tree.c 140.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/trace_events.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73
static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
74

75 76 77 78 79 80 81 82
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
83 84
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
85
static char sname##_varname[] = #sname; \
86 87 88 89 90 91 92 93 94
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
95
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
96
struct rcu_state sname##_state = { \
97
	.level = { &sname##_state.node[0] }, \
98
	.rda = &sname##_data, \
99
	.call = cr, \
100
	.gp_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
101 102
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
103
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
104 105
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
106
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
107
	.name = RCU_STATE_NAME(sname), \
108
	.abbr = sabbr, \
109
}
110

111 112
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
113

114
static struct rcu_state *const rcu_state_p;
115
static struct rcu_data __percpu *const rcu_data_p;
116
LIST_HEAD(rcu_struct_flavors);
117

118 119 120
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
121 122 123
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
124 125
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
126
module_param(rcu_fanout_leaf, int, 0444);
127
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
128 129
/* Number of rcu_nodes at specified level. */
static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
130 131
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

132 133 134 135
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
136
 * optimize synchronize_sched() to a simple barrier().  When this variable
137 138 139 140
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
141 142 143
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

144 145 146 147 148 149 150 151 152 153 154 155 156 157
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

158 159
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
160
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 162
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163 164
static void rcu_report_exp_rdp(struct rcu_state *rsp,
			       struct rcu_data *rdp, bool wake);
165

166
/* rcuc/rcub kthread realtime priority */
167
#ifdef CONFIG_RCU_KTHREAD_PRIO
168
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
169 170 171
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
172 173
module_param(kthread_prio, int, 0644);

174
/* Delay in jiffies for grace-period initialization delays, debug only. */
175 176 177 178 179 180 181 182

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

183 184
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
185
module_param(gp_init_delay, int, 0644);
186 187 188
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
189

190 191 192 193 194 195 196
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

197 198 199 200 201 202 203 204 205 206
/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
207

208 209 210 211 212 213 214 215 216 217 218 219
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

220 221 222 223 224 225 226 227
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
228
	return READ_ONCE(rnp->qsmaskinitnext);
229 230
}

231
/*
232
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
233 234 235 236 237
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
238
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
239 240
}

241
/*
242
 * Note a quiescent state.  Because we do not need to know
243
 * how many quiescent states passed, just if there was at least
244
 * one since the start of the grace period, this just sets a flag.
245
 * The caller must have disabled preemption.
246
 */
247
void rcu_sched_qs(void)
248
{
249 250
	unsigned long flags;

251
	if (__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) {
252 253 254
		trace_rcu_grace_period(TPS("rcu_sched"),
				       __this_cpu_read(rcu_sched_data.gpnum),
				       TPS("cpuqs"));
255
		__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
256 257 258
		if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
			return;
		local_irq_save(flags);
259 260 261 262 263 264
		if (__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) {
			__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
			rcu_report_exp_rdp(&rcu_sched_state,
					   this_cpu_ptr(&rcu_sched_data),
					   true);
		}
265
		local_irq_restore(flags);
266
	}
267 268
}

269
void rcu_bh_qs(void)
270
{
271
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
272 273 274
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
275
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
276
	}
277
}
278

279 280 281 282 283 284 285 286 287 288 289
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

290 291 292
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
 */
static void rcu_momentary_dyntick_idle(void)
{
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	local_irq_save(flags);

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
327 328
		if (READ_ONCE(rdp->mynode->completed) !=
		    READ_ONCE(rdp->cond_resched_completed))
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
	local_irq_restore(flags);
}

346 347 348
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
349
 * The caller must have disabled preemption.
350
 */
351
void rcu_note_context_switch(void)
352
{
353
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
354
	trace_rcu_utilization(TPS("Start context switch"));
355
	rcu_sched_qs();
356
	rcu_preempt_note_context_switch();
357 358
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
359
	trace_rcu_utilization(TPS("End context switch"));
360
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
361
}
362
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
363

364
/*
365
 * Register a quiescent state for all RCU flavors.  If there is an
366 367
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
368
 * RCU flavors in desperate need of a quiescent state, which will normally
369 370
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
371 372 373 374 375
 *
 * The barrier() calls are redundant in the common case when this is
 * called externally, but just in case this is called from within this
 * file.
 *
376 377 378
 */
void rcu_all_qs(void)
{
379
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
380 381 382
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
	this_cpu_inc(rcu_qs_ctr);
383
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
384 385 386
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
387 388 389
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
390

E
Eric Dumazet 已提交
391 392 393
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
394

395 396
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
397 398 399 400

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

401 402 403 404 405 406 407
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

408
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
409
				  struct rcu_data *rdp);
410 411 412 413
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
414
static void force_quiescent_state(struct rcu_state *rsp);
415
static int rcu_pending(void);
416 417

/*
418
 * Return the number of RCU batches started thus far for debug & stats.
419
 */
420 421 422 423 424 425 426 427
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
428
 */
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
455
 */
456
unsigned long rcu_batches_completed_sched(void)
457
{
458
	return rcu_sched_state.completed;
459
}
460
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
461 462

/*
463
 * Return the number of RCU BH batches completed thus far for debug & stats.
464
 */
465
unsigned long rcu_batches_completed_bh(void)
466 467 468 469 470
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

471 472 473 474 475
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
476
	force_quiescent_state(rcu_state_p);
477 478 479
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

480 481 482 483 484
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
485
	force_quiescent_state(&rcu_bh_state);
486 487 488
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

489 490 491 492 493 494 495 496 497
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

513 514 515 516 517 518 519 520 521 522 523 524 525 526
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

527 528 529 530 531 532 533 534 535 536
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
537
		rsp = rcu_state_p;
538 539 540 541 542 543 544 545 546 547 548
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
549 550 551
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
552 553 554 555 556 557 558 559
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

560 561 562 563 564 565 566 567 568 569 570
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

571 572 573 574 575 576
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
577 578
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
579 580
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
597
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
598 599
	int *fp = &rnp->need_future_gp[idx];

600
	return READ_ONCE(*fp);
601 602
}

603
/*
604 605 606
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
607 608 609 610
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
611
	int i;
P
Paul E. McKenney 已提交
612

613 614
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
615
	if (rcu_future_needs_gp(rsp))
616
		return 1;  /* Yes, a no-CBs CPU needs one. */
617 618 619 620 621 622
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
623
		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
624 625 626
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
627 628
}

629
/*
630
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
631 632 633 634 635
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
636
static void rcu_eqs_enter_common(long long oldval, bool user)
637
{
638 639
	struct rcu_state *rsp;
	struct rcu_data *rdp;
640
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
641

642
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
643 644
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
645 646
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
647

648
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
649
		ftrace_dump(DUMP_ORIG);
650 651 652
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
653
	}
654 655 656 657
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
658
	rcu_prepare_for_idle();
659
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
660
	smp_mb__before_atomic();  /* See above. */
661
	atomic_inc(&rdtp->dynticks);
662
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
663 664
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     atomic_read(&rdtp->dynticks) & 0x1);
665
	rcu_dynticks_task_enter();
666 667

	/*
668
	 * It is illegal to enter an extended quiescent state while
669 670
	 * in an RCU read-side critical section.
	 */
671 672 673 674 675 676
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal idle entry in RCU read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
			 "Illegal idle entry in RCU-bh read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
			 "Illegal idle entry in RCU-sched read-side critical section.");
677
}
678

679 680 681
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
682
 */
683
static void rcu_eqs_enter(bool user)
684
{
685
	long long oldval;
686 687
	struct rcu_dynticks *rdtp;

688
	rdtp = this_cpu_ptr(&rcu_dynticks);
689
	oldval = rdtp->dynticks_nesting;
690 691
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
692
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
693
		rdtp->dynticks_nesting = 0;
694
		rcu_eqs_enter_common(oldval, user);
695
	} else {
696
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
697
	}
698
}
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
714 715 716
	unsigned long flags;

	local_irq_save(flags);
717
	rcu_eqs_enter(false);
718
	rcu_sysidle_enter(0);
719
	local_irq_restore(flags);
720
}
721
EXPORT_SYMBOL_GPL(rcu_idle_enter);
722

723
#ifdef CONFIG_NO_HZ_FULL
724 725 726 727 728 729 730 731 732 733
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
734
	rcu_eqs_enter(1);
735
}
736
#endif /* CONFIG_NO_HZ_FULL */
737

738 739 740 741 742 743
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
744
 *
745 746 747 748 749 750 751 752
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
753
 */
754
void rcu_irq_exit(void)
755 756
{
	unsigned long flags;
757
	long long oldval;
758 759 760
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
761
	rdtp = this_cpu_ptr(&rcu_dynticks);
762
	oldval = rdtp->dynticks_nesting;
763
	rdtp->dynticks_nesting--;
764 765
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting < 0);
766
	if (rdtp->dynticks_nesting)
767
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
768
	else
769 770
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
771 772 773 774
	local_irq_restore(flags);
}

/*
775
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
776 777 778 779 780
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
781
static void rcu_eqs_exit_common(long long oldval, int user)
782
{
783 784
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

785
	rcu_dynticks_task_exit();
786
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
787 788
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
789
	smp_mb__after_atomic();  /* See above. */
790 791
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(atomic_read(&rdtp->dynticks) & 0x1));
792
	rcu_cleanup_after_idle();
793
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
794 795
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
796 797
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
798

