slub.c 125.0 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
158
 * sort the partial list by the number of objects in use.
159 160 161
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

172 173
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
174
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
175

C
Christoph Lameter 已提交
176
/* Internal SLUB flags */
177
#define __OBJECT_POISON		0x80000000UL /* Poison object */
178
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
179 180 181 182 183

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

184 185 186
/*
 * Tracking user of a slab.
 */
187
#define TRACK_ADDRS_COUNT 16
188
struct track {
189
	unsigned long addr;	/* Called from address */
190 191 192
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
193 194 195 196 197 198 199
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

200
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
201 202
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
203
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
204
#else
205 206 207
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
208
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
209 210
#endif

211
static inline void stat(const struct kmem_cache *s, enum stat_item si)
212 213
{
#ifdef CONFIG_SLUB_STATS
214 215 216 217 218
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
219 220 221
#endif
}

C
Christoph Lameter 已提交
222 223 224 225
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

C
Christoph Lameter 已提交
226
/* Verify that a pointer has an address that is valid within a slab page */
227 228 229 230 231
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

232
	if (!object)
233 234
		return 1;

235
	base = page_address(page);
236
	if (object < base || object >= base + page->objects * s->size ||
237 238 239 240 241 242 243
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

244 245 246 247 248
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

249 250 251 252 253
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

254 255 256 257 258 259 260 261 262 263 264 265
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

266 267 268 269 270 271
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
272 273
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
274 275
			__p += (__s)->size)

276 277 278 279
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
	for (__p = (__addr), __idx = 1; __idx <= __objects;\
			__p += (__s)->size, __idx++)

280 281 282 283 284 285
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

286 287 288 289 290 291 292 293
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
294
		return s->object_size;
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

310 311 312 313 314
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

315
static inline struct kmem_cache_order_objects oo_make(int order,
316
		unsigned long size, int reserved)
317 318
{
	struct kmem_cache_order_objects x = {
319
		(order << OO_SHIFT) + order_objects(order, size, reserved)
320 321 322 323 324 325 326
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
327
	return x.x >> OO_SHIFT;
328 329 330 331
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
332
	return x.x & OO_MASK;
333 334
}

335 336 337 338 339 340 341 342 343 344 345 346 347
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

363 364 365 366 367 368 369
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
370 371
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
372
	if (s->flags & __CMPXCHG_DOUBLE) {
373
		if (cmpxchg_double(&page->freelist, &page->counters,
374 375 376
				   freelist_old, counters_old,
				   freelist_new, counters_new))
			return 1;
377 378 379 380
	} else
#endif
	{
		slab_lock(page);
381 382
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
383
			page->freelist = freelist_new;
384
			set_page_slub_counters(page, counters_new);
385 386 387 388 389 390 391 392 393 394
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
395
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
396 397 398 399 400
#endif

	return 0;
}

401 402 403 404 405
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
406 407
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
408
	if (s->flags & __CMPXCHG_DOUBLE) {
409
		if (cmpxchg_double(&page->freelist, &page->counters,
410 411 412
				   freelist_old, counters_old,
				   freelist_new, counters_new))
			return 1;
413 414 415
	} else
#endif
	{
416 417 418
		unsigned long flags;

		local_irq_save(flags);
419
		slab_lock(page);
420 421
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
422
			page->freelist = freelist_new;
423
			set_page_slub_counters(page, counters_new);
424
			slab_unlock(page);
425
			local_irq_restore(flags);
426 427
			return 1;
		}
428
		slab_unlock(page);
429
		local_irq_restore(flags);
430 431 432 433 434 435
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
436
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
437 438 439 440 441
#endif

	return 0;
}

442
#ifdef CONFIG_SLUB_DEBUG
443 444 445
/*
 * Determine a map of object in use on a page.
 *
446
 * Node listlock must be held to guarantee that the page does
447 448 449 450 451 452 453 454 455 456 457
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

458 459 460
/*
 * Debug settings:
 */
461 462 463
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
464
static int slub_debug;
465
#endif
466 467

static char *slub_debug_slabs;
468
static int disable_higher_order_debug;
469

C
Christoph Lameter 已提交
470 471 472 473 474
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
475 476
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
493
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
494
{
A
Akinobu Mita 已提交
495
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
496 497

	if (addr) {
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
516 517
		p->addr = addr;
		p->cpu = smp_processor_id();
518
		p->pid = current->pid;
C
Christoph Lameter 已提交
519 520 521 522 523 524 525
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
526 527 528
	if (!(s->flags & SLAB_STORE_USER))
		return;

529 530
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
531 532 533 534 535 536 537
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

538 539
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
540 541 542 543 544
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
545
				pr_err("\t%pS\n", (void *)t->addrs[i]);
546 547 548 549
			else
				break;
	}
#endif
550 551 552 553 554 555 556 557 558 559 560 561 562
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
563
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
564
	       page, page->objects, page->inuse, page->freelist, page->flags);
565 566 567 568 569

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
570
	struct va_format vaf;
571 572 573
	va_list args;

	va_start(args, fmt);
574 575
	vaf.fmt = fmt;
	vaf.va = &args;
576
	pr_err("=============================================================================\n");
577
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
578
	pr_err("-----------------------------------------------------------------------------\n\n");
579

580
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
581
	va_end(args);
C
Christoph Lameter 已提交
582 583
}

584 585
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
586
	struct va_format vaf;
587 588 589
	va_list args;

	va_start(args, fmt);
590 591 592
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
593 594 595 596
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
597 598
{
	unsigned int off;	/* Offset of last byte */
599
	u8 *addr = page_address(page);
600 601 602 603 604

	print_tracking(s, p);

	print_page_info(page);

605 606
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
607 608

	if (p > addr + 16)
609
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
610

611
	print_section("Object ", p, min_t(unsigned long, s->object_size,
612
				PAGE_SIZE));
C
Christoph Lameter 已提交
613
	if (s->flags & SLAB_RED_ZONE)
614 615
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
616 617 618 619 620 621

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

622
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
623 624 625 626
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
627
		print_section("Padding ", p + off, s->size - off);
628 629

	dump_stack();
C
Christoph Lameter 已提交
630 631 632 633 634
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
635
	slab_bug(s, "%s", reason);
636
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
637 638
}

639 640
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
641 642 643 644
{
	va_list args;
	char buf[100];

645 646
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
647
	va_end(args);
648
	slab_bug(s, "%s", buf);
649
	print_page_info(page);
C
Christoph Lameter 已提交
650 651 652
	dump_stack();
}

653
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
654 655 656 657
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
658 659
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
660 661 662
	}

	if (s->flags & SLAB_RED_ZONE)
663
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
664 665
}

