669 3670
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp = data;
3671

3672 3673 3674 3675 3676
	rdp = this_cpu_ptr(rsp->rda);
	rnp = rdp->mynode;
	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
	    __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
3677 3678
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
	resched_cpu(smp_processor_id());
3679 3680
}

3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
/* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
static void sync_sched_exp_online_cleanup(int cpu)
{
	struct rcu_data *rdp;
	int ret;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_sched_state;

	rdp = per_cpu_ptr(rsp->rda, cpu);
	rnp = rdp->mynode;
	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
		return;
	ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
	WARN_ON_ONCE(ret);
}

3697 3698 3699 3700
/*
 * Select the nodes that the upcoming expedited grace period needs
 * to wait for.
 */
3701 3702
static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
				     smp_call_func_t func)
3703 3704 3705 3706 3707 3708
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
	unsigned long mask_ofl_test;
	unsigned long mask_ofl_ipi;
3709
	int ret;
3710 3711 3712 3713
	struct rcu_node *rnp;

	sync_exp_reset_tree(rsp);
	rcu_for_each_leaf_node(rsp, rnp) {
3714
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734

		/* Each pass checks a CPU for identity, offline, and idle. */
		mask_ofl_test = 0;
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

			if (raw_smp_processor_id() == cpu ||
			    !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
				mask_ofl_test |= rdp->grpmask;
		}
		mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;

		/*
		 * Need to wait for any blocked tasks as well.  Note that
		 * additional blocking tasks will also block the expedited
		 * GP until such time as the ->expmask bits are cleared.
		 */
		if (rcu_preempt_has_tasks(rnp))
			rnp->exp_tasks = rnp->blkd_tasks.next;
B
Boqun Feng 已提交
3735
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3736 3737 3738 3739 3740 3741

		/* IPI the remaining CPUs for expedited quiescent state. */
		mask = 1;
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
			if (!(mask_ofl_ipi & mask))
				continue;
3742
retry_ipi:
3743
			ret = smp_call_function_single(cpu, func, rsp, 0);
3744
			if (!ret) {
3745
				mask_ofl_ipi &= ~mask;
3746 3747 3748 3749 3750 3751
				continue;
			}
			/* Failed, raced with offline. */
			raw_spin_lock_irqsave_rcu_node(rnp, flags);
			if (cpu_online(cpu) &&
			    (rnp->expmask & mask)) {
B
Boqun Feng 已提交
3752
				raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3753 3754 3755 3756 3757
				schedule_timeout_uninterruptible(1);
				if (cpu_online(cpu) &&
				    (rnp->expmask & mask))
					goto retry_ipi;
				raw_spin_lock_irqsave_rcu_node(rnp, flags);
3758
			}
3759 3760
			if (!(rnp->expmask & mask))
				mask_ofl_ipi &= ~mask;
B
Boqun Feng 已提交
3761
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3762 3763 3764 3765 3766 3767
		}
		/* Report quiescent states for those that went offline. */
		mask_ofl_test |= mask_ofl_ipi;
		if (mask_ofl_test)
			rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
	}
3768 3769
}

3770 3771 3772 3773 3774
static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
{
	int cpu;
	unsigned long jiffies_stall;
	unsigned long jiffies_start;
3775
	unsigned long mask;
3776
	int ndetected;
3777 3778
	struct rcu_node *rnp;
	struct rcu_node *rnp_root = rcu_get_root(rsp);
3779 3780 3781 3782 3783 3784 3785 3786
	int ret;

	jiffies_stall = rcu_jiffies_till_stall_check();
	jiffies_start = jiffies;

	for (;;) {
		ret = wait_event_interruptible_timeout(
				rsp->expedited_wq,
3787
				sync_rcu_preempt_exp_done(rnp_root),
3788
				jiffies_stall);
3789
		if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root))
3790 3791 3792 3793
			return;
		if (ret < 0) {
			/* Hit a signal, disable CPU stall warnings. */
			wait_event(rsp->expedited_wq,
3794
				   sync_rcu_preempt_exp_done(rnp_root));
3795 3796
			return;
		}
3797
		pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3798
		       rsp->name);
3799
		ndetected = 0;
3800
		rcu_for_each_leaf_node(rsp, rnp) {
3801
			ndetected = rcu_print_task_exp_stall(rnp);
3802 3803
			mask = 1;
			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3804 3805
				struct rcu_data *rdp;