799
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
800
				  oldval, rdtp->dynticks_nesting);
801
		ftrace_dump(DUMP_ORIG);
802 803 804
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
805 806 807
	}
}

808 809 810
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
811
 */
812
static void rcu_eqs_exit(bool user)
813 814 815 816
{
	struct rcu_dynticks *rdtp;
	long long oldval;

817
	rdtp = this_cpu_ptr(&rcu_dynticks);
818
	oldval = rdtp->dynticks_nesting;
819
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
820
	if (oldval & DYNTICK_TASK_NEST_MASK) {
821
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
822
	} else {
823
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
824
		rcu_eqs_exit_common(oldval, user);
825
	}
826
}
827 828 829 830 831 832 833 834 835 836 837 838 839 840

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
841 842 843
	unsigned long flags;

	local_irq_save(flags);
844
	rcu_eqs_exit(false);
845
	rcu_sysidle_exit(0);
846
	local_irq_restore(flags);
847
}
848
EXPORT_SYMBOL_GPL(rcu_idle_exit);
849

850
#ifdef CONFIG_NO_HZ_FULL
851 852 853 854 855 856 857 858
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
859
	rcu_eqs_exit(1);
860
}
861
#endif /* CONFIG_NO_HZ_FULL */
862

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
889
	rdtp = this_cpu_ptr(&rcu_dynticks);
890 891
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
892 893
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
894
	if (oldval)
895
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
896
	else
897 898
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
899 900 901 902 903 904
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
905 906 907 908 909
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
910 911 912
 */
void rcu_nmi_enter(void)
{
913
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
914
	int incby = 2;
915

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
937 938 939 940 941
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
942 943 944 945
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
946 947 948
 */
void rcu_nmi_exit(void)
{
949
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
950

951 952 953 954 955 956 957 958 959 960 961 962 963 964
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
965
		return;
966 967 968 969
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
970
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
971
	smp_mb__before_atomic();  /* See above. */
972
	atomic_inc(&rdtp->dynticks);
973
	smp_mb__after_atomic();  /* Force delay to next write. */
974
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
975 976 977
}

/**
978 979 980 981 982 983 984
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
985
bool notrace __rcu_is_watching(void)
986 987 988 989 990 991
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
992
 *
993
 * If the current CPU is in its idle loop and is neither in an interrupt
994
 * or NMI handler, return true.
995
 */
996
bool notrace rcu_is_watching(void)
997
{
998
	bool ret;
999

1000
	preempt_disable_notrace();
1001
	ret = __rcu_is_watching();
1002
	preempt_enable_notrace();
1003
	return ret;
1004
}
1005
EXPORT_SYMBOL_GPL(rcu_is_watching);
1006

1007
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1008 1009 1010 1011 1012 1013 1014

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1026 1027 1028 1029 1030 1031
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1032 1033
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1034 1035 1036
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1037
		return true;
1038
	preempt_disable();
1039
	rdp = this_cpu_ptr(&rcu_sched_data);
1040
	rnp = rdp->mynode;
1041
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1042 1043 1044 1045 1046 1047
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1048
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1049

1050
/**
1051
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1052
 *
1053 1054 1055
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1056
 */
1057
static int rcu_is_cpu_rrupt_from_idle(void)
1058
{
1059
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1060 1061 1062 1063 1064
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1065
 * is in dynticks idle mode, which is an extended quiescent state.
1066
 */
1067 1068
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1069
{
1070
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1071
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1072 1073 1074 1075
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
		return 1;
	} else {
1076
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1077
				 rdp->mynode->gpnum))
1078
			WRITE_ONCE(rdp->gpwrap, true);
1079 1080
		return 0;
	}
1081 1082 1083 1084 1085 1086
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1087
 * for this same CPU, or by virtue of having been offline.
1088
 */
1089 1090
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1091
{
1092
	unsigned int curr;
1093
	int *rcrmp;
1094
	unsigned int snap;
1095

1096 1097
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
1098 1099 1100 1101 1102 1103 1104 1105 1106

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1107
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1108
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1109 1110 1111 1112
		rdp->dynticks_fqs++;
		return 1;
	}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
1128
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1129 1130 1131
		rdp->offline_fqs++;
		return 1;
	}
1132 1133

	/*
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1153
	 */
1154 1155 1156
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1157
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1158 1159 1160
		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			WRITE_ONCE(rdp->cond_resched_completed,
				   READ_ONCE(rdp->mynode->completed));
1161
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1162 1163
			WRITE_ONCE(*rcrmp,
				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1164 1165 1166 1167 1168 1169 1170
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
			/* Time to beat on that CPU again! */
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
		}
1171 1172
	}

1173
	return 0;
1174 1175 1176 1177
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1178
	unsigned long j = jiffies;
1179
	unsigned long j1;
1180 1181 1182

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1183
	j1 = rcu_jiffies_till_stall_check();
1184
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1185
	rsp->jiffies_resched = j + j1 / 2;
1186
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1187 1188
}

1189 1190 1191 1192 1193 1194 1195 1196 1197
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1198
	gpa = READ_ONCE(rsp->gp_activity);
1199
	if (j - gpa > 2 * HZ) {
1200
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x s%d ->state=%#lx\n",
1201
		       rsp->name, j - gpa,
1202 1203
		       rsp->gpnum, rsp->completed,
		       rsp->gp_flags, rsp->gp_state,
1204
		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1205 1206 1207
		if (rsp->gp_kthread)
			sched_show_task(rsp->gp_kthread);
	}
1208 1209
}

1210
/*
1211
 * Dump stacks of all tasks running on stalled CPUs.
1212 1213 1214 1215 1216 1217 1218 1219
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
1220
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1221 1222 1223 1224 1225 1226 1227 1228 1229
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

1230
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1231 1232 1233 1234
{
	int cpu;
	long delta;
	unsigned long flags;
1235 1236
	unsigned long gpa;
	unsigned long j;
1237
	int ndetected = 0;
1238
	struct rcu_node *rnp = rcu_get_root(rsp);
1239
	long totqlen = 0;
1240 1241 1242

	/* Only let one CPU complain about others per time interval. */

1243
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1244
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1245
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1246
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1247 1248
		return;
	}
1249 1250
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1251
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1252

1253 1254 1255 1256 1257
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1258
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1259
	       rsp->name);
1260
	print_cpu_stall_info_begin();
1261
	rcu_for_each_leaf_node(rsp, rnp) {
1262
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1263
		ndetected += rcu_print_task_stall(rnp);
1264 1265 1266 1267 1268 1269 1270 1271
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
1272
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1273
	}
1274 1275

	print_cpu_stall_info_end();
1276 1277
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1278
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1279
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1280
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1281
	if (ndetected) {
1282
		rcu_dump_cpu_stacks(rsp);
1283
	} else {
1284 1285
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1286 1287 1288
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1289
			gpa = READ_ONCE(rsp->gp_activity);
1290
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1291
			       rsp->name, j - gpa, j, gpa,
1292 1293
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1294 1295 1296 1297
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1298

1299
	/* Complain about tasks blocking the grace period. */
1300 1301
	rcu_print_detail_task_stall(rsp);

1302 1303
	rcu_check_gp_kthread_starvation(rsp);

1304
	force_quiescent_state(rsp);  /* Kick them all. */
1305 1306 1307 1308
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1309
	int cpu;
1310 1311
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1312
	long totqlen = 0;
1313

1314 1315 1316 1317 1318
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1319
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1320 1321 1322
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1323 1324
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1325 1326 1327
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1328 1329 1330

	rcu_check_gp_kthread_starvation(rsp);

1331
	rcu_dump_cpu_stacks(rsp);
1332

1333
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1334 1335 1336
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1337
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1338

1339 1340 1341 1342 1343 1344 1345 1346
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1347 1348 1349 1350
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1351 1352 1353
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1354 1355
	unsigned long j;
	unsigned long js;
1356 1357
	struct rcu_node *rnp;

1358
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1359
		return;
1360
	j = jiffies;
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1379
	gpnum = READ_ONCE(rsp->gpnum);
1380
	smp_rmb(); /* Pick up ->gpnum first... */
1381
	js = READ_ONCE(rsp->jiffies_stall);
1382
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1383
	gps = READ_ONCE(rsp->gp_start);
1384
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1385
	completed = READ_ONCE(rsp->completed);
1386 1387 1388 1389
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1390
	rnp = rdp->mynode;
1391
	if (rcu_gp_in_progress(rsp) &&
1392
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1393 1394 1395 1396

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1397 1398
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1399

1400
		/* They had a few time units to dump stack, so complain. */
1401
		print_other_cpu_stall(rsp, gpnum);
1402 1403 1404
	}
}

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1416 1417 1418
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1419
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1420 1421
}

1422
/*
1423 1424 1425
 * Initialize the specified rcu_data structure's default callback list
 * to empty.  The default callback list is the one that is not used by
 * no-callbacks CPUs.
1426
 */
1427
static void init_default_callback_list(struct rcu_data *rdp)
1428 1429 1430 1431 1432 1433 1434 1435
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	if (init_nocb_callback_list(rdp))
		return;
	init_default_callback_list(rdp);
}

