tree.c 140.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/trace_events.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71 72 73 74 75 76 77 78
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
79 80
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
81
static char sname##_varname[] = #sname; \
82 83 84 85 86 87 88 89 90
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
91
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92
struct rcu_state sname##_state = { \
93
	.level = { &sname##_state.node[0] }, \
94
	.rda = &sname##_data, \
95
	.call = cr, \
96
	.gp_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
97 98
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
99
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 101
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
102
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103
	.name = RCU_STATE_NAME(sname), \
104
	.abbr = sabbr, \
105
}
106

107 108
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109

110
static struct rcu_state *const rcu_state_p;
111
static struct rcu_data __percpu *const rcu_data_p;
112
LIST_HEAD(rcu_struct_flavors);
113

114 115 116
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
117 118 119
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
120 121
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
122
module_param(rcu_fanout_leaf, int, 0444);
123
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
124 125
/* Number of rcu_nodes at specified level. */
static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
126 127
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

128 129 130 131
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
132
 * optimize synchronize_sched() to a simple barrier().  When this variable
133 134 135 136
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
137 138 139
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

154 155
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
156
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
157 158
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
159 160
static void rcu_report_exp_rdp(struct rcu_state *rsp,
			       struct rcu_data *rdp, bool wake);
161

162
/* rcuc/rcub kthread realtime priority */
163
#ifdef CONFIG_RCU_KTHREAD_PRIO
164
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
165 166 167
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
168 169
module_param(kthread_prio, int, 0644);

170
/* Delay in jiffies for grace-period initialization delays, debug only. */
171 172 173 174 175 176 177 178

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

179 180
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
181
module_param(gp_init_delay, int, 0644);
182 183 184
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
185

186 187 188 189 190 191 192
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

193 194 195 196 197 198 199 200 201 202
/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
203

204 205 206 207 208 209 210 211 212 213 214 215
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

216 217 218 219 220 221 222 223
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
224
	return READ_ONCE(rnp->qsmaskinitnext);
225 226
}

227
/*
228
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
229 230 231 232 233
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
234
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
235 236
}

237
/*
238
 * Note a quiescent state.  Because we do not need to know
239
 * how many quiescent states passed, just if there was at least
240
 * one since the start of the grace period, this just sets a flag.
241
 * The caller must have disabled preemption.
242
 */
243
void rcu_sched_qs(void)
244
{
245 246 247 248 249 250 251 252
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
		return;
	trace_rcu_grace_period(TPS("rcu_sched"),
			       __this_cpu_read(rcu_sched_data.gpnum),
			       TPS("cpuqs"));
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
253 254 255
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(&rcu_sched_data), true);
256 257
}

258
void rcu_bh_qs(void)
259
{
260
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
261 262 263
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
264
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
265
	}
266
}
267

268 269 270 271 272 273 274 275 276 277 278
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

279 280 281
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

282 283 284 285 286 287 288 289 290 291
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
292 293
 *
 * The caller must have disabled interrupts.
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
 */
static void rcu_momentary_dyntick_idle(void)
{
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
315 316
		if (READ_ONCE(rdp->mynode->completed) !=
		    READ_ONCE(rdp->cond_resched_completed))
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
}

333 334 335
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
336
 * The caller must have disabled interrupts.
337
 */
338
void rcu_note_context_switch(void)
339
{
340
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
341
	trace_rcu_utilization(TPS("Start context switch"));
342
	rcu_sched_qs();
343
	rcu_preempt_note_context_switch();
344 345
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
346
	trace_rcu_utilization(TPS("End context switch"));
347
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
348
}
349
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
350

351
/*
352
 * Register a quiescent state for all RCU flavors.  If there is an
353 354
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
355
 * RCU flavors in desperate need of a quiescent state, which will normally
356 357
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
358 359 360 361 362
 *
 * The barrier() calls are redundant in the common case when this is
 * called externally, but just in case this is called from within this
 * file.
 *
363 364 365
 */
void rcu_all_qs(void)
{
366 367
	unsigned long flags;

368
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
369 370
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
		local_irq_save(flags);
371
		rcu_momentary_dyntick_idle();
372 373
		local_irq_restore(flags);
	}
374
	this_cpu_inc(rcu_qs_ctr);
375
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
376 377 378
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
379 380 381
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
382

E
Eric Dumazet 已提交
383 384 385
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
386

387 388
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
389 390 391 392

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

393 394 395 396 397 398 399
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

400
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
401
				  struct rcu_data *rdp);
402 403 404 405
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
406
static void force_quiescent_state(struct rcu_state *rsp);
407
static int rcu_pending(void);
408 409

/*
410
 * Return the number of RCU batches started thus far for debug & stats.
411
 */
412 413 414 415 416 417 418 419
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
420
 */
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
447
 */
448
unsigned long rcu_batches_completed_sched(void)
449
{
450
	return rcu_sched_state.completed;
451
}
452
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
453 454

/*
455
 * Return the number of RCU BH batches completed thus far for debug & stats.
456
 */
457
unsigned long rcu_batches_completed_bh(void)
458 459 460 461 462
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

463 464 465 466 467
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
468
	force_quiescent_state(rcu_state_p);
469 470 471
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

472 473 474 475 476
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
477
	force_quiescent_state(&rcu_bh_state);
478 479 480
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

481 482 483 484 485 486 487 488 489
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

505 506 507 508 509 510 511 512 513 514 515 516 517 518
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

519 520 521 522 523 524 525 526 527 528
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
529
		rsp = rcu_state_p;
530 531 532 533 534 535 536 537 538 539 540
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
541 542 543
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
544 545 546 547 548 549 550 551
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

552 553 554 555 556 557 558 559 560 561 562
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

563 564 565 566 567 568
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
569 570
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
571 572
}

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
589
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
590 591
	int *fp = &rnp->need_future_gp[idx];

592
	return READ_ONCE(*fp);
593 594
}

595
/*
596 597 598
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
599
 */
600
static bool
601 602
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
603
	int i;
P
Paul E. McKenney 已提交
604

605
	if (rcu_gp_in_progress(rsp))
606
		return false;  /* No, a grace period is already in progress. */
607
	if (rcu_future_needs_gp(rsp))
608
		return true;  /* Yes, a no-CBs CPU needs one. */
609
	if (!rdp->nxttail[RCU_NEXT_TAIL])
610
		return false;  /* No, this is a no-CBs (or offline) CPU. */
611
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
612
		return true;  /* Yes, CPU has newly registered callbacks. */
613 614
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
615
		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
616
				 rdp->nxtcompleted[i]))
617 618
			return true;  /* Yes, CBs for future grace period. */
	return false; /* No grace period needed. */
619 620
}

621
/*
622
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
623 624 625 626 627
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
628
static void rcu_eqs_enter_common(long long oldval, bool user)
629
{
630 631
	struct rcu_state *rsp;
	struct rcu_data *rdp;
632
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
633

634
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
635 636
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
637 638
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
639

640
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
641
		ftrace_dump(DUMP_ORIG);
642 643 644
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
645
	}
646 647 648 649
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
650
	rcu_prepare_for_idle();
651
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
652
	smp_mb__before_atomic();  /* See above. */
653
	atomic_inc(&rdtp->dynticks);
654
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
655 656
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     atomic_read(&rdtp->dynticks) & 0x1);
657
	rcu_dynticks_task_enter();
658 659

	/*
660
	 * It is illegal to enter an extended quiescent state while
661 662
	 * in an RCU read-side critical section.
	 */
663 664 665 666 667 668
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal idle entry in RCU read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
			 "Illegal idle entry in RCU-bh read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
			 "Illegal idle entry in RCU-sched read-side critical section.");
669
}
670

671 672 673
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
674
 */
675
static void rcu_eqs_enter(bool user)
676
{
677
	long long oldval;
678 679
	struct rcu_dynticks *rdtp;

680
	rdtp = this_cpu_ptr(&rcu_dynticks);
681
	oldval = rdtp->dynticks_nesting;
682 683
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
684
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
685
		rdtp->dynticks_nesting = 0;
686
		rcu_eqs_enter_common(oldval, user);
687
	} else {
688
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
689
	}
690
}
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
706 707 708
	unsigned long flags;

	local_irq_save(flags);
709
	rcu_eqs_enter(false);
710
	rcu_sysidle_enter(0);
711
	local_irq_restore(flags);
712
}
713
EXPORT_SYMBOL_GPL(rcu_idle_enter);
714

715
#ifdef CONFIG_NO_HZ_FULL
716 717 718 719 720 721 722 723 724 725
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
726
	rcu_eqs_enter(1);
727
}
728
#endif /* CONFIG_NO_HZ_FULL */
729

730 731 732 733 734
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
735
 * sections can occur.  The caller must have disabled interrupts.
736
 *
737 738 739 740 741 742 743 744
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
745
 */
746
void rcu_irq_exit(void)
747
{
748
	long long oldval;
749 750
	struct rcu_dynticks *rdtp;

751
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
752
	rdtp = this_cpu_ptr(&rcu_dynticks);
753
	oldval = rdtp->dynticks_nesting;
754
	rdtp->dynticks_nesting--;
755 756
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting < 0);
757
	if (rdtp->dynticks_nesting)
758
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
759
	else
760 761
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
762 763 764 765 766 767 768 769 770 771 772
}

/*
 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 */
void rcu_irq_exit_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_exit();
773 774 775 776
	local_irq_restore(flags);
}

/*
777
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
778 779 780 781 782
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
783
static void rcu_eqs_exit_common(long long oldval, int user)
784
{
785 786
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

