tree.c 112.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/ftrace_event.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73

74 75 76 77 78 79 80 81
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
82
#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
83 84
static char sname##_varname[] = #sname; \
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
85
struct rcu_state sname##_state = { \
86
	.level = { &sname##_state.node[0] }, \
87
	.call = cr, \
88
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
89 90
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
91
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
92 93
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
94
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
95
	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
96
	.name = sname##_varname, \
97
	.abbr = sabbr, \
98 99
}; \
DEFINE_PER_CPU(struct rcu_data, sname##_data)
100

101 102
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
103

104
static struct rcu_state *rcu_state;
105
LIST_HEAD(rcu_struct_flavors);
106

107 108
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
109
module_param(rcu_fanout_leaf, int, 0444);
110 111 112 113 114 115 116 117 118 119
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

120 121 122 123
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
124
 * optimize synchronize_sched() to a simple barrier().  When this variable
125 126 127 128
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
129 130 131
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

132 133 134 135 136 137 138 139 140 141 142 143 144 145
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

146 147
#ifdef CONFIG_RCU_BOOST

148 149 150 151 152
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
153
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
154
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
155
DEFINE_PER_CPU(char, rcu_cpu_has_work);
156

157 158
#endif /* #ifdef CONFIG_RCU_BOOST */

T
Thomas Gleixner 已提交
159
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
160 161
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
162

163 164 165 166 167 168 169 170 171 172 173 174
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

175 176 177 178 179 180 181 182 183 184
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

185
/*
186
 * Note a quiescent state.  Because we do not need to know
187
 * how many quiescent states passed, just if there was at least
188
 * one since the start of the grace period, this just sets a flag.
189
 * The caller must have disabled preemption.
190
 */
191
void rcu_sched_qs(int cpu)
192
{
193
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
194

195
	if (rdp->passed_quiesce == 0)
196
		trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
197
	rdp->passed_quiesce = 1;
198 199
}

200
void rcu_bh_qs(int cpu)
201
{
202
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
203

204
	if (rdp->passed_quiesce == 0)
205
		trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
206
	rdp->passed_quiesce = 1;
207
}
208

209 210 211
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
212
 * The caller must have disabled preemption.
213 214 215
 */
void rcu_note_context_switch(int cpu)
{
216
	trace_rcu_utilization(TPS("Start context switch"));
217
	rcu_sched_qs(cpu);
218
	rcu_preempt_note_context_switch(cpu);
219
	trace_rcu_utilization(TPS("End context switch"));
220
}
221
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
222

223
static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
224
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
225
	.dynticks = ATOMIC_INIT(1),
226 227 228 229
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
230
};
231

E
Eric Dumazet 已提交
232 233 234
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
235

E
Eric Dumazet 已提交
236 237 238
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
239

240 241
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
242 243 244 245

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

246
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
247
				  struct rcu_data *rdp);
248 249 250 251
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
252
static void force_quiescent_state(struct rcu_state *rsp);
253
static int rcu_pending(int cpu);
254 255

/*
256
 * Return the number of RCU-sched batches processed thus far for debug & stats.
257
 */
258
long rcu_batches_completed_sched(void)
259
{
260
	return rcu_sched_state.completed;
261
}
262
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
263 264 265 266 267 268 269 270 271 272

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

273 274 275 276 277 278 279 280 281
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
	force_quiescent_state(rcu_state);
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

282 283 284 285 286
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
287
	force_quiescent_state(&rcu_bh_state);
288 289 290
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

316 317 318 319 320
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
321
	force_quiescent_state(&rcu_sched_state);
322 323 324
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

325 326 327 328 329 330
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
331 332
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
333 334
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
	int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
	int *fp = &rnp->need_future_gp[idx];

	return ACCESS_ONCE(*fp);
}

357
/*
358 359 360
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
361 362 363 364
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
365
	int i;
P
Paul E. McKenney 已提交
366

367 368
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
369
	if (rcu_future_needs_gp(rsp))
370
		return 1;  /* Yes, a no-CBs CPU needs one. */
371 372 373 374 375 376 377 378 379 380
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
381 382
}

383
/*
384
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
385 386 387 388 389
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
390 391
static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
				bool user)
392
{
393 394 395
	struct rcu_state *rsp;
	struct rcu_data *rdp;

396
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
397
	if (!user && !is_idle_task(current)) {
398 399
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
400

401
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
402
		ftrace_dump(DUMP_ORIG);
403 404 405
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
406
	}
407 408 409 410
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
411
	rcu_prepare_for_idle(smp_processor_id());
412 413 414 415 416
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
417 418

	/*
419
	 * It is illegal to enter an extended quiescent state while
420 421 422 423 424 425 426 427
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
428
}
429

430 431 432
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
433
 */
434
static void rcu_eqs_enter(bool user)
435
{
436
	long long oldval;
437 438
	struct rcu_dynticks *rdtp;

439
	rdtp = this_cpu_ptr(&rcu_dynticks);
440
	oldval = rdtp->dynticks_nesting;
441
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
442
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
443
		rdtp->dynticks_nesting = 0;
444 445
		rcu_eqs_enter_common(rdtp, oldval, user);
	} else {
446
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
447
	}
448
}
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
464 465 466
	unsigned long flags;

	local_irq_save(flags);
467
	rcu_eqs_enter(false);
468
	rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
469
	local_irq_restore(flags);
470
}
471
EXPORT_SYMBOL_GPL(rcu_idle_enter);
472

473
#ifdef CONFIG_RCU_USER_QS
474 475 476 477 478 479 480 481 482 483
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
484
	rcu_eqs_enter(1);
485
}
486
#endif /* CONFIG_RCU_USER_QS */
487

488 489 490 491 492 493
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
494
 *
495 496 497 498 499 500 501 502
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
503
 */
504
void rcu_irq_exit(void)
505 506
{
	unsigned long flags;
507
	long long oldval;
508 509 510
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
511
	rdtp = this_cpu_ptr(&rcu_dynticks);
512
	oldval = rdtp->dynticks_nesting;
513 514
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
515
	if (rdtp->dynticks_nesting)
516
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
517
	else
518
		rcu_eqs_enter_common(rdtp, oldval, true);
519
	rcu_sysidle_enter(rdtp, 1);
520 521 522 523
	local_irq_restore(flags);
}

/*
524
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
525 526 527 528 529
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
530 531
static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
			       int user)
532
{
533 534 535 536 537
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
538
	rcu_cleanup_after_idle(smp_processor_id());
539
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
540
	if (!user && !is_idle_task(current)) {
541 542
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
543