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1475 1476 1477 1478 1479
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1480
				unsigned long c, const char *s)
1481 1482 1483 1484 1485 1486 1487 1488 1489
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1490 1491
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1492 1493 1494
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1495 1496 1497
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1498 1499 1500
{
	unsigned long c;
	int i;
1501
	bool ret = false;
1502 1503 1504 1505 1506 1507 1508
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1509
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1510
	if (rnp->need_future_gp[c & 0x1]) {
1511
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1512
		goto out;
1513 1514 1515 1516 1517 1518 1519
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1520 1521 1522 1523 1524 1525 1526
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1527 1528
	 */
	if (rnp->gpnum != rnp->completed ||
1529
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1530
		rnp->need_future_gp[c & 0x1]++;
1531
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1532
		goto out;
1533 1534 1535 1536 1537 1538 1539
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1540 1541
	if (rnp != rnp_root)
		raw_spin_lock_rcu_node(rnp_root);
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1559
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1560 1561 1562 1563 1564 1565 1566 1567
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1568
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1569
	} else {
1570
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1571
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1572 1573 1574 1575
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
1576 1577 1578 1579
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1597 1598
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1599 1600 1601
	return needmore;
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1612
	    !READ_ONCE(rsp->gp_flags) ||
1613 1614 1615 1616 1617
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1618 1619 1620 1621 1622 1623 1624
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1625 1626
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1627 1628 1629
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1630
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1631 1632 1633 1634
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1635
	bool ret;
1636 1637 1638

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1639
		return false;
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1668
		return false;
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1679
	/* Record any needed additional grace periods. */
1680
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1681 1682 1683

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1684
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1685
	else
1686
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1687
	return ret;
1688 1689 1690 1691 1692 1693 1694 1695
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1696
 * Returns true if the RCU grace-period kthread needs to be awakened.
1697 1698 1699
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1700
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1701 1702 1703 1704 1705 1706
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1707
		return false;
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1731
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1732 1733
}

1734
/*
1735 1736 1737
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1738
 * Returns true if the grace-period kthread needs to be awakened.
1739
 */
1740 1741
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1742
{
1743 1744
	bool ret;

1745
	/* Handle the ends of any preceding grace periods first. */
1746
	if (rdp->completed == rnp->completed &&
1747
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1748

1749
		/* No grace period end, so just accelerate recent callbacks. */
1750
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1751

1752 1753 1754
	} else {

		/* Advance callbacks. */
1755
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1756 1757 1758

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1759
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1760
	}
1761

1762
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1763 1764 1765 1766 1767 1768
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1769
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1770
		rdp->cpu_no_qs.b.norm = true;
1771
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1772
		rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1773
		zero_cpu_stall_ticks(rdp);
1774
		WRITE_ONCE(rdp->gpwrap, false);
1775
	}
1776
	return ret;
1777 1778
}

1779
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1780 1781
{
	unsigned long flags;
1782
	bool needwake;
1783 1784 1785 1786
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1787 1788 1789
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1790
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1791 1792 1793
		local_irq_restore(flags);
		return;
	}
1794
	needwake = __note_gp_changes(rsp, rnp, rdp);
1795
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1796 1797
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1798 1799
}

1800 1801 1802 1803 1804 1805 1806
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

1807
/*
1808
 * Initialize a new grace period.  Return 0 if no grace period required.
1809
 */
1810
static int rcu_gp_init(struct rcu_state *rsp)
1811
{
1812
	unsigned long oldmask;
1813
	struct rcu_data *rdp;
1814
	struct rcu_node *rnp = rcu_get_root(rsp);
1815

1816
	WRITE_ONCE(rsp->gp_activity, jiffies);
1817
	raw_spin_lock_irq_rcu_node(rnp);
1818
	if (!READ_ONCE(rsp->gp_flags)) {
1819 1820 1821 1822
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1823
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1824

1825 1826 1827 1828 1829
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1830 1831 1832 1833 1834
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1835
	record_gp_stall_check_time(rsp);
1836 1837
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1838
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1839 1840
	raw_spin_unlock_irq(&rnp->lock);

1841 1842 1843 1844 1845 1846 1847
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
1848
		rcu_gp_slow(rsp, gp_preinit_delay);
1849
		raw_spin_lock_irq_rcu_node(rnp);
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
			raw_spin_unlock_irq(&rnp->lock);
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

		raw_spin_unlock_irq(&rnp->lock);
	}
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1904
		rcu_gp_slow(rsp, gp_init_delay);
1905
		raw_spin_lock_irq_rcu_node(rnp);
1906
		rdp = this_cpu_ptr(rsp->rda);
1907 1908
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1909
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1910
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1911
			WRITE_ONCE(rnp->completed, rsp->completed);
1912
		if (rnp == rdp->mynode)
1913
			(void)__note_gp_changes(rsp, rnp, rdp);
1914 1915 1916 1917 1918
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1919
		cond_resched_rcu_qs();
1920
		WRITE_ONCE(rsp->gp_activity, jiffies);
1921
	}
1922

1923 1924
	return 1;
}
1925

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
/*
 * Helper function for wait_event_interruptible_timeout() wakeup
 * at force-quiescent-state time.
 */
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rsp->gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

1946 1947 1948
/*
 * Do one round of quiescent-state forcing.
 */
1949
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
1950
{
1951 1952
	bool isidle = false;
	unsigned long maxj;
1953 1954
	struct rcu_node *rnp = rcu_get_root(rsp);

1955
	WRITE_ONCE(rsp->gp_activity, jiffies);
1956
	rsp->n_force_qs++;
1957
	if (first_time) {
1958
		/* Collect dyntick-idle snapshots. */
1959
		if (is_sysidle_rcu_state(rsp)) {
1960
			isidle = true;
1961 1962
			maxj = jiffies - ULONG_MAX / 4;
		}
1963 1964
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1965
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1966 1967
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1968
		isidle = true;
1969
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1970 1971
	}
	/* Clear flag to prevent immediate re-entry. */
1972
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1973
		raw_spin_lock_irq_rcu_node(rnp);
1974 1975
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1976 1977 1978 1979
		raw_spin_unlock_irq(&rnp->lock);
	}
}

1980 1981 1982
/*
 * Clean up after the old grace period.
 */
1983
static void rcu_gp_cleanup(struct rcu_state *rsp)
1984 1985
{
	unsigned long gp_duration;
1986
	bool needgp = false;
1987
	int nocb = 0;
1988 1989
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1990

1991
	WRITE_ONCE(rsp->gp_activity, jiffies);
1992
	raw_spin_lock_irq_rcu_node(rnp);
1993 1994 1995
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1996

1997 1998 1999 2000 2001 2002 2003 2004
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
2005
	raw_spin_unlock_irq(&rnp->lock);
2006

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2017
		raw_spin_lock_irq_rcu_node(rnp);
2018 2019
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
2020
		WRITE_ONCE(rnp->completed, rsp->gpnum);
2021 2022
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
2023
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2024
		/* smp_mb() provided by prior unlock-lock pair. */
2025
		nocb += rcu_future_gp_cleanup(rsp, rnp);
2026
		raw_spin_unlock_irq(&rnp->lock);
2027
		cond_resched_rcu_qs();
2028
		WRITE_ONCE(rsp->gp_activity, jiffies);
2029
		rcu_gp_slow(rsp, gp_cleanup_delay);
2030
	}
2031
	rnp = rcu_get_root(rsp);
2032
	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2033
	rcu_nocb_gp_set(rnp, nocb);
2034

2035
	/* Declare grace period done. */
2036
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2037
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2038
	rsp->gp_state = RCU_GP_IDLE;
2039
	rdp = this_cpu_ptr(rsp->rda);
2040 2041 2042
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2043
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2044
		trace_rcu_grace_period(rsp->name,
2045
				       READ_ONCE(rsp->gpnum),
2046 2047
				       TPS("newreq"));
	}
2048 2049 2050 2051 2052 2053 2054 2055
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2056
	bool first_gp_fqs;
2057
	int gf;
2058
	unsigned long j;
2059
	int ret;
2060 2061 2062
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2063
	rcu_bind_gp_kthread();
2064 2065 2066 2067
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2068
			trace_rcu_grace_period(rsp->name,
2069
					       READ_ONCE(rsp->gpnum),
2070
					       TPS("reqwait"));
2071
			rsp->gp_state = RCU_GP_WAIT_GPS;
2072
			wait_event_interruptible(rsp->gp_wq,
2073
						 READ_ONCE(rsp->gp_flags) &
2074
						 RCU_GP_FLAG_INIT);
2075
			rsp->gp_state = RCU_GP_DONE_GPS;
2076
			/* Locking provides needed memory barrier. */
2077
			if (rcu_gp_init(rsp))
2078
				break;
2079
			cond_resched_rcu_qs();
2080
			WRITE_ONCE(rsp->gp_activity, jiffies);
2081
			WARN_ON(signal_pending(current));
2082
			trace_rcu_grace_period(rsp->name,
2083
					       READ_ONCE(rsp->gpnum),
2084
					       TPS("reqwaitsig"));
2085
		}
2086