787
	rcu_dynticks_task_exit();
788
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
789 790
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
791
	smp_mb__after_atomic();  /* See above. */
792 793
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(atomic_read(&rdtp->dynticks) & 0x1));
794
	rcu_cleanup_after_idle();
795
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
796 797
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
798 799
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
800

801
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
802
				  oldval, rdtp->dynticks_nesting);
803
		ftrace_dump(DUMP_ORIG);
804 805 806
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
807 808 809
	}
}

810 811 812
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
813
 */
814
static void rcu_eqs_exit(bool user)
815 816 817 818
{
	struct rcu_dynticks *rdtp;
	long long oldval;

819
	rdtp = this_cpu_ptr(&rcu_dynticks);
820
	oldval = rdtp->dynticks_nesting;
821
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
822
	if (oldval & DYNTICK_TASK_NEST_MASK) {
823
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
824
	} else {
825
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
826
		rcu_eqs_exit_common(oldval, user);
827
	}
828
}
829 830 831 832 833 834 835 836 837 838 839 840 841 842

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
843 844 845
	unsigned long flags;

	local_irq_save(flags);
846
	rcu_eqs_exit(false);
847
	rcu_sysidle_exit(0);
848
	local_irq_restore(flags);
849
}
850
EXPORT_SYMBOL_GPL(rcu_idle_exit);
851

852
#ifdef CONFIG_NO_HZ_FULL
853 854 855 856 857 858 859 860
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
861
	rcu_eqs_exit(1);
862
}
863
#endif /* CONFIG_NO_HZ_FULL */
864

865 866 867 868 869
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
870
 * sections can occur.  The caller must have disabled interrupts.
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	struct rcu_dynticks *rdtp;
	long long oldval;

889
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
890
	rdtp = this_cpu_ptr(&rcu_dynticks);
891 892
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
893 894
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
895
	if (oldval)
896
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
897
	else
898 899
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
900 901 902 903 904 905 906 907 908 909 910
}

/*
 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 */
void rcu_irq_enter_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_enter();
911 912 913 914 915 916
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
917 918 919 920 921
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
922 923 924
 */
void rcu_nmi_enter(void)
{
925
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
926
	int incby = 2;
927

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
949 950 951 952 953
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
954 955 956 957
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
958 959 960
 */
void rcu_nmi_exit(void)
{
961
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
962

963 964 965 966 967 968 969 970 971 972 973 974 975 976
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
977
		return;
978 979 980 981
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
982
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
983
	smp_mb__before_atomic();  /* See above. */
984
	atomic_inc(&rdtp->dynticks);
985
	smp_mb__after_atomic();  /* Force delay to next write. */
986
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
987 988 989
}

/**
990 991 992 993 994 995 996
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
997
bool notrace __rcu_is_watching(void)
998 999 1000 1001 1002 1003
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1004
 *
1005
 * If the current CPU is in its idle loop and is neither in an interrupt
1006
 * or NMI handler, return true.
1007
 */
1008
bool notrace rcu_is_watching(void)
1009
{
1010
	bool ret;
1011

1012
	preempt_disable_notrace();
1013
	ret = __rcu_is_watching();
1014
	preempt_enable_notrace();
1015
	return ret;
1016
}
1017
EXPORT_SYMBOL_GPL(rcu_is_watching);
1018

1019
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1020 1021 1022 1023 1024 1025 1026

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1038 1039 1040 1041 1042 1043
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1044 1045
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1046 1047 1048
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1049
		return true;
1050
	preempt_disable();
1051
	rdp = this_cpu_ptr(&rcu_sched_data);
1052
	rnp = rdp->mynode;
1053
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1054 1055 1056 1057 1058 1059
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1060
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1061

1062
/**
1063
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1064
 *
1065 1066 1067
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1068
 */
1069
static int rcu_is_cpu_rrupt_from_idle(void)
1070
{
1071
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1072 1073 1074 1075 1076
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1077
 * is in dynticks idle mode, which is an extended quiescent state.
1078
 */
1079 1080
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1081
{
1082
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1083
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1084 1085 1086 1087
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
		return 1;
	} else {
1088
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1089
				 rdp->mynode->gpnum))
1090
			WRITE_ONCE(rdp->gpwrap, true);
1091 1092
		return 0;
	}
1093 1094 1095 1096 1097 1098
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1099
 * for this same CPU, or by virtue of having been offline.
1100
 */
1101 1102
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1103
{
1104
	unsigned int curr;
1105
	int *rcrmp;
1106
	unsigned int snap;
1107

1108 1109
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
1110 1111 1112 1113 1114 1115 1116 1117 1118

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1119
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1120
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1121 1122 1123 1124
		rdp->dynticks_fqs++;
		return 1;
	}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
1140
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1141 1142 1143
		rdp->offline_fqs++;
		return 1;
	}
1144 1145

	/*
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1165
	 */
1166 1167 1168
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1169
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1170 1171 1172
		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			WRITE_ONCE(rdp->cond_resched_completed,
				   READ_ONCE(rdp->mynode->completed));
1173
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1174 1175
			WRITE_ONCE(*rcrmp,
				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1176 1177 1178 1179 1180 1181 1182
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
			/* Time to beat on that CPU again! */
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
		}
1183 1184
	}

1185
	return 0;
1186 1187 1188 1189
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1190
	unsigned long j = jiffies;
1191
	unsigned long j1;
1192 1193 1194

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1195
	j1 = rcu_jiffies_till_stall_check();
1196
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1197
	rsp->jiffies_resched = j + j1 / 2;
1198
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1199 1200
}

1201 1202 1203 1204 1205 1206 1207 1208 1209
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1210
	gpa = READ_ONCE(rsp->gp_activity);
1211
	if (j - gpa > 2 * HZ)
1212
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x s%d ->state=%#lx\n",
1213
		       rsp->name, j - gpa,
1214 1215 1216
		       rsp->gpnum, rsp->completed,
		       rsp->gp_flags, rsp->gp_state,
		       rsp->gp_kthread ? rsp->gp_kthread->state : 0);
1217 1218
}

1219
/*
1220
 * Dump stacks of all tasks running on stalled CPUs.
1221 1222 1223 1224 1225 1226 1227 1228
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
1229
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1230 1231 1232 1233 1234 1235 1236 1237 1238
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

1239
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1240 1241 1242 1243
{
	int cpu;
	long delta;
	unsigned long flags;
1244 1245
	unsigned long gpa;
	unsigned long j;
1246
	int ndetected = 0;
1247
	struct rcu_node *rnp = rcu_get_root(rsp);
1248
	long totqlen = 0;
1249 1250 1251

	/* Only let one CPU complain about others per time interval. */

1252
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1253
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1254
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1255
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1256 1257
		return;
	}
1258 1259
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1260
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1261

1262 1263 1264 1265 1266
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1267
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1268
	       rsp->name);
1269
	print_cpu_stall_info_begin();
1270
	rcu_for_each_leaf_node(rsp, rnp) {
1271
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1272
		ndetected += rcu_print_task_stall(rnp);
1273 1274 1275 1276 1277 1278 1279 1280
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
1281
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1282
	}
1283 1284

	print_cpu_stall_info_end();
1285 1286
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1287
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1288
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1289
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1290
	if (ndetected) {
1291
		rcu_dump_cpu_stacks(rsp);
1292
	} else {
1293 1294
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1295 1296 1297
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1298
			gpa = READ_ONCE(rsp->gp_activity);
1299
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1300
			       rsp->name, j - gpa, j, gpa,
1301 1302
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1303 1304 1305 1306
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1307

1308
	/* Complain about tasks blocking the grace period. */
1309 1310
	rcu_print_detail_task_stall(rsp);

1311 1312
	rcu_check_gp_kthread_starvation(rsp);

1313
	force_quiescent_state(rsp);  /* Kick them all. */
1314 1315 1316 1317
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1318
	int cpu;
1319 1320
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1321
	long totqlen = 0;
1322

1323 1324 1325 1326 1327
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1328
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1329 1330 1331
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1332 1333
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1334 1335 1336
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1337 1338 1339

	rcu_check_gp_kthread_starvation(rsp);

1340
	rcu_dump_cpu_stacks(rsp);
1341

1342
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1343 1344 1345
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1346
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1347

1348 1349 1350 1351 1352 1353 1354 1355
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1356 1357 1358 1359
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1360 1361 1362
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1363 1364
	unsigned long j;
	unsigned long js;
1365 1366
	struct rcu_node *rnp;

1367
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1368
		return;
1369
	j = jiffies;
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1388
	gpnum = READ_ONCE(rsp->gpnum);
1389
	smp_rmb(); /* Pick up ->gpnum first... */
1390
	js = READ_ONCE(rsp->jiffies_stall);
1391
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1392
	gps = READ_ONCE(rsp->gp_start);
1393
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1394
	completed = READ_ONCE(rsp->completed);
1395 1396 1397 1398
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1399
	rnp = rdp->mynode;
1400
	if (rcu_gp_in_progress(rsp) &&
1401
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1402 1403 1404 1405

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1406 1407
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1408

1409
		/* They had a few time units to dump stack, so complain. */
1410
		print_other_cpu_stall(rsp, gpnum);
1411 1412 1413
	}
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1425 1426 1427
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1428
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1429 1430
}

1431
/*
1432 1433 1434
 * Initialize the specified rcu_data structure's default callback list
 * to empty.  The default callback list is the one that is not used by
 * no-callbacks CPUs.
1435
 */
1436
static void init_default_callback_list(struct rcu_data *rdp)
1437 1438 1439 1440 1441 1442 1443 1444
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	if (init_nocb_callback_list(rdp))
		return;
	init_default_callback_list(rdp);
}

