tree.c 142.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/trace_events.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71 72 73 74 75 76 77 78
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
79 80
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
81
static char sname##_varname[] = #sname; \
82 83 84 85 86 87 88 89 90
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
91
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92
struct rcu_state sname##_state = { \
93
	.level = { &sname##_state.node[0] }, \
94
	.rda = &sname##_data, \
95
	.call = cr, \
96
	.gp_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
97 98
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
99
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 101
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
102
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103
	.name = RCU_STATE_NAME(sname), \
104
	.abbr = sabbr, \
105
}
106

107 108
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109

110
static struct rcu_state *const rcu_state_p;
111
LIST_HEAD(rcu_struct_flavors);
112

113 114 115
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
116 117 118
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
119 120
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121
module_param(rcu_fanout_leaf, int, 0444);
122
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 124
/* Number of rcu_nodes at specified level. */
static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 126
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

127 128 129 130
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
131
 * optimize synchronize_sched() to a simple barrier().  When this variable
132 133 134 135
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
136 137 138
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

153 154
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
155
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
156 157
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
158 159
static void rcu_report_exp_rdp(struct rcu_state *rsp,
			       struct rcu_data *rdp, bool wake);
160

161
/* rcuc/rcub kthread realtime priority */
162
#ifdef CONFIG_RCU_KTHREAD_PRIO
163
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
164 165 166
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
167 168
module_param(kthread_prio, int, 0644);

169
/* Delay in jiffies for grace-period initialization delays, debug only. */
170 171 172 173 174 175 176 177

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

178 179
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
180
module_param(gp_init_delay, int, 0644);
181 182 183
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
184

185 186 187 188 189 190 191
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

192 193 194 195 196 197 198 199 200 201
/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
202

203 204 205 206 207 208 209 210 211 212 213 214
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

215 216 217 218 219 220 221 222
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
223
	return READ_ONCE(rnp->qsmaskinitnext);
224 225
}

226
/*
227
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
228 229 230 231 232
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
233
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
234 235
}

236
/*
237
 * Note a quiescent state.  Because we do not need to know
238
 * how many quiescent states passed, just if there was at least
239
 * one since the start of the grace period, this just sets a flag.
240
 * The caller must have disabled preemption.
241
 */
242
void rcu_sched_qs(void)
243
{
244 245 246 247 248 249 250 251
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
		return;
	trace_rcu_grace_period(TPS("rcu_sched"),
			       __this_cpu_read(rcu_sched_data.gpnum),
			       TPS("cpuqs"));
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
252 253 254
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(&rcu_sched_data), true);
255 256
}

257
void rcu_bh_qs(void)
258
{
259
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
260 261 262
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
263
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
264
	}
265
}
266

267 268 269 270 271 272 273 274 275 276 277
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

278 279 280
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

281 282 283 284 285 286 287 288 289 290
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
291 292
 *
 * The caller must have disabled interrupts.
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
 */
static void rcu_momentary_dyntick_idle(void)
{
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
314 315
		if (READ_ONCE(rdp->mynode->completed) !=
		    READ_ONCE(rdp->cond_resched_completed))
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
}

332 333 334
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
335
 * The caller must have disabled interrupts.
336
 */
337
void rcu_note_context_switch(void)
338
{
339
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
340
	trace_rcu_utilization(TPS("Start context switch"));
341
	rcu_sched_qs();
342
	rcu_preempt_note_context_switch();
343 344
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
345
	trace_rcu_utilization(TPS("End context switch"));
346
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
347
}
348
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
349

350
/*
351
 * Register a quiescent state for all RCU flavors.  If there is an
352 353
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
354
 * RCU flavors in desperate need of a quiescent state, which will normally
355 356
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
357 358 359 360 361
 *
 * The barrier() calls are redundant in the common case when this is
 * called externally, but just in case this is called from within this
 * file.
 *
362 363 364
 */
void rcu_all_qs(void)
{
365 366
	unsigned long flags;

367
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
368 369
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
		local_irq_save(flags);
370
		rcu_momentary_dyntick_idle();
371 372
		local_irq_restore(flags);
	}
373
	this_cpu_inc(rcu_qs_ctr);
374
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
375 376 377
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
378 379 380
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
381

E
Eric Dumazet 已提交
382 383 384
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
385

386 387
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
388 389 390 391

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

392 393 394 395 396 397 398
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

399
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
400
				  struct rcu_data *rdp);
401 402 403 404
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
405
static void force_quiescent_state(struct rcu_state *rsp);
406
static int rcu_pending(void);
407 408

/*
409
 * Return the number of RCU batches started thus far for debug & stats.
410
 */
411 412 413 414 415 416 417 418
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
419
 */
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
446
 */
447
unsigned long rcu_batches_completed_sched(void)
448
{
449
	return rcu_sched_state.completed;
450
}
451
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
452 453

/*
454
 * Return the number of RCU BH batches completed thus far for debug & stats.
455
 */
456
unsigned long rcu_batches_completed_bh(void)
457 458 459 460 461
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

462 463 464 465 466
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
467
	force_quiescent_state(rcu_state_p);
468 469 470
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

471 472 473 474 475
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
476
	force_quiescent_state(&rcu_bh_state);
477 478 479
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

480 481 482 483 484 485 486 487 488
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

504 505 506 507 508 509 510 511 512 513 514 515 516 517
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

518 519 520 521 522 523 524 525 526 527
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
528
		rsp = rcu_state_p;
529 530 531 532 533 534 535 536 537 538 539
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
540 541 542
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
543 544 545 546 547 548 549 550
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

551 552 553 554 555 556 557 558 559 560 561
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

562 563 564 565 566 567
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
568 569
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
570 571
}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
588
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
589 590
	int *fp = &rnp->need_future_gp[idx];

591
	return READ_ONCE(*fp);
592 593
}

594
/*
595 596 597
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
598
 */
599
static bool
600 601
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
602
	int i;
P
Paul E. McKenney 已提交
603

604
	if (rcu_gp_in_progress(rsp))
605
		return false;  /* No, a grace period is already in progress. */
606
	if (rcu_future_needs_gp(rsp))
607
		return true;  /* Yes, a no-CBs CPU needs one. */
608
	if (!rdp->nxttail[RCU_NEXT_TAIL])
609
		return false;  /* No, this is a no-CBs (or offline) CPU. */
610
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
611
		return true;  /* Yes, CPU has newly registered callbacks. */
612 613
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
614
		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
615
				 rdp->nxtcompleted[i]))
616 617
			return true;  /* Yes, CBs for future grace period. */
	return false; /* No grace period needed. */
618 619
}

620
/*
621
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
622 623 624 625 626
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
627
static void rcu_eqs_enter_common(long long oldval, bool user)
628
{
629 630
	struct rcu_state *rsp;
	struct rcu_data *rdp;
631
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
632

633
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
634 635
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
636 637
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
638

639
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
640
		rcu_ftrace_dump(DUMP_ORIG);
641 642 643
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
644
	}
645 646 647 648
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
649
	rcu_prepare_for_idle();
650
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
651
	smp_mb__before_atomic();  /* See above. */
652
	atomic_inc(&rdtp->dynticks);
653
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
654 655
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     atomic_read(&rdtp->dynticks) & 0x1);
656
	rcu_dynticks_task_enter();
657 658

	/*
659
	 * It is illegal to enter an extended quiescent state while
660 661
	 * in an RCU read-side critical section.
	 */
662 663 664 665 666 667
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal idle entry in RCU read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
			 "Illegal idle entry in RCU-bh read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
			 "Illegal idle entry in RCU-sched read-side critical section.");
668
}
669

670 671 672
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
673
 */
674
static void rcu_eqs_enter(bool user)
675
{
676
	long long oldval;
677 678
	struct rcu_dynticks *rdtp;

679
	rdtp = this_cpu_ptr(&rcu_dynticks);
680
	oldval = rdtp->dynticks_nesting;
681 682
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
683
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
684
		rdtp->dynticks_nesting = 0;
685
		rcu_eqs_enter_common(oldval, user);
686
	} else {
687
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
688
	}
689
}
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
705 706 707
	unsigned long flags;

	local_irq_save(flags);
708
	rcu_eqs_enter(false);
709
	rcu_sysidle_enter(0);
710
	local_irq_restore(flags);
711
}
712
EXPORT_SYMBOL_GPL(rcu_idle_enter);
713

714
#ifdef CONFIG_NO_HZ_FULL
715 716 717 718 719 720 721 722 723 724
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
725
	rcu_eqs_enter(1);
726
}
727
#endif /* CONFIG_NO_HZ_FULL */
728

729 730 731 732 733
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
734
 * sections can occur.  The caller must have disabled interrupts.
735
 *
736 737 738 739 740 741 742 743
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
744
 */
745
void rcu_irq_exit(void)
746
{
747
	long long oldval;
748 749
	struct rcu_dynticks *rdtp;

750
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
751
	rdtp = this_cpu_ptr(&rcu_dynticks);
752
	oldval = rdtp->dynticks_nesting;
753
	rdtp->dynticks_nesting--;
754 755
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting < 0);
756
	if (rdtp->dynticks_nesting)
757
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
758
	else
759 760
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
761 762 763 764 765 766 767 768 769 770 771
}

/*
 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 */
void rcu_irq_exit_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_exit();
772 773 774 775
	local_irq_restore(flags);
}

/*
776
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
777 778 779 780 781
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
782
static void rcu_eqs_exit_common(long long oldval, int user)
783
{
784 785
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

786
	rcu_dynticks_task_exit();
787
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
788 789
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
790
	smp_mb__after_atomic();  /* See above. */
791 792
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(atomic_read(&rdtp->dynticks) & 0x1));
793
	rcu_cleanup_after_idle();
794
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
795 796
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
797 798
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
799

800
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
801
				  oldval, rdtp->dynticks_nesting);
802
		rcu_ftrace_dump(DUMP_ORIG);
803 804 805
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
806 807 808
	}
}