2087
		/* Handle quiescent-state forcing. */
2088
		first_gp_fqs = true;
2089 2090 2091 2092 2093
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2094
		ret = 0;
2095
		for (;;) {
2096 2097
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
2098
			trace_rcu_grace_period(rsp->name,
2099
					       READ_ONCE(rsp->gpnum),
2100
					       TPS("fqswait"));
2101
			rsp->gp_state = RCU_GP_WAIT_FQS;
2102
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
2103
					rcu_gp_fqs_check_wake(rsp, &gf), j);
2104
			rsp->gp_state = RCU_GP_DOING_FQS;
2105
			/* Locking provides needed memory barriers. */
2106
			/* If grace period done, leave loop. */
2107
			if (!READ_ONCE(rnp->qsmask) &&
2108
			    !rcu_preempt_blocked_readers_cgp(rnp))
2109
				break;
2110
			/* If time for quiescent-state forcing, do it. */
2111 2112
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2113
				trace_rcu_grace_period(rsp->name,
2114
						       READ_ONCE(rsp->gpnum),
2115
						       TPS("fqsstart"));
2116 2117
				rcu_gp_fqs(rsp, first_gp_fqs);
				first_gp_fqs = false;
2118
				trace_rcu_grace_period(rsp->name,
2119
						       READ_ONCE(rsp->gpnum),
2120
						       TPS("fqsend"));
2121
				cond_resched_rcu_qs();
2122
				WRITE_ONCE(rsp->gp_activity, jiffies);
2123 2124
			} else {
				/* Deal with stray signal. */
2125
				cond_resched_rcu_qs();
2126
				WRITE_ONCE(rsp->gp_activity, jiffies);
2127
				WARN_ON(signal_pending(current));
2128
				trace_rcu_grace_period(rsp->name,
2129
						       READ_ONCE(rsp->gpnum),
2130
						       TPS("fqswaitsig"));
2131
			}
2132 2133 2134 2135 2136 2137 2138 2139
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
2140
		}
2141 2142

		/* Handle grace-period end. */
2143
		rsp->gp_state = RCU_GP_CLEANUP;
2144
		rcu_gp_cleanup(rsp);
2145
		rsp->gp_state = RCU_GP_CLEANED;
2146 2147 2148
	}
}

2149 2150 2151
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2152
 * the root node's ->lock and hard irqs must be disabled.
2153 2154 2155 2156
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2157 2158
 *
 * Returns true if the grace-period kthread must be awakened.
2159
 */
2160
static bool
2161 2162
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2163
{
2164
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2165
		/*
2166
		 * Either we have not yet spawned the grace-period
2167 2168
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2169
		 * Either way, don't start a new grace period.
2170
		 */
2171
		return false;
2172
	}
2173 2174
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2175
			       TPS("newreq"));
2176

2177 2178
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2179
	 * could cause possible deadlocks with the rq->lock. Defer
2180
	 * the wakeup to our caller.
2181
	 */
2182
	return true;
2183 2184
}

2185 2186 2187 2188 2189 2190
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2191 2192
 *
 * Returns true if the grace-period kthread needs to be awakened.
2193
 */
2194
static bool rcu_start_gp(struct rcu_state *rsp)
2195 2196 2197
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2198
	bool ret = false;
2199 2200 2201 2202 2203 2204 2205 2206 2207

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2208 2209 2210
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2211 2212
}

2213
/*
P
Paul E. McKenney 已提交
2214 2215 2216
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
2217 2218
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
2219
 */
P
Paul E. McKenney 已提交
2220
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2221
	__releases(rcu_get_root(rsp)->lock)
2222
{
2223
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2224
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2225
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2226
	rcu_gp_kthread_wake(rsp);
2227 2228
}

2229
/*
P
Paul E. McKenney 已提交
2230 2231 2232
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2233 2234 2235 2236 2237
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2238 2239
 */
static void
P
Paul E. McKenney 已提交
2240
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2241
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2242 2243
	__releases(rnp->lock)
{
2244
	unsigned long oldmask = 0;
2245 2246
	struct rcu_node *rnp_c;

2247 2248
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2249
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2250

2251 2252 2253 2254
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
P
Paul E. McKenney 已提交
2255
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2256 2257
			return;
		}
2258
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2259
		rnp->qsmask &= ~mask;
2260 2261 2262 2263
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2264
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2265 2266

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
2267
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2268 2269 2270 2271 2272 2273 2274 2275 2276
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
2277
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2278
		rnp_c = rnp;
2279
		rnp = rnp->parent;
2280
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2281
		oldmask = rnp_c->qsmask;
2282 2283 2284 2285
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2286
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2287
	 * to clean up and start the next grace period if one is needed.
2288
	 */
P
Paul E. McKenney 已提交
2289
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2290 2291
}

2292 2293 2294 2295 2296 2297 2298
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2299
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2300 2301 2302
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2303
	unsigned long gps;
2304 2305 2306
	unsigned long mask;
	struct rcu_node *rnp_p;

2307 2308
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2309 2310 2311 2312 2313 2314 2315
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2316 2317
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2318 2319 2320 2321 2322
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2323 2324
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2325 2326
	mask = rnp->grpmask;
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
2327
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2328
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2329 2330
}

2331
/*
P
Paul E. McKenney 已提交
2332 2333 2334 2335 2336 2337 2338
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
2339 2340
 */
static void
2341
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2342 2343 2344
{
	unsigned long flags;
	unsigned long mask;
2345
	bool needwake;
2346 2347 2348
	struct rcu_node *rnp;

	rnp = rdp->mynode;
2349
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2350
	if ((rdp->cpu_no_qs.b.norm &&
2351 2352 2353
	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
	    rdp->gpwrap) {
2354 2355

		/*
2356 2357 2358 2359
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2360
		 */
2361
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2362
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
P
Paul E. McKenney 已提交
2363
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2364 2365 2366 2367
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
2368
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2369
	} else {
2370
		rdp->core_needs_qs = 0;
2371 2372 2373 2374 2375

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2376
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2377

2378 2379
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2380 2381
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2394 2395
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2396 2397 2398 2399 2400

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
2401
	if (!rdp->core_needs_qs)
2402 2403 2404 2405 2406 2407
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2408
	if (rdp->cpu_no_qs.b.norm &&
2409
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2410 2411
		return;

P
Paul E. McKenney 已提交
2412 2413 2414 2415
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2416
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2417 2418
}

2419
/*
2420 2421
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2422
 * ->orphan_lock.
2423
 */
2424 2425 2426
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2427
{
P
Paul E. McKenney 已提交
2428
	/* No-CBs CPUs do not have orphanable callbacks. */
2429
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2430 2431
		return;

2432 2433
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2434 2435
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2436
	 */
2437
	if (rdp->nxtlist != NULL) {
2438 2439 2440
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2441
		rdp->qlen_lazy = 0;
2442
		WRITE_ONCE(rdp->qlen, 0);
2443 2444 2445
	}

	/*
2446 2447 2448 2449 2450 2451 2452
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2453
	 */
2454 2455 2456 2457
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2458 2459 2460
	}

	/*
2461 2462 2463
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2464
	 */
2465
	if (rdp->nxtlist != NULL) {
2466 2467
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2468
	}
2469

2470 2471 2472 2473
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2474
	init_callback_list(rdp);
2475
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2476 2477 2478 2479
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2480
 * orphanage.  The caller must hold the ->orphan_lock.
2481
 */
2482
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2483 2484
{
	int i;
2485
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2486

P
Paul E. McKenney 已提交
2487
	/* No-CBs CPUs are handled specially. */
2488 2489
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2490 2491
		return;

2492 2493 2494 2495
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2496 2497
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

2536 2537 2538
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2539
	RCU_TRACE(mask = rdp->grpmask);
2540 2541
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2542
			       TPS("cpuofl"));
2543 2544
}

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2567 2568
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2569 2570 2571 2572 2573 2574
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
2575
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2576
		rnp->qsmaskinit &= ~mask;
2577
		rnp->qsmask &= ~mask;
2578 2579 2580 2581 2582 2583 2584 2585
		if (rnp->qsmaskinit) {
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			return;
		}
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
	}
}

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
/*
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

2598 2599 2600
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2601 2602
	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
2603
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
2604 2605 2606 2607
	rnp->qsmaskinitnext &= ~mask;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

2608
/*
2609
 * The CPU has been completely removed, and some other CPU is reporting
2610 2611
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2612 2613
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2614
 */
2615
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2616
{
2617
	unsigned long flags;
2618
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2619
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2620

2621 2622 2623
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2624
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2625
	rcu_boost_kthread_setaffinity(rnp, -1);
2626

2627
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2628
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2629
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2630
	rcu_adopt_orphan_cbs(rsp, flags);
2631
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2632

2633 2634 2635
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2636 2637 2638 2639 2640 2641
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2642
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2643 2644 2645
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2646 2647
	long bl, count, count_lazy;
	int i;
2648

2649
	/* If no callbacks are ready, just return. */
2650
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2651
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2652
		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2653 2654
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2655
		return;
2656
	}
2657 2658 2659 2660 2661 2662

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2663
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2664
	bl = rdp->blimit;
2665
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2666 2667 2668 2669
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2670 2671 2672
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2673 2674 2675
	local_irq_restore(flags);

	/* Invoke callbacks. */
2676
	count = count_lazy = 0;
2677 2678 2679
	while (list) {
		next = list->next;
		prefetch(next);
2680
		debug_rcu_head_unqueue(list);
2681 2682
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2683
		list = next;
2684 2685 2686 2687
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2688 2689 2690 2691
			break;
	}

	local_irq_save(flags);
2692 2693 2694
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2695 2696 2697 2698 2699

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2700 2701 2702
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2703 2704 2705
			else
				break;
	}
2706 2707
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2708
	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2709
	rdp->n_cbs_invoked += count;
2710 2711 2712 2713 2714

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2715 2716 2717 2718 2719 2720
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2721
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2722

2723 2724
	local_irq_restore(flags);