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1484 1485 1486 1487 1488
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1489
				unsigned long c, const char *s)
1490 1491 1492 1493 1494 1495 1496 1497 1498
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1499 1500
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1501 1502 1503
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1504 1505 1506
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1507 1508 1509
{
	unsigned long c;
	int i;
1510
	bool ret = false;
1511 1512 1513 1514 1515 1516 1517
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1518
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1519
	if (rnp->need_future_gp[c & 0x1]) {
1520
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1521
		goto out;
1522 1523 1524 1525 1526 1527 1528
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1529 1530 1531 1532 1533 1534 1535
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1536 1537
	 */
	if (rnp->gpnum != rnp->completed ||
1538
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1539
		rnp->need_future_gp[c & 0x1]++;
1540
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1541
		goto out;
1542 1543 1544 1545 1546 1547 1548
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1549 1550
	if (rnp != rnp_root)
		raw_spin_lock_rcu_node(rnp_root);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1568
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1569 1570 1571 1572 1573 1574 1575 1576
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1577
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1578
	} else {
1579
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1580
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1581 1582 1583 1584
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
1585 1586 1587 1588
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1606 1607
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1608 1609 1610
	return needmore;
}

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1621
	    !READ_ONCE(rsp->gp_flags) ||
1622 1623 1624 1625 1626
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1627 1628 1629 1630 1631 1632 1633
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1634 1635
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1636 1637 1638
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1639
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1640 1641 1642 1643
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1644
	bool ret;
1645 1646 1647

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1648
		return false;
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1677
		return false;
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1688
	/* Record any needed additional grace periods. */
1689
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1690 1691 1692

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1693
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1694
	else
1695
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1696
	return ret;
1697 1698 1699 1700 1701 1702 1703 1704
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1705
 * Returns true if the RCU grace-period kthread needs to be awakened.
1706 1707 1708
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1709
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1710 1711 1712 1713 1714 1715
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1716
		return false;
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1740
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1741 1742
}

1743
/*
1744 1745 1746
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1747
 * Returns true if the grace-period kthread needs to be awakened.
1748
 */
1749 1750
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1751
{
1752 1753
	bool ret;

1754
	/* Handle the ends of any preceding grace periods first. */
1755
	if (rdp->completed == rnp->completed &&
1756
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1757

1758
		/* No grace period end, so just accelerate recent callbacks. */
1759
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1760

1761 1762 1763
	} else {

		/* Advance callbacks. */
1764
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1765 1766 1767

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1768
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1769
	}
1770

1771
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1772 1773 1774 1775 1776 1777
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1778
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1779
		rdp->cpu_no_qs.b.norm = true;
1780
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1781
		rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1782
		zero_cpu_stall_ticks(rdp);
1783
		WRITE_ONCE(rdp->gpwrap, false);
1784
	}
1785
	return ret;
1786 1787
}

1788
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1789 1790
{
	unsigned long flags;
1791
	bool needwake;
1792 1793 1794 1795
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1796 1797 1798
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1799
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1800 1801 1802
		local_irq_restore(flags);
		return;
	}
1803
	needwake = __note_gp_changes(rsp, rnp, rdp);
1804
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1805 1806
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1807 1808
}

1809 1810 1811 1812 1813 1814 1815
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

1816
/*
1817
 * Initialize a new grace period.  Return 0 if no grace period required.
1818
 */
1819
static int rcu_gp_init(struct rcu_state *rsp)
1820
{
1821
	unsigned long oldmask;
1822
	struct rcu_data *rdp;
1823
	struct rcu_node *rnp = rcu_get_root(rsp);
1824

1825
	WRITE_ONCE(rsp->gp_activity, jiffies);
1826
	raw_spin_lock_irq_rcu_node(rnp);
1827
	if (!READ_ONCE(rsp->gp_flags)) {
1828 1829 1830 1831
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1832
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1833

1834 1835 1836 1837 1838
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1839 1840 1841 1842 1843
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1844
	record_gp_stall_check_time(rsp);
1845 1846
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1847
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1848 1849
	raw_spin_unlock_irq(&rnp->lock);

1850 1851 1852 1853 1854 1855 1856
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
1857
		rcu_gp_slow(rsp, gp_preinit_delay);
1858
		raw_spin_lock_irq_rcu_node(rnp);
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
			raw_spin_unlock_irq(&rnp->lock);
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

		raw_spin_unlock_irq(&rnp->lock);
	}
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1913
		rcu_gp_slow(rsp, gp_init_delay);
1914
		raw_spin_lock_irq_rcu_node(rnp);
1915
		rdp = this_cpu_ptr(rsp->rda);
1916 1917
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1918
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1919
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1920
			WRITE_ONCE(rnp->completed, rsp->completed);
1921
		if (rnp == rdp->mynode)
1922
			(void)__note_gp_changes(rsp, rnp, rdp);
1923 1924 1925 1926 1927
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1928
		cond_resched_rcu_qs();
1929
		WRITE_ONCE(rsp->gp_activity, jiffies);
1930
	}
1931

1932 1933
	return 1;
}
1934

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
/*
 * Helper function for wait_event_interruptible_timeout() wakeup
 * at force-quiescent-state time.
 */
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rsp->gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

1955 1956 1957
/*
 * Do one round of quiescent-state forcing.
 */
1958
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
1959
{
1960 1961
	bool isidle = false;
	unsigned long maxj;
1962 1963
	struct rcu_node *rnp = rcu_get_root(rsp);

1964
	WRITE_ONCE(rsp->gp_activity, jiffies);
1965
	rsp->n_force_qs++;
1966
	if (first_time) {
1967
		/* Collect dyntick-idle snapshots. */
1968
		if (is_sysidle_rcu_state(rsp)) {
1969
			isidle = true;
1970 1971
			maxj = jiffies - ULONG_MAX / 4;
		}
1972 1973
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1974
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1975 1976
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1977
		isidle = true;
1978
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1979 1980
	}
	/* Clear flag to prevent immediate re-entry. */
1981
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1982
		raw_spin_lock_irq_rcu_node(rnp);
1983 1984
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1985 1986 1987 1988
		raw_spin_unlock_irq(&rnp->lock);
	}
}

1989 1990 1991
/*
 * Clean up after the old grace period.
 */
1992
static void rcu_gp_cleanup(struct rcu_state *rsp)
1993 1994
{
	unsigned long gp_duration;
1995
	bool needgp = false;
1996
	int nocb = 0;
1997 1998
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1999

2000
	WRITE_ONCE(rsp->gp_activity, jiffies);
2001
	raw_spin_lock_irq_rcu_node(rnp);
2002 2003 2004
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
2005

2006 2007 2008 2009 2010 2011 2012 2013
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
2014
	raw_spin_unlock_irq(&rnp->lock);
2015

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2026
		raw_spin_lock_irq_rcu_node(rnp);
2027 2028
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
2029
		WRITE_ONCE(rnp->completed, rsp->gpnum);
2030 2031
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
2032
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2033
		/* smp_mb() provided by prior unlock-lock pair. */
2034
		nocb += rcu_future_gp_cleanup(rsp, rnp);
2035
		raw_spin_unlock_irq(&rnp->lock);
2036
		cond_resched_rcu_qs();
2037
		WRITE_ONCE(rsp->gp_activity, jiffies);
2038
		rcu_gp_slow(rsp, gp_cleanup_delay);
2039
	}
2040
	rnp = rcu_get_root(rsp);
2041
	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2042
	rcu_nocb_gp_set(rnp, nocb);
2043

2044
	/* Declare grace period done. */
2045
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2046
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2047
	rsp->gp_state = RCU_GP_IDLE;
2048
	rdp = this_cpu_ptr(rsp->rda);
2049 2050 2051
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2052
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2053
		trace_rcu_grace_period(rsp->name,
2054
				       READ_ONCE(rsp->gpnum),
2055 2056
				       TPS("newreq"));
	}
2057 2058 2059 2060 2061 2062 2063 2064
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2065
	bool first_gp_fqs;
2066
	int gf;
2067
	unsigned long j;
2068
	int ret;
2069 2070 2071
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2072
	rcu_bind_gp_kthread();
2073 2074 2075 2076
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2077
			trace_rcu_grace_period(rsp->name,
2078
					       READ_ONCE(rsp->gpnum),
2079
					       TPS("reqwait"));
2080
			rsp->gp_state = RCU_GP_WAIT_GPS;
2081
			wait_event_interruptible(rsp->gp_wq,
2082
						 READ_ONCE(rsp->gp_flags) &
2083
						 RCU_GP_FLAG_INIT);
2084
			rsp->gp_state = RCU_GP_DONE_GPS;
2085
			/* Locking provides needed memory barrier. */
2086
			if (rcu_gp_init(rsp))
2087
				break;
2088
			cond_resched_rcu_qs();
2089
			WRITE_ONCE(rsp->gp_activity, jiffies);
2090
			WARN_ON(signal_pending(current));
2091
			trace_rcu_grace_period(rsp->name,
2092
					       READ_ONCE(rsp->gpnum),
2093
					       TPS("reqwaitsig"));
2094
		}
2095