666 667 668 669 670 671 672 673 674
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
675
			u8 *start, unsigned int value, unsigned int bytes)
676 677 678 679
{
	u8 *fault;
	u8 *end;

680
	fault = memchr_inv(start, value, bytes);
681 682 683 684 685 686 687 688
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
689
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 691 692 693 694
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
695 696 697 698 699 700 701 702 703
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
704
 *
C
Christoph Lameter 已提交
705 706 707
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
708
 * object + s->object_size
C
Christoph Lameter 已提交
709
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
710
 * 	Padding is extended by another word if Redzoning is enabled and
711
 * 	object_size == inuse.
C
Christoph Lameter 已提交
712
 *
C
Christoph Lameter 已提交
713 714 715 716
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
717 718
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
719 720
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
721
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
722
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
723 724 725
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
726 727
 *
 * object + s->size
C
Christoph Lameter 已提交
728
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
729
 *
730
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
731
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

750 751
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
752 753
}

754
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
755 756
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
757 758 759 760 761
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
762 763 764 765

	if (!(s->flags & SLAB_POISON))
		return 1;

766
	start = page_address(page);
767
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 769
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
770 771 772
	if (!remainder)
		return 1;

773
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 775 776 777 778 779
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780
	print_section("Padding ", end - remainder, remainder);
781

E
Eric Dumazet 已提交
782
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783
	return 0;
C
Christoph Lameter 已提交
784 785 786
}

static int check_object(struct kmem_cache *s, struct page *page,
787
					void *object, u8 val)
C
Christoph Lameter 已提交
788 789
{
	u8 *p = object;
790
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
791 792

	if (s->flags & SLAB_RED_ZONE) {
793
		if (!check_bytes_and_report(s, page, object, "Redzone",
794
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
795 796
			return 0;
	} else {
797
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
798
			check_bytes_and_report(s, page, p, "Alignment padding",
799 800
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
801
		}
C
Christoph Lameter 已提交
802 803 804
	}

	if (s->flags & SLAB_POISON) {
805
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
806
			(!check_bytes_and_report(s, page, p, "Poison", p,
807
					POISON_FREE, s->object_size - 1) ||
808
			 !check_bytes_and_report(s, page, p, "Poison",
809
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
810 811 812 813 814 815 816
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

817
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
818 819 820 821 822 823 824 825 826 827
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
828
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
829
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
830
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
831
		 */
832
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
833 834 835 836 837 838 839
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
840 841
	int maxobj;

C
Christoph Lameter 已提交
842 843 844
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
845
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
846 847
		return 0;
	}
848

849
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
850 851 852 853 854 855
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
856
		slab_err(s, page, "inuse %u > max %u",
857
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
858 859 860 861 862 863 864 865
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
866 867
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
868 869 870 871
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
872
	void *fp;
C
Christoph Lameter 已提交
873
	void *object = NULL;
874
	unsigned long max_objects;
C
Christoph Lameter 已提交
875

876
	fp = page->freelist;
877
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
878 879 880 881 882 883
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
884
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
885
			} else {
886
				slab_err(s, page, "Freepointer corrupt");
887
				page->freelist = NULL;
888
				page->inuse = page->objects;
889
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
890 891 892 893 894 895 896 897 898
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

899
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 901
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
902 903 904 905 906 907 908

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
909
	if (page->inuse != page->objects - nr) {
910
		slab_err(s, page, "Wrong object count. Counter is %d but "
911 912
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
913
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
914 915 916 917
	}
	return search == NULL;
}

918 919
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
920 921
{
	if (s->flags & SLAB_TRACE) {
922
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 924 925 926 927 928
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
929 930
			print_section("Object ", (void *)object,
					s->object_size);
931 932 933 934 935

		dump_stack();
	}
}

936
/*
C
Christoph Lameter 已提交
937
 * Tracking of fully allocated slabs for debugging purposes.
938
 */
939 940
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
941
{
942 943 944
	if (!(s->flags & SLAB_STORE_USER))
		return;

945
	lockdep_assert_held(&n->list_lock);
946 947 948
	list_add(&page->lru, &n->full);
}

949
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
950 951 952 953
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

954
	lockdep_assert_held(&n->list_lock);
955 956 957
	list_del(&page->lru);
}

958 959 960 961 962 963 964 965
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

966 967 968 969 970
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

971
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
972 973 974 975 976 977 978 979 980
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
981
	if (likely(n)) {
982
		atomic_long_inc(&n->nr_slabs);
983 984
		atomic_long_add(objects, &n->total_objects);
	}
985
}
986
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
987 988 989 990
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
991
	atomic_long_sub(objects, &n->total_objects);
992 993 994
}

/* Object debug checks for alloc/free paths */
995 996 997 998 999 1000
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1001
	init_object(s, object, SLUB_RED_INACTIVE);
1002 1003 1004
	init_tracking(s, object);
}

1005 1006
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1007
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1008 1009 1010 1011 1012 1013
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1014
		goto bad;
C
Christoph Lameter 已提交
1015 1016
	}

1017
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1018 1019
		goto bad;

1020 1021 1022 1023
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1024
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1025
	return 1;
1026

C
Christoph Lameter 已提交
1027 1028 1029 1030 1031
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1032
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1033
		 */
1034
		slab_fix(s, "Marking all objects used");
1035
		page->inuse = page->objects;
1036
		page->freelist = NULL;
C
Christoph Lameter 已提交
1037 1038 1039 1040
	}
	return 0;
}

1041 1042 1043
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1044
{
1045
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1046

1047
	spin_lock_irqsave(&n->list_lock, *flags);
1048 1049
	slab_lock(page);

C
Christoph Lameter 已提交
1050 1051 1052 1053
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1054
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1055 1056 1057 1058
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1059
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1060 1061 1062
		goto fail;
	}

1063
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1064
		goto out;
C
Christoph Lameter 已提交
1065

1066
	if (unlikely(s != page->slab_cache)) {
1067
		if (!PageSlab(page)) {
1068 1069
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1070
		} else if (!page->slab_cache) {
1071 1072
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1073
			dump_stack();
1074
		} else
1075 1076
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1077 1078
		goto fail;
	}
1079 1080 1081 1082

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1083
	init_object(s, object, SLUB_RED_INACTIVE);
1084
out:
1085
	slab_unlock(page);
1086 1087 1088 1089 1090
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
1091

C
Christoph Lameter 已提交
1092
fail:
1093 1094
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1095
	slab_fix(s, "Object at 0x%p not freed", object);
1096
	return NULL;
C
Christoph Lameter 已提交
1097 1098
}