809 810 811
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
812
 */
813
static void rcu_eqs_exit(bool user)
814 815 816 817
{
	struct rcu_dynticks *rdtp;
	long long oldval;

818
	rdtp = this_cpu_ptr(&rcu_dynticks);
819
	oldval = rdtp->dynticks_nesting;
820
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
821
	if (oldval & DYNTICK_TASK_NEST_MASK) {
822
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
823
	} else {
824
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
825
		rcu_eqs_exit_common(oldval, user);
826
	}
827
}
828 829 830 831 832 833 834 835 836 837 838 839 840 841

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
842 843 844
	unsigned long flags;

	local_irq_save(flags);
845
	rcu_eqs_exit(false);
846
	rcu_sysidle_exit(0);
847
	local_irq_restore(flags);
848
}
849
EXPORT_SYMBOL_GPL(rcu_idle_exit);
850

851
#ifdef CONFIG_NO_HZ_FULL
852 853 854 855 856 857 858 859
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
860
	rcu_eqs_exit(1);
861
}
862
#endif /* CONFIG_NO_HZ_FULL */
863

864 865 866 867 868
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
869
 * sections can occur.  The caller must have disabled interrupts.
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	struct rcu_dynticks *rdtp;
	long long oldval;

888
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
889
	rdtp = this_cpu_ptr(&rcu_dynticks);
890 891
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
892 893
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
894
	if (oldval)
895
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
896
	else
897 898
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
899 900 901 902 903 904 905 906 907 908 909
}

/*
 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 */
void rcu_irq_enter_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_enter();
910 911 912 913 914 915
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
916 917 918 919 920
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
921 922 923
 */
void rcu_nmi_enter(void)
{
924
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
925
	int incby = 2;
926

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
948 949 950 951 952
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
953 954 955 956
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
957 958 959
 */
void rcu_nmi_exit(void)
{
960
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
961

962 963 964 965 966 967 968 969 970 971 972 973 974 975
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
976
		return;
977 978 979 980
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
981
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
982
	smp_mb__before_atomic();  /* See above. */
983
	atomic_inc(&rdtp->dynticks);
984
	smp_mb__after_atomic();  /* Force delay to next write. */
985
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
986 987 988
}

/**
989 990 991 992 993 994 995
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
996
bool notrace __rcu_is_watching(void)
997 998 999 1000 1001 1002
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1003
 *
1004
 * If the current CPU is in its idle loop and is neither in an interrupt
1005
 * or NMI handler, return true.
1006
 */
1007
bool notrace rcu_is_watching(void)
1008
{
1009
	bool ret;
1010

1011
	preempt_disable_notrace();
1012
	ret = __rcu_is_watching();
1013
	preempt_enable_notrace();
1014
	return ret;
1015
}
1016
EXPORT_SYMBOL_GPL(rcu_is_watching);
1017

1018
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1019 1020 1021 1022 1023 1024 1025

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1037 1038 1039 1040 1041 1042
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1043 1044
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1045 1046 1047
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1048
		return true;
1049
	preempt_disable();
1050
	rdp = this_cpu_ptr(&rcu_sched_data);
1051
	rnp = rdp->mynode;
1052
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1053 1054 1055 1056 1057 1058
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1059
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1060

1061
/**
1062
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1063
 *
1064 1065 1066
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1067
 */
1068
static int rcu_is_cpu_rrupt_from_idle(void)
1069
{
1070
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1071 1072 1073 1074 1075
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1076
 * is in dynticks idle mode, which is an extended quiescent state.
1077
 */
1078 1079
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1080
{
1081
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1082
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1083 1084
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1085
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1086
				 rdp->mynode->gpnum))
1087
			WRITE_ONCE(rdp->gpwrap, true);
1088
		return 1;
1089
	}
1090
	return 0;
1091 1092 1093 1094 1095 1096
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1097
 * for this same CPU, or by virtue of having been offline.
1098
 */
1099 1100
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1101
{
1102
	unsigned int curr;
1103
	int *rcrmp;
1104
	unsigned int snap;
1105

1106 1107
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
1108 1109 1110 1111 1112 1113 1114 1115 1116

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1117
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1118
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1119 1120 1121 1122
		rdp->dynticks_fqs++;
		return 1;
	}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
1138
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1139 1140 1141
		rdp->offline_fqs++;
		return 1;
	}
1142 1143

	/*
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1163
	 */
1164 1165 1166
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1167
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1168 1169 1170
		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			WRITE_ONCE(rdp->cond_resched_completed,
				   READ_ONCE(rdp->mynode->completed));
1171
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1172 1173
			WRITE_ONCE(*rcrmp,
				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1174
		}
1175
		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1176 1177
	}

1178 1179 1180 1181 1182 1183
	/* And if it has been a really long time, kick the CPU as well. */
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
	    ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
		resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */

1184
	return 0;
1185 1186 1187 1188
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1189
	unsigned long j = jiffies;
1190
	unsigned long j1;
1191 1192 1193

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1194
	j1 = rcu_jiffies_till_stall_check();
1195
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1196
	rsp->jiffies_resched = j + j1 / 2;
1197
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1198 1199
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
/*
 * Convert a ->gp_state value to a character string.
 */
static const char *gp_state_getname(short gs)
{
	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
		return "???";
	return gp_state_names[gs];
}

1210 1211 1212 1213 1214 1215 1216 1217 1218
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1219
	gpa = READ_ONCE(rsp->gp_activity);
1220
	if (j - gpa > 2 * HZ) {
1221
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1222
		       rsp->name, j - gpa,
1223
		       rsp->gpnum, rsp->completed,
1224 1225
		       rsp->gp_flags,
		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1226
		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1227 1228 1229
		if (rsp->gp_kthread)
			sched_show_task(rsp->gp_kthread);
	}
1230 1231
}

1232
/*
1233
 * Dump stacks of all tasks running on stalled CPUs.
1234 1235 1236 1237 1238 1239 1240 1241
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
1242
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1243 1244 1245 1246 1247
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
B
Boqun Feng 已提交
1248
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1249 1250 1251
	}
}

1252
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1253 1254 1255 1256
{
	int cpu;
	long delta;
	unsigned long flags;
1257 1258
	unsigned long gpa;
	unsigned long j;
1259
	int ndetected = 0;
1260
	struct rcu_node *rnp = rcu_get_root(rsp);
1261
	long totqlen = 0;
1262 1263 1264

	/* Only let one CPU complain about others per time interval. */

1265
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1266
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1267
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
B
Boqun Feng 已提交
1268
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1269 1270
		return;
	}
1271 1272
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1273
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1274

1275 1276 1277 1278 1279
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1280
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1281
	       rsp->name);
1282
	print_cpu_stall_info_begin();
1283
	rcu_for_each_leaf_node(rsp, rnp) {
1284
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1285
		ndetected += rcu_print_task_stall(rnp);
1286 1287 1288 1289 1290 1291 1292 1293
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
B
Boqun Feng 已提交
1294
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1295
	}
1296 1297

	print_cpu_stall_info_end();
1298 1299
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1300
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1301
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1302
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1303
	if (ndetected) {
1304
		rcu_dump_cpu_stacks(rsp);
1305
	} else {
1306 1307
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1308 1309 1310
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1311
			gpa = READ_ONCE(rsp->gp_activity);
1312
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1313
			       rsp->name, j - gpa, j, gpa,
1314 1315
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1316 1317 1318 1319
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1320

1321
	/* Complain about tasks blocking the grace period. */
1322 1323
	rcu_print_detail_task_stall(rsp);

1324 1325
	rcu_check_gp_kthread_starvation(rsp);

1326
	force_quiescent_state(rsp);  /* Kick them all. */
1327 1328 1329 1330
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1331
	int cpu;
1332 1333
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1334
	long totqlen = 0;
1335

1336 1337 1338 1339 1340
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1341
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1342 1343 1344
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1345 1346
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1347 1348 1349
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1350 1351 1352

	rcu_check_gp_kthread_starvation(rsp);

1353
	rcu_dump_cpu_stacks(rsp);
1354

1355
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1356 1357 1358
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1359
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1360

1361 1362 1363 1364 1365 1366 1367 1368
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1369 1370 1371 1372
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1373 1374 1375
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1376 1377
	unsigned long j;
	unsigned long js;
1378 1379
	struct rcu_node *rnp;

1380
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1381
		return;
1382
	j = jiffies;
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1401
	gpnum = READ_ONCE(rsp->gpnum);
1402
	smp_rmb(); /* Pick up ->gpnum first... */
1403
	js = READ_ONCE(rsp->jiffies_stall);
1404
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1405
	gps = READ_ONCE(rsp->gp_start);
1406
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1407
	completed = READ_ONCE(rsp->completed);
1408 1409 1410 1411
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1412
	rnp = rdp->mynode;
1413
	if (rcu_gp_in_progress(rsp) &&
1414
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1415 1416 1417 1418

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1419 1420
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1421

1422
		/* They had a few time units to dump stack, so complain. */
1423
		print_other_cpu_stall(rsp, gpnum);
1424 1425 1426
	}
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1438 1439 1440
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1441
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1442 1443
}

1444
/*
1445 1446 1447
 * Initialize the specified rcu_data structure's default callback list
 * to empty.  The default callback list is the one that is not used by
 * no-callbacks CPUs.
1448
 */
1449
static void init_default_callback_list(struct rcu_data *rdp)
1450 1451 1452 1453 1454 1455 1456 1457
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	if (init_nocb_callback_list(rdp))
		return;
	init_default_callback_list(rdp);
}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1497 1498 1499 1500 1501
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1502
				unsigned long c, const char *s)
1503 1504 1505 1506 1507 1508 1509 1510 1511
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1512 1513
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1514 1515 1516
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1517 1518 1519
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1520 1521 1522
{
	unsigned long c;
	int i;
1523
	bool ret = false;
1524 1525 1526 1527 1528 1529 1530
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1531
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1532
	if (rnp->need_future_gp[c & 0x1]) {
1533
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1534
		goto out;
1535 1536 1537 1538 1539 1540 1541
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1542 1543 1544 1545 1546 1547 1548
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1549 1550
	 */
	if (rnp->gpnum != rnp->completed ||
1551
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1552
		rnp->need_future_gp[c & 0x1]++;
1553
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1554
		goto out;
1555 1556 1557 1558 1559 1560 1561
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1562 1563
	if (rnp != rnp_root)
		raw_spin_lock_rcu_node(rnp_root);
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1581
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1582 1583 1584 1585 1586 1587 1588 1589
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1590
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1591
	} else {
1592
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1593
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1594 1595 1596
	}
unlock_out:
	if (rnp != rnp_root)
B
Boqun Feng 已提交
1597
		raw_spin_unlock_rcu_node(rnp_root);
1598 1599 1600 1601
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1618 1619
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1620 1621 1622
	return needmore;
}