2096
		/* Handle quiescent-state forcing. */
2097
		first_gp_fqs = true;
2098 2099 2100 2101 2102
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2103
		ret = 0;
2104
		for (;;) {
2105 2106
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
2107
			trace_rcu_grace_period(rsp->name,
2108
					       READ_ONCE(rsp->gpnum),
2109
					       TPS("fqswait"));
2110
			rsp->gp_state = RCU_GP_WAIT_FQS;
2111
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
2112
					rcu_gp_fqs_check_wake(rsp, &gf), j);
2113
			rsp->gp_state = RCU_GP_DOING_FQS;
2114
			/* Locking provides needed memory barriers. */
2115
			/* If grace period done, leave loop. */
2116
			if (!READ_ONCE(rnp->qsmask) &&
2117
			    !rcu_preempt_blocked_readers_cgp(rnp))
2118
				break;
2119
			/* If time for quiescent-state forcing, do it. */
2120 2121
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2122
				trace_rcu_grace_period(rsp->name,
2123
						       READ_ONCE(rsp->gpnum),
2124
						       TPS("fqsstart"));
2125 2126
				rcu_gp_fqs(rsp, first_gp_fqs);
				first_gp_fqs = false;
2127
				trace_rcu_grace_period(rsp->name,
2128
						       READ_ONCE(rsp->gpnum),
2129
						       TPS("fqsend"));
2130
				cond_resched_rcu_qs();
2131
				WRITE_ONCE(rsp->gp_activity, jiffies);
2132 2133
			} else {
				/* Deal with stray signal. */
2134
				cond_resched_rcu_qs();
2135
				WRITE_ONCE(rsp->gp_activity, jiffies);
2136
				WARN_ON(signal_pending(current));
2137
				trace_rcu_grace_period(rsp->name,
2138
						       READ_ONCE(rsp->gpnum),
2139
						       TPS("fqswaitsig"));
2140
			}
2141 2142 2143 2144 2145 2146 2147 2148
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
2149
		}
2150 2151

		/* Handle grace-period end. */
2152
		rsp->gp_state = RCU_GP_CLEANUP;
2153
		rcu_gp_cleanup(rsp);
2154
		rsp->gp_state = RCU_GP_CLEANED;
2155 2156 2157
	}
}

2158 2159 2160
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2161
 * the root node's ->lock and hard irqs must be disabled.
2162 2163 2164 2165
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2166 2167
 *
 * Returns true if the grace-period kthread must be awakened.
2168
 */
2169
static bool
2170 2171
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2172
{
2173
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2174
		/*
2175
		 * Either we have not yet spawned the grace-period
2176 2177
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2178
		 * Either way, don't start a new grace period.
2179
		 */
2180
		return false;
2181
	}
2182 2183
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2184
			       TPS("newreq"));
2185

2186 2187
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2188
	 * could cause possible deadlocks with the rq->lock. Defer
2189
	 * the wakeup to our caller.
2190
	 */
2191
	return true;
2192 2193
}

2194 2195 2196 2197 2198 2199
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2200 2201
 *
 * Returns true if the grace-period kthread needs to be awakened.
2202
 */
2203
static bool rcu_start_gp(struct rcu_state *rsp)
2204 2205 2206
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2207
	bool ret = false;
2208 2209 2210 2211 2212 2213 2214 2215 2216

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2217 2218 2219
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2220 2221
}

2222
/*
P
Paul E. McKenney 已提交
2223 2224 2225
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
2226 2227
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
2228
 */
P
Paul E. McKenney 已提交
2229
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2230
	__releases(rcu_get_root(rsp)->lock)
2231
{
2232
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2233
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2234
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2235
	rcu_gp_kthread_wake(rsp);
2236 2237
}

2238
/*
P
Paul E. McKenney 已提交
2239 2240 2241
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2242 2243 2244 2245 2246
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2247 2248
 */
static void
P
Paul E. McKenney 已提交
2249
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2250
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2251 2252
	__releases(rnp->lock)
{
2253
	unsigned long oldmask = 0;
2254 2255
	struct rcu_node *rnp_c;

2256 2257
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2258
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2259

2260 2261 2262 2263
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
P
Paul E. McKenney 已提交
2264
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2265 2266
			return;
		}
2267
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2268
		rnp->qsmask &= ~mask;
2269 2270 2271 2272
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2273
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2274 2275

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
2276
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2277 2278 2279 2280 2281 2282 2283 2284 2285
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
2286
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2287
		rnp_c = rnp;
2288
		rnp = rnp->parent;
2289
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2290
		oldmask = rnp_c->qsmask;
2291 2292 2293 2294
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2295
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2296
	 * to clean up and start the next grace period if one is needed.
2297
	 */
P
Paul E. McKenney 已提交
2298
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2299 2300
}

2301 2302 2303 2304 2305 2306 2307
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2308
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2309 2310 2311
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2312
	unsigned long gps;
2313 2314 2315
	unsigned long mask;
	struct rcu_node *rnp_p;

2316 2317
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2318 2319 2320 2321 2322 2323 2324
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2325 2326
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2327 2328 2329 2330 2331
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2332 2333
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2334 2335
	mask = rnp->grpmask;
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
2336
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2337
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2338 2339
}

2340
/*
P
Paul E. McKenney 已提交
2341 2342 2343 2344 2345 2346 2347
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
2348 2349
 */
static void
2350
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2351 2352 2353
{
	unsigned long flags;
	unsigned long mask;
2354
	bool needwake;
2355 2356 2357
	struct rcu_node *rnp;

	rnp = rdp->mynode;
2358
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2359
	if ((rdp->cpu_no_qs.b.norm &&
2360 2361 2362
	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
	    rdp->gpwrap) {
2363 2364

		/*
2365 2366 2367 2368
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2369
		 */
2370
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2371
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
P
Paul E. McKenney 已提交
2372
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2373 2374 2375 2376
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
2377
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2378
	} else {
2379
		rdp->core_needs_qs = 0;
2380 2381 2382 2383 2384

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2385
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2386

2387 2388
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2389 2390
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2403 2404
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2405 2406 2407 2408 2409

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
2410
	if (!rdp->core_needs_qs)
2411 2412 2413 2414 2415 2416
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2417
	if (rdp->cpu_no_qs.b.norm &&
2418
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2419 2420
		return;

P
Paul E. McKenney 已提交
2421 2422 2423 2424
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2425
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2426 2427
}

2428
/*
2429 2430
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2431
 * ->orphan_lock.
2432
 */
2433 2434 2435
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2436
{
P
Paul E. McKenney 已提交
2437
	/* No-CBs CPUs do not have orphanable callbacks. */
2438
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2439 2440
		return;

2441 2442
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2443 2444
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2445
	 */
2446
	if (rdp->nxtlist != NULL) {
2447 2448 2449
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2450
		rdp->qlen_lazy = 0;
2451
		WRITE_ONCE(rdp->qlen, 0);
2452 2453 2454
	}

	/*
2455 2456 2457 2458 2459 2460 2461
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2462
	 */
2463 2464 2465 2466
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2467 2468 2469
	}

	/*
2470 2471 2472
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2473
	 */
2474
	if (rdp->nxtlist != NULL) {
2475 2476
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2477
	}
2478

2479 2480 2481 2482
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2483
	init_callback_list(rdp);
2484
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2485 2486 2487 2488
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2489
 * orphanage.  The caller must hold the ->orphan_lock.
2490
 */
2491
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2492 2493
{
	int i;
2494
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2495

P
Paul E. McKenney 已提交
2496
	/* No-CBs CPUs are handled specially. */
2497 2498
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2499 2500
		return;

2501 2502 2503 2504
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2505 2506
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

2545 2546 2547
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2548
	RCU_TRACE(mask = rdp->grpmask);
2549 2550
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2551
			       TPS("cpuofl"));
2552 2553
}

2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2576 2577
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2578 2579 2580 2581 2582 2583
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
2584
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2585
		rnp->qsmaskinit &= ~mask;
2586
		rnp->qsmask &= ~mask;
2587 2588 2589 2590 2591 2592 2593 2594
		if (rnp->qsmaskinit) {
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			return;
		}
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
	}
}

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
/*
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

2607 2608 2609
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2610 2611
	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
2612
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
2613 2614 2615 2616
	rnp->qsmaskinitnext &= ~mask;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

2617
/*
2618
 * The CPU has been completely removed, and some other CPU is reporting
2619 2620
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2621 2622
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2623
 */
2624
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2625
{
2626
	unsigned long flags;
2627
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2628
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2629

2630 2631 2632
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2633
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2634
	rcu_boost_kthread_setaffinity(rnp, -1);
2635

2636
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2637
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2638
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2639
	rcu_adopt_orphan_cbs(rsp, flags);
2640
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2641

2642 2643 2644
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2645 2646 2647 2648 2649 2650
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2651
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2652 2653 2654
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2655 2656
	long bl, count, count_lazy;
	int i;
2657

2658
	/* If no callbacks are ready, just return. */
2659
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2660
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2661
		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2662 2663
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2664
		return;
2665
	}
2666 2667 2668 2669 2670 2671

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2672
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2673
	bl = rdp->blimit;
2674
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2675 2676 2677 2678
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2679 2680 2681
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2682 2683 2684
	local_irq_restore(flags);

	/* Invoke callbacks. */
2685
	count = count_lazy = 0;
2686 2687 2688
	while (list) {
		next = list->next;
		prefetch(next);
2689
		debug_rcu_head_unqueue(list);
2690 2691
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2692
		list = next;
2693 2694 2695 2696
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2697 2698 2699 2700
			break;
	}

	local_irq_save(flags);
2701 2702 2703
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2704 2705 2706 2707 2708