3806 3807
				if (!(rnp->expmask & mask))
					continue;
3808
				ndetected++;
3809 3810 3811 3812 3813
				rdp = per_cpu_ptr(rsp->rda, cpu);
				pr_cont(" %d-%c%c%c", cpu,
					"O."[cpu_online(cpu)],
					"o."[!!(rdp->grpmask & rnp->expmaskinit)],
					"N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
3814 3815
			}
			mask <<= 1;
3816
		}
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
		pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
			jiffies - jiffies_start, rsp->expedited_sequence,
			rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
		if (!ndetected) {
			pr_err("blocking rcu_node structures:");
			rcu_for_each_node_breadth_first(rsp, rnp) {
				if (rnp == rnp_root)
					continue; /* printed unconditionally */
				if (sync_rcu_preempt_exp_done(rnp))
					continue;
				pr_cont(" l=%u:%d-%d:%#lx/%c",
					rnp->level, rnp->grplo, rnp->grphi,
					rnp->expmask,
					".T"[!!rnp->exp_tasks]);
			}
			pr_cont("\n");
		}
3834 3835 3836 3837 3838 3839 3840
		rcu_for_each_leaf_node(rsp, rnp) {
			mask = 1;
			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
				if (!(rnp->expmask & mask))
					continue;
				dump_cpu_task(cpu);
			}
3841 3842 3843 3844 3845
		}
		jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
	}
}

3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
3856
 *
3857 3858 3859
 * This implementation can be thought of as an application of sequence
 * locking to expedited grace periods, but using the sequence counter to
 * determine when someone else has already done the work instead of for
3860
 * retrying readers.
3861 3862 3863
 */
void synchronize_sched_expedited(void)
{
3864
	unsigned long s;
3865
	struct rcu_node *rnp;
3866
	struct rcu_state *rsp = &rcu_sched_state;
3867

3868 3869 3870 3871
	/* If only one CPU, this is automatically a grace period. */
	if (rcu_blocking_is_gp())
		return;

3872 3873 3874 3875 3876 3877
	/* If expedited grace periods are prohibited, fall back to normal. */
	if (rcu_gp_is_normal()) {
		wait_rcu_gp(call_rcu_sched);
		return;
	}

3878
	/* Take a snapshot of the sequence number.  */
3879
	s = rcu_exp_gp_seq_snap(rsp);
3880

3881
	rnp = exp_funnel_lock(rsp, s);
3882
	if (rnp == NULL)
3883
		return;  /* Someone else did our work for us. */
3884

3885
	rcu_exp_gp_seq_start(rsp);
3886
	sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
3887
	synchronize_sched_expedited_wait(rsp);
3888

3889
	rcu_exp_gp_seq_end(rsp);
3890
	mutex_unlock(&rnp->exp_funnel_mutex);
3891 3892 3893
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3894 3895 3896 3897 3898 3899 3900 3901 3902
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3903 3904
	struct rcu_node *rnp = rdp->mynode;

3905 3906 3907 3908 3909
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3910 3911 3912 3913
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3914
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3915
	if (rcu_scheduler_fully_active &&
3916
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3917
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3918 3919
		rdp->n_rp_core_needs_qs++;
	} else if (rdp->core_needs_qs &&
3920
		   (!rdp->cpu_no_qs.b.norm ||
3921
		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3922
		rdp->n_rp_report_qs++;
3923
		return 1;
3924
	}
3925 3926

	/* Does this CPU have callbacks ready to invoke? */
3927 3928
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3929
		return 1;
3930
	}
3931 3932

	/* Has RCU gone idle with this CPU needing another grace period? */
3933 3934
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3935
		return 1;
3936
	}
3937 3938

	/* Has another RCU grace period completed?  */
3939
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3940
		rdp->n_rp_gp_completed++;
3941
		return 1;
3942
	}
3943 3944

	/* Has a new RCU grace period started? */
3945 3946
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3947
		rdp->n_rp_gp_started++;
3948
		return 1;
3949
	}
3950

3951 3952 3953 3954 3955 3956
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3957
	/* nothing to do */
3958
	rdp->n_rp_need_nothing++;
3959 3960 3961 3962 3963 3964 3965 3966
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3967
static int rcu_pending(void)
3968
{
3969 3970 3971
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3972
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3973 3974
			return 1;
	return 0;
3975 3976 3977
}

/*
3978 3979 3980
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3981
 */
3982
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3983
{
3984 3985 3986
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3987 3988
	struct rcu_state *rsp;