2725
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2726
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2727
		invoke_rcu_core();
2728 2729 2730 2731 2732
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2733
 * Also schedule RCU core processing.
2734
 *
2735
 * This function must be called from hardirq context.  It is normally
2736 2737 2738
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2739
void rcu_check_callbacks(int user)
2740
{
2741
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2742
	increment_cpu_stall_ticks();
2743
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2744 2745 2746 2747 2748

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2749
		 * a quiescent state, so note it.
2750 2751
		 *
		 * No memory barrier is required here because both
2752 2753 2754
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2755 2756
		 */

2757 2758
		rcu_sched_qs();
		rcu_bh_qs();
2759 2760 2761 2762 2763 2764 2765

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2766
		 * critical section, so note it.
2767 2768
		 */

2769
		rcu_bh_qs();
2770
	}
2771
	rcu_preempt_check_callbacks();
2772
	if (rcu_pending())
2773
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2774 2775
	if (user)
		rcu_note_voluntary_context_switch(current);
2776
	trace_rcu_utilization(TPS("End scheduler-tick"));
2777 2778 2779 2780 2781
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2782 2783
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2784
 * The caller must have suppressed start of new grace periods.
2785
 */
2786 2787 2788 2789
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2790 2791 2792 2793 2794
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2795
	struct rcu_node *rnp;
2796

2797
	rcu_for_each_leaf_node(rsp, rnp) {
2798
		cond_resched_rcu_qs();
2799
		mask = 0;
2800
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2801
		if (rnp->qsmask == 0) {
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2825
		}
2826
		cpu = rnp->grplo;
2827
		bit = 1;
2828
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2829 2830 2831 2832
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2833
		}
2834
		if (mask != 0) {
2835 2836
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2837 2838 2839
		} else {
			/* Nothing to do here, so just drop the lock. */
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2840 2841 2842 2843 2844 2845 2846 2847
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2848
static void force_quiescent_state(struct rcu_state *rsp)
2849 2850
{
	unsigned long flags;
2851 2852 2853 2854 2855
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2856
	rnp = __this_cpu_read(rsp->rda->mynode);
2857
	for (; rnp != NULL; rnp = rnp->parent) {
2858
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2859 2860 2861 2862
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2863
			rsp->n_force_qs_lh++;
2864 2865 2866 2867 2868
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2869

2870
	/* Reached the root of the rcu_node tree, acquire lock. */
2871
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2872
	raw_spin_unlock(&rnp_old->fqslock);
2873
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2874
		rsp->n_force_qs_lh++;
2875
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2876
		return;  /* Someone beat us to it. */
2877
	}
2878
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2879
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2880
	rcu_gp_kthread_wake(rsp);
2881 2882 2883
}

/*
2884 2885 2886
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2887 2888
 */
static void
2889
__rcu_process_callbacks(struct rcu_state *rsp)
2890 2891
{
	unsigned long flags;
2892
	bool needwake;
2893
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2894

2895 2896
	WARN_ON_ONCE(rdp->beenonline == 0);

2897 2898 2899 2900
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2901
	local_irq_save(flags);
2902
	if (cpu_needs_another_gp(rsp, rdp)) {
2903
		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2904
		needwake = rcu_start_gp(rsp);
2905
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2906 2907
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2908 2909
	} else {
		local_irq_restore(flags);
2910 2911 2912
	}

	/* If there are callbacks ready, invoke them. */
2913
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2914
		invoke_rcu_callbacks(rsp, rdp);
2915 2916 2917

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2918 2919
}

2920
/*
2921
 * Do RCU core processing for the current CPU.
2922
 */
2923
static void rcu_process_callbacks(struct softirq_action *unused)
2924
{
2925 2926
	struct rcu_state *rsp;

2927 2928
	if (cpu_is_offline(smp_processor_id()))
		return;
2929
	trace_rcu_utilization(TPS("Start RCU core"));
2930 2931
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2932
	trace_rcu_utilization(TPS("End RCU core"));
2933 2934
}

2935
/*
2936 2937 2938
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2939
 * are running on the current CPU with softirqs disabled, the
2940
 * rcu_cpu_kthread_task cannot disappear out from under us.
2941
 */
2942
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2943
{
2944
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2945
		return;
2946 2947
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2948 2949
		return;
	}
2950
	invoke_rcu_callbacks_kthread();
2951 2952
}

2953
static void invoke_rcu_core(void)
2954
{
2955 2956
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2957 2958
}

2959 2960 2961 2962 2963
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2964
{
2965 2966
	bool needwake;

2967 2968 2969 2970
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2971
	if (!rcu_is_watching())
2972 2973
		invoke_rcu_core();

2974
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2975
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2976
		return;
2977

2978 2979 2980 2981 2982 2983 2984
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2985
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2986 2987

		/* Are we ignoring a completed grace period? */
2988
		note_gp_changes(rsp, rdp);
2989 2990 2991 2992 2993

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2994
			raw_spin_lock_rcu_node(rnp_root);
2995
			needwake = rcu_start_gp(rsp);
2996
			raw_spin_unlock(&rnp_root->lock);
2997 2998
			if (needwake)
				rcu_gp_kthread_wake(rsp);
2999 3000 3001 3002 3003
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3004
				force_quiescent_state(rsp);
3005 3006 3007
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
3008
	}
3009 3010
}

3011 3012 3013 3014 3015 3016 3017
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3018 3019 3020 3021 3022 3023
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3024
static void
3025
__call_rcu(struct rcu_head *head, rcu_callback_t func,
P
Paul E. McKenney 已提交
3026
	   struct rcu_state *rsp, int cpu, bool lazy)
3027 3028 3029 3030
{
	unsigned long flags;
	struct rcu_data *rdp;

3031
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3032 3033
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3034
		WRITE_ONCE(head->func, rcu_leak_callback);
3035 3036 3037
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
3048
	rdp = this_cpu_ptr(rsp->rda);
3049 3050

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
3051 3052 3053 3054 3055
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3069
		WARN_ON_ONCE(!rcu_is_watching());
3070 3071
		if (!likely(rdp->nxtlist))
			init_default_callback_list(rdp);
3072
	}
3073
	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3074 3075
	if (lazy)
		rdp->qlen_lazy++;
3076 3077
	else
		rcu_idle_count_callbacks_posted();
3078 3079 3080
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3081

3082 3083
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3084
					 rdp->qlen_lazy, rdp->qlen);
3085
	else
3086
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3087

3088 3089
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3090 3091 3092 3093
	local_irq_restore(flags);
}

/*
3094
 * Queue an RCU-sched callback for invocation after a grace period.
3095
 */
3096
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3097
{
P
Paul E. McKenney 已提交
3098
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3099
}
3100
EXPORT_SYMBOL_GPL(call_rcu_sched);
3101 3102

/*
3103
 * Queue an RCU callback for invocation after a quicker grace period.
3104
 */
3105
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3106
{
P
Paul E. McKenney 已提交
3107
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3108 3109 3110
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3111 3112 3113 3114 3115 3116 3117 3118
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
3119
		    rcu_callback_t func)
3120
{
3121
	__call_rcu(head, func, rcu_state_p, -1, 1);
3122 3123 3124
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3136 3137
	int ret;

3138
	might_sleep();  /* Check for RCU read-side critical section. */
3139 3140 3141 3142
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3143 3144
}

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3179 3180 3181 3182 3183 3184 3185 3186 3187
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3188 3189 3190 3191
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3192 3193
	if (rcu_blocking_is_gp())
		return;
3194
	if (rcu_gp_is_expedited())
3195 3196 3197
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3209 3210 3211
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3212 3213 3214
 */
void synchronize_rcu_bh(void)
{
3215 3216 3217 3218
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3219 3220
	if (rcu_blocking_is_gp())
		return;
3221
	if (rcu_gp_is_expedited())
3222 3223 3224
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3225 3226 3227
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3248
	return smp_load_acquire(&rcu_state_p->gpnum);
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3274
	newstate = smp_load_acquire(&rcu_state_p->completed);
3275 3276 3277 3278 3279
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
/**
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_sched(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_sched()
	 * and cond_synchronize_sched().
	 */
	return smp_load_acquire(&rcu_sched_state.gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);

/**
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 *
 * If a full RCU-sched grace period has elapsed since the earlier call to
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 * synchronize_sched() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_sched(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_sched_state.completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(cond_synchronize_sched);

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
/* Adjust sequence number for start of update-side operation. */
static void rcu_seq_start(unsigned long *sp)
{
	WRITE_ONCE(*sp, *sp + 1);
	smp_mb(); /* Ensure update-side operation after counter increment. */
	WARN_ON_ONCE(!(*sp & 0x1));
}

/* Adjust sequence number for end of update-side operation. */
static void rcu_seq_end(unsigned long *sp)
{
	smp_mb(); /* Ensure update-side operation before counter increment. */
	WRITE_ONCE(*sp, *sp + 1);
	WARN_ON_ONCE(*sp & 0x1);
}

/* Take a snapshot of the update side's sequence number. */
static unsigned long rcu_seq_snap(unsigned long *sp)
{
	unsigned long s;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	s = (READ_ONCE(*sp) + 3) & ~0x1;
	smp_mb(); /* Above access must not bleed into critical section. */
	return s;
}

/*
 * Given a snapshot from rcu_seq_snap(), determine whether or not a
 * full update-side operation has occurred.
 */
static bool rcu_seq_done(unsigned long *sp, unsigned long s)
{
	return ULONG_CMP_GE(READ_ONCE(*sp), s);
}