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2709 2710 2711
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2712 2713 2714
			else
				break;
	}
2715 2716
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2717
	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2718
	rdp->n_cbs_invoked += count;
2719 2720 2721 2722 2723

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2724 2725 2726 2727 2728 2729
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2730
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2731

2732 2733
	local_irq_restore(flags);

2734
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2735
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2736
		invoke_rcu_core();
2737 2738 2739 2740 2741
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2742
 * Also schedule RCU core processing.
2743
 *
2744
 * This function must be called from hardirq context.  It is normally
2745 2746 2747
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2748
void rcu_check_callbacks(int user)
2749
{
2750
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2751
	increment_cpu_stall_ticks();
2752
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2753 2754 2755 2756 2757

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2758
		 * a quiescent state, so note it.
2759 2760
		 *
		 * No memory barrier is required here because both
2761 2762 2763
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2764 2765
		 */

2766 2767
		rcu_sched_qs();
		rcu_bh_qs();
2768 2769 2770 2771 2772 2773 2774

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2775
		 * critical section, so note it.
2776 2777
		 */

2778
		rcu_bh_qs();
2779
	}
2780
	rcu_preempt_check_callbacks();
2781
	if (rcu_pending())
2782
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2783 2784
	if (user)
		rcu_note_voluntary_context_switch(current);
2785
	trace_rcu_utilization(TPS("End scheduler-tick"));
2786 2787 2788 2789 2790
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2791 2792
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2793
 * The caller must have suppressed start of new grace periods.
2794
 */
2795 2796 2797 2798
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2799 2800 2801 2802 2803
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2804
	struct rcu_node *rnp;
2805

2806
	rcu_for_each_leaf_node(rsp, rnp) {
2807
		cond_resched_rcu_qs();
2808
		mask = 0;
2809
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2810
		if (rnp->qsmask == 0) {
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2834
		}
2835
		cpu = rnp->grplo;
2836
		bit = 1;
2837
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2838 2839 2840 2841
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2842
		}
2843
		if (mask != 0) {
2844 2845
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2846 2847 2848
		} else {
			/* Nothing to do here, so just drop the lock. */
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2849 2850 2851 2852 2853 2854 2855 2856
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2857
static void force_quiescent_state(struct rcu_state *rsp)
2858 2859
{
	unsigned long flags;
2860 2861 2862 2863 2864
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2865
	rnp = __this_cpu_read(rsp->rda->mynode);
2866
	for (; rnp != NULL; rnp = rnp->parent) {
2867
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2868 2869 2870 2871
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2872
			rsp->n_force_qs_lh++;
2873 2874 2875 2876 2877
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2878

2879
	/* Reached the root of the rcu_node tree, acquire lock. */
2880
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2881
	raw_spin_unlock(&rnp_old->fqslock);
2882
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2883
		rsp->n_force_qs_lh++;
2884
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2885
		return;  /* Someone beat us to it. */
2886
	}
2887
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2888
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2889
	rcu_gp_kthread_wake(rsp);
2890 2891 2892
}

/*
2893 2894 2895
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2896 2897
 */
static void
2898
__rcu_process_callbacks(struct rcu_state *rsp)
2899 2900
{
	unsigned long flags;
2901
	bool needwake;
2902
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2903

2904 2905
	WARN_ON_ONCE(rdp->beenonline == 0);

2906 2907 2908 2909
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2910
	local_irq_save(flags);
2911
	if (cpu_needs_another_gp(rsp, rdp)) {
2912
		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2913
		needwake = rcu_start_gp(rsp);
2914
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2915 2916
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2917 2918
	} else {
		local_irq_restore(flags);
2919 2920 2921
	}

	/* If there are callbacks ready, invoke them. */
2922
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2923
		invoke_rcu_callbacks(rsp, rdp);
2924 2925 2926

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2927 2928
}

2929
/*
2930
 * Do RCU core processing for the current CPU.
2931
 */
2932
static void rcu_process_callbacks(struct softirq_action *unused)
2933
{
2934 2935
	struct rcu_state *rsp;

2936 2937
	if (cpu_is_offline(smp_processor_id()))
		return;
2938
	trace_rcu_utilization(TPS("Start RCU core"));
2939 2940
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2941
	trace_rcu_utilization(TPS("End RCU core"));
2942 2943
}

2944
/*
2945 2946 2947
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2948
 * are running on the current CPU with softirqs disabled, the
2949
 * rcu_cpu_kthread_task cannot disappear out from under us.
2950
 */
2951
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2952
{
2953
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2954
		return;
2955 2956
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2957 2958
		return;
	}
2959
	invoke_rcu_callbacks_kthread();
2960 2961
}

2962
static void invoke_rcu_core(void)
2963
{
2964 2965
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2966 2967
}

2968 2969 2970 2971 2972
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2973
{
2974 2975
	bool needwake;

2976 2977 2978 2979
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2980
	if (!rcu_is_watching())
2981 2982
		invoke_rcu_core();

2983
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2984
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2985
		return;
2986

2987 2988 2989 2990 2991 2992 2993
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2994
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2995 2996

		/* Are we ignoring a completed grace period? */
2997
		note_gp_changes(rsp, rdp);
2998 2999 3000 3001 3002

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

3003
			raw_spin_lock_rcu_node(rnp_root);
3004
			needwake = rcu_start_gp(rsp);
3005
			raw_spin_unlock(&rnp_root->lock);
3006 3007
			if (needwake)
				rcu_gp_kthread_wake(rsp);
3008 3009 3010 3011 3012
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3013
				force_quiescent_state(rsp);
3014 3015 3016
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
3017
	}
3018 3019
}

3020 3021 3022 3023 3024 3025 3026
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3027 3028 3029 3030 3031 3032
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3033
static void
3034
__call_rcu(struct rcu_head *head, rcu_callback_t func,
P
Paul E. McKenney 已提交
3035
	   struct rcu_state *rsp, int cpu, bool lazy)
3036 3037 3038 3039
{
	unsigned long flags;
	struct rcu_data *rdp;

3040
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3041 3042
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3043
		WRITE_ONCE(head->func, rcu_leak_callback);
3044 3045 3046
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
3057
	rdp = this_cpu_ptr(rsp->rda);
3058 3059

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
3060 3061 3062 3063 3064
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3078
		WARN_ON_ONCE(!rcu_is_watching());
3079 3080
		if (!likely(rdp->nxtlist))
			init_default_callback_list(rdp);
3081
	}
3082
	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3083 3084
	if (lazy)
		rdp->qlen_lazy++;
3085 3086
	else
		rcu_idle_count_callbacks_posted();
3087 3088 3089
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3090

3091 3092
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3093
					 rdp->qlen_lazy, rdp->qlen);
3094
	else
3095
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3096

3097 3098
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3099 3100 3101 3102
	local_irq_restore(flags);
}

/*
3103
 * Queue an RCU-sched callback for invocation after a grace period.
3104
 */
3105
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3106
{
P
Paul E. McKenney 已提交
3107
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3108
}
3109
EXPORT_SYMBOL_GPL(call_rcu_sched);
3110 3111

/*
3112
 * Queue an RCU callback for invocation after a quicker grace period.
3113
 */
3114
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3115
{
P
Paul E. McKenney 已提交
3116
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3117 3118 3119
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3120 3121 3122 3123 3124 3125 3126 3127
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
3128
		    rcu_callback_t func)
3129
{
3130
	__call_rcu(head, func, rcu_state_p, -1, 1);
3131 3132 3133
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3145 3146
	int ret;

3147
	might_sleep();  /* Check for RCU read-side critical section. */
3148 3149 3150 3151
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3152 3153
}

3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3188 3189 3190 3191 3192 3193 3194 3195 3196
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3197 3198 3199 3200
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3201 3202
	if (rcu_blocking_is_gp())
		return;
3203
	if (rcu_gp_is_expedited())
3204 3205 3206
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3218 3219 3220
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3221 3222 3223
 */
void synchronize_rcu_bh(void)
{
3224 3225 3226 3227
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3228 3229
	if (rcu_blocking_is_gp())
		return;
3230
	if (rcu_gp_is_expedited())
3231 3232 3233
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3234 3235 3236
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3257
	return smp_load_acquire(&rcu_state_p->gpnum);
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3283
	newstate = smp_load_acquire(&rcu_state_p->completed);
3284 3285 3286 3287 3288
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
/**
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_sched(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_sched()
	 * and cond_synchronize_sched().
	 */
	return smp_load_acquire(&rcu_sched_state.gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);

/**
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 *
 * If a full RCU-sched grace period has elapsed since the earlier call to
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 * synchronize_sched() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_sched(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_sched_state.completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(cond_synchronize_sched);

3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
/* Adjust sequence number for start of update-side operation. */
static void rcu_seq_start(unsigned long *sp)
{
	WRITE_ONCE(*sp, *sp + 1);
	smp_mb(); /* Ensure update-side operation after counter increment. */
	WARN_ON_ONCE(!(*sp & 0x1));
}

/* Adjust sequence number for end of update-side operation. */
static void rcu_seq_end(unsigned long *sp)
{
	smp_mb(); /* Ensure update-side operation before counter increment. */
	WRITE_ONCE(*sp, *sp + 1);
	WARN_ON_ONCE(*sp & 0x1);
}

/* Take a snapshot of the update side's sequence number. */
static unsigned long rcu_seq_snap(unsigned long *sp)
{
	unsigned long s;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	s = (READ_ONCE(*sp) + 3) & ~0x1;
	smp_mb(); /* Above access must not bleed into critical section. */
	return s;
}