3989
	for_each_rcu_flavor(rsp) {
3990
		rdp = this_cpu_ptr(rsp->rda);
3991 3992 3993 3994
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3995
			al = false;
3996 3997
			break;
		}
3998 3999 4000 4001
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
4002 4003
}

4004 4005 4006 4007
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
4008
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
4009 4010 4011 4012 4013 4014
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

4015 4016 4017 4018
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
4019
static void rcu_barrier_callback(struct rcu_head *rhp)
4020
{
4021 4022 4023
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

4024
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4025
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
4026
		complete(&rsp->barrier_completion);
4027
	} else {
4028
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
4029
	}
4030 4031 4032 4033 4034 4035 4036
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
4037
	struct rcu_state *rsp = type;
4038
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
4039

4040
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
4041
	atomic_inc(&rsp->barrier_cpu_count);
4042
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
4043 4044 4045 4046 4047 4048
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
4049
static void _rcu_barrier(struct rcu_state *rsp)
4050
{
4051 4052
	int cpu;
	struct rcu_data *rdp;
4053
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
4054

4055
	_rcu_barrier_trace(rsp, "Begin", -1, s);
4056

4057
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4058
	mutex_lock(&rsp->barrier_mutex);
4059

4060 4061 4062
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
4063 4064 4065 4066 4067
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

4068 4069 4070
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
4071

4072
	/*
4073 4074
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
4075 4076
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
4077
	 */
4078
	init_completion(&rsp->barrier_completion);
4079
	atomic_set(&rsp->barrier_cpu_count, 1);
4080
	get_online_cpus();
4081 4082

	/*
4083 4084 4085
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
4086
	 */
P
Paul E. McKenney 已提交
4087
	for_each_possible_cpu(cpu) {
4088
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
4089
			continue;
4090
		rdp = per_cpu_ptr(rsp->rda, cpu);
4091
		if (rcu_is_nocb_cpu(cpu)) {
4092 4093
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4094
						   rsp->barrier_sequence);
4095 4096
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4097
						   rsp->barrier_sequence);
4098
				smp_mb__before_atomic();
4099 4100 4101 4102
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
4103
		} else if (READ_ONCE(rdp->qlen)) {
4104
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
4105
					   rsp->barrier_sequence);
4106
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4107
		} else {
4108
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4109
					   rsp->barrier_sequence);
4110 4111
		}
	}
4112
	put_online_cpus();
4113 4114 4115 4116 4117

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
4118
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4119
		complete(&rsp->barrier_completion);
4120 4121

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4122
	wait_for_completion(&rsp->barrier_completion);
4123

4124 4125 4126 4127
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

4128
	/* Other rcu_barrier() invocations can now safely proceed. */
4129
	mutex_unlock(&rsp->barrier_mutex);
4130 4131 4132 4133 4134 4135 4136
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
4137
	_rcu_barrier(&rcu_bh_state);
4138 4139 4140 4141 4142 4143 4144 4145
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
4146
	_rcu_barrier(&rcu_sched_state);
4147 4148 4149
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
4166
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4167
		rnp->qsmaskinit |= mask;
B
Boqun Feng 已提交
4168
		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4169 4170 4171
	}
}

4172
/*
4173
 * Do boot-time initialization of a CPU's per-CPU RCU data.
4174
 */
4175 4176
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4177 4178
{
	unsigned long flags;
4179
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4180 4181 4182
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
4183
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4184 4185
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4186
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4187
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4188
	rdp->cpu = cpu;
4189
	rdp->rsp = rsp;
4190
	mutex_init(&rdp->exp_funnel_mutex);
P
Paul E. McKenney 已提交
4191
	rcu_boot_init_nocb_percpu_data(rdp);
B
Boqun Feng 已提交
4192
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4193 4194 4195 4196 4197 4198 4199
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4200
 */
4201
static void
4202
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4203 4204 4205
{
	unsigned long flags;
	unsigned long mask;
4206
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4207 4208 4209
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
4210
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4211 4212
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
4213
	rdp->blimit = blimit;
4214 4215
	if (!rdp->nxtlist)
		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
4216
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4217
	rcu_sysidle_init_percpu_data(rdp->dynticks);
4218 4219
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
B
Boqun Feng 已提交
4220
	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4221