/* Wrapper functions for expedited grace periods.  */
static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
{
	rcu_seq_start(&rsp->expedited_sequence);
}
static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
{
	rcu_seq_end(&rsp->expedited_sequence);
3376
	smp_mb(); /* Ensure that consecutive grace periods serialize. */
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
}
static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
{
	return rcu_seq_snap(&rsp->expedited_sequence);
}
static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
{
	return rcu_seq_done(&rsp->expedited_sequence, s);
}

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
/*
 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
 * recent CPU-online activity.  Note that these masks are not cleared
 * when CPUs go offline, so they reflect the union of all CPUs that have
 * ever been online.  This means that this function normally takes its
 * no-work-to-do fastpath.
 */
static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
{
	bool done;
	unsigned long flags;
	unsigned long mask;
	unsigned long oldmask;
	int ncpus = READ_ONCE(rsp->ncpus);
	struct rcu_node *rnp;
	struct rcu_node *rnp_up;

	/* If no new CPUs onlined since last time, nothing to do. */
	if (likely(ncpus == rsp->ncpus_snap))
		return;
	rsp->ncpus_snap = ncpus;

	/*
	 * Each pass through the following loop propagates newly onlined
	 * CPUs for the current rcu_node structure up the rcu_node tree.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
3414
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
		if (rnp->expmaskinit == rnp->expmaskinitnext) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
			continue;  /* No new CPUs, nothing to do. */
		}

		/* Update this node's mask, track old value for propagation. */
		oldmask = rnp->expmaskinit;
		rnp->expmaskinit = rnp->expmaskinitnext;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);

		/* If was already nonzero, nothing to propagate. */
		if (oldmask)
			continue;

		/* Propagate the new CPU up the tree. */
		mask = rnp->grpmask;
		rnp_up = rnp->parent;
		done = false;
		while (rnp_up) {
3434
			raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
			if (rnp_up->expmaskinit)
				done = true;
			rnp_up->expmaskinit |= mask;
			raw_spin_unlock_irqrestore(&rnp_up->lock, flags);
			if (done)
				break;
			mask = rnp_up->grpmask;
			rnp_up = rnp_up->parent;
		}
	}
}

/*
 * Reset the ->expmask values in the rcu_node tree in preparation for
 * a new expedited grace period.
 */
static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	sync_exp_reset_tree_hotplug(rsp);
	rcu_for_each_node_breadth_first(rsp, rnp) {
3458
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3459 3460 3461 3462 3463 3464
		WARN_ON_ONCE(rnp->expmask);
		rnp->expmask = rnp->expmaskinit;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

3465
/*
3466
 * Return non-zero if there is no RCU expedited grace period in progress
3467 3468 3469 3470 3471 3472 3473 3474 3475
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
3476
	return rnp->exp_tasks == NULL &&
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
	       READ_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
3488 3489
 * Caller must hold the root rcu_node's exp_funnel_mutex and the
 * specified rcu_node structure's ->lock.
3490
 */
3491 3492 3493
static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
				 bool wake, unsigned long flags)
	__releases(rnp->lock)
3494 3495 3496 3497 3498
{
	unsigned long mask;

	for (;;) {
		if (!sync_rcu_preempt_exp_done(rnp)) {
3499 3500 3501 3502
			if (!rnp->expmask)
				rcu_initiate_boost(rnp, flags);
			else
				raw_spin_unlock_irqrestore(&rnp->lock, flags);
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
			break;
		}
		if (rnp->parent == NULL) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
			if (wake) {
				smp_mb(); /* EGP done before wake_up(). */
				wake_up(&rsp->expedited_wq);
			}
			break;
		}
		mask = rnp->grpmask;
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
		rnp = rnp->parent;
3516
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
3517
		WARN_ON_ONCE(!(rnp->expmask & mask));
3518 3519 3520 3521
		rnp->expmask &= ~mask;
	}
}

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
/*
 * Report expedited quiescent state for specified node.  This is a
 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
 *
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
					      struct rcu_node *rnp, bool wake)
{
	unsigned long flags;

3533
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
	__rcu_report_exp_rnp(rsp, rnp, wake, flags);
}

/*
 * Report expedited quiescent state for multiple CPUs, all covered by the
 * specified leaf rcu_node structure.  Caller must hold the root
 * rcu_node's exp_funnel_mutex.
 */
static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
				    unsigned long mask, bool wake)
{
	unsigned long flags;

3547
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3548 3549 3550 3551
	if (!(rnp->expmask & mask)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
3552 3553 3554 3555 3556 3557 3558 3559
	rnp->expmask &= ~mask;
	__rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
}

/*
 * Report expedited quiescent state for specified rcu_data (CPU).
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
3560 3561
static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
			       bool wake)
3562 3563 3564 3565
{
	rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
}

3566 3567
/* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
3568
			       struct rcu_data *rdp,
3569
			       atomic_long_t *stat, unsigned long s)
3570
{
3571
	if (rcu_exp_gp_seq_done(rsp, s)) {
3572 3573
		if (rnp)
			mutex_unlock(&rnp->exp_funnel_mutex);
3574 3575
		else if (rdp)
			mutex_unlock(&rdp->exp_funnel_mutex);
3576 3577 3578 3579 3580 3581 3582 3583
		/* Ensure test happens before caller kfree(). */
		smp_mb__before_atomic(); /* ^^^ */
		atomic_long_inc(stat);
		return true;
	}
	return false;
}

3584 3585 3586 3587 3588 3589 3590
/*
 * Funnel-lock acquisition for expedited grace periods.  Returns a
 * pointer to the root rcu_node structure, or NULL if some other
 * task did the expedited grace period for us.
 */
static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
{
3591
	struct rcu_data *rdp;
3592 3593 3594
	struct rcu_node *rnp0;
	struct rcu_node *rnp1 = NULL;

3595
	/*
3596 3597 3598 3599
	 * First try directly acquiring the root lock in order to reduce
	 * latency in the common case where expedited grace periods are
	 * rare.  We check mutex_is_locked() to avoid pathological levels of
	 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3600
	 */
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
	rnp0 = rcu_get_root(rsp);
	if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
		if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
			if (sync_exp_work_done(rsp, rnp0, NULL,
					       &rsp->expedited_workdone0, s))
				return NULL;
			return rnp0;
		}
	}

3611 3612 3613 3614 3615 3616 3617 3618
	/*
	 * Each pass through the following loop works its way
	 * up the rcu_node tree, returning if others have done the
	 * work or otherwise falls through holding the root rnp's
	 * ->exp_funnel_mutex.  The mapping from CPU to rcu_node structure
	 * can be inexact, as it is just promoting locality and is not
	 * strictly needed for correctness.
	 */
3619 3620 3621 3622 3623
	rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
	if (sync_exp_work_done(rsp, NULL, NULL, &rsp->expedited_workdone1, s))
		return NULL;
	mutex_lock(&rdp->exp_funnel_mutex);
	rnp0 = rdp->mynode;
3624
	for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3625 3626
		if (sync_exp_work_done(rsp, rnp1, rdp,
				       &rsp->expedited_workdone2, s))
3627 3628 3629 3630
			return NULL;
		mutex_lock(&rnp0->exp_funnel_mutex);
		if (rnp1)
			mutex_unlock(&rnp1->exp_funnel_mutex);
3631 3632
		else
			mutex_unlock(&rdp->exp_funnel_mutex);
3633 3634
		rnp1 = rnp0;
	}
3635 3636
	if (sync_exp_work_done(rsp, rnp1, rdp,
			       &rsp->expedited_workdone3, s))
3637 3638 3639 3640
		return NULL;
	return rnp1;
}

3641
/* Invoked on each online non-idle CPU for expedited quiescent state. */
3642
static void sync_sched_exp_handler(void *data)
3643
{
3644 3645 3646
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp = data;
3647

3648 3649 3650 3651 3652
	rdp = this_cpu_ptr(rsp->rda);
	rnp = rdp->mynode;
	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
	    __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
3653 3654
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
	resched_cpu(smp_processor_id());
3655 3656
}

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
/* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
static void sync_sched_exp_online_cleanup(int cpu)
{
	struct rcu_data *rdp;
	int ret;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_sched_state;

	rdp = per_cpu_ptr(rsp->rda, cpu);
	rnp = rdp->mynode;
	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
		return;
	ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
	WARN_ON_ONCE(ret);
}

3673 3674 3675 3676
/*
 * Select the nodes that the upcoming expedited grace period needs
 * to wait for.
 */
3677 3678
static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
				     smp_call_func_t func)
3679 3680 3681 3682 3683 3684
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
	unsigned long mask_ofl_test;
	unsigned long mask_ofl_ipi;
3685
	int ret;
3686 3687 3688 3689
	struct rcu_node *rnp;

	sync_exp_reset_tree(rsp);
	rcu_for_each_leaf_node(rsp, rnp) {
3690
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717

		/* Each pass checks a CPU for identity, offline, and idle. */
		mask_ofl_test = 0;
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

			if (raw_smp_processor_id() == cpu ||
			    !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
				mask_ofl_test |= rdp->grpmask;
		}
		mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;

		/*
		 * Need to wait for any blocked tasks as well.  Note that
		 * additional blocking tasks will also block the expedited
		 * GP until such time as the ->expmask bits are cleared.
		 */
		if (rcu_preempt_has_tasks(rnp))
			rnp->exp_tasks = rnp->blkd_tasks.next;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);