544
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
545
				  oldval, rdtp->dynticks_nesting);
546
		ftrace_dump(DUMP_ORIG);
547 548 549
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
550 551 552
	}
}

553 554 555
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
556
 */
557
static void rcu_eqs_exit(bool user)
558 559 560 561
{
	struct rcu_dynticks *rdtp;
	long long oldval;

562
	rdtp = this_cpu_ptr(&rcu_dynticks);
563
	oldval = rdtp->dynticks_nesting;
564
	WARN_ON_ONCE(oldval < 0);
565
	if (oldval & DYNTICK_TASK_NEST_MASK) {
566
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
567
	} else {
568
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
569 570
		rcu_eqs_exit_common(rdtp, oldval, user);
	}
571
}
572 573 574 575 576 577 578 579 580 581 582 583 584 585

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
586 587 588
	unsigned long flags;

	local_irq_save(flags);
589
	rcu_eqs_exit(false);
590
	rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
591
	local_irq_restore(flags);
592
}
593
EXPORT_SYMBOL_GPL(rcu_idle_exit);
594

595
#ifdef CONFIG_RCU_USER_QS
596 597 598 599 600 601 602 603
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
604
	rcu_eqs_exit(1);
605
}
606
#endif /* CONFIG_RCU_USER_QS */
607

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
634
	rdtp = this_cpu_ptr(&rcu_dynticks);
635 636 637
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
638
	if (oldval)
639
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
640
	else
641
		rcu_eqs_exit_common(rdtp, oldval, true);
642
	rcu_sysidle_exit(rdtp, 1);
643 644 645 646 647 648 649 650 651 652 653 654
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
655
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
656

657 658
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
659
		return;
660 661 662 663 664 665
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
666 667 668 669 670 671 672 673 674 675 676
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
677
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
678

679 680
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
681
		return;
682 683 684 685 686
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
687 688 689
}

/**
690 691 692 693 694 695 696
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
697
bool notrace __rcu_is_watching(void)
698 699 700 701 702 703
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
704
 *
705
 * If the current CPU is in its idle loop and is neither in an interrupt
706
 * or NMI handler, return true.
707
 */
708
bool notrace rcu_is_watching(void)
709
{
710 711 712
	int ret;

	preempt_disable();
713
	ret = __rcu_is_watching();
714 715
	preempt_enable();
	return ret;
716
}
717
EXPORT_SYMBOL_GPL(rcu_is_watching);
718

719
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
720 721 722 723 724 725 726

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
727 728 729 730 731 732 733 734 735 736 737
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
738 739 740 741 742 743
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
744 745
	struct rcu_data *rdp;
	struct rcu_node *rnp;
746 747 748
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
749
		return true;
750
	preempt_disable();
751
	rdp = this_cpu_ptr(&rcu_sched_data);
752 753
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
754 755 756 757 758 759
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

760
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
761

762
/**
763
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
764
 *
765 766 767
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
768
 */
769
static int rcu_is_cpu_rrupt_from_idle(void)
770
{
771
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
772 773 774 775 776
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
777
 * is in dynticks idle mode, which is an extended quiescent state.
778
 */
779 780
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
781
{
782
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
783
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
784 785 786 787 788 789
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
		return 1;
	} else {
		return 0;
	}
790 791
}

792 793 794 795 796 797
/*
 * This function really isn't for public consumption, but RCU is special in
 * that context switches can allow the state machine to make progress.
 */
extern void resched_cpu(int cpu);

798 799 800 801
/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
802
 * for this same CPU, or by virtue of having been offline.
803
 */
804 805
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
806
{
807 808
	unsigned int curr;
	unsigned int snap;
809

810 811
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
812 813 814 815 816 817 818 819 820

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
821
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
822
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
823 824 825 826
		rdp->dynticks_fqs++;
		return 1;
	}

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
842
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
843 844 845
		rdp->offline_fqs++;
		return 1;
	}
846 847 848 849 850 851 852 853 854 855

	/*
	 * There is a possibility that a CPU in adaptive-ticks state
	 * might run in the kernel with the scheduling-clock tick disabled
	 * for an extended time period.  Invoke rcu_kick_nohz_cpu() to
	 * force the CPU to restart the scheduling-clock tick in this
	 * CPU is in this state.
	 */
	rcu_kick_nohz_cpu(rdp->cpu);

856 857 858 859 860 861 862 863 864 865
	/*
	 * Alternatively, the CPU might be running in the kernel
	 * for an extended period of time without a quiescent state.
	 * Attempt to force the CPU through the scheduler to gain the
	 * needed quiescent state, but only if the grace period has gone
	 * on for an uncommonly long time.  If there are many stuck CPUs,
	 * we will beat on the first one until it gets unstuck, then move
	 * to the next.  Only do this for the primary flavor of RCU.
	 */
	if (rdp->rsp == rcu_state &&
866
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
867 868 869 870
		rdp->rsp->jiffies_resched += 5;
		resched_cpu(rdp->cpu);
	}

871
	return 0;
872 873 874 875
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
876
	unsigned long j = jiffies;
877
	unsigned long j1;
878 879 880

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
881
	j1 = rcu_jiffies_till_stall_check();
882
	ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
883
	rsp->jiffies_resched = j + j1 / 2;
884 885
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
/*
 * Dump stacks of all tasks running on stalled CPUs.  This is a fallback
 * for architectures that do not implement trigger_all_cpu_backtrace().
 * The NMI-triggered stack traces are more accurate because they are
 * printed by the target CPU.
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

909 910 911 912 913
static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
914
	int ndetected = 0;
915
	struct rcu_node *rnp = rcu_get_root(rsp);
916
	long totqlen = 0;
917 918 919

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
920
	raw_spin_lock_irqsave(&rnp->lock, flags);
921
	delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
922
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
923
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
924 925
		return;
	}
926
	ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
927
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
928

929 930 931 932 933
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
934
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
935
	       rsp->name);
936
	print_cpu_stall_info_begin();
937
	rcu_for_each_leaf_node(rsp, rnp) {
938
		raw_spin_lock_irqsave(&rnp->lock, flags);
939
		ndetected += rcu_print_task_stall(rnp);
940 941 942 943 944 945 946 947
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
948
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
949
	}
950 951 952 953 954 955 956

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
957
	ndetected += rcu_print_task_stall(rnp);
958 959 960
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
961 962
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
963
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
964
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
965
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
966
	if (ndetected == 0)
967
		pr_err("INFO: Stall ended before state dump start\n");
968
	else if (!trigger_all_cpu_backtrace())
969
		rcu_dump_cpu_stacks(rsp);
970