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1633
	    !READ_ONCE(rsp->gp_flags) ||
1634 1635
	    !rsp->gp_kthread)
		return;
1636
	swake_up(&rsp->gp_wq);
1637 1638
}

1639 1640 1641 1642 1643 1644 1645
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1646 1647
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1648 1649 1650
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1651
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1652 1653 1654 1655
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1656
	bool ret;
1657 1658 1659

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1660
		return false;
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1689
		return false;
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1700
	/* Record any needed additional grace periods. */
1701
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1702 1703 1704

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1705
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1706
	else
1707
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1708
	return ret;
1709 1710 1711 1712 1713 1714 1715 1716
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1717
 * Returns true if the RCU grace-period kthread needs to be awakened.
1718 1719 1720
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1721
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1722 1723 1724 1725 1726 1727
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1728
		return false;
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1752
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1753 1754
}

1755
/*
1756 1757 1758
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1759
 * Returns true if the grace-period kthread needs to be awakened.
1760
 */
1761 1762
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1763
{
1764 1765
	bool ret;

1766
	/* Handle the ends of any preceding grace periods first. */
1767
	if (rdp->completed == rnp->completed &&
1768
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1769

1770
		/* No grace period end, so just accelerate recent callbacks. */
1771
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1772

1773 1774 1775
	} else {

		/* Advance callbacks. */
1776
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1777 1778 1779

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1780
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1781
	}
1782

1783
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1784 1785 1786 1787 1788 1789
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1790
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1791
		rdp->cpu_no_qs.b.norm = true;
1792
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1793
		rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1794
		zero_cpu_stall_ticks(rdp);
1795
		WRITE_ONCE(rdp->gpwrap, false);
1796
	}
1797
	return ret;
1798 1799
}

1800
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1801 1802
{
	unsigned long flags;
1803
	bool needwake;
1804 1805 1806 1807
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1808 1809 1810
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1811
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1812 1813 1814
		local_irq_restore(flags);
		return;
	}
1815
	needwake = __note_gp_changes(rsp, rnp, rdp);
B
Boqun Feng 已提交
1816
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1817 1818
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1819 1820
}

1821 1822 1823 1824 1825 1826 1827
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

1828
/*
1829
 * Initialize a new grace period.  Return false if no grace period required.
1830
 */
1831
static bool rcu_gp_init(struct rcu_state *rsp)
1832
{
1833
	unsigned long oldmask;
1834
	struct rcu_data *rdp;
1835
	struct rcu_node *rnp = rcu_get_root(rsp);
1836

1837
	WRITE_ONCE(rsp->gp_activity, jiffies);
1838
	raw_spin_lock_irq_rcu_node(rnp);
1839
	if (!READ_ONCE(rsp->gp_flags)) {
1840
		/* Spurious wakeup, tell caller to go back to sleep.  */
B
Boqun Feng 已提交
1841
		raw_spin_unlock_irq_rcu_node(rnp);
1842
		return false;
1843
	}
1844
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1845

1846 1847 1848 1849 1850
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
B
Boqun Feng 已提交
1851
		raw_spin_unlock_irq_rcu_node(rnp);
1852
		return false;
1853 1854 1855
	}

	/* Advance to a new grace period and initialize state. */
1856
	record_gp_stall_check_time(rsp);
1857 1858
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1859
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
B
Boqun Feng 已提交
1860
	raw_spin_unlock_irq_rcu_node(rnp);
1861

1862 1863 1864 1865 1866 1867 1868
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
1869
		rcu_gp_slow(rsp, gp_preinit_delay);
1870
		raw_spin_lock_irq_rcu_node(rnp);
1871 1872 1873
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
B
Boqun Feng 已提交
1874
			raw_spin_unlock_irq_rcu_node(rnp);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

B
Boqun Feng 已提交
1908
		raw_spin_unlock_irq_rcu_node(rnp);
1909
	}
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1925
		rcu_gp_slow(rsp, gp_init_delay);
1926
		raw_spin_lock_irq_rcu_node(rnp);
1927
		rdp = this_cpu_ptr(rsp->rda);
1928 1929
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1930
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1931
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1932
			WRITE_ONCE(rnp->completed, rsp->completed);
1933
		if (rnp == rdp->mynode)
1934
			(void)__note_gp_changes(rsp, rnp, rdp);
1935 1936 1937 1938
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
B
Boqun Feng 已提交
1939
		raw_spin_unlock_irq_rcu_node(rnp);
1940
		cond_resched_rcu_qs();
1941
		WRITE_ONCE(rsp->gp_activity, jiffies);
1942
	}
1943

1944
	return true;
1945
}
1946

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
/*
 * Helper function for wait_event_interruptible_timeout() wakeup
 * at force-quiescent-state time.
 */
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rsp->gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

1967 1968 1969
/*
 * Do one round of quiescent-state forcing.
 */
1970
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
1971
{
1972 1973
	bool isidle = false;
	unsigned long maxj;
1974 1975
	struct rcu_node *rnp = rcu_get_root(rsp);

1976
	WRITE_ONCE(rsp->gp_activity, jiffies);
1977
	rsp->n_force_qs++;
1978
	if (first_time) {
1979
		/* Collect dyntick-idle snapshots. */
1980
		if (is_sysidle_rcu_state(rsp)) {
1981
			isidle = true;
1982 1983
			maxj = jiffies - ULONG_MAX / 4;
		}
1984 1985
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1986
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1987 1988
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1989
		isidle = true;
1990
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1991 1992
	}
	/* Clear flag to prevent immediate re-entry. */
1993
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1994
		raw_spin_lock_irq_rcu_node(rnp);
1995 1996
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
1997
		raw_spin_unlock_irq_rcu_node(rnp);
1998 1999 2000
	}
}

2001 2002 2003
/*
 * Clean up after the old grace period.
 */
2004
static void rcu_gp_cleanup(struct rcu_state *rsp)
2005 2006
{
	unsigned long gp_duration;
2007
	bool needgp = false;
2008
	int nocb = 0;
2009 2010
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
2011
	struct swait_queue_head *sq;
2012

2013
	WRITE_ONCE(rsp->gp_activity, jiffies);
2014
	raw_spin_lock_irq_rcu_node(rnp);
2015 2016 2017
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
2018

2019 2020 2021 2022 2023 2024 2025 2026
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
B
Boqun Feng 已提交
2027
	raw_spin_unlock_irq_rcu_node(rnp);
2028

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2039
		raw_spin_lock_irq_rcu_node(rnp);
2040 2041
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
2042
		WRITE_ONCE(rnp->completed, rsp->gpnum);
2043 2044
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
2045
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2046
		/* smp_mb() provided by prior unlock-lock pair. */
2047
		nocb += rcu_future_gp_cleanup(rsp, rnp);
2048
		sq = rcu_nocb_gp_get(rnp);
B
Boqun Feng 已提交
2049
		raw_spin_unlock_irq_rcu_node(rnp);
2050
		rcu_nocb_gp_cleanup(sq);
2051
		cond_resched_rcu_qs();
2052
		WRITE_ONCE(rsp->gp_activity, jiffies);
2053
		rcu_gp_slow(rsp, gp_cleanup_delay);
2054
	}
2055
	rnp = rcu_get_root(rsp);
2056
	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2057
	rcu_nocb_gp_set(rnp, nocb);
2058

2059
	/* Declare grace period done. */
2060
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2061
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2062
	rsp->gp_state = RCU_GP_IDLE;
2063
	rdp = this_cpu_ptr(rsp->rda);
2064 2065 2066
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2067
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2068
		trace_rcu_grace_period(rsp->name,
2069
				       READ_ONCE(rsp->gpnum),
2070 2071
				       TPS("newreq"));
	}
B
Boqun Feng 已提交
2072
	raw_spin_unlock_irq_rcu_node(rnp);
2073 2074 2075 2076 2077 2078 2079
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2080
	bool first_gp_fqs;
2081
	int gf;
2082
	unsigned long j;
2083
	int ret;
2084 2085 2086
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2087
	rcu_bind_gp_kthread();
2088 2089 2090 2091
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2092
			trace_rcu_grace_period(rsp->name,
2093
					       READ_ONCE(rsp->gpnum),
2094
					       TPS("reqwait"));
2095
			rsp->gp_state = RCU_GP_WAIT_GPS;
2096
			swait_event_interruptible(rsp->gp_wq,
2097
						 READ_ONCE(rsp->gp_flags) &
2098
						 RCU_GP_FLAG_INIT);
2099
			rsp->gp_state = RCU_GP_DONE_GPS;
2100
			/* Locking provides needed memory barrier. */
2101
			if (rcu_gp_init(rsp))
2102
				break;
2103
			cond_resched_rcu_qs();
2104
			WRITE_ONCE(rsp->gp_activity, jiffies);
2105
			WARN_ON(signal_pending(current));
2106
			trace_rcu_grace_period(rsp->name,
2107
					       READ_ONCE(rsp->gpnum),
2108
					       TPS("reqwaitsig"));
2109
		}
2110