		/* IPI the remaining CPUs for expedited quiescent state. */
		mask = 1;
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
			if (!(mask_ofl_ipi & mask))
				continue;
3718
retry_ipi:
3719
			ret = smp_call_function_single(cpu, func, rsp, 0);
3720
			if (!ret) {
3721
				mask_ofl_ipi &= ~mask;
3722 3723
			} else {
				/* Failed, raced with offline. */
3724
				raw_spin_lock_irqsave_rcu_node(rnp, flags);
3725 3726 3727 3728 3729 3730 3731 3732
				if (cpu_online(cpu) &&
				    (rnp->expmask & mask)) {
					raw_spin_unlock_irqrestore(&rnp->lock,
								   flags);
					schedule_timeout_uninterruptible(1);
					if (cpu_online(cpu) &&
					    (rnp->expmask & mask))
						goto retry_ipi;
3733 3734
					raw_spin_lock_irqsave_rcu_node(rnp,
								       flags);
3735 3736 3737 3738 3739
				}
				if (!(rnp->expmask & mask))
					mask_ofl_ipi &= ~mask;
				raw_spin_unlock_irqrestore(&rnp->lock, flags);
			}
3740 3741 3742 3743 3744 3745
		}
		/* Report quiescent states for those that went offline. */
		mask_ofl_test |= mask_ofl_ipi;
		if (mask_ofl_test)
			rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
	}
3746 3747
}

3748 3749 3750 3751 3752
static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
{
	int cpu;
	unsigned long jiffies_stall;
	unsigned long jiffies_start;
3753 3754 3755
	unsigned long mask;
	struct rcu_node *rnp;
	struct rcu_node *rnp_root = rcu_get_root(rsp);
3756 3757 3758 3759 3760 3761 3762 3763
	int ret;

	jiffies_stall = rcu_jiffies_till_stall_check();
	jiffies_start = jiffies;

	for (;;) {
		ret = wait_event_interruptible_timeout(
				rsp->expedited_wq,
3764
				sync_rcu_preempt_exp_done(rnp_root),
3765 3766 3767 3768 3769 3770
				jiffies_stall);
		if (ret > 0)
			return;
		if (ret < 0) {
			/* Hit a signal, disable CPU stall warnings. */
			wait_event(rsp->expedited_wq,
3771
				   sync_rcu_preempt_exp_done(rnp_root));
3772 3773
			return;
		}
3774
		pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3775
		       rsp->name);
3776
		rcu_for_each_leaf_node(rsp, rnp) {
3777
			(void)rcu_print_task_exp_stall(rnp);
3778 3779
			mask = 1;
			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3780 3781
				struct rcu_data *rdp;

3782 3783
				if (!(rnp->expmask & mask))
					continue;
3784 3785 3786 3787 3788
				rdp = per_cpu_ptr(rsp->rda, cpu);
				pr_cont(" %d-%c%c%c", cpu,
					"O."[cpu_online(cpu)],
					"o."[!!(rdp->grpmask & rnp->expmaskinit)],
					"N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
3789 3790
			}
			mask <<= 1;
3791 3792 3793
		}
		pr_cont(" } %lu jiffies s: %lu\n",
			jiffies - jiffies_start, rsp->expedited_sequence);
3794 3795 3796 3797 3798 3799 3800
		rcu_for_each_leaf_node(rsp, rnp) {
			mask = 1;
			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
				if (!(rnp->expmask & mask))
					continue;
				dump_cpu_task(cpu);
			}
3801 3802 3803 3804 3805
		}
		jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
	}
}

3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
3816
 *
3817 3818 3819
 * This implementation can be thought of as an application of sequence
 * locking to expedited grace periods, but using the sequence counter to
 * determine when someone else has already done the work instead of for
3820
 * retrying readers.
3821 3822 3823
 */
void synchronize_sched_expedited(void)
{
3824
	unsigned long s;
3825
	struct rcu_node *rnp;
3826
	struct rcu_state *rsp = &rcu_sched_state;
3827

3828
	/* Take a snapshot of the sequence number.  */
3829
	s = rcu_exp_gp_seq_snap(rsp);
3830

3831
	rnp = exp_funnel_lock(rsp, s);
3832
	if (rnp == NULL)
3833
		return;  /* Someone else did our work for us. */
3834

3835
	rcu_exp_gp_seq_start(rsp);
3836
	sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
3837
	synchronize_sched_expedited_wait(rsp);
3838

3839
	rcu_exp_gp_seq_end(rsp);
3840
	mutex_unlock(&rnp->exp_funnel_mutex);
3841 3842 3843
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3844 3845 3846 3847 3848 3849 3850 3851 3852
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3853 3854
	struct rcu_node *rnp = rdp->mynode;

3855 3856 3857 3858 3859
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3860 3861 3862 3863
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3864
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3865
	if (rcu_scheduler_fully_active &&
3866
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3867
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3868 3869
		rdp->n_rp_core_needs_qs++;
	} else if (rdp->core_needs_qs &&
3870
		   (!rdp->cpu_no_qs.b.norm ||
3871
		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3872
		rdp->n_rp_report_qs++;
3873
		return 1;
3874
	}
3875 3876

	/* Does this CPU have callbacks ready to invoke? */
3877 3878
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3879
		return 1;
3880
	}
3881 3882

	/* Has RCU gone idle with this CPU needing another grace period? */
3883 3884
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3885
		return 1;
3886
	}
3887 3888

	/* Has another RCU grace period completed?  */
3889
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3890
		rdp->n_rp_gp_completed++;
3891
		return 1;
3892
	}
3893 3894

	/* Has a new RCU grace period started? */
3895 3896
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3897
		rdp->n_rp_gp_started++;
3898
		return 1;
3899
	}
3900

3901 3902 3903 3904 3905 3906
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3907
	/* nothing to do */
3908
	rdp->n_rp_need_nothing++;
3909 3910 3911 3912 3913 3914 3915 3916
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3917
static int rcu_pending(void)
3918
{
3919 3920 3921
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3922
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3923 3924
			return 1;
	return 0;
3925 3926 3927
}

/*
3928 3929 3930
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3931
 */
3932
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3933
{
3934 3935 3936
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3937 3938
	struct rcu_state *rsp;

3939
	for_each_rcu_flavor(rsp) {
3940
		rdp = this_cpu_ptr(rsp->rda);
3941 3942 3943 3944
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3945
			al = false;
3946 3947
			break;
		}
3948 3949 3950 3951
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3952 3953
}

3954 3955 3956 3957
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3958
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3959 3960 3961 3962 3963 3964
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3965 3966 3967 3968
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3969
static void rcu_barrier_callback(struct rcu_head *rhp)
3970
{
3971 3972 3973
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3974
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3975
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3976
		complete(&rsp->barrier_completion);
3977
	} else {
3978
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3979
	}
3980 3981 3982 3983 3984 3985 3986
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3987
	struct rcu_state *rsp = type;
3988
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3989

3990
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3991
	atomic_inc(&rsp->barrier_cpu_count);
3992
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3993 3994 3995 3996 3997 3998
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3999
static void _rcu_barrier(struct rcu_state *rsp)
4000
{
4001 4002
	int cpu;
	struct rcu_data *rdp;
4003
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
4004

4005
	_rcu_barrier_trace(rsp, "Begin", -1, s);
4006

4007
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4008
	mutex_lock(&rsp->barrier_mutex);
4009

4010 4011 4012
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
4013 4014 4015 4016 4017
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

4018 4019 4020
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
4021

4022
	/*
4023 4024
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
4025 4026
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
4027
	 */
4028
	init_completion(&rsp->barrier_completion);
4029
	atomic_set(&rsp->barrier_cpu_count, 1);
4030
	get_online_cpus();
4031 4032

	/*
4033 4034 4035
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
4036
	 */
P
Paul E. McKenney 已提交
4037
	for_each_possible_cpu(cpu) {
4038
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
4039
			continue;
4040
		rdp = per_cpu_ptr(rsp->rda, cpu);
4041
		if (rcu_is_nocb_cpu(cpu)) {
4042 4043
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4044
						   rsp->barrier_sequence);
4045 4046
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4047
						   rsp->barrier_sequence);
4048
				smp_mb__before_atomic();
4049 4050 4051 4052
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
4053
		} else if (READ_ONCE(rdp->qlen)) {
4054
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
4055
					   rsp->barrier_sequence);
4056
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4057
		} else {
4058
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4059
					   rsp->barrier_sequence);
4060 4061
		}
	}
4062
	put_online_cpus();
4063 4064 4065 4066 4067

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
4068
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4069
		complete(&rsp->barrier_completion);
4070 4071

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4072
	wait_for_completion(&rsp->barrier_completion);
4073

4074 4075 4076 4077
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

4078
	/* Other rcu_barrier() invocations can now safely proceed. */
4079
	mutex_unlock(&rsp->barrier_mutex);
4080 4081 4082 4083 4084 4085 4086
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
4087
	_rcu_barrier(&rcu_bh_state);
4088 4089 4090 4091 4092 4093 4094 4095
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
4096
	_rcu_barrier(&rcu_sched_state);
4097 4098 4099
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
4116
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4117 4118 4119 4120 4121
		rnp->qsmaskinit |= mask;
		raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
	}
}