971
	/* Complain about tasks blocking the grace period. */
972 973 974

	rcu_print_detail_task_stall(rsp);

975
	force_quiescent_state(rsp);  /* Kick them all. */
976 977 978 979
}

static void print_cpu_stall(struct rcu_state *rsp)
{
980
	int cpu;
981 982
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
983
	long totqlen = 0;
984

985 986 987 988 989
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
990
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
991 992 993
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
994 995
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
996 997 998
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
999 1000
	if (!trigger_all_cpu_backtrace())
		dump_stack();
1001

P
Paul E. McKenney 已提交
1002
	raw_spin_lock_irqsave(&rnp->lock, flags);
1003 1004
	if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
		ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1005
				     3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
1006
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1007

1008 1009 1010 1011 1012 1013 1014 1015
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1016 1017 1018 1019
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1020 1021 1022
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1023 1024
	unsigned long j;
	unsigned long js;
1025 1026
	struct rcu_node *rnp;

1027
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1028
		return;
1029
	j = jiffies;
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
	gpnum = ACCESS_ONCE(rsp->gpnum);
	smp_rmb(); /* Pick up ->gpnum first... */
1050
	js = ACCESS_ONCE(rsp->jiffies_stall);
1051 1052 1053 1054 1055 1056 1057 1058
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
	gps = ACCESS_ONCE(rsp->gp_start);
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
	completed = ACCESS_ONCE(rsp->completed);
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1059
	rnp = rdp->mynode;
1060
	if (rcu_gp_in_progress(rsp) &&
1061
	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1062 1063 1064 1065

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1066 1067
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1068

1069
		/* They had a few time units to dump stack, so complain. */
1070 1071 1072 1073
		print_other_cpu_stall(rsp);
	}
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1085 1086 1087
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1088
		ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1089 1090
}

1091 1092 1093 1094 1095 1096 1097
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

1098 1099
	if (init_nocb_callback_list(rdp))
		return;
1100 1101 1102 1103 1104
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1134 1135 1136 1137 1138
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1139
				unsigned long c, const char *s)
1140 1141 1142 1143 1144 1145 1146 1147 1148
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1149 1150
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1151 1152 1153
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1154 1155 1156
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1157 1158 1159
{
	unsigned long c;
	int i;
1160
	bool ret = false;
1161 1162 1163 1164 1165 1166 1167
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1168
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1169
	if (rnp->need_future_gp[c & 0x1]) {
1170
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1171
		goto out;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
	 * need to explicitly start one.
	 */
	if (rnp->gpnum != rnp->completed ||
	    ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
		rnp->need_future_gp[c & 0x1]++;
1184
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1185
		goto out;
1186 1187 1188 1189 1190 1191 1192
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1193
	if (rnp != rnp_root) {
1194
		raw_spin_lock(&rnp_root->lock);
1195 1196
		smp_mb__after_unlock_lock();
	}
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1214
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1215 1216 1217 1218 1219 1220 1221 1222
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1223
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1224
	} else {
1225
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1226
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1227 1228 1229 1230
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
1231 1232 1233 1234
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1252 1253
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1254 1255 1256
	return needmore;
}

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
	    !ACCESS_ONCE(rsp->gp_flags) ||
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1273 1274 1275 1276 1277 1278 1279
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1280 1281
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1282 1283 1284
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1285
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1286 1287 1288 1289
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1290
	bool ret;
1291 1292 1293

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1294
		return false;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1323
		return false;
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1334
	/* Record any needed additional grace periods. */
1335
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1336 1337 1338

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1339
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1340
	else
1341
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1342
	return ret;
1343 1344 1345 1346 1347 1348 1349 1350
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1351
 * Returns true if the RCU grace-period kthread needs to be awakened.
1352 1353 1354
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1355
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1356 1357 1358 1359 1360 1361
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1362
		return false;
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1386
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1387 1388
}

1389
/*
1390 1391 1392
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1393
 * Returns true if the grace-period kthread needs to be awakened.
1394
 */
1395 1396
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1397
{
1398 1399
	bool ret;

1400
	/* Handle the ends of any preceding grace periods first. */
1401
	if (rdp->completed == rnp->completed) {
1402

1403
		/* No grace period end, so just accelerate recent callbacks. */
1404
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1405

1406 1407 1408
	} else {

		/* Advance callbacks. */
1409
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1410 1411 1412

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1413
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1414
	}
1415

1416 1417 1418 1419 1420 1421 1422
	if (rdp->gpnum != rnp->gpnum) {
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1423
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1424 1425 1426 1427
		rdp->passed_quiesce = 0;
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
		zero_cpu_stall_ticks(rdp);
	}
1428
	return ret;
1429 1430
}

1431
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1432 1433
{
	unsigned long flags;
1434
	bool needwake;
1435 1436 1437 1438
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1439 1440
	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
	     rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1441 1442 1443 1444
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1445
	smp_mb__after_unlock_lock();
1446
	needwake = __note_gp_changes(rsp, rnp, rdp);
1447
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1448 1449
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1450 1451
}

1452
/*
1453
 * Initialize a new grace period.  Return 0 if no grace period required.
1454
 */
1455
static int rcu_gp_init(struct rcu_state *rsp)
1456 1457
{
	struct rcu_data *rdp;
1458
	struct rcu_node *rnp = rcu_get_root(rsp);
1459

1460
	rcu_bind_gp_kthread();
1461
	raw_spin_lock_irq(&rnp->lock);
1462
	smp_mb__after_unlock_lock();
1463
	if (!ACCESS_ONCE(rsp->gp_flags)) {
1464 1465 1466 1467
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1468
	ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1469

1470 1471 1472 1473 1474
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1475 1476 1477 1478 1479
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1480
	record_gp_stall_check_time(rsp);
1481 1482
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1483
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1484 1485 1486
	raw_spin_unlock_irq(&rnp->lock);

	/* Exclude any concurrent CPU-hotplug operations. */
1487
	mutex_lock(&rsp->onoff_mutex);
1488
	smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1504
		raw_spin_lock_irq(&rnp->lock);
1505
		smp_mb__after_unlock_lock();
1506
		rdp = this_cpu_ptr(rsp->rda);
1507 1508
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1509
		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1510
		WARN_ON_ONCE(rnp->completed != rsp->completed);
1511
		ACCESS_ONCE(rnp->completed) = rsp->completed;
1512
		if (rnp == rdp->mynode)
1513
			(void)__note_gp_changes(rsp, rnp, rdp);
1514 1515 1516 1517 1518
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1519
#ifdef CONFIG_PROVE_RCU_DELAY
1520
		if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1521
		    system_state == SYSTEM_RUNNING)
1522
			udelay(200);
1523
#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1524 1525
		cond_resched();
	}
1526