1099 1100
static int __init setup_slub_debug(char *str)
{
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1115 1116 1117 1118 1119 1120 1121 1122 1123
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
1134
	for (; *str && *str != ','; str++) {
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1151 1152 1153
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1154
		default:
1155 1156
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1157
		}
1158 1159
	}

1160
check_slabs:
1161 1162
	if (*str == ',')
		slub_debug_slabs = str + 1;
1163
out:
1164 1165 1166 1167 1168
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1169
unsigned long kmem_cache_flags(unsigned long object_size,
1170
	unsigned long flags, const char *name,
1171
	void (*ctor)(void *))
1172 1173
{
	/*
1174
	 * Enable debugging if selected on the kernel commandline.
1175
	 */
1176 1177
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1178
		flags |= slub_debug;
1179 1180

	return flags;
1181 1182
}
#else
1183 1184
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
1185

1186
static inline int alloc_debug_processing(struct kmem_cache *s,
1187
	struct page *page, void *object, unsigned long addr) { return 0; }
1188

1189 1190 1191
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
1192 1193 1194 1195

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1196
			void *object, u8 val) { return 1; }
1197 1198
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1199 1200
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1201
unsigned long kmem_cache_flags(unsigned long object_size,
1202
	unsigned long flags, const char *name,
1203
	void (*ctor)(void *))
1204 1205 1206
{
	return flags;
}
1207
#define slub_debug 0
1208

1209 1210
#define disable_higher_order_debug 0

1211 1212
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1213 1214
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1215 1216 1217 1218
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1219

1220 1221 1222 1223 1224 1225
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

1236
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1237 1238 1239 1240
{
	flags &= gfp_allowed_mask;
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);
1241

1242 1243 1244 1245 1246
	return should_failslab(s->object_size, flags, s->flags);
}

static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
1247
{
1248 1249 1250
	flags &= gfp_allowed_mask;
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1251
}
1252

1253 1254 1255
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
}
1275

C
Christoph Lameter 已提交
1276 1277 1278
/*
 * Slab allocation and freeing
 */
1279 1280
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1281
{
1282
	struct page *page;
1283 1284
	int order = oo_order(oo);

1285 1286
	flags |= __GFP_NOTRACK;

1287 1288 1289
	if (memcg_charge_slab(s, flags, order))
		return NULL;

1290
	if (node == NUMA_NO_NODE)
1291
		page = alloc_pages(flags, order);
1292
	else
1293 1294 1295 1296 1297 1298
		page = alloc_pages_exact_node(node, flags, order);

	if (!page)
		memcg_uncharge_slab(s, order);

	return page;
1299 1300
}

C
Christoph Lameter 已提交
1301 1302
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
1303
	struct page *page;
1304
	struct kmem_cache_order_objects oo = s->oo;
1305
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1306

1307 1308 1309 1310 1311
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1312
	flags |= s->allocflags;
1313

1314 1315 1316 1317 1318 1319
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

1320
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1321 1322
	if (unlikely(!page)) {
		oo = s->min;
1323
		alloc_gfp = flags;
1324 1325 1326 1327
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1328
		page = alloc_slab_page(s, alloc_gfp, node, oo);
C
Christoph Lameter 已提交
1329

1330 1331
		if (page)
			stat(s, ORDER_FALLBACK);
1332
	}
1333

1334
	if (kmemcheck_enabled && page
1335
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1336 1337
		int pages = 1 << oo_order(oo);

1338
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1339 1340 1341 1342 1343 1344 1345 1346 1347

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
1348 1349
	}

1350 1351 1352 1353 1354
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1355
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1356 1357 1358
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1359
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1360 1361 1362 1363 1364 1365 1366

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
1367
	setup_object_debug(s, page, object);
1368
	if (unlikely(s->ctor))
1369
		s->ctor(object);
C
Christoph Lameter 已提交
1370 1371 1372 1373 1374 1375 1376
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *p;
1377
	int order;
1378
	int idx;
C
Christoph Lameter 已提交
1379

C
Christoph Lameter 已提交
1380
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1381

C
Christoph Lameter 已提交
1382 1383
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1384 1385 1386
	if (!page)
		goto out;

1387
	order = compound_order(page);
1388
	inc_slabs_node(s, page_to_nid(page), page->objects);
1389
	page->slab_cache = s;
1390
	__SetPageSlab(page);
1391 1392
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1393 1394 1395 1396

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
1397
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1398

1399 1400 1401 1402 1403 1404
	for_each_object_idx(p, idx, s, start, page->objects) {
		setup_object(s, page, p);
		if (likely(idx < page->objects))
			set_freepointer(s, p, p + s->size);
		else
			set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1405 1406 1407
	}

	page->freelist = start;
1408
	page->inuse = page->objects;
1409
	page->frozen = 1;
C
Christoph Lameter 已提交
1410 1411 1412 1413 1414 1415
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1416 1417
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1418

1419
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1420 1421 1422
		void *p;

		slab_pad_check(s, page);
1423 1424
		for_each_object(p, s, page_address(page),
						page->objects)
1425
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1426 1427
	}

1428
	kmemcheck_free_shadow(page, compound_order(page));
1429

C
Christoph Lameter 已提交
1430 1431 1432
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1433
		-pages);
C
Christoph Lameter 已提交
1434

1435
	__ClearPageSlabPfmemalloc(page);
1436
	__ClearPageSlab(page);
1437

1438
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1439 1440
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1441 1442
	__free_pages(page, order);
	memcg_uncharge_slab(s, order);
C
Christoph Lameter 已提交
1443 1444
}

1445 1446 1447
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1448 1449 1450 1451
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1452 1453 1454 1455 1456
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1457
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1458 1459 1460 1461 1462
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1477 1478 1479 1480 1481 1482 1483 1484

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1485
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1486 1487 1488 1489
	free_slab(s, page);
}

/*
1490
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1491
 */
1492 1493
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1494
{
C
Christoph Lameter 已提交
1495
	n->nr_partial++;
1496
	if (tail == DEACTIVATE_TO_TAIL)
1497 1498 1499
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1500 1501
}

1502 1503
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1504
{
1505
	lockdep_assert_held(&n->list_lock);
1506 1507
	__add_partial(n, page, tail);
}
1508

1509 1510 1511
static inline void
__remove_partial(struct kmem_cache_node *n, struct page *page)
{
1512 1513 1514 1515
	list_del(&page->lru);
	n->nr_partial--;
}

1516 1517 1518 1519 1520 1521 1522
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
	__remove_partial(n, page);
}

C
Christoph Lameter 已提交
1523
/*
1524 1525
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1526
 *
1527
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1528
 */
1529
static inline void *acquire_slab(struct kmem_cache *s,
1530
		struct kmem_cache_node *n, struct page *page,
1531
		int mode, int *objects)
C
Christoph Lameter 已提交
1532
{
1533 1534 1535 1536
	void *freelist;
	unsigned long counters;
	struct page new;