4222 4223 4224 4225 4226
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
4227 4228
	rnp = rdp->mynode;
	mask = rdp->grpmask;
4229
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4230
	rnp->qsmaskinitnext |= mask;
4231 4232 4233 4234
	rnp->expmaskinitnext |= mask;
	if (!rdp->beenonline)
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
	rdp->beenonline = true;	 /* We have now been online. */
4235 4236
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
4237
	rdp->cpu_no_qs.b.norm = true;
4238
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4239
	rdp->core_needs_qs = false;
4240
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
B
Boqun Feng 已提交
4241
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4242 4243
}

4244
static void rcu_prepare_cpu(int cpu)
4245
{
4246 4247 4248
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
4249
		rcu_init_percpu_data(cpu, rsp);
4250 4251 4252
}

/*
4253
 * Handle CPU online/offline notification events.
4254
 */
4255 4256
int rcu_cpu_notify(struct notifier_block *self,
		   unsigned long action, void *hcpu)
4257 4258
{
	long cpu = (long)hcpu;
4259
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4260
	struct rcu_node *rnp = rdp->mynode;
4261
	struct rcu_state *rsp;
4262 4263 4264 4265

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
4266 4267
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
4268
		rcu_spawn_all_nocb_kthreads(cpu);
4269 4270
		break;
	case CPU_ONLINE:
4271
	case CPU_DOWN_FAILED:
4272
		sync_sched_exp_online_cleanup(cpu);
T
Thomas Gleixner 已提交
4273
		rcu_boost_kthread_setaffinity(rnp, -1);
4274 4275
		break;
	case CPU_DOWN_PREPARE:
4276
		rcu_boost_kthread_setaffinity(rnp, cpu);
4277
		break;
4278 4279
	case CPU_DYING:
	case CPU_DYING_FROZEN:
4280 4281
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
4282
		break;
4283
	case CPU_DYING_IDLE:
4284
		/* QS for any half-done expedited RCU-sched GP. */
4285 4286 4287 4288
		preempt_disable();
		rcu_report_exp_rdp(&rcu_sched_state,
				   this_cpu_ptr(rcu_sched_state.rda), true);
		preempt_enable();
4289

4290 4291 4292 4293
		for_each_rcu_flavor(rsp) {
			rcu_cleanup_dying_idle_cpu(cpu, rsp);
		}
		break;
4294 4295 4296 4297
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
4298
		for_each_rcu_flavor(rsp) {
4299
			rcu_cleanup_dead_cpu(cpu, rsp);
4300 4301
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
4302 4303 4304 4305
		break;
	default:
		break;
	}
4306
	return NOTIFY_OK;
4307 4308
}

4309 4310 4311 4312 4313 4314 4315
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4316
			rcu_expedite_gp();
4317 4318 4319
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
4320 4321
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
4322 4323 4324 4325 4326 4327 4328
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

4329
/*
4330
 * Spawn the kthreads that handle each RCU flavor's grace periods.
4331 4332 4333 4334
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
4335
	int kthread_prio_in = kthread_prio;
4336 4337
	struct rcu_node *rnp;
	struct rcu_state *rsp;
4338
	struct sched_param sp;
4339 4340
	struct task_struct *t;

4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

4352
	rcu_scheduler_fully_active = 1;
4353
	for_each_rcu_flavor(rsp) {
4354
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4355 4356
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
4357
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4358
		rsp->gp_kthread = t;
4359 4360 4361 4362
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
B
Boqun Feng 已提交
4363
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4364
		wake_up_process(t);
4365
	}
4366
	rcu_spawn_nocb_kthreads();
4367
	rcu_spawn_boost_kthreads();
4368 4369 4370 4371
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

4387 4388
/*
 * Compute the per-level fanout, either using the exact fanout specified
4389
 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4390
 */
4391
static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4392 4393 4394
{
	int i;

4395
	if (rcu_fanout_exact) {
4396
		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4397
		for (i = rcu_num_lvls - 2; i >= 0; i--)
4398
			levelspread[i] = RCU_FANOUT;
4399 4400 4401 4402 4403 4404
	} else {
		int ccur;
		int cprv;

		cprv = nr_cpu_ids;
		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4405 4406
			ccur = levelcnt[i];
			levelspread[i] = (cprv + ccur - 1) / ccur;
4407 4408
			cprv = ccur;
		}
4409 4410 4411 4412 4413 4414
	}
}

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
4415
static void __init rcu_init_one(struct rcu_state *rsp)
4416
{
4417 4418
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4419
	static const char * const exp[] = RCU_EXP_NAME_INIT;
4420 4421 4422
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
4423
	static u8 fl_mask = 0x1;
4424 4425 4426