2111
		/* Handle quiescent-state forcing. */
2112
		first_gp_fqs = true;
2113 2114 2115 2116 2117
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2118
		ret = 0;
2119
		for (;;) {
2120 2121
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
2122
			trace_rcu_grace_period(rsp->name,
2123
					       READ_ONCE(rsp->gpnum),
2124
					       TPS("fqswait"));
2125
			rsp->gp_state = RCU_GP_WAIT_FQS;
2126
			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2127
					rcu_gp_fqs_check_wake(rsp, &gf), j);
2128
			rsp->gp_state = RCU_GP_DOING_FQS;
2129
			/* Locking provides needed memory barriers. */
2130
			/* If grace period done, leave loop. */
2131
			if (!READ_ONCE(rnp->qsmask) &&
2132
			    !rcu_preempt_blocked_readers_cgp(rnp))
2133
				break;
2134
			/* If time for quiescent-state forcing, do it. */
2135 2136
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2137
				trace_rcu_grace_period(rsp->name,
2138
						       READ_ONCE(rsp->gpnum),
2139
						       TPS("fqsstart"));
2140 2141
				rcu_gp_fqs(rsp, first_gp_fqs);
				first_gp_fqs = false;
2142
				trace_rcu_grace_period(rsp->name,
2143
						       READ_ONCE(rsp->gpnum),
2144
						       TPS("fqsend"));
2145
				cond_resched_rcu_qs();
2146
				WRITE_ONCE(rsp->gp_activity, jiffies);
2147 2148
			} else {
				/* Deal with stray signal. */
2149
				cond_resched_rcu_qs();
2150
				WRITE_ONCE(rsp->gp_activity, jiffies);
2151
				WARN_ON(signal_pending(current));
2152
				trace_rcu_grace_period(rsp->name,
2153
						       READ_ONCE(rsp->gpnum),
2154
						       TPS("fqswaitsig"));
2155
			}
2156 2157 2158 2159 2160 2161 2162 2163
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
2164
		}
2165 2166

		/* Handle grace-period end. */
2167
		rsp->gp_state = RCU_GP_CLEANUP;
2168
		rcu_gp_cleanup(rsp);
2169
		rsp->gp_state = RCU_GP_CLEANED;
2170 2171 2172
	}
}

2173 2174 2175
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2176
 * the root node's ->lock and hard irqs must be disabled.
2177 2178 2179 2180
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2181 2182
 *
 * Returns true if the grace-period kthread must be awakened.
2183
 */
2184
static bool
2185 2186
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2187
{
2188
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2189
		/*
2190
		 * Either we have not yet spawned the grace-period
2191 2192
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2193
		 * Either way, don't start a new grace period.
2194
		 */
2195
		return false;
2196
	}
2197 2198
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2199
			       TPS("newreq"));
2200

2201 2202
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2203
	 * could cause possible deadlocks with the rq->lock. Defer
2204
	 * the wakeup to our caller.
2205
	 */
2206
	return true;
2207 2208
}

2209 2210 2211 2212 2213 2214
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2215 2216
 *
 * Returns true if the grace-period kthread needs to be awakened.
2217
 */
2218
static bool rcu_start_gp(struct rcu_state *rsp)
2219 2220 2221
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2222
	bool ret = false;
2223 2224 2225 2226 2227 2228 2229 2230 2231

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2232 2233 2234
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2235 2236
}

2237
/*
2238 2239 2240 2241 2242 2243 2244
 * Report a full set of quiescent states to the specified rcu_state data
 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
 * kthread if another grace period is required.  Whether we wake
 * the grace-period kthread or it awakens itself for the next round
 * of quiescent-state forcing, that kthread will clean up after the
 * just-completed grace period.  Note that the caller must hold rnp->lock,
 * which is released before return.
2245
 */
P
Paul E. McKenney 已提交
2246
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2247
	__releases(rcu_get_root(rsp)->lock)
2248
{
2249
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2250
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2251
	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2252
	swake_up(&rsp->gp_wq);  /* Memory barrier implied by swake_up() path. */
2253 2254
}

2255
/*
P
Paul E. McKenney 已提交
2256 2257 2258
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2259 2260 2261 2262 2263
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2264 2265
 */
static void
P
Paul E. McKenney 已提交
2266
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2267
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2268 2269
	__releases(rnp->lock)
{
2270
	unsigned long oldmask = 0;
2271 2272
	struct rcu_node *rnp_c;

2273 2274
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2275
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2276

2277 2278 2279 2280
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
B
Boqun Feng 已提交
2281
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2282 2283
			return;
		}
2284
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2285
		rnp->qsmask &= ~mask;
2286 2287 2288 2289
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2290
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2291 2292

			/* Other bits still set at this level, so done. */
B
Boqun Feng 已提交
2293
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2294 2295 2296 2297 2298 2299 2300 2301 2302
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
B
Boqun Feng 已提交
2303
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2304
		rnp_c = rnp;
2305
		rnp = rnp->parent;
2306
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2307
		oldmask = rnp_c->qsmask;
2308 2309 2310 2311
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2312
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2313
	 * to clean up and start the next grace period if one is needed.
2314
	 */
P
Paul E. McKenney 已提交
2315
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2316 2317
}

2318 2319 2320 2321 2322 2323 2324
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2325
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2326 2327 2328
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2329
	unsigned long gps;
2330 2331 2332
	unsigned long mask;
	struct rcu_node *rnp_p;

2333 2334
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
B
Boqun Feng 已提交
2335
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2336 2337 2338 2339 2340 2341
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2342 2343
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2344 2345 2346 2347 2348
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2349 2350
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2351
	mask = rnp->grpmask;
B
Boqun Feng 已提交
2352
	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2353
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2354
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2355 2356
}

2357
/*
P
Paul E. McKenney 已提交
2358
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2359
 * structure.  This must be called from the specified CPU.
2360 2361
 */
static void
2362
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2363 2364 2365
{
	unsigned long flags;
	unsigned long mask;
2366
	bool needwake;
2367 2368 2369
	struct rcu_node *rnp;

	rnp = rdp->mynode;
2370
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2371
	if ((rdp->cpu_no_qs.b.norm &&
2372 2373 2374
	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
	    rdp->gpwrap) {
2375 2376

		/*
2377 2378 2379 2380
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2381
		 */
2382
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2383
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
B
Boqun Feng 已提交
2384
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2385 2386 2387 2388
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
B
Boqun Feng 已提交
2389
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2390
	} else {
2391
		rdp->core_needs_qs = false;
2392 2393 2394 2395 2396

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2397
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2398

2399 2400
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2401 2402
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2415 2416
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2417 2418 2419 2420 2421

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
2422
	if (!rdp->core_needs_qs)
2423 2424 2425 2426 2427 2428
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2429
	if (rdp->cpu_no_qs.b.norm &&
2430
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2431 2432
		return;

P
Paul E. McKenney 已提交
2433 2434 2435 2436
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2437
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2438 2439
}

2440
/*
2441 2442
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2443
 * ->orphan_lock.
2444
 */
2445 2446 2447
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2448
{
P
Paul E. McKenney 已提交
2449
	/* No-CBs CPUs do not have orphanable callbacks. */
2450
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2451 2452
		return;

2453 2454
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2455 2456
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2457
	 */
2458
	if (rdp->nxtlist != NULL) {
2459 2460 2461
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2462
		rdp->qlen_lazy = 0;
2463
		WRITE_ONCE(rdp->qlen, 0);
2464 2465 2466
	}

	/*
2467 2468 2469 2470 2471 2472 2473
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2474
	 */
2475 2476 2477 2478
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2479 2480 2481
	}

	/*
2482 2483 2484
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2485
	 */
2486
	if (rdp->nxtlist != NULL) {
2487 2488
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2489
	}
2490

2491 2492 2493 2494
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2495
	init_callback_list(rdp);
2496
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2497 2498 2499 2500
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2501
 * orphanage.  The caller must hold the ->orphan_lock.
2502
 */
2503
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2504 2505
{
	int i;
2506
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2507

P
Paul E. McKenney 已提交
2508
	/* No-CBs CPUs are handled specially. */
2509 2510
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2511 2512
		return;

2513 2514 2515 2516
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2517 2518
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

2557 2558 2559
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2560
	RCU_TRACE(mask = rdp->grpmask);
2561 2562
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2563
			       TPS("cpuofl"));
2564 2565
}

2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2588 2589
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2590 2591 2592 2593 2594 2595
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
2596
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2597
		rnp->qsmaskinit &= ~mask;
2598
		rnp->qsmask &= ~mask;
2599
		if (rnp->qsmaskinit) {
B
Boqun Feng 已提交
2600 2601
			raw_spin_unlock_rcu_node(rnp);
			/* irqs remain disabled. */
2602 2603
			return;
		}
B
Boqun Feng 已提交
2604
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2605 2606 2607
	}
}

2608
/*
2609
 * The CPU has been completely removed, and some other CPU is reporting
2610 2611
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2612 2613
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2614
 */
2615
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2616
{
2617
	unsigned long flags;
2618
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2619
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2620

2621 2622 2623
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2624
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2625
	rcu_boost_kthread_setaffinity(rnp, -1);
2626

2627
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2628
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2629
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2630
	rcu_adopt_orphan_cbs(rsp, flags);
2631
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2632

2633 2634 2635
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2636 2637 2638 2639 2640 2641
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2642
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2643 2644 2645
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2646 2647
	long bl, count, count_lazy;
	int i;
2648

2649
	/* If no callbacks are ready, just return. */
2650
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2651
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2652
		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2653 2654
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2655
		return;
2656
	}
2657 2658 2659 2660 2661 2662

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2663
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2664
	bl = rdp->blimit;
2665
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2666 2667 2668 2669
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2670 2671 2672
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2673 2674 2675
	local_irq_restore(flags);

	/* Invoke callbacks. */
2676
	count = count_lazy = 0;
2677 2678 2679
	while (list) {
		next = list->next;
		prefetch(next);
2680
		debug_rcu_head_unqueue(list);
2681 2682
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2683
		list = next;
2684 2685 2686 2687
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2688 2689 2690 2691
			break;
	}

	local_irq_save(flags);
2692 2693 2694
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2695 2696 2697 2698 2699