1527
	mutex_unlock(&rsp->onoff_mutex);
1528 1529
	return 1;
}
1530

1531 1532 1533
/*
 * Do one round of quiescent-state forcing.
 */
1534
static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1535 1536
{
	int fqs_state = fqs_state_in;
1537 1538
	bool isidle = false;
	unsigned long maxj;
1539 1540 1541 1542 1543
	struct rcu_node *rnp = rcu_get_root(rsp);

	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
1544 1545 1546 1547
		if (is_sysidle_rcu_state(rsp)) {
			isidle = 1;
			maxj = jiffies - ULONG_MAX / 4;
		}
1548 1549
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1550
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1551 1552 1553
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1554
		isidle = 0;
1555
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1556 1557 1558 1559
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
1560
		smp_mb__after_unlock_lock();
1561
		ACCESS_ONCE(rsp->gp_flags) &= ~RCU_GP_FLAG_FQS;
1562 1563 1564 1565 1566
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1567 1568 1569
/*
 * Clean up after the old grace period.
 */
1570
static void rcu_gp_cleanup(struct rcu_state *rsp)
1571 1572
{
	unsigned long gp_duration;
1573
	bool needgp = false;
1574
	int nocb = 0;
1575 1576
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1577

1578
	raw_spin_lock_irq(&rnp->lock);
1579
	smp_mb__after_unlock_lock();
1580 1581 1582
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1583

1584 1585 1586 1587 1588 1589 1590 1591
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1592
	raw_spin_unlock_irq(&rnp->lock);
1593

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1604
		raw_spin_lock_irq(&rnp->lock);
1605
		smp_mb__after_unlock_lock();
1606
		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1607 1608
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
1609
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1610
		/* smp_mb() provided by prior unlock-lock pair. */
1611
		nocb += rcu_future_gp_cleanup(rsp, rnp);
1612 1613
		raw_spin_unlock_irq(&rnp->lock);
		cond_resched();
1614
	}
1615 1616
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1617
	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1618
	rcu_nocb_gp_set(rnp, nocb);
1619

1620 1621
	/* Declare grace period done. */
	ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1622
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1623
	rsp->fqs_state = RCU_GP_IDLE;
1624
	rdp = this_cpu_ptr(rsp->rda);
1625 1626 1627
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1628
		ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1629 1630 1631 1632
		trace_rcu_grace_period(rsp->name,
				       ACCESS_ONCE(rsp->gpnum),
				       TPS("newreq"));
	}
1633 1634 1635 1636 1637 1638 1639 1640
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1641
	int fqs_state;
1642
	int gf;
1643
	unsigned long j;
1644
	int ret;
1645 1646 1647 1648 1649 1650 1651
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1652 1653 1654
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwait"));
1655
			wait_event_interruptible(rsp->gp_wq,
1656
						 ACCESS_ONCE(rsp->gp_flags) &
1657
						 RCU_GP_FLAG_INIT);
1658
			/* Locking provides needed memory barrier. */
1659
			if (rcu_gp_init(rsp))
1660 1661 1662
				break;
			cond_resched();
			flush_signals(current);
1663 1664 1665
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwaitsig"));
1666
		}
1667

1668 1669
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1670 1671 1672 1673 1674
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1675
		ret = 0;
1676
		for (;;) {
1677 1678
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
1679 1680 1681
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("fqswait"));
1682
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
1683 1684
					((gf = ACCESS_ONCE(rsp->gp_flags)) &
					 RCU_GP_FLAG_FQS) ||
1685 1686
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
1687
					j);
1688
			/* Locking provides needed memory barriers. */
1689
			/* If grace period done, leave loop. */
1690
			if (!ACCESS_ONCE(rnp->qsmask) &&
1691
			    !rcu_preempt_blocked_readers_cgp(rnp))
1692
				break;
1693
			/* If time for quiescent-state forcing, do it. */
1694 1695
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
1696 1697 1698
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsstart"));
1699
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
1700 1701 1702
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsend"));
1703 1704 1705 1706 1707
				cond_resched();
			} else {
				/* Deal with stray signal. */
				cond_resched();
				flush_signals(current);
1708 1709 1710
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqswaitsig"));
1711
			}
1712 1713 1714 1715 1716 1717 1718 1719
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
1720
		}
1721 1722 1723

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
1724 1725 1726
	}
}

1727 1728 1729
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
1730
 * the root node's ->lock and hard irqs must be disabled.
1731 1732 1733 1734
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1735 1736
 *
 * Returns true if the grace-period kthread must be awakened.
1737
 */
1738
static bool
1739 1740
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
1741
{
1742
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1743
		/*
1744
		 * Either we have not yet spawned the grace-period
1745 1746
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
1747
		 * Either way, don't start a new grace period.
1748
		 */
1749
		return false;
1750
	}
1751
	ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1752 1753
	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
			       TPS("newreq"));
1754

1755 1756
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
1757
	 * could cause possible deadlocks with the rq->lock. Defer
1758
	 * the wakeup to our caller.
1759
	 */
1760
	return true;
1761 1762
}

1763 1764 1765 1766 1767 1768
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
1769 1770
 *
 * Returns true if the grace-period kthread needs to be awakened.
1771
 */
1772
static bool rcu_start_gp(struct rcu_state *rsp)
1773 1774 1775
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
1776
	bool ret = false;
1777 1778 1779 1780 1781 1782 1783 1784 1785

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
1786 1787 1788
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
1789 1790
}

1791
/*
P
Paul E. McKenney 已提交
1792 1793 1794
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
1795 1796
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
1797
 */
P
Paul E. McKenney 已提交
1798
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1799
	__releases(rcu_get_root(rsp)->lock)
1800
{
1801
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1802 1803
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1804 1805
}

1806
/*
P
Paul E. McKenney 已提交
1807 1808 1809 1810 1811 1812
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1813 1814
 */
static void
P
Paul E. McKenney 已提交
1815 1816
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1817 1818
	__releases(rnp->lock)
{
1819 1820
	struct rcu_node *rnp_c;

1821 1822 1823 1824 1825
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1826
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1827 1828 1829
			return;
		}
		rnp->qsmask &= ~mask;
1830 1831 1832 1833
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1834
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1835 1836

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1837
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1838 1839 1840 1841 1842 1843 1844 1845 1846
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1847
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1848
		rnp_c = rnp;
1849
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1850
		raw_spin_lock_irqsave(&rnp->lock, flags);
1851
		smp_mb__after_unlock_lock();
1852
		WARN_ON_ONCE(rnp_c->qsmask);
1853 1854 1855 1856
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1857
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1858
	 * to clean up and start the next grace period if one is needed.
1859
	 */
P
Paul E. McKenney 已提交
1860
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1861 1862 1863
}