1537 1538
	lockdep_assert_held(&n->list_lock);

1539 1540 1541 1542 1543
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1544 1545 1546
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1547
	*objects = new.objects - new.inuse;
1548
	if (mode) {
1549
		new.inuse = page->objects;
1550 1551 1552 1553
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1554

1555
	VM_BUG_ON(new.frozen);
1556
	new.frozen = 1;
1557

1558
	if (!__cmpxchg_double_slab(s, page,
1559
			freelist, counters,
1560
			new.freelist, new.counters,
1561 1562
			"acquire_slab"))
		return NULL;
1563 1564

	remove_partial(n, page);
1565
	WARN_ON(!freelist);
1566
	return freelist;
C
Christoph Lameter 已提交
1567 1568
}

1569
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1570
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1571

C
Christoph Lameter 已提交
1572
/*
C
Christoph Lameter 已提交
1573
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1574
 */
1575 1576
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1577
{
1578 1579
	struct page *page, *page2;
	void *object = NULL;
1580 1581
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1582 1583 1584 1585

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1586 1587
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1588 1589 1590 1591 1592
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1593
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1594
		void *t;
1595

1596 1597 1598
		if (!pfmemalloc_match(page, flags))
			continue;

1599
		t = acquire_slab(s, n, page, object == NULL, &objects);
1600 1601 1602
		if (!t)
			break;

1603
		available += objects;
1604
		if (!object) {
1605 1606 1607 1608
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1609
			put_cpu_partial(s, page, 0);
1610
			stat(s, CPU_PARTIAL_NODE);
1611
		}
1612 1613
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1614 1615
			break;

1616
	}
C
Christoph Lameter 已提交
1617
	spin_unlock(&n->list_lock);
1618
	return object;
C
Christoph Lameter 已提交
1619 1620 1621
}

/*
C
Christoph Lameter 已提交
1622
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1623
 */
1624
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1625
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1626 1627 1628
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1629
	struct zoneref *z;
1630 1631
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1632
	void *object;
1633
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1634 1635

	/*
C
Christoph Lameter 已提交
1636 1637 1638 1639
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1640
	 *
C
Christoph Lameter 已提交
1641 1642 1643 1644
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1645
	 *
C
Christoph Lameter 已提交
1646
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1647 1648 1649 1650 1651
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1652
	 */
1653 1654
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1655 1656
		return NULL;

1657
	do {
1658
		cpuset_mems_cookie = read_mems_allowed_begin();
1659
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1660 1661 1662 1663 1664 1665 1666
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
1667
				object = get_partial_node(s, n, c, flags);
1668 1669
				if (object) {
					/*
1670 1671 1672 1673 1674
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1675 1676 1677
					 */
					return object;
				}
1678
			}
C
Christoph Lameter 已提交
1679
		}
1680
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1681 1682 1683 1684 1685 1686 1687
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1688
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1689
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1690
{
1691
	void *object;
1692 1693 1694 1695 1696 1697
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1698

1699
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1700 1701
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1702

1703
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1704 1705
}

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1747
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1748 1749 1750

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1751
		pr_warn("due to cpu change %d -> %d\n",
1752 1753 1754 1755
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1756
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1757 1758
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1759
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1760 1761
			actual_tid, tid, next_tid(tid));
#endif
1762
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1763 1764
}

1765
static void init_kmem_cache_cpus(struct kmem_cache *s)
1766 1767 1768 1769 1770 1771
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1772

C
Christoph Lameter 已提交
1773 1774 1775
/*
 * Remove the cpu slab
 */
1776 1777
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1778
{
1779 1780 1781 1782 1783
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1784
	int tail = DEACTIVATE_TO_HEAD;
1785 1786 1787 1788
	struct page new;
	struct page old;

	if (page->freelist) {
1789
		stat(s, DEACTIVATE_REMOTE_FREES);
1790
		tail = DEACTIVATE_TO_TAIL;
1791 1792
	}

1793
	/*
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1811
			VM_BUG_ON(!new.frozen);
1812

1813
		} while (!__cmpxchg_double_slab(s, page,
1814 1815 1816 1817 1818 1819 1820
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1821
	/*
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1834
	 */
1835
redo:
1836

1837 1838
	old.freelist = page->freelist;
	old.counters = page->counters;
1839
	VM_BUG_ON(!old.frozen);
1840

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1852
	if (!new.inuse && n->nr_partial >= s->min_partial)
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1885

1886
			remove_full(s, n, page);
1887 1888 1889 1890

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1891
			stat(s, tail);
1892 1893

		} else if (m == M_FULL) {
1894

1895 1896 1897 1898 1899 1900 1901
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1902
	if (!__cmpxchg_double_slab(s, page,
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1915
	}
C
Christoph Lameter 已提交
1916 1917
}

1918 1919 1920
/*
 * Unfreeze all the cpu partial slabs.
 *
1921 1922 1923
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1924
 */
1925 1926
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1927
{
1928
#ifdef CONFIG_SLUB_CPU_PARTIAL
1929
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1930
	struct page *page, *discard_page = NULL;
1931 1932 1933 1934 1935 1936

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1937 1938 1939 1940 1941 1942 1943 1944 1945

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1946 1947 1948 1949 1950

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1951
			VM_BUG_ON(!old.frozen);
1952 1953 1954 1955 1956 1957

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1958
		} while (!__cmpxchg_double_slab(s, page,
1959 1960 1961 1962
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1963
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1964 1965
			page->next = discard_page;
			discard_page = page;
1966 1967 1968
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1969 1970 1971 1972 1973
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1974 1975 1976 1977 1978 1979 1980 1981 1982

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
1983
#endif
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
1995
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1996
{
1997
#ifdef CONFIG_SLUB_CPU_PARTIAL
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	struct page *oldpage;
	int pages;
	int pobjects;

	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2017
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2018
				local_irq_restore(flags);
2019
				oldpage = NULL;
2020 2021
				pobjects = 0;
				pages = 0;
2022
				stat(s, CPU_PARTIAL_DRAIN);
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2033 2034
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2035
#endif
2036 2037
}

2038
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2039
{
2040
	stat(s, CPUSLAB_FLUSH);
2041 2042 2043 2044 2045
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2046 2047 2048 2049
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2050
 *
C
Christoph Lameter 已提交
2051 2052
 * Called from IPI handler with interrupts disabled.
 */
2053
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2054
{
2055
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2056

2057 2058 2059 2060
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2061
		unfreeze_partials(s, c);
2062
	}
C
Christoph Lameter 已提交
2063 2064 2065 2066 2067 2068
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2069
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2070 2071
}