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2700 2701 2702
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2703 2704 2705
			else
				break;
	}
2706 2707
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2708
	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2709
	rdp->n_cbs_invoked += count;
2710 2711 2712 2713 2714

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2715 2716 2717 2718 2719 2720
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2721
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2722

2723 2724
	local_irq_restore(flags);

2725
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2726
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2727
		invoke_rcu_core();
2728 2729 2730 2731 2732
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2733
 * Also schedule RCU core processing.
2734
 *
2735
 * This function must be called from hardirq context.  It is normally
2736 2737 2738
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2739
void rcu_check_callbacks(int user)
2740
{
2741
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2742
	increment_cpu_stall_ticks();
2743
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2744 2745 2746 2747 2748

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2749
		 * a quiescent state, so note it.
2750 2751
		 *
		 * No memory barrier is required here because both
2752 2753 2754
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2755 2756
		 */

2757 2758
		rcu_sched_qs();
		rcu_bh_qs();
2759 2760 2761 2762 2763 2764 2765

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2766
		 * critical section, so note it.
2767 2768
		 */

2769
		rcu_bh_qs();
2770
	}
2771
	rcu_preempt_check_callbacks();
2772
	if (rcu_pending())
2773
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2774 2775
	if (user)
		rcu_note_voluntary_context_switch(current);
2776
	trace_rcu_utilization(TPS("End scheduler-tick"));
2777 2778 2779 2780 2781
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2782 2783
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2784
 * The caller must have suppressed start of new grace periods.
2785
 */
2786 2787 2788 2789
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2790 2791 2792 2793 2794
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2795
	struct rcu_node *rnp;
2796

2797
	rcu_for_each_leaf_node(rsp, rnp) {
2798
		cond_resched_rcu_qs();
2799
		mask = 0;
2800
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2801
		if (rnp->qsmask == 0) {
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2825
		}
2826
		cpu = rnp->grplo;
2827
		bit = 1;
2828
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2829 2830 2831 2832
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2833
		}
2834
		if (mask != 0) {
2835 2836
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2837 2838
		} else {
			/* Nothing to do here, so just drop the lock. */
B
Boqun Feng 已提交
2839
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2840 2841 2842 2843 2844 2845 2846 2847
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2848
static void force_quiescent_state(struct rcu_state *rsp)
2849 2850
{
	unsigned long flags;
2851 2852 2853 2854 2855
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2856
	rnp = __this_cpu_read(rsp->rda->mynode);
2857
	for (; rnp != NULL; rnp = rnp->parent) {
2858
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2859 2860 2861 2862
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2863
			rsp->n_force_qs_lh++;
2864 2865 2866 2867 2868
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2869

2870
	/* Reached the root of the rcu_node tree, acquire lock. */
2871
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2872
	raw_spin_unlock(&rnp_old->fqslock);
2873
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2874
		rsp->n_force_qs_lh++;
B
Boqun Feng 已提交
2875
		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2876
		return;  /* Someone beat us to it. */
2877
	}
2878
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2879
	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2880
	swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
2881 2882 2883
}

/*
2884 2885 2886
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2887 2888
 */
static void
2889
__rcu_process_callbacks(struct rcu_state *rsp)
2890 2891
{
	unsigned long flags;
2892
	bool needwake;
2893
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2894

2895 2896
	WARN_ON_ONCE(rdp->beenonline == 0);

2897 2898 2899 2900
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2901
	local_irq_save(flags);
2902
	if (cpu_needs_another_gp(rsp, rdp)) {
2903
		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2904
		needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
2905
		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2906 2907
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2908 2909
	} else {
		local_irq_restore(flags);
2910 2911 2912
	}

	/* If there are callbacks ready, invoke them. */
2913
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2914
		invoke_rcu_callbacks(rsp, rdp);
2915 2916 2917

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2918 2919
}

2920
/*
2921
 * Do RCU core processing for the current CPU.
2922
 */
2923
static void rcu_process_callbacks(struct softirq_action *unused)
2924
{
2925 2926
	struct rcu_state *rsp;

2927 2928
	if (cpu_is_offline(smp_processor_id()))
		return;
2929
	trace_rcu_utilization(TPS("Start RCU core"));
2930 2931
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2932
	trace_rcu_utilization(TPS("End RCU core"));
2933 2934
}

2935
/*
2936 2937 2938
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2939
 * are running on the current CPU with softirqs disabled, the
2940
 * rcu_cpu_kthread_task cannot disappear out from under us.
2941
 */
2942
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2943
{
2944
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2945
		return;
2946 2947
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2948 2949
		return;
	}
2950
	invoke_rcu_callbacks_kthread();
2951 2952
}

2953
static void invoke_rcu_core(void)
2954
{
2955 2956
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2957 2958
}

2959 2960 2961 2962 2963
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2964
{
2965 2966
	bool needwake;

2967 2968 2969 2970
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2971
	if (!rcu_is_watching())
2972 2973
		invoke_rcu_core();

2974
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2975
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2976
		return;
2977

2978 2979 2980 2981 2982 2983 2984
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2985
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2986 2987

		/* Are we ignoring a completed grace period? */
2988
		note_gp_changes(rsp, rdp);
2989 2990 2991 2992 2993

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2994
			raw_spin_lock_rcu_node(rnp_root);
2995
			needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
2996
			raw_spin_unlock_rcu_node(rnp_root);
2997 2998
			if (needwake)
				rcu_gp_kthread_wake(rsp);
2999 3000 3001 3002 3003
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3004
				force_quiescent_state(rsp);
3005 3006 3007
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
3008
	}
3009 3010
}

3011 3012 3013 3014 3015 3016 3017
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3018 3019 3020 3021 3022 3023
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3024
static void
3025
__call_rcu(struct rcu_head *head, rcu_callback_t func,
P
Paul E. McKenney 已提交
3026
	   struct rcu_state *rsp, int cpu, bool lazy)
3027 3028 3029 3030
{
	unsigned long flags;
	struct rcu_data *rdp;

3031
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3032 3033
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3034
		WRITE_ONCE(head->func, rcu_leak_callback);
3035 3036 3037
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
3048
	rdp = this_cpu_ptr(rsp->rda);
3049 3050

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
3051 3052 3053 3054 3055
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3069
		WARN_ON_ONCE(!rcu_is_watching());
3070 3071
		if (!likely(rdp->nxtlist))
			init_default_callback_list(rdp);
3072
	}
3073
	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3074 3075
	if (lazy)
		rdp->qlen_lazy++;
3076 3077
	else
		rcu_idle_count_callbacks_posted();
3078 3079 3080
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3081

3082 3083
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3084
					 rdp->qlen_lazy, rdp->qlen);
3085
	else
3086
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3087

3088 3089
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3090 3091 3092 3093
	local_irq_restore(flags);
}

/*
3094
 * Queue an RCU-sched callback for invocation after a grace period.
3095
 */
3096
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3097
{
P
Paul E. McKenney 已提交
3098
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3099
}
3100
EXPORT_SYMBOL_GPL(call_rcu_sched);
3101 3102

/*
3103
 * Queue an RCU callback for invocation after a quicker grace period.
3104
 */
3105
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3106
{
P
Paul E. McKenney 已提交
3107
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3108 3109 3110
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3111 3112 3113 3114 3115 3116 3117 3118
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
3119
		    rcu_callback_t func)
3120
{
3121
	__call_rcu(head, func, rcu_state_p, -1, 1);
3122 3123 3124
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3136 3137
	int ret;

3138
	might_sleep();  /* Check for RCU read-side critical section. */
3139 3140 3141 3142
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3143 3144
}

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3179 3180 3181 3182 3183 3184 3185 3186 3187
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3188 3189 3190 3191
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3192 3193
	if (rcu_blocking_is_gp())
		return;
3194
	if (rcu_gp_is_expedited())
3195 3196 3197
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3209 3210 3211
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3212 3213 3214
 */
void synchronize_rcu_bh(void)
{
3215 3216 3217 3218
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3219 3220
	if (rcu_blocking_is_gp())
		return;
3221
	if (rcu_gp_is_expedited())
3222 3223 3224
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3225 3226 3227
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3248
	return smp_load_acquire(&rcu_state_p->gpnum);
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3274
	newstate = smp_load_acquire(&rcu_state_p->completed);
3275 3276 3277 3278 3279
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
/**
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_sched(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_sched()
	 * and cond_synchronize_sched().
	 */
	return smp_load_acquire(&rcu_sched_state.gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);

/**
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 *
 * If a full RCU-sched grace period has elapsed since the earlier call to
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 * synchronize_sched() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_sched(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_sched_state.completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(cond_synchronize_sched);

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
/* Adjust sequence number for start of update-side operation. */
static void rcu_seq_start(unsigned long *sp)
{
	WRITE_ONCE(*sp, *sp + 1);
	smp_mb(); /* Ensure update-side operation after counter increment. */
	WARN_ON_ONCE(!(*sp & 0x1));
}

/* Adjust sequence number for end of update-side operation. */
static void rcu_seq_end(unsigned long *sp)
{
	smp_mb(); /* Ensure update-side operation before counter increment. */
	WRITE_ONCE(*sp, *sp + 1);
	WARN_ON_ONCE(*sp & 0x1);
}

/* Take a snapshot of the update side's sequence number. */
static unsigned long rcu_seq_snap(unsigned long *sp)
{
	unsigned long s;

	s = (READ_ONCE(*sp) + 3) & ~0x1;
	smp_mb(); /* Above access must not bleed into critical section. */
	return s;
}

/*
 * Given a snapshot from rcu_seq_snap(), determine whether or not a
 * full update-side operation has occurred.
 */
static bool rcu_seq_done(unsigned long *sp, unsigned long s)
{
	return ULONG_CMP_GE(READ_ONCE(*sp), s);
}