/*
P
Paul E. McKenney 已提交
1864 1865 1866 1867 1868 1869 1870
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1871 1872
 */
static void
1873
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1874 1875 1876
{
	unsigned long flags;
	unsigned long mask;
1877
	bool needwake;
1878 1879 1880
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1881
	raw_spin_lock_irqsave(&rnp->lock, flags);
1882
	smp_mb__after_unlock_lock();
1883 1884
	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum) {
1885 1886

		/*
1887 1888 1889 1890
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1891
		 */
1892
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1893
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1894 1895 1896 1897
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1898
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1899 1900 1901 1902 1903 1904 1905
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
1906
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1907

P
Paul E. McKenney 已提交
1908
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1909 1910
		if (needwake)
			rcu_gp_kthread_wake(rsp);
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
1923 1924
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1937
	if (!rdp->passed_quiesce)
1938 1939
		return;

P
Paul E. McKenney 已提交
1940 1941 1942 1943
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1944
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1945 1946 1947 1948
}

#ifdef CONFIG_HOTPLUG_CPU

1949
/*
1950 1951
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
1952
 * ->orphan_lock.
1953
 */
1954 1955 1956
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1957
{
P
Paul E. McKenney 已提交
1958
	/* No-CBs CPUs do not have orphanable callbacks. */
1959
	if (rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
1960 1961
		return;

1962 1963
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
1964 1965
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
1966
	 */
1967
	if (rdp->nxtlist != NULL) {
1968 1969 1970
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1971
		rdp->qlen_lazy = 0;
1972
		ACCESS_ONCE(rdp->qlen) = 0;
1973 1974 1975
	}

	/*
1976 1977 1978 1979 1980 1981 1982
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1983
	 */
1984 1985 1986 1987
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1988 1989 1990
	}

	/*
1991 1992 1993
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1994
	 */
1995
	if (rdp->nxtlist != NULL) {
1996 1997
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1998
	}
1999

2000
	/* Finally, initialize the rcu_data structure's list to empty.  */
2001
	init_callback_list(rdp);
2002 2003 2004 2005
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2006
 * orphanage.  The caller must hold the ->orphan_lock.
2007
 */
2008
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2009 2010 2011 2012
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

P
Paul E. McKenney 已提交
2013
	/* No-CBs CPUs are handled specially. */
2014
	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2015 2016
		return;

2017 2018 2019 2020
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2021 2022
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
2062 2063
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2064
			       TPS("cpuofl"));
2065 2066 2067
}

/*
2068
 * The CPU has been completely removed, and some other CPU is reporting
2069 2070
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2071 2072
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2073
 */
2074
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2075
{
2076 2077 2078
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
2079
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2080
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2081

2082
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2083
	rcu_boost_kthread_setaffinity(rnp, -1);
2084

2085
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2086 2087

	/* Exclude any attempts to start a new grace period. */
2088
	mutex_lock(&rsp->onoff_mutex);
2089
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2090

2091 2092
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2093
	rcu_adopt_orphan_cbs(rsp, flags);
2094

2095 2096 2097 2098
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2099
		smp_mb__after_unlock_lock();
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
2117
	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2118 2119
	 * held leads to deadlock.
	 */
2120
	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2121 2122 2123 2124 2125 2126 2127
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
2128 2129 2130
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2131 2132 2133
	init_callback_list(rdp);
	/* Disallow further callbacks on this CPU. */
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2134
	mutex_unlock(&rsp->onoff_mutex);
2135 2136 2137 2138
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

2139
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2140 2141 2142
{
}

2143
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2144 2145 2146 2147 2148 2149 2150 2151 2152
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2153
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2154 2155 2156
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2157 2158
	long bl, count, count_lazy;
	int i;
2159

2160
	/* If no callbacks are ready, just return. */
2161
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2162
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2163 2164 2165
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2166
		return;
2167
	}
2168 2169 2170 2171 2172 2173

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2174
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2175
	bl = rdp->blimit;
2176
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2177 2178 2179 2180
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2181 2182 2183
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2184 2185 2186
	local_irq_restore(flags);

	/* Invoke callbacks. */
2187
	count = count_lazy = 0;
2188 2189 2190
	while (list) {
		next = list->next;
		prefetch(next);
2191
		debug_rcu_head_unqueue(list);
2192 2193
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2194
		list = next;
2195 2196 2197 2198
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2199 2200 2201 2202
			break;
	}

	local_irq_save(flags);
2203 2204 2205
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2206 2207 2208 2209 2210

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2211 2212 2213
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2214 2215 2216
			else
				break;
	}
2217 2218
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2219
	ACCESS_ONCE(rdp->qlen) -= count;
2220
	rdp->n_cbs_invoked += count;
2221 2222 2223 2224 2225

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2226 2227 2228 2229 2230 2231
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2232
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2233

2234 2235
	local_irq_restore(flags);

2236
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2237
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2238
		invoke_rcu_core();
2239 2240 2241 2242 2243
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2244
 * Also schedule RCU core processing.
2245
 *
2246
 * This function must be called from hardirq context.  It is normally
2247 2248 2249 2250 2251
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
2252
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2253
	increment_cpu_stall_ticks();
2254
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2255 2256 2257 2258 2259

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2260
		 * a quiescent state, so note it.
2261 2262
		 *
		 * No memory barrier is required here because both
2263 2264 2265
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2266 2267
		 */

2268 2269
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
2270 2271 2272 2273 2274 2275 2276

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2277
		 * critical section, so note it.
2278 2279
		 */

2280
		rcu_bh_qs(cpu);
2281
	}
2282
	rcu_preempt_check_callbacks(cpu);
2283
	if (rcu_pending(cpu))
2284
		invoke_rcu_core();
2285
	trace_rcu_utilization(TPS("End scheduler-tick"));
2286 2287 2288 2289 2290
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2291 2292
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2293
 * The caller must have suppressed start of new grace periods.
2294
 */
2295 2296 2297 2298
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2299 2300 2301 2302 2303
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2304
	struct rcu_node *rnp;
2305