2072 2073 2074 2075 2076
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2077
	return c->page || c->partial;
2078 2079
}

C
Christoph Lameter 已提交
2080 2081
static void flush_all(struct kmem_cache *s)
{
2082
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2083 2084
}

2085 2086 2087 2088
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2089
static inline int node_match(struct page *page, int node)
2090 2091
{
#ifdef CONFIG_NUMA
2092
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2093 2094 2095 2096 2097
		return 0;
#endif
	return 1;
}

2098
#ifdef CONFIG_SLUB_DEBUG
2099 2100 2101 2102 2103
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2104 2105 2106 2107 2108 2109 2110
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2124
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2125

2126 2127 2128
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2129 2130 2131
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
2132
	int node;
2133
	struct kmem_cache_node *n;
2134

2135 2136 2137
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2138
	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2139
		nid, gfpflags);
2140 2141 2142
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
2143

2144
	if (oo_order(s->min) > get_order(s->object_size))
2145 2146
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2147

2148
	for_each_kmem_cache_node(s, node, n) {
2149 2150 2151 2152
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2153 2154 2155
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
2156

2157
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2158 2159
			node, nr_slabs, nr_objs, nr_free);
	}
2160
#endif
2161 2162
}

2163 2164 2165
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2166
	void *freelist;
2167 2168
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2169

2170
	freelist = get_partial(s, flags, node, c);
2171

2172 2173 2174 2175
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2176
	if (page) {
2177
		c = raw_cpu_ptr(s->cpu_slab);
2178 2179 2180 2181 2182 2183 2184
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2185
		freelist = page->freelist;
2186 2187 2188 2189 2190 2191
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2192
		freelist = NULL;
2193

2194
	return freelist;
2195 2196
}

2197 2198 2199 2200 2201 2202 2203 2204
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2205
/*
2206 2207
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2208 2209 2210 2211
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2212 2213
 *
 * This function must be called with interrupt disabled.
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2224

2225
		new.counters = counters;
2226
		VM_BUG_ON(!new.frozen);
2227 2228 2229 2230

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2231
	} while (!__cmpxchg_double_slab(s, page,
2232 2233 2234 2235 2236 2237 2238
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2239
/*
2240 2241 2242 2243 2244 2245
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2246
 *
2247 2248 2249
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2250
 *
2251
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2252 2253
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2254
 */
2255 2256
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2257
{
2258
	void *freelist;
2259
	struct page *page;
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2271

2272 2273
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2274
		goto new_slab;
2275
redo:
2276

2277
	if (unlikely(!node_match(page, node))) {
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
			deactivate_slab(s, page, c->freelist);
			c->page = NULL;
			c->freelist = NULL;
			goto new_slab;
		}
2290
	}
C
Christoph Lameter 已提交
2291

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2304
	/* must check again c->freelist in case of cpu migration or IRQ */
2305 2306
	freelist = c->freelist;
	if (freelist)
2307
		goto load_freelist;
2308

2309
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2310

2311
	if (!freelist) {
2312 2313
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2314
		goto new_slab;
2315
	}
C
Christoph Lameter 已提交
2316

2317
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2318

2319
load_freelist:
2320 2321 2322 2323 2324
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2325
	VM_BUG_ON(!c->page->frozen);
2326
	c->freelist = get_freepointer(s, freelist);
2327 2328
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2329
	return freelist;
C
Christoph Lameter 已提交
2330 2331

new_slab:
2332

2333
	if (c->partial) {
2334 2335
		page = c->page = c->partial;
		c->partial = page->next;
2336 2337 2338
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2339 2340
	}

2341
	freelist = new_slab_objects(s, gfpflags, node, &c);
2342

2343
	if (unlikely(!freelist)) {
2344
		slab_out_of_memory(s, gfpflags, node);
2345 2346
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2347
	}
2348

2349
	page = c->page;
2350
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2351
		goto load_freelist;
2352

2353
	/* Only entered in the debug case */
2354 2355
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2356
		goto new_slab;	/* Slab failed checks. Next slab needed */
2357

2358
	deactivate_slab(s, page, get_freepointer(s, freelist));
2359 2360
	c->page = NULL;
	c->freelist = NULL;
2361
	local_irq_restore(flags);
2362
	return freelist;
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2375
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2376
		gfp_t gfpflags, int node, unsigned long addr)
2377 2378
{
	void **object;
2379
	struct kmem_cache_cpu *c;
2380
	struct page *page;
2381
	unsigned long tid;
2382

2383
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2384
		return NULL;
2385

2386
	s = memcg_kmem_get_cache(s, gfpflags);
2387 2388 2389 2390 2391 2392
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2393 2394 2395 2396 2397
	 *
	 * Preemption is disabled for the retrieval of the tid because that
	 * must occur from the current processor. We cannot allow rescheduling
	 * on a different processor between the determination of the pointer
	 * and the retrieval of the tid.
2398
	 */
2399
	preempt_disable();
2400
	c = this_cpu_ptr(s->cpu_slab);
2401 2402 2403 2404 2405 2406 2407 2408

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
2409
	preempt_enable();
2410

2411
	object = c->freelist;
2412
	page = c->page;
2413
	if (unlikely(!object || !node_match(page, node))) {
2414
		object = __slab_alloc(s, gfpflags, node, addr, c);
2415 2416
		stat(s, ALLOC_SLOWPATH);
	} else {
2417 2418
		void *next_object = get_freepointer_safe(s, object);

2419
		/*
L
Lucas De Marchi 已提交
2420
		 * The cmpxchg will only match if there was no additional
2421 2422
		 * operation and if we are on the right processor.
		 *
2423 2424
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2425 2426 2427 2428
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2429 2430 2431
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2432
		 */
2433
		if (unlikely(!this_cpu_cmpxchg_double(
2434 2435
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2436
				next_object, next_tid(tid)))) {
2437 2438 2439 2440

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2441
		prefetch_freepointer(s, next_object);
2442
		stat(s, ALLOC_FASTPATH);
2443
	}
2444

2445
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2446
		memset(object, 0, s->object_size);
2447

2448
	slab_post_alloc_hook(s, gfpflags, object);
2449

2450
	return object;
C
Christoph Lameter 已提交
2451 2452
}

2453 2454 2455 2456 2457 2458
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2459 2460
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2461
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2462

2463 2464
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
2465 2466

	return ret;
C
Christoph Lameter 已提交
2467 2468 2469
}
EXPORT_SYMBOL(kmem_cache_alloc);

2470
#ifdef CONFIG_TRACING
2471 2472
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2473
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2474 2475 2476 2477
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
2478 2479
#endif

C
Christoph Lameter 已提交
2480 2481 2482
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2483
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2484