/* Wrapper functions for expedited grace periods.  */
static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
{
	rcu_seq_start(&rsp->expedited_sequence);
}
static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
{
	rcu_seq_end(&rsp->expedited_sequence);
3375
	smp_mb(); /* Ensure that consecutive grace periods serialize. */
3376 3377 3378
}
static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
{
3379
	smp_mb(); /* Caller's modifications seen first by other CPUs. */
3380 3381 3382 3383 3384 3385 3386
	return rcu_seq_snap(&rsp->expedited_sequence);
}
static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
{
	return rcu_seq_done(&rsp->expedited_sequence, s);
}

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
/*
 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
 * recent CPU-online activity.  Note that these masks are not cleared
 * when CPUs go offline, so they reflect the union of all CPUs that have
 * ever been online.  This means that this function normally takes its
 * no-work-to-do fastpath.
 */
static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
{
	bool done;
	unsigned long flags;
	unsigned long mask;
	unsigned long oldmask;
	int ncpus = READ_ONCE(rsp->ncpus);
	struct rcu_node *rnp;
	struct rcu_node *rnp_up;

	/* If no new CPUs onlined since last time, nothing to do. */
	if (likely(ncpus == rsp->ncpus_snap))
		return;
	rsp->ncpus_snap = ncpus;

	/*
	 * Each pass through the following loop propagates newly onlined
	 * CPUs for the current rcu_node structure up the rcu_node tree.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
3414
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3415
		if (rnp->expmaskinit == rnp->expmaskinitnext) {
B
Boqun Feng 已提交
3416
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3417 3418 3419 3420 3421 3422
			continue;  /* No new CPUs, nothing to do. */
		}

		/* Update this node's mask, track old value for propagation. */
		oldmask = rnp->expmaskinit;
		rnp->expmaskinit = rnp->expmaskinitnext;
B
Boqun Feng 已提交
3423
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433

		/* If was already nonzero, nothing to propagate. */
		if (oldmask)
			continue;

		/* Propagate the new CPU up the tree. */
		mask = rnp->grpmask;
		rnp_up = rnp->parent;
		done = false;
		while (rnp_up) {
3434
			raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
3435 3436 3437
			if (rnp_up->expmaskinit)
				done = true;
			rnp_up->expmaskinit |= mask;
B
Boqun Feng 已提交
3438
			raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags);
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
			if (done)
				break;
			mask = rnp_up->grpmask;
			rnp_up = rnp_up->parent;
		}
	}
}

/*
 * Reset the ->expmask values in the rcu_node tree in preparation for
 * a new expedited grace period.
 */
static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	sync_exp_reset_tree_hotplug(rsp);
	rcu_for_each_node_breadth_first(rsp, rnp) {
3458
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3459 3460
		WARN_ON_ONCE(rnp->expmask);
		rnp->expmask = rnp->expmaskinit;
B
Boqun Feng 已提交
3461
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3462 3463 3464
	}
}

3465
/*
3466
 * Return non-zero if there is no RCU expedited grace period in progress
3467 3468 3469 3470 3471 3472 3473 3474 3475
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
3476
	return rnp->exp_tasks == NULL &&
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
	       READ_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
3488 3489
 * Caller must hold the root rcu_node's exp_funnel_mutex and the
 * specified rcu_node structure's ->lock.
3490
 */
3491 3492 3493
static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
				 bool wake, unsigned long flags)
	__releases(rnp->lock)
3494 3495 3496 3497 3498
{
	unsigned long mask;

	for (;;) {
		if (!sync_rcu_preempt_exp_done(rnp)) {
3499 3500 3501
			if (!rnp->expmask)
				rcu_initiate_boost(rnp, flags);
			else
B
Boqun Feng 已提交
3502
				raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3503 3504 3505
			break;
		}
		if (rnp->parent == NULL) {
B
Boqun Feng 已提交
3506
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3507 3508
			if (wake) {
				smp_mb(); /* EGP done before wake_up(). */
3509
				swake_up(&rsp->expedited_wq);
3510 3511 3512 3513
			}
			break;
		}
		mask = rnp->grpmask;
B
Boqun Feng 已提交
3514
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */
3515
		rnp = rnp->parent;
3516
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
3517
		WARN_ON_ONCE(!(rnp->expmask & mask));
3518 3519 3520 3521
		rnp->expmask &= ~mask;
	}
}

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
/*
 * Report expedited quiescent state for specified node.  This is a
 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
 *
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
					      struct rcu_node *rnp, bool wake)
{
	unsigned long flags;

3533
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
	__rcu_report_exp_rnp(rsp, rnp, wake, flags);
}

/*
 * Report expedited quiescent state for multiple CPUs, all covered by the
 * specified leaf rcu_node structure.  Caller must hold the root
 * rcu_node's exp_funnel_mutex.
 */
static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
				    unsigned long mask, bool wake)
{
	unsigned long flags;

3547
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3548
	if (!(rnp->expmask & mask)) {
B
Boqun Feng 已提交
3549
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3550 3551
		return;
	}
3552 3553 3554 3555 3556 3557 3558 3559
	rnp->expmask &= ~mask;
	__rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
}

/*
 * Report expedited quiescent state for specified rcu_data (CPU).
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
3560 3561
static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
			       bool wake)
3562 3563 3564 3565
{
	rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
}

3566 3567
/* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
3568
			       struct rcu_data *rdp,
3569
			       atomic_long_t *stat, unsigned long s)
3570
{
3571
	if (rcu_exp_gp_seq_done(rsp, s)) {
3572 3573
		if (rnp)
			mutex_unlock(&rnp->exp_funnel_mutex);
3574 3575
		else if (rdp)
			mutex_unlock(&rdp->exp_funnel_mutex);
3576 3577 3578 3579 3580 3581 3582 3583
		/* Ensure test happens before caller kfree(). */
		smp_mb__before_atomic(); /* ^^^ */
		atomic_long_inc(stat);
		return true;
	}
	return false;
}

3584 3585 3586 3587 3588 3589 3590
/*
 * Funnel-lock acquisition for expedited grace periods.  Returns a
 * pointer to the root rcu_node structure, or NULL if some other
 * task did the expedited grace period for us.
 */
static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
{
3591
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3592 3593 3594
	struct rcu_node *rnp0;
	struct rcu_node *rnp1 = NULL;

3595
	/*
3596 3597 3598 3599
	 * First try directly acquiring the root lock in order to reduce
	 * latency in the common case where expedited grace periods are
	 * rare.  We check mutex_is_locked() to avoid pathological levels of
	 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3600
	 */
3601 3602 3603 3604
	rnp0 = rcu_get_root(rsp);
	if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
		if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
			if (sync_exp_work_done(rsp, rnp0, NULL,
3605
					       &rdp->expedited_workdone0, s))
3606 3607 3608 3609 3610
				return NULL;
			return rnp0;
		}
	}

3611 3612 3613 3614 3615 3616 3617 3618
	/*
	 * Each pass through the following loop works its way
	 * up the rcu_node tree, returning if others have done the
	 * work or otherwise falls through holding the root rnp's
	 * ->exp_funnel_mutex.  The mapping from CPU to rcu_node structure
	 * can be inexact, as it is just promoting locality and is not
	 * strictly needed for correctness.
	 */
3619
	if (sync_exp_work_done(rsp, NULL, NULL, &rdp->expedited_workdone1, s))
3620 3621 3622
		return NULL;
	mutex_lock(&rdp->exp_funnel_mutex);
	rnp0 = rdp->mynode;
3623
	for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3624
		if (sync_exp_work_done(rsp, rnp1, rdp,
3625
				       &rdp->expedited_workdone2, s))
3626 3627 3628 3629
			return NULL;
		mutex_lock(&rnp0->exp_funnel_mutex);
		if (rnp1)
			mutex_unlock(&rnp1->exp_funnel_mutex);
3630 3631
		else
			mutex_unlock(&rdp->exp_funnel_mutex);
3632 3633
		rnp1 = rnp0;
	}
3634
	if (sync_exp_work_done(rsp, rnp1, rdp,
3635
			       &rdp->expedited_workdone3, s))
3636 3637 3638 3639
		return NULL;
	return rnp1;
}

3640
/* Invoked on each online non-idle CPU for expedited quiescent state. */
3641
static void sync_sched_exp_handler(void *data)
3642
{
3643 3644 3645
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp = data;
3646

3647 3648 3649 3650 3651
	rdp = this_cpu_ptr(rsp->rda);
	rnp = rdp->mynode;
	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
	    __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
3652 3653
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
	resched_cpu(smp_processor_id());
3654 3655
}

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
/* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
static void sync_sched_exp_online_cleanup(int cpu)
{
	struct rcu_data *rdp;
	int ret;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_sched_state;

	rdp = per_cpu_ptr(rsp->rda, cpu);
	rnp = rdp->mynode;
	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
		return;
	ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
	WARN_ON_ONCE(ret);
}

3672 3673 3674 3675
/*
 * Select the nodes that the upcoming expedited grace period needs
 * to wait for.
 */
3676 3677
static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
				     smp_call_func_t func)
3678 3679 3680 3681 3682 3683
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
	unsigned long mask_ofl_test;
	unsigned long mask_ofl_ipi;
3684
	int ret;
3685 3686 3687 3688
	struct rcu_node *rnp;

	sync_exp_reset_tree(rsp);
	rcu_for_each_leaf_node(rsp, rnp) {
3689
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709

		/* Each pass checks a CPU for identity, offline, and idle. */
		mask_ofl_test = 0;
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

			if (raw_smp_processor_id() == cpu ||
			    !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
				mask_ofl_test |= rdp->grpmask;
		}
		mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;

		/*
		 * Need to wait for any blocked tasks as well.  Note that
		 * additional blocking tasks will also block the expedited
		 * GP until such time as the ->expmask bits are cleared.
		 */
		if (rcu_preempt_has_tasks(rnp))
			rnp->exp_tasks = rnp->blkd_tasks.next;
B
Boqun Feng 已提交
3710
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3711 3712 3713 3714 3715 3716