/*
 * Given a snapshot from rcu_seq_snap(), determine whether or not a
 * full update-side operation has occurred.
 */
static bool rcu_seq_done(unsigned long *sp, unsigned long s)
{
	return ULONG_CMP_GE(READ_ONCE(*sp), s);
}

/* Wrapper functions for expedited grace periods.  */
static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
{
	rcu_seq_start(&rsp->expedited_sequence);
}
static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
{
	rcu_seq_end(&rsp->expedited_sequence);
3385
	smp_mb(); /* Ensure that consecutive grace periods serialize. */
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
}
static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
{
	return rcu_seq_snap(&rsp->expedited_sequence);
}
static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
{
	return rcu_seq_done(&rsp->expedited_sequence, s);
}

3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
/*
 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
 * recent CPU-online activity.  Note that these masks are not cleared
 * when CPUs go offline, so they reflect the union of all CPUs that have
 * ever been online.  This means that this function normally takes its
 * no-work-to-do fastpath.
 */
static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
{
	bool done;
	unsigned long flags;
	unsigned long mask;
	unsigned long oldmask;
	int ncpus = READ_ONCE(rsp->ncpus);
	struct rcu_node *rnp;
	struct rcu_node *rnp_up;

	/* If no new CPUs onlined since last time, nothing to do. */
	if (likely(ncpus == rsp->ncpus_snap))
		return;
	rsp->ncpus_snap = ncpus;

	/*
	 * Each pass through the following loop propagates newly onlined
	 * CPUs for the current rcu_node structure up the rcu_node tree.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
3423
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
		if (rnp->expmaskinit == rnp->expmaskinitnext) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
			continue;  /* No new CPUs, nothing to do. */
		}

		/* Update this node's mask, track old value for propagation. */
		oldmask = rnp->expmaskinit;
		rnp->expmaskinit = rnp->expmaskinitnext;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);

		/* If was already nonzero, nothing to propagate. */
		if (oldmask)
			continue;

		/* Propagate the new CPU up the tree. */
		mask = rnp->grpmask;
		rnp_up = rnp->parent;
		done = false;
		while (rnp_up) {
3443
			raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
			if (rnp_up->expmaskinit)
				done = true;
			rnp_up->expmaskinit |= mask;
			raw_spin_unlock_irqrestore(&rnp_up->lock, flags);
			if (done)
				break;
			mask = rnp_up->grpmask;
			rnp_up = rnp_up->parent;
		}
	}
}

/*
 * Reset the ->expmask values in the rcu_node tree in preparation for
 * a new expedited grace period.
 */
static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	sync_exp_reset_tree_hotplug(rsp);
	rcu_for_each_node_breadth_first(rsp, rnp) {
3467
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3468 3469 3470 3471 3472 3473
		WARN_ON_ONCE(rnp->expmask);
		rnp->expmask = rnp->expmaskinit;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

3474
/*
3475
 * Return non-zero if there is no RCU expedited grace period in progress
3476 3477 3478 3479 3480 3481 3482 3483 3484
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
3485
	return rnp->exp_tasks == NULL &&
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
	       READ_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
3497 3498
 * Caller must hold the root rcu_node's exp_funnel_mutex and the
 * specified rcu_node structure's ->lock.
3499
 */
3500 3501 3502
static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
				 bool wake, unsigned long flags)
	__releases(rnp->lock)
3503 3504 3505 3506 3507
{
	unsigned long mask;

	for (;;) {
		if (!sync_rcu_preempt_exp_done(rnp)) {
3508 3509 3510 3511
			if (!rnp->expmask)
				rcu_initiate_boost(rnp, flags);
			else
				raw_spin_unlock_irqrestore(&rnp->lock, flags);
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
			break;
		}
		if (rnp->parent == NULL) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
			if (wake) {
				smp_mb(); /* EGP done before wake_up(). */
				wake_up(&rsp->expedited_wq);
			}
			break;
		}
		mask = rnp->grpmask;
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
		rnp = rnp->parent;
3525
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
3526
		WARN_ON_ONCE(!(rnp->expmask & mask));
3527 3528 3529 3530
		rnp->expmask &= ~mask;
	}
}

3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
/*
 * Report expedited quiescent state for specified node.  This is a
 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
 *
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
					      struct rcu_node *rnp, bool wake)
{
	unsigned long flags;

3542
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
	__rcu_report_exp_rnp(rsp, rnp, wake, flags);
}

/*
 * Report expedited quiescent state for multiple CPUs, all covered by the
 * specified leaf rcu_node structure.  Caller must hold the root
 * rcu_node's exp_funnel_mutex.
 */
static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
				    unsigned long mask, bool wake)
{
	unsigned long flags;

3556
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3557 3558 3559 3560
	if (!(rnp->expmask & mask)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
3561 3562 3563 3564 3565 3566 3567 3568
	rnp->expmask &= ~mask;
	__rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
}

/*
 * Report expedited quiescent state for specified rcu_data (CPU).
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
3569 3570
static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
			       bool wake)
3571 3572 3573 3574
{
	rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
}

3575 3576
/* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
3577
			       struct rcu_data *rdp,
3578
			       atomic_long_t *stat, unsigned long s)
3579
{
3580
	if (rcu_exp_gp_seq_done(rsp, s)) {
3581 3582
		if (rnp)
			mutex_unlock(&rnp->exp_funnel_mutex);
3583 3584
		else if (rdp)
			mutex_unlock(&rdp->exp_funnel_mutex);
3585 3586 3587 3588 3589 3590 3591 3592
		/* Ensure test happens before caller kfree(). */
		smp_mb__before_atomic(); /* ^^^ */
		atomic_long_inc(stat);
		return true;
	}
	return false;
}

3593 3594 3595 3596 3597 3598 3599
/*
 * Funnel-lock acquisition for expedited grace periods.  Returns a
 * pointer to the root rcu_node structure, or NULL if some other
 * task did the expedited grace period for us.
 */
static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
{
3600
	struct rcu_data *rdp;
3601 3602 3603
	struct rcu_node *rnp0;
	struct rcu_node *rnp1 = NULL;

3604
	/*
3605 3606 3607 3608
	 * First try directly acquiring the root lock in order to reduce
	 * latency in the common case where expedited grace periods are
	 * rare.  We check mutex_is_locked() to avoid pathological levels of
	 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3609
	 */
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
	rnp0 = rcu_get_root(rsp);
	if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
		if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
			if (sync_exp_work_done(rsp, rnp0, NULL,
					       &rsp->expedited_workdone0, s))
				return NULL;
			return rnp0;
		}
	}

3620 3621 3622 3623 3624 3625 3626 3627
	/*
	 * Each pass through the following loop works its way
	 * up the rcu_node tree, returning if others have done the
	 * work or otherwise falls through holding the root rnp's
	 * ->exp_funnel_mutex.  The mapping from CPU to rcu_node structure
	 * can be inexact, as it is just promoting locality and is not
	 * strictly needed for correctness.
	 */
3628 3629 3630 3631 3632
	rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
	if (sync_exp_work_done(rsp, NULL, NULL, &rsp->expedited_workdone1, s))
		return NULL;
	mutex_lock(&rdp->exp_funnel_mutex);
	rnp0 = rdp->mynode;
3633
	for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3634 3635
		if (sync_exp_work_done(rsp, rnp1, rdp,
				       &rsp->expedited_workdone2, s))
3636 3637 3638 3639
			return NULL;
		mutex_lock(&rnp0->exp_funnel_mutex);
		if (rnp1)
			mutex_unlock(&rnp1->exp_funnel_mutex);
3640 3641
		else
			mutex_unlock(&rdp->exp_funnel_mutex);
3642 3643
		rnp1 = rnp0;
	}
3644 3645
	if (sync_exp_work_done(rsp, rnp1, rdp,
			       &rsp->expedited_workdone3, s))
3646 3647 3648 3649
		return NULL;
	return rnp1;
}

3650
/* Invoked on each online non-idle CPU for expedited quiescent state. */
3651
static void sync_sched_exp_handler(void *data)
3652
{
3653 3654 3655
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp = data;
3656

3657 3658 3659 3660 3661
	rdp = this_cpu_ptr(rsp->rda);
	rnp = rdp->mynode;
	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
	    __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
3662 3663
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
	resched_cpu(smp_processor_id());
3664 3665
}

3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
/* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
static void sync_sched_exp_online_cleanup(int cpu)
{
	struct rcu_data *rdp;
	int ret;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_sched_state;

	rdp = per_cpu_ptr(rsp->rda, cpu);
	rnp = rdp->mynode;
	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
		return;
	ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
	WARN_ON_ONCE(ret);
}

3682 3683 3684 3685
/*
 * Select the nodes that the upcoming expedited grace period needs
 * to wait for.
 */
3686 3687
static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
				     smp_call_func_t func)
3688 3689 3690 3691 3692 3693
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
	unsigned long mask_ofl_test;
	unsigned long mask_ofl_ipi;
3694
	int ret;
3695 3696 3697 3698
	struct rcu_node *rnp;

	sync_exp_reset_tree(rsp);
	rcu_for_each_leaf_node(rsp, rnp) {
3699
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726

		/* Each pass checks a CPU for identity, offline, and idle. */
		mask_ofl_test = 0;
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

			if (raw_smp_processor_id() == cpu ||
			    !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
				mask_ofl_test |= rdp->grpmask;
		}
		mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;