2306
	rcu_for_each_leaf_node(rsp, rnp) {
2307
		cond_resched();
2308
		mask = 0;
P
Paul E. McKenney 已提交
2309
		raw_spin_lock_irqsave(&rnp->lock, flags);
2310
		smp_mb__after_unlock_lock();
2311
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
2312
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2313
			return;
2314
		}
2315
		if (rnp->qsmask == 0) {
2316
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2317 2318
			continue;
		}
2319
		cpu = rnp->grplo;
2320
		bit = 1;
2321
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2322 2323 2324 2325 2326 2327
			if ((rnp->qsmask & bit) != 0) {
				if ((rnp->qsmaskinit & bit) != 0)
					*isidle = 0;
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2328
		}
2329
		if (mask != 0) {
2330

P
Paul E. McKenney 已提交
2331 2332
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2333 2334
			continue;
		}
P
Paul E. McKenney 已提交
2335
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2336
	}
2337
	rnp = rcu_get_root(rsp);
2338 2339
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
2340
		smp_mb__after_unlock_lock();
2341 2342
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
2343 2344 2345 2346 2347 2348
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2349
static void force_quiescent_state(struct rcu_state *rsp)
2350 2351
{
	unsigned long flags;
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2364
			ACCESS_ONCE(rsp->n_force_qs_lh)++;
2365 2366 2367 2368 2369
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2370

2371 2372
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2373
	smp_mb__after_unlock_lock();
2374 2375
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2376
		ACCESS_ONCE(rsp->n_force_qs_lh)++;
2377
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2378
		return;  /* Someone beat us to it. */
2379
	}
2380
	ACCESS_ONCE(rsp->gp_flags) |= RCU_GP_FLAG_FQS;
2381
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2382
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
2383 2384 2385
}

/*
2386 2387 2388
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2389 2390
 */
static void
2391
__rcu_process_callbacks(struct rcu_state *rsp)
2392 2393
{
	unsigned long flags;
2394
	bool needwake;
2395
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2396

2397 2398
	WARN_ON_ONCE(rdp->beenonline == 0);

2399 2400 2401 2402
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2403
	local_irq_save(flags);
2404
	if (cpu_needs_another_gp(rsp, rdp)) {
2405
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2406
		needwake = rcu_start_gp(rsp);
2407
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2408 2409
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2410 2411
	} else {
		local_irq_restore(flags);
2412 2413 2414
	}

	/* If there are callbacks ready, invoke them. */
2415
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2416
		invoke_rcu_callbacks(rsp, rdp);
2417 2418 2419

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2420 2421
}

2422
/*
2423
 * Do RCU core processing for the current CPU.
2424
 */
2425
static void rcu_process_callbacks(struct softirq_action *unused)
2426
{
2427 2428
	struct rcu_state *rsp;

2429 2430
	if (cpu_is_offline(smp_processor_id()))
		return;
2431
	trace_rcu_utilization(TPS("Start RCU core"));
2432 2433
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2434
	trace_rcu_utilization(TPS("End RCU core"));
2435 2436
}

2437
/*
2438 2439 2440 2441 2442
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
2443
 */
2444
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2445
{
2446 2447
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
2448 2449
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2450 2451
		return;
	}
2452
	invoke_rcu_callbacks_kthread();
2453 2454
}

2455
static void invoke_rcu_core(void)
2456
{
2457 2458
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2459 2460
}

2461 2462 2463 2464 2465
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2466
{
2467 2468
	bool needwake;

2469 2470 2471 2472
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2473
	if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2474 2475
		invoke_rcu_core();

2476
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2477
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2478
		return;
2479

2480 2481 2482 2483 2484 2485 2486
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2487
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2488 2489

		/* Are we ignoring a completed grace period? */
2490
		note_gp_changes(rsp, rdp);
2491 2492 2493 2494 2495

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2496
			raw_spin_lock(&rnp_root->lock);
2497
			smp_mb__after_unlock_lock();
2498
			needwake = rcu_start_gp(rsp);
2499
			raw_spin_unlock(&rnp_root->lock);
2500 2501
			if (needwake)
				rcu_gp_kthread_wake(rsp);
2502 2503 2504 2505 2506
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2507
				force_quiescent_state(rsp);
2508 2509 2510
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2511
	}
2512 2513
}

2514 2515 2516 2517 2518 2519 2520
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
2521 2522 2523 2524 2525 2526
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
2527 2528
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
2529
	   struct rcu_state *rsp, int cpu, bool lazy)
2530 2531 2532 2533
{
	unsigned long flags;
	struct rcu_data *rdp;

2534
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2535 2536 2537 2538 2539 2540
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
		ACCESS_ONCE(head->func) = rcu_leak_callback;
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
2551
	rdp = this_cpu_ptr(rsp->rda);
2552 2553

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
2554 2555 2556 2557 2558
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
2559
		offline = !__call_rcu_nocb(rdp, head, lazy, flags);
P
Paul E. McKenney 已提交
2560
		WARN_ON_ONCE(offline);
2561 2562 2563 2564
		/* _call_rcu() is illegal on offline CPU; leak the callback. */
		local_irq_restore(flags);
		return;
	}
2565
	ACCESS_ONCE(rdp->qlen)++;
2566 2567
	if (lazy)
		rdp->qlen_lazy++;
2568 2569
	else
		rcu_idle_count_callbacks_posted();
2570 2571 2572
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2573

2574 2575
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2576
					 rdp->qlen_lazy, rdp->qlen);
2577
	else
2578
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2579

2580 2581
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2582 2583 2584 2585
	local_irq_restore(flags);
}

/*
2586
 * Queue an RCU-sched callback for invocation after a grace period.
2587
 */
2588
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2589
{
P
Paul E. McKenney 已提交
2590
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2591
}
2592
EXPORT_SYMBOL_GPL(call_rcu_sched);
2593 2594

/*
2595
 * Queue an RCU callback for invocation after a quicker grace period.
2596 2597 2598
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
2599
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2600 2601 2602
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, rcu_state, -1, 1);
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2628 2629
	int ret;

2630
	might_sleep();  /* Check for RCU read-side critical section. */
2631 2632 2633 2634
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2635 2636
}

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
2671 2672 2673 2674 2675 2676 2677 2678 2679
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2680 2681 2682 2683
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2684 2685
	if (rcu_blocking_is_gp())
		return;
2686 2687 2688 2689
	if (rcu_expedited)
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
2701 2702 2703
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
2704 2705 2706
 */
void synchronize_rcu_bh(void)
{
2707 2708 2709 2710
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2711 2712
	if (rcu_blocking_is_gp())
		return;
2713 2714 2715 2716
	if (rcu_expedited)
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
2717 2718 2719
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
	return smp_load_acquire(&rcu_state->gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_state->completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2799
 *
2800 2801 2802 2803
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
2828 2829
	long firstsnap, s, snap;
	int trycount = 0;
2830
	struct rcu_state *rsp = &rcu_sched_state;
2831