4122
/*
4123
 * Do boot-time initialization of a CPU's per-CPU RCU data.
4124
 */
4125 4126
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4127 4128
{
	unsigned long flags;
4129
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4130 4131 4132
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
4133
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4134 4135
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4136
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4137
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4138
	rdp->cpu = cpu;
4139
	rdp->rsp = rsp;
4140
	mutex_init(&rdp->exp_funnel_mutex);
P
Paul E. McKenney 已提交
4141
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
4142
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
4143 4144 4145 4146 4147 4148 4149
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4150
 */
4151
static void
4152
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4153 4154 4155
{
	unsigned long flags;
	unsigned long mask;
4156
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4157 4158 4159
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
4160
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4161 4162
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
4163
	rdp->blimit = blimit;
4164 4165
	if (!rdp->nxtlist)
		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
4166
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4167
	rcu_sysidle_init_percpu_data(rdp->dynticks);
4168 4169
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
4170
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
4171

4172 4173 4174 4175 4176
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
4177 4178
	rnp = rdp->mynode;
	mask = rdp->grpmask;
4179
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4180
	rnp->qsmaskinitnext |= mask;
4181 4182 4183 4184
	rnp->expmaskinitnext |= mask;
	if (!rdp->beenonline)
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
	rdp->beenonline = true;	 /* We have now been online. */
4185 4186
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
4187
	rdp->cpu_no_qs.b.norm = true;
4188
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4189
	rdp->core_needs_qs = false;
4190 4191
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
4192 4193
}

4194
static void rcu_prepare_cpu(int cpu)
4195
{
4196 4197 4198
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
4199
		rcu_init_percpu_data(cpu, rsp);
4200 4201 4202
}

/*
4203
 * Handle CPU online/offline notification events.
4204
 */
4205 4206
int rcu_cpu_notify(struct notifier_block *self,
		   unsigned long action, void *hcpu)
4207 4208
{
	long cpu = (long)hcpu;
4209
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4210
	struct rcu_node *rnp = rdp->mynode;
4211
	struct rcu_state *rsp;
4212 4213 4214 4215

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
4216 4217
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
4218
		rcu_spawn_all_nocb_kthreads(cpu);
4219 4220
		break;
	case CPU_ONLINE:
4221
	case CPU_DOWN_FAILED:
4222
		sync_sched_exp_online_cleanup(cpu);
T
Thomas Gleixner 已提交
4223
		rcu_boost_kthread_setaffinity(rnp, -1);
4224 4225
		break;
	case CPU_DOWN_PREPARE:
4226
		rcu_boost_kthread_setaffinity(rnp, cpu);
4227
		break;
4228 4229
	case CPU_DYING:
	case CPU_DYING_FROZEN:
4230 4231
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
4232
		break;
4233
	case CPU_DYING_IDLE:
4234
		/* QS for any half-done expedited RCU-sched GP. */
4235 4236 4237 4238
		preempt_disable();
		rcu_report_exp_rdp(&rcu_sched_state,
				   this_cpu_ptr(rcu_sched_state.rda), true);
		preempt_enable();
4239

4240 4241 4242 4243
		for_each_rcu_flavor(rsp) {
			rcu_cleanup_dying_idle_cpu(cpu, rsp);
		}
		break;
4244 4245 4246 4247
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
4248
		for_each_rcu_flavor(rsp) {
4249
			rcu_cleanup_dead_cpu(cpu, rsp);
4250 4251
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
4252 4253 4254 4255
		break;
	default:
		break;
	}
4256
	return NOTIFY_OK;
4257 4258
}

4259 4260 4261 4262 4263 4264 4265
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4266
			rcu_expedite_gp();
4267 4268 4269
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
4270 4271
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
4272 4273 4274 4275 4276 4277 4278
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

4279
/*
4280
 * Spawn the kthreads that handle each RCU flavor's grace periods.
4281 4282 4283 4284
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
4285
	int kthread_prio_in = kthread_prio;
4286 4287
	struct rcu_node *rnp;
	struct rcu_state *rsp;
4288
	struct sched_param sp;
4289 4290
	struct task_struct *t;

4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

4302
	rcu_scheduler_fully_active = 1;
4303
	for_each_rcu_flavor(rsp) {
4304
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4305 4306
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
4307
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4308
		rsp->gp_kthread = t;
4309 4310 4311 4312 4313
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
		wake_up_process(t);
4314 4315
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
4316
	rcu_spawn_nocb_kthreads();
4317
	rcu_spawn_boost_kthreads();
4318 4319 4320 4321
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

4337 4338
/*
 * Compute the per-level fanout, either using the exact fanout specified
4339
 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4340
 */
4341
static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4342 4343 4344
{
	int i;

4345
	if (rcu_fanout_exact) {
4346
		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4347
		for (i = rcu_num_lvls - 2; i >= 0; i--)
4348
			levelspread[i] = RCU_FANOUT;
4349 4350 4351 4352 4353 4354
	} else {
		int ccur;
		int cprv;

		cprv = nr_cpu_ids;
		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4355 4356
			ccur = levelcnt[i];
			levelspread[i] = (cprv + ccur - 1) / ccur;
4357 4358
			cprv = ccur;
		}
4359 4360 4361 4362 4363 4364
	}
}

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
4365 4366
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
4367
{
4368 4369
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4370
	static const char * const exp[] = RCU_EXP_NAME_INIT;
4371
	static u8 fl_mask = 0x1;
4372 4373 4374

	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4375 4376 4377 4378 4379
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4380
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4381

4382 4383 4384
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4385

4386 4387
	/* Initialize the level-tracking arrays. */

4388
	for (i = 0; i < rcu_num_lvls; i++)
4389
		levelcnt[i] = num_rcu_lvl[i];
4390
	for (i = 1; i < rcu_num_lvls; i++)
4391 4392
		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
	rcu_init_levelspread(levelspread, levelcnt);
4393 4394
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
4395 4396 4397

	/* Initialize the elements themselves, starting from the leaves. */

4398
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4399
		cpustride *= levelspread[i];
4400
		rnp = rsp->level[i];
4401
		for (j = 0; j < levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
4402
			raw_spin_lock_init(&rnp->lock);
4403 4404
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
4405 4406 4407
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4408 4409
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4410 4411 4412 4413
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4414 4415
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4416 4417 4418 4419 4420
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4421
				rnp->grpnum = j % levelspread[i - 1];
4422 4423
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4424
					      j / levelspread[i - 1];
4425 4426
			}
			rnp->level = i;
4427
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4428
			rcu_init_one_nocb(rnp);
4429
			mutex_init(&rnp->exp_funnel_mutex);
4430 4431
			lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
						   &rcu_exp_class[i], exp[i]);
4432 4433
		}
	}
4434

4435
	init_waitqueue_head(&rsp->gp_wq);
4436
	init_waitqueue_head(&rsp->expedited_wq);
4437
	rnp = rsp->level[rcu_num_lvls - 1];
4438
	for_each_possible_cpu(i) {
4439
		while (i > rnp->grphi)
4440
			rnp++;
4441
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4442 4443
		rcu_boot_init_percpu_data(i, rsp);
	}
4444
	list_add(&rsp->flavors, &rcu_struct_flavors);
4445 4446
}

4447 4448
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4449
 * replace the definitions in tree.h because those are needed to size
4450 4451 4452 4453
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4454
	ulong d;
4455
	int i;
4456
	int rcu_capacity[RCU_NUM_LVLS];
4457

4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4471
	/* If the compile-time values are accurate, just leave. */
4472
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4473
	    nr_cpu_ids == NR_CPUS)
4474
		return;
4475 4476
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4477 4478

	/*
4479 4480 4481 4482
	 * The boot-time rcu_fanout_leaf parameter must be at least two
	 * and cannot exceed the number of bits in the rcu_node masks.
	 * Complain and fall back to the compile-time values if this
	 * limit is exceeded.
4483
	 */
4484
	if (rcu_fanout_leaf < 2 ||
4485
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4486
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4487 4488 4489 4490 4491 4492
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4493
	 * with the given number of levels.
4494
	 */
4495
	rcu_capacity[0] = rcu_fanout_leaf;
4496
	for (i = 1; i < RCU_NUM_LVLS; i++)
4497
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4498 4499

	/*
4500
	 * The tree must be able to accommodate the configured number of CPUs.
4501
	 * If this limit is exceeded, fall back to the compile-time values.
4502
	 */
4503 4504 4505 4506 4507
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}
4508

4509
	/* Calculate the number of levels in the tree. */
4510
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4511
	}
4512
	rcu_num_lvls = i + 1;
4513

4514
	/* Calculate the number of rcu_nodes at each level of the tree. */
4515
	for (i = 0; i < rcu_num_lvls; i++) {
4516
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4517 4518
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4519 4520 4521

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4522
	for (i = 0; i < rcu_num_lvls; i++)
4523 4524 4525
		rcu_num_nodes += num_rcu_lvl[i];
}

4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4548
void __init rcu_init(void)
4549
{
P
Paul E. McKenney 已提交
4550
	int cpu;
4551

4552 4553
	rcu_early_boot_tests();

4554
	rcu_bootup_announce();
4555
	rcu_init_geometry();
4556
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4557
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4558 4559
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4560
	__rcu_init_preempt();
J
Jiang Fang 已提交
4561
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4562 4563 4564 4565 4566 4567 4568

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
4569
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
4570 4571
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4572 4573
}

4574
#include "tree_plugin.h"