		/*
		 * Need to wait for any blocked tasks as well.  Note that
		 * additional blocking tasks will also block the expedited
		 * GP until such time as the ->expmask bits are cleared.
		 */
		if (rcu_preempt_has_tasks(rnp))
			rnp->exp_tasks = rnp->blkd_tasks.next;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);

		/* IPI the remaining CPUs for expedited quiescent state. */
		mask = 1;
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
			if (!(mask_ofl_ipi & mask))
				continue;
3727
retry_ipi:
3728
			ret = smp_call_function_single(cpu, func, rsp, 0);
3729
			if (!ret) {
3730
				mask_ofl_ipi &= ~mask;
3731 3732
			} else {
				/* Failed, raced with offline. */
3733
				raw_spin_lock_irqsave_rcu_node(rnp, flags);
3734 3735 3736 3737 3738 3739 3740 3741
				if (cpu_online(cpu) &&
				    (rnp->expmask & mask)) {
					raw_spin_unlock_irqrestore(&rnp->lock,
								   flags);
					schedule_timeout_uninterruptible(1);
					if (cpu_online(cpu) &&
					    (rnp->expmask & mask))
						goto retry_ipi;
3742 3743
					raw_spin_lock_irqsave_rcu_node(rnp,
								       flags);
3744 3745 3746 3747 3748
				}
				if (!(rnp->expmask & mask))
					mask_ofl_ipi &= ~mask;
				raw_spin_unlock_irqrestore(&rnp->lock, flags);
			}
3749 3750 3751 3752 3753 3754
		}
		/* Report quiescent states for those that went offline. */
		mask_ofl_test |= mask_ofl_ipi;
		if (mask_ofl_test)
			rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
	}
3755 3756
}

3757 3758 3759 3760 3761
static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
{
	int cpu;
	unsigned long jiffies_stall;
	unsigned long jiffies_start;
3762 3763 3764
	unsigned long mask;
	struct rcu_node *rnp;
	struct rcu_node *rnp_root = rcu_get_root(rsp);
3765 3766 3767 3768 3769 3770 3771 3772
	int ret;

	jiffies_stall = rcu_jiffies_till_stall_check();
	jiffies_start = jiffies;

	for (;;) {
		ret = wait_event_interruptible_timeout(
				rsp->expedited_wq,
3773
				sync_rcu_preempt_exp_done(rnp_root),
3774 3775 3776 3777 3778 3779
				jiffies_stall);
		if (ret > 0)
			return;
		if (ret < 0) {
			/* Hit a signal, disable CPU stall warnings. */
			wait_event(rsp->expedited_wq,
3780
				   sync_rcu_preempt_exp_done(rnp_root));
3781 3782
			return;
		}
3783
		pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3784
		       rsp->name);
3785
		rcu_for_each_leaf_node(rsp, rnp) {
3786
			(void)rcu_print_task_exp_stall(rnp);
3787 3788
			mask = 1;
			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3789 3790
				struct rcu_data *rdp;

3791 3792
				if (!(rnp->expmask & mask))
					continue;
3793 3794 3795 3796 3797
				rdp = per_cpu_ptr(rsp->rda, cpu);
				pr_cont(" %d-%c%c%c", cpu,
					"O."[cpu_online(cpu)],
					"o."[!!(rdp->grpmask & rnp->expmaskinit)],
					"N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
3798 3799
			}
			mask <<= 1;
3800 3801 3802
		}
		pr_cont(" } %lu jiffies s: %lu\n",
			jiffies - jiffies_start, rsp->expedited_sequence);
3803 3804 3805 3806 3807 3808 3809
		rcu_for_each_leaf_node(rsp, rnp) {
			mask = 1;
			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
				if (!(rnp->expmask & mask))
					continue;
				dump_cpu_task(cpu);
			}
3810 3811 3812 3813 3814
		}
		jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
	}
}

3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
3825
 *
3826 3827 3828
 * This implementation can be thought of as an application of sequence
 * locking to expedited grace periods, but using the sequence counter to
 * determine when someone else has already done the work instead of for
3829
 * retrying readers.
3830 3831 3832
 */
void synchronize_sched_expedited(void)
{
3833
	unsigned long s;
3834
	struct rcu_node *rnp;
3835
	struct rcu_state *rsp = &rcu_sched_state;
3836

3837
	/* Take a snapshot of the sequence number.  */
3838
	s = rcu_exp_gp_seq_snap(rsp);
3839

3840
	rnp = exp_funnel_lock(rsp, s);
3841
	if (rnp == NULL)
3842
		return;  /* Someone else did our work for us. */
3843

3844
	rcu_exp_gp_seq_start(rsp);
3845
	sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
3846
	synchronize_sched_expedited_wait(rsp);
3847

3848
	rcu_exp_gp_seq_end(rsp);
3849
	mutex_unlock(&rnp->exp_funnel_mutex);
3850 3851 3852
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3853 3854 3855 3856 3857 3858 3859 3860 3861
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3862 3863
	struct rcu_node *rnp = rdp->mynode;

3864 3865 3866 3867 3868
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3869 3870 3871 3872
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3873
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3874
	if (rcu_scheduler_fully_active &&
3875
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3876
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3877 3878
		rdp->n_rp_core_needs_qs++;
	} else if (rdp->core_needs_qs &&
3879
		   (!rdp->cpu_no_qs.b.norm ||
3880
		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3881
		rdp->n_rp_report_qs++;
3882
		return 1;
3883
	}
3884 3885

	/* Does this CPU have callbacks ready to invoke? */
3886 3887
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3888
		return 1;
3889
	}
3890 3891

	/* Has RCU gone idle with this CPU needing another grace period? */
3892 3893
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3894
		return 1;
3895
	}
3896 3897

	/* Has another RCU grace period completed?  */
3898
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3899
		rdp->n_rp_gp_completed++;
3900
		return 1;
3901
	}
3902 3903

	/* Has a new RCU grace period started? */
3904 3905
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3906
		rdp->n_rp_gp_started++;
3907
		return 1;
3908
	}
3909

3910 3911 3912 3913 3914 3915
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3916
	/* nothing to do */
3917
	rdp->n_rp_need_nothing++;
3918 3919 3920 3921 3922 3923 3924 3925
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3926
static int rcu_pending(void)
3927
{
3928 3929 3930
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3931
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3932 3933
			return 1;
	return 0;
3934 3935 3936
}

/*
3937 3938 3939
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3940
 */
3941
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3942
{
3943 3944 3945
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3946 3947
	struct rcu_state *rsp;

3948
	for_each_rcu_flavor(rsp) {
3949
		rdp = this_cpu_ptr(rsp->rda);
3950 3951 3952 3953
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3954
			al = false;
3955 3956
			break;
		}
3957 3958 3959 3960
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3961 3962
}

3963 3964 3965 3966
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3967
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3968 3969 3970 3971 3972 3973
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3974 3975 3976 3977
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3978
static void rcu_barrier_callback(struct rcu_head *rhp)
3979
{
3980 3981 3982
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3983
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3984
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3985
		complete(&rsp->barrier_completion);
3986
	} else {
3987
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3988
	}
3989 3990 3991 3992 3993 3994 3995
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3996
	struct rcu_state *rsp = type;
3997
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3998

3999
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
4000
	atomic_inc(&rsp->barrier_cpu_count);
4001
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
4002 4003 4004 4005 4006 4007
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
4008
static void _rcu_barrier(struct rcu_state *rsp)
4009
{
4010 4011
	int cpu;
	struct rcu_data *rdp;
4012
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
4013

4014
	_rcu_barrier_trace(rsp, "Begin", -1, s);
4015

4016
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4017
	mutex_lock(&rsp->barrier_mutex);
4018

4019 4020 4021
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
4022 4023 4024 4025 4026
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

4027 4028 4029
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
4030

4031
	/*
4032 4033
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
4034 4035
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
4036
	 */
4037
	init_completion(&rsp->barrier_completion);
4038
	atomic_set(&rsp->barrier_cpu_count, 1);
4039
	get_online_cpus();
4040 4041

	/*
4042 4043 4044
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
4045
	 */
P
Paul E. McKenney 已提交
4046
	for_each_possible_cpu(cpu) {
4047
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
4048
			continue;
4049
		rdp = per_cpu_ptr(rsp->rda, cpu);
4050
		if (rcu_is_nocb_cpu(cpu)) {
4051 4052
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4053
						   rsp->barrier_sequence);
4054 4055
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4056
						   rsp->barrier_sequence);
4057
				smp_mb__before_atomic();
4058 4059 4060 4061
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
4062
		} else if (READ_ONCE(rdp->qlen)) {
4063
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
4064
					   rsp->barrier_sequence);
4065
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4066
		} else {
4067
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4068
					   rsp->barrier_sequence);
4069 4070
		}
	}
4071
	put_online_cpus();
4072 4073 4074 4075 4076

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
4077
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4078
		complete(&rsp->barrier_completion);
4079 4080

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4081
	wait_for_completion(&rsp->barrier_completion);
4082

4083 4084 4085 4086
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

4087
	/* Other rcu_barrier() invocations can now safely proceed. */
4088
	mutex_unlock(&rsp->barrier_mutex);
4089 4090 4091 4092 4093 4094 4095
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
4096
	_rcu_barrier(&rcu_bh_state);
4097 4098 4099 4100 4101 4102 4103 4104
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
4105
	_rcu_barrier(&rcu_sched_state);
4106 4107 4108
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
4125
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4126 4127 4128 4129 4130
		rnp->qsmaskinit |= mask;
		raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
	}
}