2832 2833 2834 2835 2836 2837 2838 2839
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
2840 2841
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
2842 2843
			 ULONG_MAX / 8)) {
		synchronize_sched();
2844
		atomic_long_inc(&rsp->expedited_wrap);
2845 2846
		return;
	}
2847

2848 2849 2850 2851
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
2852
	snap = atomic_long_inc_return(&rsp->expedited_start);
2853
	firstsnap = snap;
2854
	get_online_cpus();
2855
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2856 2857 2858 2859 2860 2861 2862 2863 2864

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
2865
		atomic_long_inc(&rsp->expedited_tryfail);
2866

2867
		/* Check to see if someone else did our work for us. */
2868
		s = atomic_long_read(&rsp->expedited_done);
2869
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2870 2871 2872
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_workdone1);
2873 2874
			return;
		}
2875 2876

		/* No joy, try again later.  Or just synchronize_sched(). */
2877
		if (trycount++ < 10) {
2878
			udelay(trycount * num_online_cpus());
2879
		} else {
2880
			wait_rcu_gp(call_rcu_sched);
2881
			atomic_long_inc(&rsp->expedited_normal);
2882 2883 2884
			return;
		}

2885
		/* Recheck to see if someone else did our work for us. */
2886
		s = atomic_long_read(&rsp->expedited_done);
2887
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2888 2889 2890
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_workdone2);
2891 2892 2893 2894 2895
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
2896 2897 2898 2899
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
2900 2901
		 */
		get_online_cpus();
2902
		snap = atomic_long_read(&rsp->expedited_start);
2903 2904
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
2905
	atomic_long_inc(&rsp->expedited_stoppedcpus);
2906 2907 2908 2909 2910

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
2911
	 * than we did already did their update.
2912 2913
	 */
	do {
2914
		atomic_long_inc(&rsp->expedited_done_tries);
2915
		s = atomic_long_read(&rsp->expedited_done);
2916
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2917 2918 2919
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_done_lost);
2920 2921
			break;
		}
2922
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2923
	atomic_long_inc(&rsp->expedited_done_exit);
2924 2925 2926 2927 2928

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2929 2930 2931 2932 2933 2934 2935 2936 2937
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2938 2939
	struct rcu_node *rnp = rdp->mynode;

2940 2941 2942 2943 2944
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

2945 2946 2947 2948
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

2949
	/* Is the RCU core waiting for a quiescent state from this CPU? */
2950 2951
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2952
		rdp->n_rp_qs_pending++;
2953
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2954
		rdp->n_rp_report_qs++;
2955
		return 1;
2956
	}
2957 2958

	/* Does this CPU have callbacks ready to invoke? */
2959 2960
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2961
		return 1;
2962
	}
2963 2964

	/* Has RCU gone idle with this CPU needing another grace period? */
2965 2966
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2967
		return 1;
2968
	}
2969 2970

	/* Has another RCU grace period completed?  */
2971
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2972
		rdp->n_rp_gp_completed++;
2973
		return 1;
2974
	}
2975 2976

	/* Has a new RCU grace period started? */
2977
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2978
		rdp->n_rp_gp_started++;
2979
		return 1;
2980
	}
2981

2982 2983 2984 2985 2986 2987
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

2988
	/* nothing to do */
2989
	rdp->n_rp_need_nothing++;
2990 2991 2992 2993 2994 2995 2996 2997
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2998
static int rcu_pending(int cpu)
2999
{
3000 3001 3002 3003 3004 3005
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
			return 1;
	return 0;
3006 3007 3008
}

/*
3009 3010 3011
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3012
 */
3013
static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
3014
{
3015 3016 3017
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3018 3019
	struct rcu_state *rsp;

3020 3021
	for_each_rcu_flavor(rsp) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
3022 3023 3024 3025
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3026
			al = false;
3027 3028
			break;
		}
3029 3030 3031 3032
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3033 3034
}

3035 3036 3037 3038
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3039
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3040 3041 3042 3043 3044 3045
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3046 3047 3048 3049
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3050
static void rcu_barrier_callback(struct rcu_head *rhp)
3051
{
3052 3053 3054
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3055 3056
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3057
		complete(&rsp->barrier_completion);
3058 3059 3060
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
3061 3062 3063 3064 3065 3066 3067
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3068
	struct rcu_state *rsp = type;
3069
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
3070

3071
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3072
	atomic_inc(&rsp->barrier_cpu_count);
3073
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3074 3075 3076 3077 3078 3079
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3080
static void _rcu_barrier(struct rcu_state *rsp)
3081
{
3082 3083
	int cpu;
	struct rcu_data *rdp;
3084 3085
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
3086

3087
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3088

3089
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3090
	mutex_lock(&rsp->barrier_mutex);
3091

3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
3104
	snap_done = rsp->n_barrier_done;
3105
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117

	/*
	 * If the value in snap is odd, we needed to wait for the current
	 * rcu_barrier() to complete, then wait for the next one, in other
	 * words, we need the value of snap_done to be three larger than
	 * the value of snap.  On the other hand, if the value in snap is
	 * even, we only had to wait for the next rcu_barrier() to complete,
	 * in other words, we need the value of snap_done to be only two
	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
	 * this for us (thank you, Linus!).
	 */
	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3118
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3131
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3132
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3133

3134
	/*
3135 3136
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3137 3138
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3139
	 */
3140
	init_completion(&rsp->barrier_completion);
3141
	atomic_set(&rsp->barrier_cpu_count, 1);
3142
	get_online_cpus();
3143 3144

	/*
3145 3146 3147
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3148
	 */
P
Paul E. McKenney 已提交
3149
	for_each_possible_cpu(cpu) {
3150
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3151
			continue;
3152
		rdp = per_cpu_ptr(rsp->rda, cpu);
3153
		if (rcu_is_nocb_cpu(cpu)) {
P
Paul E. McKenney 已提交
3154 3155 3156 3157 3158 3159
			_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
					   rsp->n_barrier_done);
			atomic_inc(&rsp->barrier_cpu_count);
			__call_rcu(&rdp->barrier_head, rcu_barrier_callback,
				   rsp, cpu, 0);
		} else if (ACCESS_ONCE(rdp->qlen)) {
3160 3161
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
3162
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3163
		} else {
3164 3165
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
3166 3167
		}
	}
3168
	put_online_cpus();
3169 3170 3171 3172 3173

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3174
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3175
		complete(&rsp->barrier_completion);
3176

3177 3178 3179 3180
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3181
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3182 3183
	smp_mb(); /* Keep increment before caller's subsequent code. */

3184
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3185
	wait_for_completion(&rsp->barrier_completion);
3186 3187