2485
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2486
				    s->object_size, s->size, gfpflags, node);
2487 2488

	return ret;
C
Christoph Lameter 已提交
2489 2490 2491
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2492
#ifdef CONFIG_TRACING
2493
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2494
				    gfp_t gfpflags,
2495
				    int node, size_t size)
2496
{
2497
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2498 2499 2500 2501

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
2502
}
2503
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2504
#endif
2505
#endif
2506

C
Christoph Lameter 已提交
2507
/*
2508 2509
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2510
 *
2511 2512 2513
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2514
 */
2515
static void __slab_free(struct kmem_cache *s, struct page *page,
2516
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2517 2518 2519
{
	void *prior;
	void **object = (void *)x;
2520 2521 2522 2523
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2524
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2525

2526
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2527

2528 2529
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2530
		return;
C
Christoph Lameter 已提交
2531

2532
	do {
2533 2534 2535 2536
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2537 2538 2539 2540 2541 2542
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2543
		if ((!new.inuse || !prior) && !was_frozen) {
2544

2545
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2546 2547

				/*
2548 2549 2550 2551
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2552 2553 2554
				 */
				new.frozen = 1;

2555
			} else { /* Needs to be taken off a list */
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2569
		}
C
Christoph Lameter 已提交
2570

2571 2572 2573 2574
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2575

2576
	if (likely(!n)) {
2577 2578 2579 2580 2581

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2582
		if (new.frozen && !was_frozen) {
2583
			put_cpu_partial(s, page, 1);
2584 2585
			stat(s, CPU_PARTIAL_FREE);
		}
2586
		/*
2587 2588 2589 2590 2591
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2592
                return;
2593
        }
C
Christoph Lameter 已提交
2594

2595
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2596 2597
		goto slab_empty;

C
Christoph Lameter 已提交
2598
	/*
2599 2600
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2601
	 */
2602 2603
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
2604
			remove_full(s, n, page);
2605 2606
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2607
	}
2608
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2609 2610 2611
	return;

slab_empty:
2612
	if (prior) {
C
Christoph Lameter 已提交
2613
		/*
2614
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2615
		 */
2616
		remove_partial(n, page);
2617
		stat(s, FREE_REMOVE_PARTIAL);
2618
	} else {
2619
		/* Slab must be on the full list */
2620 2621
		remove_full(s, n, page);
	}
2622

2623
	spin_unlock_irqrestore(&n->list_lock, flags);
2624
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2625 2626 2627
	discard_slab(s, page);
}

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
2639
static __always_inline void slab_free(struct kmem_cache *s,
2640
			struct page *page, void *x, unsigned long addr)
2641 2642
{
	void **object = (void *)x;
2643
	struct kmem_cache_cpu *c;
2644
	unsigned long tid;
2645

2646 2647
	slab_free_hook(s, x);

2648 2649 2650 2651 2652 2653 2654
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2655
	preempt_disable();
2656
	c = this_cpu_ptr(s->cpu_slab);
2657

2658
	tid = c->tid;
2659
	preempt_enable();
2660

2661
	if (likely(page == c->page)) {
2662
		set_freepointer(s, object, c->freelist);
2663

2664
		if (unlikely(!this_cpu_cmpxchg_double(
2665 2666 2667 2668 2669 2670 2671
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2672
		stat(s, FREE_FASTPATH);
2673
	} else
2674
		__slab_free(s, page, x, addr);
2675 2676 2677

}

C
Christoph Lameter 已提交
2678 2679
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2680 2681
	s = cache_from_obj(s, x);
	if (!s)
2682
		return;
2683
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2684
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2685 2686 2687 2688
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2689 2690 2691 2692
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2693 2694 2695 2696
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2697
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2708
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2709
static int slub_min_objects;
C
Christoph Lameter 已提交
2710 2711 2712 2713

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2714 2715 2716 2717
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
2718
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2719 2720 2721 2722 2723 2724
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2725
 *
C
Christoph Lameter 已提交
2726 2727 2728 2729
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2730
 *
C
Christoph Lameter 已提交
2731 2732 2733 2734
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2735
 */
2736
static inline int slab_order(int size, int min_objects,
2737
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2738 2739 2740
{
	int order;
	int rem;
2741
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2742

2743
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2744
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2745

2746
	for (order = max(min_order,
2747 2748
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2749

2750
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2751

2752
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2753 2754
			continue;

2755
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2756

2757
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2758 2759 2760
			break;

	}
C
Christoph Lameter 已提交
2761

C
Christoph Lameter 已提交
2762 2763 2764
	return order;
}

2765
static inline int calculate_order(int size, int reserved)
2766 2767 2768 2769
{
	int order;
	int min_objects;
	int fraction;
2770
	int max_objects;
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2781 2782
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2783
	max_objects = order_objects(slub_max_order, size, reserved);
2784 2785
	min_objects = min(min_objects, max_objects);

2786
	while (min_objects > 1) {
2787
		fraction = 16;
2788 2789
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2790
					slub_max_order, fraction, reserved);
2791 2792 2793 2794
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2795
		min_objects--;
2796 2797 2798 2799 2800 2801
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2802
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2803 2804 2805 2806 2807 2808
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2809
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2810
	if (order < MAX_ORDER)
2811 2812 2813 2814
		return order;
	return -ENOSYS;
}

2815
static void
2816
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2817 2818 2819 2820
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2821
#ifdef CONFIG_SLUB_DEBUG
2822
	atomic_long_set(&n->nr_slabs, 0);
2823
	atomic_long_set(&n->total_objects, 0);
2824
	INIT_LIST_HEAD(&n->full);
2825
#endif
C
Christoph Lameter 已提交
2826 2827
}

2828
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2829
{
2830
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2831
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2832

2833
	/*
2834 2835
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2836
	 */
2837 2838
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2839 2840 2841 2842 2843

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2844

2845
	return 1;
2846 2847
}

2848 2849
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2850 2851 2852 2853 2854
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
2855 2856
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
2857
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2858
 */
2859
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2860 2861 2862 2863
{
	struct page *page;
	struct kmem_cache_node *n;

2864
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2865

2866
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2867 2868

	BUG_ON(!page);
2869
	if (page_to_nid(page) != node) {
2870 2871
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2872 2873
	}

C
Christoph Lameter 已提交
2874 2875
	n = page->freelist;
	BUG_ON(!n);
2876
	page->freelist = get_freepointer(kmem_cache_node, n);
2877
	page->inuse = 1;
2878
	page->frozen = 0;
2879
	kmem_cache_node->node[node] = n;
2880
#ifdef CONFIG_SLUB_DEBUG
2881
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2882
	init_tracking(kmem_cache_node, n);
2883
#endif
2884
	init_kmem_cache_node(n);
2885
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2886