4131
/*
4132
 * Do boot-time initialization of a CPU's per-CPU RCU data.
4133
 */
4134 4135
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4136 4137
{
	unsigned long flags;
4138
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4139 4140 4141
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
4142
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4143 4144
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4145
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4146
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4147
	rdp->cpu = cpu;
4148
	rdp->rsp = rsp;
4149
	mutex_init(&rdp->exp_funnel_mutex);
P
Paul E. McKenney 已提交
4150
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
4151
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
4152 4153 4154 4155 4156 4157 4158
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4159
 */
4160
static void
4161
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4162 4163 4164
{
	unsigned long flags;
	unsigned long mask;
4165
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4166 4167 4168
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
4169
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4170 4171
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
4172
	rdp->blimit = blimit;
4173 4174
	if (!rdp->nxtlist)
		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
4175
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4176
	rcu_sysidle_init_percpu_data(rdp->dynticks);
4177 4178
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
4179
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
4180

4181 4182 4183 4184 4185
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
4186 4187
	rnp = rdp->mynode;
	mask = rdp->grpmask;
4188
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4189
	rnp->qsmaskinitnext |= mask;
4190 4191 4192 4193
	rnp->expmaskinitnext |= mask;
	if (!rdp->beenonline)
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
	rdp->beenonline = true;	 /* We have now been online. */
4194 4195
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
4196
	rdp->cpu_no_qs.b.norm = true;
4197
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4198
	rdp->core_needs_qs = false;
4199 4200
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
4201 4202
}

4203
static void rcu_prepare_cpu(int cpu)
4204
{
4205 4206 4207
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
4208
		rcu_init_percpu_data(cpu, rsp);
4209 4210 4211
}

/*
4212
 * Handle CPU online/offline notification events.
4213
 */
4214 4215
int rcu_cpu_notify(struct notifier_block *self,
		   unsigned long action, void *hcpu)
4216 4217
{
	long cpu = (long)hcpu;
4218
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4219
	struct rcu_node *rnp = rdp->mynode;
4220
	struct rcu_state *rsp;
4221 4222 4223 4224

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
4225 4226
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
4227
		rcu_spawn_all_nocb_kthreads(cpu);
4228 4229
		break;
	case CPU_ONLINE:
4230
	case CPU_DOWN_FAILED:
4231
		sync_sched_exp_online_cleanup(cpu);
T
Thomas Gleixner 已提交
4232
		rcu_boost_kthread_setaffinity(rnp, -1);
4233 4234
		break;
	case CPU_DOWN_PREPARE:
4235
		rcu_boost_kthread_setaffinity(rnp, cpu);
4236
		break;
4237 4238
	case CPU_DYING:
	case CPU_DYING_FROZEN:
4239 4240
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
4241
		break;
4242
	case CPU_DYING_IDLE:
4243
		/* QS for any half-done expedited RCU-sched GP. */
4244 4245 4246 4247
		preempt_disable();
		rcu_report_exp_rdp(&rcu_sched_state,
				   this_cpu_ptr(rcu_sched_state.rda), true);
		preempt_enable();
4248

4249 4250 4251 4252
		for_each_rcu_flavor(rsp) {
			rcu_cleanup_dying_idle_cpu(cpu, rsp);
		}
		break;
4253 4254 4255 4256
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
4257
		for_each_rcu_flavor(rsp) {
4258
			rcu_cleanup_dead_cpu(cpu, rsp);
4259 4260
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
4261 4262 4263 4264
		break;
	default:
		break;
	}
4265
	return NOTIFY_OK;
4266 4267
}

4268 4269 4270 4271 4272 4273 4274
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4275
			rcu_expedite_gp();
4276 4277 4278
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
4279 4280
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
4281 4282 4283 4284 4285 4286 4287
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

4288
/*
4289
 * Spawn the kthreads that handle each RCU flavor's grace periods.
4290 4291 4292 4293
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
4294
	int kthread_prio_in = kthread_prio;
4295 4296
	struct rcu_node *rnp;
	struct rcu_state *rsp;
4297
	struct sched_param sp;
4298 4299
	struct task_struct *t;

4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

4311
	rcu_scheduler_fully_active = 1;
4312
	for_each_rcu_flavor(rsp) {
4313
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4314 4315
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
4316
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4317
		rsp->gp_kthread = t;
4318 4319 4320 4321 4322
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
		wake_up_process(t);
4323 4324
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
4325
	rcu_spawn_nocb_kthreads();
4326
	rcu_spawn_boost_kthreads();
4327 4328 4329 4330
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

4346 4347
/*
 * Compute the per-level fanout, either using the exact fanout specified
4348
 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4349
 */
4350
static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4351 4352 4353
{
	int i;

4354
	if (rcu_fanout_exact) {
4355
		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4356
		for (i = rcu_num_lvls - 2; i >= 0; i--)
4357
			levelspread[i] = RCU_FANOUT;
4358 4359 4360 4361 4362 4363
	} else {
		int ccur;
		int cprv;

		cprv = nr_cpu_ids;
		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4364 4365
			ccur = levelcnt[i];
			levelspread[i] = (cprv + ccur - 1) / ccur;
4366 4367
			cprv = ccur;
		}
4368 4369 4370 4371 4372 4373
	}
}

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
4374
static void __init rcu_init_one(struct rcu_state *rsp)
4375
{
4376 4377
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4378
	static const char * const exp[] = RCU_EXP_NAME_INIT;
4379 4380 4381
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
4382
	static u8 fl_mask = 0x1;
4383 4384 4385

	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4386 4387 4388 4389 4390
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4391
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4392

4393 4394 4395
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4396

4397 4398
	/* Initialize the level-tracking arrays. */

4399
	for (i = 0; i < rcu_num_lvls; i++)
4400
		levelcnt[i] = num_rcu_lvl[i];
4401
	for (i = 1; i < rcu_num_lvls; i++)
4402 4403
		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
	rcu_init_levelspread(levelspread, levelcnt);
4404 4405
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
4406 4407 4408

	/* Initialize the elements themselves, starting from the leaves. */

4409
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4410
		cpustride *= levelspread[i];
4411
		rnp = rsp->level[i];
4412
		for (j = 0; j < levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
4413
			raw_spin_lock_init(&rnp->lock);
4414 4415
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
4416 4417 4418
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4419 4420
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4421 4422 4423 4424
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4425 4426
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4427 4428 4429 4430 4431
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4432
				rnp->grpnum = j % levelspread[i - 1];
4433 4434
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4435
					      j / levelspread[i - 1];
4436 4437
			}
			rnp->level = i;
4438
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4439
			rcu_init_one_nocb(rnp);
4440
			mutex_init(&rnp->exp_funnel_mutex);
4441 4442
			lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
						   &rcu_exp_class[i], exp[i]);
4443 4444
		}
	}
4445

4446
	init_waitqueue_head(&rsp->gp_wq);
4447
	init_waitqueue_head(&rsp->expedited_wq);
4448
	rnp = rsp->level[rcu_num_lvls - 1];
4449
	for_each_possible_cpu(i) {
4450
		while (i > rnp->grphi)
4451
			rnp++;
4452
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4453 4454
		rcu_boot_init_percpu_data(i, rsp);
	}
4455
	list_add(&rsp->flavors, &rcu_struct_flavors);
4456 4457
}

4458 4459
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4460
 * replace the definitions in tree.h because those are needed to size
4461 4462 4463 4464
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4465
	ulong d;
4466
	int i;
4467
	int rcu_capacity[RCU_NUM_LVLS];
4468

4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4482
	/* If the compile-time values are accurate, just leave. */
4483
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4484
	    nr_cpu_ids == NR_CPUS)
4485
		return;
4486 4487
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4488 4489

	/*
4490 4491 4492 4493
	 * The boot-time rcu_fanout_leaf parameter must be at least two
	 * and cannot exceed the number of bits in the rcu_node masks.
	 * Complain and fall back to the compile-time values if this
	 * limit is exceeded.
4494
	 */
4495
	if (rcu_fanout_leaf < 2 ||
4496
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4497
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4498 4499 4500 4501 4502 4503
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4504
	 * with the given number of levels.
4505
	 */
4506
	rcu_capacity[0] = rcu_fanout_leaf;
4507
	for (i = 1; i < RCU_NUM_LVLS; i++)
4508
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4509 4510

	/*
4511
	 * The tree must be able to accommodate the configured number of CPUs.
4512
	 * If this limit is exceeded, fall back to the compile-time values.
4513
	 */
4514 4515 4516 4517 4518
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}
4519

4520
	/* Calculate the number of levels in the tree. */
4521
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4522
	}
4523
	rcu_num_lvls = i + 1;
4524

4525
	/* Calculate the number of rcu_nodes at each level of the tree. */
4526
	for (i = 0; i < rcu_num_lvls; i++) {
4527
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4528 4529
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4530 4531 4532

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4533
	for (i = 0; i < rcu_num_lvls; i++)
4534 4535 4536
		rcu_num_nodes += num_rcu_lvl[i];
}

4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4559
void __init rcu_init(void)
4560
{
P
Paul E. McKenney 已提交
4561
	int cpu;
4562

4563 4564
	rcu_early_boot_tests();

4565
	rcu_bootup_announce();
4566
	rcu_init_geometry();
4567 4568
	rcu_init_one(&rcu_bh_state);
	rcu_init_one(&rcu_sched_state);
4569 4570
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4571
	__rcu_init_preempt();
J
Jiang Fang 已提交
4572
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4573 4574 4575 4576 4577 4578 4579

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
4580
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
4581 4582
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4583 4584
}

4585
#include "tree_plugin.h"