	/* Other rcu_barrier() invocations can now safely proceed. */
3188
	mutex_unlock(&rsp->barrier_mutex);
3189 3190 3191 3192 3193 3194 3195
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3196
	_rcu_barrier(&rcu_bh_state);
3197 3198 3199 3200 3201 3202 3203 3204
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3205
	_rcu_barrier(&rcu_sched_state);
3206 3207 3208
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3209
/*
3210
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3211
 */
3212 3213
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3214 3215
{
	unsigned long flags;
3216
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3217 3218 3219
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3220
	raw_spin_lock_irqsave(&rnp->lock, flags);
3221
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3222
	init_callback_list(rdp);
3223
	rdp->qlen_lazy = 0;
3224
	ACCESS_ONCE(rdp->qlen) = 0;
3225
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3226
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3227
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3228
	rdp->cpu = cpu;
3229
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3230
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
3231
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3232 3233 3234 3235 3236 3237 3238
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3239
 */
3240
static void
3241
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3242 3243 3244
{
	unsigned long flags;
	unsigned long mask;
3245
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3246 3247
	struct rcu_node *rnp = rcu_get_root(rsp);

3248 3249 3250
	/* Exclude new grace periods. */
	mutex_lock(&rsp->onoff_mutex);

3251
	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3252
	raw_spin_lock_irqsave(&rnp->lock, flags);
3253
	rdp->beenonline = 1;	 /* We have now been online. */
3254 3255
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3256
	rdp->blimit = blimit;
3257
	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3258
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3259
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3260 3261
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
3262
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3263 3264 3265 3266 3267 3268

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
3269
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
3270 3271
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
3272
		if (rnp == rdp->mynode) {
3273 3274 3275 3276 3277 3278
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
3279
			rdp->completed = rnp->completed;
3280 3281
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
3282
			trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3283
		}
P
Paul E. McKenney 已提交
3284
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3285 3286
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
3287
	local_irq_restore(flags);
3288

3289
	mutex_unlock(&rsp->onoff_mutex);
3290 3291
}

3292
static void rcu_prepare_cpu(int cpu)
3293
{
3294 3295 3296
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3297
		rcu_init_percpu_data(cpu, rsp);
3298 3299 3300
}

/*
3301
 * Handle CPU online/offline notification events.
3302
 */
3303
static int rcu_cpu_notify(struct notifier_block *self,
3304
				    unsigned long action, void *hcpu)
3305 3306
{
	long cpu = (long)hcpu;
3307
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3308
	struct rcu_node *rnp = rdp->mynode;
3309
	struct rcu_state *rsp;
3310

3311
	trace_rcu_utilization(TPS("Start CPU hotplug"));
3312 3313 3314
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
3315 3316
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
3317 3318
		break;
	case CPU_ONLINE:
3319
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
3320
		rcu_boost_kthread_setaffinity(rnp, -1);
3321 3322
		break;
	case CPU_DOWN_PREPARE:
3323
		rcu_boost_kthread_setaffinity(rnp, cpu);
3324
		break;
3325 3326
	case CPU_DYING:
	case CPU_DYING_FROZEN:
3327 3328
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
3329
		break;
3330 3331 3332 3333
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
3334 3335
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dead_cpu(cpu, rsp);
3336 3337 3338 3339
		break;
	default:
		break;
	}
3340
	trace_rcu_utilization(TPS("End CPU hotplug"));
3341
	return NOTIFY_OK;
3342 3343
}

3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_expedited = 1;
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
		rcu_expedited = 0;
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
/*
 * Spawn the kthread that handles this RCU flavor's grace periods.
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
	struct task_struct *t;

	for_each_rcu_flavor(rsp) {
3374
		t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3375 3376 3377 3378 3379
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
P
Paul E. McKenney 已提交
3380
		rcu_spawn_nocb_kthreads(rsp);
3381 3382 3383 3384 3385
	}
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

3401 3402 3403 3404 3405 3406 3407 3408 3409
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

3410 3411
	rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
	for (i = rcu_num_lvls - 2; i >= 0; i--)
3412 3413 3414 3415 3416 3417 3418 3419 3420
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

3421
	cprv = nr_cpu_ids;
3422
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3433 3434
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3435
{
3436 3437 3438 3439 3440 3441 3442 3443
	static char *buf[] = { "rcu_node_0",
			       "rcu_node_1",
			       "rcu_node_2",
			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static char *fqs[] = { "rcu_node_fqs_0",
			       "rcu_node_fqs_1",
			       "rcu_node_fqs_2",
			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3444 3445 3446 3447 3448
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

3449 3450
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

3451 3452 3453 3454
	/* Silence gcc 4.8 warning about array index out of range. */
	if (rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls overflow");

3455 3456
	/* Initialize the level-tracking arrays. */

3457 3458 3459
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
3460 3461 3462 3463 3464
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

3465
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3466 3467 3468
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
3469
			raw_spin_lock_init(&rnp->lock);
3470 3471
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
3472 3473 3474
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
3475 3476
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
3477 3478 3479 3480
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
3481 3482
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
3494
			INIT_LIST_HEAD(&rnp->blkd_tasks);
3495
			rcu_init_one_nocb(rnp);
3496 3497
		}
	}
3498

3499
	rsp->rda = rda;
3500
	init_waitqueue_head(&rsp->gp_wq);
3501
	rnp = rsp->level[rcu_num_lvls - 1];
3502
	for_each_possible_cpu(i) {
3503
		while (i > rnp->grphi)
3504
			rnp++;
3505
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3506 3507
		rcu_boot_init_percpu_data(i, rsp);
	}
3508
	list_add(&rsp->flavors, &rcu_struct_flavors);
3509 3510
}

3511 3512
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3513
 * replace the definitions in tree.h because those are needed to size
3514 3515 3516 3517
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
3518
	ulong d;
3519 3520
	int i;
	int j;
3521
	int n = nr_cpu_ids;
3522 3523
	int rcu_capacity[MAX_RCU_LVLS + 1];

3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

3537
	/* If the compile-time values are accurate, just leave. */
3538 3539
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
3540
		return;
3541 3542
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

3588
void __init rcu_init(void)
3589
{
P
Paul E. McKenney 已提交
3590
	int cpu;
3591

3592
	rcu_bootup_announce();
3593
	rcu_init_geometry();
3594
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3595
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3596
	__rcu_init_preempt();
J
Jiang Fang 已提交
3597
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3598 3599 3600 3601 3602 3603 3604

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
3605
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
3606 3607
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3608 3609
}

3610
#include "tree_plugin.h"