2887
	/*
2888 2889
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
2890
	 */
2891
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2892 2893 2894 2895 2896
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
2897
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
2898

2899 2900
	for_each_kmem_cache_node(s, node, n) {
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
2901 2902 2903 2904
		s->node[node] = NULL;
	}
}

2905
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2906 2907 2908
{
	int node;

2909
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2910 2911
		struct kmem_cache_node *n;

2912
		if (slab_state == DOWN) {
2913
			early_kmem_cache_node_alloc(node);
2914 2915
			continue;
		}
2916
		n = kmem_cache_alloc_node(kmem_cache_node,
2917
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2918

2919 2920 2921
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2922
		}
2923

C
Christoph Lameter 已提交
2924
		s->node[node] = n;
2925
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2926 2927 2928 2929
	}
	return 1;
}

2930
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2931 2932 2933 2934 2935 2936 2937 2938
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2939 2940 2941 2942
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2943
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2944 2945
{
	unsigned long flags = s->flags;
2946
	unsigned long size = s->object_size;
2947
	int order;
C
Christoph Lameter 已提交
2948

2949 2950 2951 2952 2953 2954 2955 2956
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2957 2958 2959 2960 2961 2962
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2963
			!s->ctor)
C
Christoph Lameter 已提交
2964 2965 2966 2967 2968 2969
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2970
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2971
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2972
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2973
	 */
2974
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
2975
		size += sizeof(void *);
2976
#endif
C
Christoph Lameter 已提交
2977 2978

	/*
C
Christoph Lameter 已提交
2979 2980
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2981 2982 2983 2984
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2985
		s->ctor)) {
C
Christoph Lameter 已提交
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2998
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2999 3000 3001 3002 3003 3004 3005
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3006
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3007 3008 3009 3010
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3011
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3012 3013 3014
		 * of the object.
		 */
		size += sizeof(void *);
3015
#endif
C
Christoph Lameter 已提交
3016

C
Christoph Lameter 已提交
3017 3018 3019 3020 3021
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3022
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3023
	s->size = size;
3024 3025 3026
	if (forced_order >= 0)
		order = forced_order;
	else
3027
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3028

3029
	if (order < 0)
C
Christoph Lameter 已提交
3030 3031
		return 0;

3032
	s->allocflags = 0;
3033
	if (order)
3034 3035 3036
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3037
		s->allocflags |= GFP_DMA;
3038 3039 3040 3041

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3042 3043 3044
	/*
	 * Determine the number of objects per slab
	 */
3045 3046
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3047 3048
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3049

3050
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3051 3052
}

3053
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3054
{
3055
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3056
	s->reserved = 0;
C
Christoph Lameter 已提交
3057

3058 3059
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3060

3061
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3062
		goto error;
3063 3064 3065 3066 3067
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3068
		if (get_order(s->size) > get_order(s->object_size)) {
3069 3070 3071 3072 3073 3074
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3075

3076 3077
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3078 3079 3080 3081 3082
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3083 3084 3085 3086
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3102
	 * B) The number of objects in cpu partial slabs to extract from the
3103 3104
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3105
	 */
3106
	if (!kmem_cache_has_cpu_partial(s))
3107 3108
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3109 3110 3111 3112 3113 3114 3115 3116
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3117
#ifdef CONFIG_NUMA
3118
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3119
#endif
3120
	if (!init_kmem_cache_nodes(s))
3121
		goto error;
C
Christoph Lameter 已提交
3122

3123
	if (alloc_kmem_cache_cpus(s))
3124
		return 0;
3125

3126
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3127 3128 3129 3130
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3131 3132
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3133
	return -EINVAL;
C
Christoph Lameter 已提交
3134 3135
}

3136 3137 3138 3139 3140 3141
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
3142 3143
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
3144 3145
	if (!map)
		return;
3146
	slab_err(s, page, text, s->name);
3147 3148
	slab_lock(page);

3149
	get_map(s, page, map);
3150 3151 3152
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3153
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3154 3155 3156 3157
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
3158
	kfree(map);
3159 3160 3161
#endif
}

C
Christoph Lameter 已提交
3162
/*
3163
 * Attempt to free all partial slabs on a node.
3164 3165
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3166
 */
3167
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3168 3169 3170
{
	struct page *page, *h;

3171
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3172
		if (!page->inuse) {
3173
			__remove_partial(n, page);
C
Christoph Lameter 已提交
3174
			discard_slab(s, page);
3175 3176
		} else {
			list_slab_objects(s, page,
3177
			"Objects remaining in %s on kmem_cache_close()");
3178
		}
3179
	}
C
Christoph Lameter 已提交
3180 3181 3182
}

/*
C
Christoph Lameter 已提交
3183
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3184
 */
3185
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3186 3187
{
	int node;
3188
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3189 3190 3191

	flush_all(s);
	/* Attempt to free all objects */
3192
	for_each_kmem_cache_node(s, node, n) {
3193 3194
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3195 3196
			return 1;
	}
3197
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3198 3199 3200 3201
	free_kmem_cache_nodes(s);
	return 0;
}

3202
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3203
{
3204
	return kmem_cache_close(s);
C
Christoph Lameter 已提交
3205 3206 3207 3208 3209 3210 3211 3212
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
3213
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3214 3215 3216 3217 3218 3219 3220 3221

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
3222
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3223
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3224 3225 3226 3227 3228 3229 3230 3231

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
3232
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3233 3234 3235 3236 3237 3238 3239 3240

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3241
	struct kmem_cache *s;
3242
	void *ret;
C
Christoph Lameter 已提交
3243

3244
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3245
		return kmalloc_large(size, flags);
3246

3247
	s = kmalloc_slab(size, flags);
3248 3249

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3250 3251
		return s;

3252
	ret = slab_alloc(s, flags, _RET_IP_);
3253

3254
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3255 3256

	return ret;
C
Christoph Lameter 已提交
3257 3258 3259
}
EXPORT_SYMBOL(__kmalloc);

3260
#ifdef CONFIG_NUMA
3261 3262
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3263
	struct page *page;
3264
	void *ptr = NULL;
3265

3266 3267
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_kmem_pages_node(node, flags, get_order(size));
3268
	if (page)
3269 3270
		ptr = page_address(page);

3271
	kmalloc_large_node_hook(ptr, size, flags);
3272
	return ptr;
3273 3274
}

C
Christoph Lameter 已提交
3275 3276
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3277
	struct kmem_cache *s;
3278
	void *ret;
C
Christoph Lameter 已提交
3279

3280
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3281 3282
		ret = kmalloc_large_node(size, flags, node);