		/* IPI the remaining CPUs for expedited quiescent state. */
		mask = 1;
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
			if (!(mask_ofl_ipi & mask))
				continue;
3717
retry_ipi:
3718
			ret = smp_call_function_single(cpu, func, rsp, 0);
3719
			if (!ret) {
3720
				mask_ofl_ipi &= ~mask;
3721 3722 3723 3724 3725 3726
				continue;
			}
			/* Failed, raced with offline. */
			raw_spin_lock_irqsave_rcu_node(rnp, flags);
			if (cpu_online(cpu) &&
			    (rnp->expmask & mask)) {
B
Boqun Feng 已提交
3727
				raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3728 3729 3730 3731 3732
				schedule_timeout_uninterruptible(1);
				if (cpu_online(cpu) &&
				    (rnp->expmask & mask))
					goto retry_ipi;
				raw_spin_lock_irqsave_rcu_node(rnp, flags);
3733
			}
3734 3735
			if (!(rnp->expmask & mask))
				mask_ofl_ipi &= ~mask;
B
Boqun Feng 已提交
3736
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3737 3738 3739 3740 3741 3742
		}
		/* Report quiescent states for those that went offline. */
		mask_ofl_test |= mask_ofl_ipi;
		if (mask_ofl_test)
			rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
	}
3743 3744
}

3745 3746 3747 3748 3749
static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
{
	int cpu;
	unsigned long jiffies_stall;
	unsigned long jiffies_start;
3750
	unsigned long mask;
3751
	int ndetected;
3752 3753
	struct rcu_node *rnp;
	struct rcu_node *rnp_root = rcu_get_root(rsp);
3754 3755 3756 3757 3758 3759
	int ret;

	jiffies_stall = rcu_jiffies_till_stall_check();
	jiffies_start = jiffies;

	for (;;) {
3760
		ret = swait_event_timeout(
3761
				rsp->expedited_wq,
3762
				sync_rcu_preempt_exp_done(rnp_root),
3763
				jiffies_stall);
3764
		if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root))
3765 3766 3767
			return;
		if (ret < 0) {
			/* Hit a signal, disable CPU stall warnings. */
3768
			swait_event(rsp->expedited_wq,
3769
				   sync_rcu_preempt_exp_done(rnp_root));
3770 3771
			return;
		}
3772
		pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3773
		       rsp->name);
3774
		ndetected = 0;
3775
		rcu_for_each_leaf_node(rsp, rnp) {
3776
			ndetected = rcu_print_task_exp_stall(rnp);
3777 3778
			mask = 1;
			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3779 3780
				struct rcu_data *rdp;

3781 3782
				if (!(rnp->expmask & mask))
					continue;
3783
				ndetected++;
3784 3785 3786 3787 3788
				rdp = per_cpu_ptr(rsp->rda, cpu);
				pr_cont(" %d-%c%c%c", cpu,
					"O."[cpu_online(cpu)],
					"o."[!!(rdp->grpmask & rnp->expmaskinit)],
					"N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
3789 3790
			}
			mask <<= 1;
3791
		}
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
		pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
			jiffies - jiffies_start, rsp->expedited_sequence,
			rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
		if (!ndetected) {
			pr_err("blocking rcu_node structures:");
			rcu_for_each_node_breadth_first(rsp, rnp) {
				if (rnp == rnp_root)
					continue; /* printed unconditionally */
				if (sync_rcu_preempt_exp_done(rnp))
					continue;
				pr_cont(" l=%u:%d-%d:%#lx/%c",
					rnp->level, rnp->grplo, rnp->grphi,
					rnp->expmask,
					".T"[!!rnp->exp_tasks]);
			}
			pr_cont("\n");
		}
3809 3810 3811 3812 3813 3814 3815
		rcu_for_each_leaf_node(rsp, rnp) {
			mask = 1;
			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
				if (!(rnp->expmask & mask))
					continue;
				dump_cpu_task(cpu);
			}
3816 3817 3818 3819 3820
		}
		jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
	}
}

3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
3831
 *
3832 3833 3834
 * This implementation can be thought of as an application of sequence
 * locking to expedited grace periods, but using the sequence counter to
 * determine when someone else has already done the work instead of for
3835
 * retrying readers.
3836 3837 3838
 */
void synchronize_sched_expedited(void)
{
3839
	unsigned long s;
3840
	struct rcu_node *rnp;
3841
	struct rcu_state *rsp = &rcu_sched_state;
3842

3843 3844 3845 3846
	/* If only one CPU, this is automatically a grace period. */
	if (rcu_blocking_is_gp())
		return;

3847 3848 3849 3850 3851 3852
	/* If expedited grace periods are prohibited, fall back to normal. */
	if (rcu_gp_is_normal()) {
		wait_rcu_gp(call_rcu_sched);
		return;
	}

3853
	/* Take a snapshot of the sequence number.  */
3854
	s = rcu_exp_gp_seq_snap(rsp);
3855

3856
	rnp = exp_funnel_lock(rsp, s);
3857
	if (rnp == NULL)
3858
		return;  /* Someone else did our work for us. */
3859

3860
	rcu_exp_gp_seq_start(rsp);
3861
	sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
3862
	synchronize_sched_expedited_wait(rsp);
3863

3864
	rcu_exp_gp_seq_end(rsp);
3865
	mutex_unlock(&rnp->exp_funnel_mutex);
3866 3867 3868
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3869 3870 3871 3872 3873 3874 3875 3876 3877
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3878 3879
	struct rcu_node *rnp = rdp->mynode;

3880 3881 3882 3883 3884
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3885 3886 3887 3888
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3889
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3890
	if (rcu_scheduler_fully_active &&
3891
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3892
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3893 3894
		rdp->n_rp_core_needs_qs++;
	} else if (rdp->core_needs_qs &&
3895
		   (!rdp->cpu_no_qs.b.norm ||
3896
		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3897
		rdp->n_rp_report_qs++;
3898
		return 1;
3899
	}
3900 3901

	/* Does this CPU have callbacks ready to invoke? */
3902 3903
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3904
		return 1;
3905
	}
3906 3907

	/* Has RCU gone idle with this CPU needing another grace period? */
3908 3909
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3910
		return 1;
3911
	}
3912 3913

	/* Has another RCU grace period completed?  */
3914
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3915
		rdp->n_rp_gp_completed++;
3916
		return 1;
3917
	}
3918 3919

	/* Has a new RCU grace period started? */
3920 3921
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3922
		rdp->n_rp_gp_started++;
3923
		return 1;
3924
	}
3925

3926 3927 3928 3929 3930 3931
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3932
	/* nothing to do */
3933
	rdp->n_rp_need_nothing++;
3934 3935 3936 3937 3938 3939 3940 3941
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3942
static int rcu_pending(void)
3943
{
3944 3945 3946
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3947
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3948 3949
			return 1;
	return 0;
3950 3951 3952
}

/*
3953 3954 3955
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3956
 */
3957
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3958
{
3959 3960 3961
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3962 3963
	struct rcu_state *rsp;

3964
	for_each_rcu_flavor(rsp) {
3965
		rdp = this_cpu_ptr(rsp->rda);
3966 3967 3968 3969
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3970
			al = false;
3971 3972
			break;
		}
3973 3974 3975 3976
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3977 3978
}

3979 3980 3981 3982
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3983
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3984 3985 3986 3987 3988 3989
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3990 3991 3992 3993
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3994
static void rcu_barrier_callback(struct rcu_head *rhp)
3995
{
3996 3997 3998
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3999
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4000
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
4001
		complete(&rsp->barrier_completion);
4002
	} else {
4003
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
4004
	}
4005 4006 4007 4008 4009 4010 4011
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
4012
	struct rcu_state *rsp = type;
4013
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
4014

4015
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
4016
	atomic_inc(&rsp->barrier_cpu_count);
4017
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
4018 4019 4020 4021 4022 4023
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
4024
static void _rcu_barrier(struct rcu_state *rsp)
4025
{
4026 4027
	int cpu;
	struct rcu_data *rdp;
4028
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
4029

4030
	_rcu_barrier_trace(rsp, "Begin", -1, s);
4031

4032
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4033
	mutex_lock(&rsp->barrier_mutex);
4034

4035 4036 4037
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
4038 4039 4040 4041 4042
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

4043 4044 4045
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
4046

4047
	/*
4048 4049
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
4050 4051
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
4052
	 */
4053
	init_completion(&rsp->barrier_completion);
4054
	atomic_set(&rsp->barrier_cpu_count, 1);
4055
	get_online_cpus();
4056 4057

	/*
4058 4059 4060
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
4061
	 */
P
Paul E. McKenney 已提交
4062
	for_each_possible_cpu(cpu) {
4063
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
4064
			continue;
4065
		rdp = per_cpu_ptr(rsp->rda, cpu);
4066
		if (rcu_is_nocb_cpu(cpu)) {
4067 4068
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4069
						   rsp->barrier_sequence);
4070 4071
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4072
						   rsp->barrier_sequence);
4073
				smp_mb__before_atomic();
4074 4075 4076 4077
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
4078
		} else if (READ_ONCE(rdp->qlen)) {
4079
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
4080
					   rsp->barrier_sequence);
4081
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4082
		} else {
4083
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4084
					   rsp->barrier_sequence);
4085 4086
		}
	}
4087
	put_online_cpus();
4088 4089 4090 4091 4092

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
4093
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4094
		complete(&rsp->barrier_completion);
4095 4096

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4097
	wait_for_completion(&rsp->barrier_completion);
4098

4099 4100 4101 4102
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

4103
	/* Other rcu_barrier() invocations can now safely proceed. */
4104
	mutex_unlock(&rsp->barrier_mutex);
4105 4106 4107 4108 4109 4110 4111
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
4112
	_rcu_barrier(&rcu_bh_state);
4113 4114 4115 4116 4117 4118 4119 4120
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
4121
	_rcu_barrier(&rcu_sched_state);
4122 4123 4124
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
4141
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4142
		rnp->qsmaskinit |= mask;
B
Boqun Feng 已提交
4143
		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4144 4145 4146
	}
}