	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4427 4428 4429 4430 4431
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4432
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4433

4434 4435 4436
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4437

4438 4439
	/* Initialize the level-tracking arrays. */

4440
	for (i = 0; i < rcu_num_lvls; i++)
4441
		levelcnt[i] = num_rcu_lvl[i];
4442
	for (i = 1; i < rcu_num_lvls; i++)
4443 4444
		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
	rcu_init_levelspread(levelspread, levelcnt);
4445 4446
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
4447 4448 4449

	/* Initialize the elements themselves, starting from the leaves. */

4450
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4451
		cpustride *= levelspread[i];
4452
		rnp = rsp->level[i];
4453
		for (j = 0; j < levelcnt[i]; j++, rnp++) {
B
Boqun Feng 已提交
4454 4455
			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4456
						   &rcu_node_class[i], buf[i]);
4457 4458 4459
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4460 4461
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4462 4463 4464 4465
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4466 4467
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4468 4469 4470 4471 4472
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4473
				rnp->grpnum = j % levelspread[i - 1];
4474 4475
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4476
					      j / levelspread[i - 1];
4477 4478
			}
			rnp->level = i;
4479
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4480
			rcu_init_one_nocb(rnp);
4481
			mutex_init(&rnp->exp_funnel_mutex);
4482 4483
			lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
						   &rcu_exp_class[i], exp[i]);
4484 4485
		}
	}
4486

4487
	init_waitqueue_head(&rsp->gp_wq);
4488
	init_waitqueue_head(&rsp->expedited_wq);
4489
	rnp = rsp->level[rcu_num_lvls - 1];
4490
	for_each_possible_cpu(i) {
4491
		while (i > rnp->grphi)
4492
			rnp++;
4493
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4494 4495
		rcu_boot_init_percpu_data(i, rsp);
	}
4496
	list_add(&rsp->flavors, &rcu_struct_flavors);
4497 4498
}

4499 4500
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4501
 * replace the definitions in tree.h because those are needed to size
4502 4503 4504 4505
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4506
	ulong d;
4507
	int i;
4508
	int rcu_capacity[RCU_NUM_LVLS];
4509

4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4523
	/* If the compile-time values are accurate, just leave. */
4524
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4525
	    nr_cpu_ids == NR_CPUS)
4526
		return;
4527 4528
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4529 4530

	/*
4531 4532 4533 4534
	 * The boot-time rcu_fanout_leaf parameter must be at least two
	 * and cannot exceed the number of bits in the rcu_node masks.
	 * Complain and fall back to the compile-time values if this
	 * limit is exceeded.
4535
	 */
4536
	if (rcu_fanout_leaf < 2 ||
4537
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4538
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4539 4540 4541 4542 4543 4544
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4545
	 * with the given number of levels.
4546
	 */
4547
	rcu_capacity[0] = rcu_fanout_leaf;
4548
	for (i = 1; i < RCU_NUM_LVLS; i++)
4549
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4550 4551

	/*
4552
	 * The tree must be able to accommodate the configured number of CPUs.
4553
	 * If this limit is exceeded, fall back to the compile-time values.
4554
	 */
4555 4556 4557 4558 4559
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}
4560

4561
	/* Calculate the number of levels in the tree. */
4562
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4563
	}
4564
	rcu_num_lvls = i + 1;
4565

4566
	/* Calculate the number of rcu_nodes at each level of the tree. */
4567
	for (i = 0; i < rcu_num_lvls; i++) {
4568
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4569 4570
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4571 4572 4573

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4574
	for (i = 0; i < rcu_num_lvls; i++)
4575 4576 4577
		rcu_num_nodes += num_rcu_lvl[i];
}

4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4600
void __init rcu_init(void)
4601
{
P
Paul E. McKenney 已提交
4602
	int cpu;
4603

4604 4605
	rcu_early_boot_tests();

4606
	rcu_bootup_announce();
4607
	rcu_init_geometry();
4608 4609
	rcu_init_one(&rcu_bh_state);
	rcu_init_one(&rcu_sched_state);
4610 4611
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4612
	__rcu_init_preempt();
J
Jiang Fang 已提交
4613
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4614 4615 4616 4617 4618 4619 4620

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
4621
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
4622 4623
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4624 4625
}

4626
#include "tree_plugin.h"