4147
/*
4148
 * Do boot-time initialization of a CPU's per-CPU RCU data.
4149
 */
4150 4151
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4152 4153
{
	unsigned long flags;
4154
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4155 4156 4157
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
4158
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4159 4160
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4161
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4162
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4163
	rdp->cpu = cpu;
4164
	rdp->rsp = rsp;
4165
	mutex_init(&rdp->exp_funnel_mutex);
P
Paul E. McKenney 已提交
4166
	rcu_boot_init_nocb_percpu_data(rdp);
B
Boqun Feng 已提交
4167
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4168 4169 4170 4171 4172 4173 4174
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4175
 */
4176
static void
4177
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4178 4179 4180
{
	unsigned long flags;
	unsigned long mask;
4181
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4182 4183 4184
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
4185
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4186 4187
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
4188
	rdp->blimit = blimit;
4189 4190
	if (!rdp->nxtlist)
		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
4191
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4192
	rcu_sysidle_init_percpu_data(rdp->dynticks);
4193 4194
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
B
Boqun Feng 已提交
4195
	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4196

4197 4198 4199 4200 4201
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
4202 4203
	rnp = rdp->mynode;
	mask = rdp->grpmask;
4204
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4205
	rnp->qsmaskinitnext |= mask;
4206 4207 4208 4209
	rnp->expmaskinitnext |= mask;
	if (!rdp->beenonline)
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
	rdp->beenonline = true;	 /* We have now been online. */
4210 4211
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
4212
	rdp->cpu_no_qs.b.norm = true;
4213
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4214
	rdp->core_needs_qs = false;
4215
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
B
Boqun Feng 已提交
4216
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4217 4218
}

4219
static void rcu_prepare_cpu(int cpu)
4220
{
4221 4222 4223
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
4224
		rcu_init_percpu_data(cpu, rsp);
4225 4226
}

4227 4228
#ifdef CONFIG_HOTPLUG_CPU
/*
4229 4230 4231
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
4250
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
}

void rcu_report_dead(unsigned int cpu)
{
	struct rcu_state *rsp;

	/* QS for any half-done expedited RCU-sched GP. */
	preempt_disable();
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(rcu_sched_state.rda), true);
	preempt_enable();
	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_idle_cpu(cpu, rsp);
}
#endif

4267
/*
4268
 * Handle CPU online/offline notification events.
4269
 */
4270 4271
int rcu_cpu_notify(struct notifier_block *self,
		   unsigned long action, void *hcpu)
4272 4273
{
	long cpu = (long)hcpu;
4274
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4275
	struct rcu_node *rnp = rdp->mynode;
4276
	struct rcu_state *rsp;
4277 4278 4279 4280

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
4281 4282
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
4283
		rcu_spawn_all_nocb_kthreads(cpu);
4284 4285
		break;
	case CPU_ONLINE:
4286
	case CPU_DOWN_FAILED:
4287
		sync_sched_exp_online_cleanup(cpu);
T
Thomas Gleixner 已提交
4288
		rcu_boost_kthread_setaffinity(rnp, -1);
4289 4290
		break;
	case CPU_DOWN_PREPARE:
4291
		rcu_boost_kthread_setaffinity(rnp, cpu);
4292
		break;
4293 4294
	case CPU_DYING:
	case CPU_DYING_FROZEN:
4295 4296
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
4297
		break;
4298 4299 4300 4301
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
4302
		for_each_rcu_flavor(rsp) {
4303
			rcu_cleanup_dead_cpu(cpu, rsp);
4304 4305
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
4306 4307 4308 4309
		break;
	default:
		break;
	}
4310
	return NOTIFY_OK;
4311 4312
}

4313 4314 4315 4316 4317 4318 4319
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4320
			rcu_expedite_gp();
4321 4322 4323
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
4324 4325
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
4326 4327 4328 4329 4330 4331 4332
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

4333
/*
4334
 * Spawn the kthreads that handle each RCU flavor's grace periods.
4335 4336 4337 4338
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
4339
	int kthread_prio_in = kthread_prio;
4340 4341
	struct rcu_node *rnp;
	struct rcu_state *rsp;
4342
	struct sched_param sp;
4343 4344
	struct task_struct *t;

4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

4356
	rcu_scheduler_fully_active = 1;
4357
	for_each_rcu_flavor(rsp) {
4358
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4359 4360
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
4361
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4362
		rsp->gp_kthread = t;
4363 4364 4365 4366
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
B
Boqun Feng 已提交
4367
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4368
		wake_up_process(t);
4369
	}
4370
	rcu_spawn_nocb_kthreads();
4371
	rcu_spawn_boost_kthreads();
4372 4373 4374 4375
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

4391 4392
/*
 * Compute the per-level fanout, either using the exact fanout specified
4393
 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4394
 */
4395
static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4396 4397 4398
{
	int i;

4399
	if (rcu_fanout_exact) {
4400
		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4401
		for (i = rcu_num_lvls - 2; i >= 0; i--)
4402
			levelspread[i] = RCU_FANOUT;
4403 4404 4405 4406 4407 4408
	} else {
		int ccur;
		int cprv;

		cprv = nr_cpu_ids;
		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4409 4410
			ccur = levelcnt[i];
			levelspread[i] = (cprv + ccur - 1) / ccur;
4411 4412
			cprv = ccur;
		}
4413 4414 4415 4416 4417 4418
	}
}

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
4419
static void __init rcu_init_one(struct rcu_state *rsp)
4420
{
4421 4422
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4423
	static const char * const exp[] = RCU_EXP_NAME_INIT;
4424 4425 4426
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
4427
	static u8 fl_mask = 0x1;
4428 4429 4430

	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4431 4432 4433 4434 4435
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4436
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4437

4438 4439 4440
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4441

4442 4443
	/* Initialize the level-tracking arrays. */

4444
	for (i = 0; i < rcu_num_lvls; i++)
4445
		levelcnt[i] = num_rcu_lvl[i];
4446
	for (i = 1; i < rcu_num_lvls; i++)
4447 4448
		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
	rcu_init_levelspread(levelspread, levelcnt);
4449 4450
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
4451 4452 4453

	/* Initialize the elements themselves, starting from the leaves. */

4454
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4455
		cpustride *= levelspread[i];
4456
		rnp = rsp->level[i];
4457
		for (j = 0; j < levelcnt[i]; j++, rnp++) {
B
Boqun Feng 已提交
4458 4459
			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4460
						   &rcu_node_class[i], buf[i]);
4461 4462 4463
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4464 4465
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4466 4467 4468 4469
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4470 4471
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4472 4473 4474 4475 4476
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4477
				rnp->grpnum = j % levelspread[i - 1];
4478 4479
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4480
					      j / levelspread[i - 1];
4481 4482
			}
			rnp->level = i;
4483
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4484
			rcu_init_one_nocb(rnp);
4485
			mutex_init(&rnp->exp_funnel_mutex);
4486 4487
			lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
						   &rcu_exp_class[i], exp[i]);
4488 4489
		}
	}
4490

4491 4492
	init_swait_queue_head(&rsp->gp_wq);
	init_swait_queue_head(&rsp->expedited_wq);
4493
	rnp = rsp->level[rcu_num_lvls - 1];
4494
	for_each_possible_cpu(i) {
4495
		while (i > rnp->grphi)
4496
			rnp++;
4497
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4498 4499
		rcu_boot_init_percpu_data(i, rsp);
	}
4500
	list_add(&rsp->flavors, &rcu_struct_flavors);
4501 4502
}

4503 4504
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4505
 * replace the definitions in tree.h because those are needed to size
4506 4507 4508 4509
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4510
	ulong d;
4511
	int i;
4512
	int rcu_capacity[RCU_NUM_LVLS];
4513

4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4527
	/* If the compile-time values are accurate, just leave. */
4528
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4529
	    nr_cpu_ids == NR_CPUS)
4530
		return;
4531 4532
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4533 4534

	/*
4535 4536 4537 4538
	 * The boot-time rcu_fanout_leaf parameter must be at least two
	 * and cannot exceed the number of bits in the rcu_node masks.
	 * Complain and fall back to the compile-time values if this
	 * limit is exceeded.
4539
	 */
4540
	if (rcu_fanout_leaf < 2 ||
4541
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4542
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4543 4544 4545 4546 4547 4548
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4549
	 * with the given number of levels.
4550
	 */
4551
	rcu_capacity[0] = rcu_fanout_leaf;
4552
	for (i = 1; i < RCU_NUM_LVLS; i++)
4553
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4554 4555

	/*
4556
	 * The tree must be able to accommodate the configured number of CPUs.
4557
	 * If this limit is exceeded, fall back to the compile-time values.
4558
	 */
4559 4560 4561 4562 4563
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}
4564

4565
	/* Calculate the number of levels in the tree. */
4566
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4567
	}
4568
	rcu_num_lvls = i + 1;
4569

4570
	/* Calculate the number of rcu_nodes at each level of the tree. */
4571
	for (i = 0; i < rcu_num_lvls; i++) {
4572
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4573 4574
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4575 4576 4577

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4578
	for (i = 0; i < rcu_num_lvls; i++)
4579 4580 4581
		rcu_num_nodes += num_rcu_lvl[i];
}

4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4604
void __init rcu_init(void)
4605
{
P
Paul E. McKenney 已提交
4606
	int cpu;
4607

4608 4609
	rcu_early_boot_tests();

4610
	rcu_bootup_announce();
4611
	rcu_init_geometry();
4612 4613
	rcu_init_one(&rcu_bh_state);
	rcu_init_one(&rcu_sched_state);
4614 4615
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4616
	__rcu_init_preempt();
J
Jiang Fang 已提交
4617
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4618 4619 4620 4621 4622 4623 4624

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
4625
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
4626 4627
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4628 4629
}

4630
#include "tree_plugin.h"