3283 3284 3285
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
3286 3287 3288

		return ret;
	}
3289

3290
	s = kmalloc_slab(size, flags);
3291 3292

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3293 3294
		return s;

3295
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3296

3297
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3298 3299

	return ret;
C
Christoph Lameter 已提交
3300 3301 3302 3303 3304 3305
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3306
	struct page *page;
C
Christoph Lameter 已提交
3307

3308
	if (unlikely(object == ZERO_SIZE_PTR))
3309 3310
		return 0;

3311 3312
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3313 3314
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3315
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3316
	}
C
Christoph Lameter 已提交
3317

3318
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3319
}
3320
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3321 3322 3323 3324

void kfree(const void *x)
{
	struct page *page;
3325
	void *object = (void *)x;
C
Christoph Lameter 已提交
3326

3327 3328
	trace_kfree(_RET_IP_, x);

3329
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3330 3331
		return;

3332
	page = virt_to_head_page(x);
3333
	if (unlikely(!PageSlab(page))) {
3334
		BUG_ON(!PageCompound(page));
3335
		kfree_hook(x);
3336
		__free_kmem_pages(page, compound_order(page));
3337 3338
		return;
	}
3339
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3340 3341 3342
}
EXPORT_SYMBOL(kfree);

3343
/*
C
Christoph Lameter 已提交
3344 3345 3346 3347 3348 3349 3350 3351
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3352
 */
3353
int __kmem_cache_shrink(struct kmem_cache *s)
3354 3355 3356 3357 3358 3359
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3360
	int objects = oo_objects(s->max);
3361
	struct list_head *slabs_by_inuse =
3362
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3363 3364 3365 3366 3367 3368
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
3369
	for_each_kmem_cache_node(s, node, n) {
3370 3371 3372
		if (!n->nr_partial)
			continue;

3373
		for (i = 0; i < objects; i++)
3374 3375 3376 3377 3378
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3379
		 * Build lists indexed by the items in use in each slab.
3380
		 *
C
Christoph Lameter 已提交
3381 3382
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3383 3384
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3385 3386 3387
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3388 3389 3390
		}

		/*
C
Christoph Lameter 已提交
3391 3392
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3393
		 */
3394
		for (i = objects - 1; i > 0; i--)
3395 3396 3397
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3398 3399 3400 3401

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3402 3403 3404 3405 3406 3407
	}

	kfree(slabs_by_inuse);
	return 0;
}

3408 3409 3410 3411
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3412
	mutex_lock(&slab_mutex);
3413
	list_for_each_entry(s, &slab_caches, list)
3414
		__kmem_cache_shrink(s);
3415
	mutex_unlock(&slab_mutex);
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3427
	offline_node = marg->status_change_nid_normal;
3428 3429 3430 3431 3432 3433 3434 3435

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3436
	mutex_lock(&slab_mutex);
3437 3438 3439 3440 3441 3442
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3443
			 * and offline_pages() function shouldn't call this
3444 3445
			 * callback. So, we must fail.
			 */
3446
			BUG_ON(slabs_node(s, offline_node));
3447 3448

			s->node[offline_node] = NULL;
3449
			kmem_cache_free(kmem_cache_node, n);
3450 3451
		}
	}
3452
	mutex_unlock(&slab_mutex);
3453 3454 3455 3456 3457 3458 3459
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3460
	int nid = marg->status_change_nid_normal;
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3471
	 * We are bringing a node online. No memory is available yet. We must
3472 3473 3474
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3475
	mutex_lock(&slab_mutex);
3476 3477 3478 3479 3480 3481
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3482
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3483 3484 3485 3486
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3487
		init_kmem_cache_node(n);
3488 3489 3490
		s->node[nid] = n;
	}
out:
3491
	mutex_unlock(&slab_mutex);
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3515 3516 3517 3518
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3519 3520 3521
	return ret;
}

3522 3523 3524 3525
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3526

C
Christoph Lameter 已提交
3527 3528 3529 3530
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3531 3532
/*
 * Used for early kmem_cache structures that were allocated using
3533 3534
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3535 3536
 */

3537
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3538 3539
{
	int node;
3540
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3541
	struct kmem_cache_node *n;
3542

3543
	memcpy(s, static_cache, kmem_cache->object_size);
3544

3545 3546 3547 3548 3549 3550
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
3551
	for_each_kmem_cache_node(s, node, n) {
3552 3553
		struct page *p;

3554 3555
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
3556

3557
#ifdef CONFIG_SLUB_DEBUG
3558 3559
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
3560 3561
#endif
	}
3562 3563
	list_add(&s->list, &slab_caches);
	return s;
3564 3565
}

C
Christoph Lameter 已提交
3566 3567
void __init kmem_cache_init(void)
{
3568 3569
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3570

3571 3572 3573
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3574 3575
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3576

3577 3578
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3579

3580
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3581 3582 3583 3584

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3585 3586 3587 3588
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3589

3590
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3591

3592 3593 3594 3595 3596
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3597
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3598 3599

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3600
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3601 3602 3603

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3604
#endif
C
Christoph Lameter 已提交
3605

3606
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3607
		cache_line_size(),
C
Christoph Lameter 已提交
3608 3609 3610 3611
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3612 3613 3614 3615
void __init kmem_cache_init_late(void)
{
}

3616
struct kmem_cache *
3617 3618
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3619 3620 3621
{
	struct kmem_cache *s;

3622
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3623
	if (s) {
3624 3625 3626
		int i;
		struct kmem_cache *c;

C
Christoph Lameter 已提交
3627
		s->refcount++;
3628

C
Christoph Lameter 已提交
3629 3630 3631 3632
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3633
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3634
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3635

3636 3637 3638 3639 3640 3641 3642 3643 3644
		for_each_memcg_cache_index(i) {
			c = cache_from_memcg_idx(s, i);
			if (!c)
				continue;
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

3645 3646
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3647
			s = NULL;
3648
		}
3649
	}
C
Christoph Lameter 已提交
3650

3651 3652
	return s;
}
3653

3654
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3655
{
3656 3657 3658 3659 3660
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3661

3662 3663 3664 3665
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3666
	memcg_propagate_slab_attrs(s);
3667 3668 3669
	err = sysfs_slab_add(s);
	if (err)
		kmem_cache_close(s);
3670

3671
	return err;
C
Christoph Lameter 已提交
3672 3673 3674 3675
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3676 3677
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3678
 */
3679
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3680 3681 3682
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3683 3684
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3685 3686 3687

	switch (action) {
	case CPU_UP_CANCELED:
3688
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3689
	case CPU_DEAD:
3690
	case CPU_DEAD_FROZEN:
3691
		mutex_lock(&slab_mutex);
3692 3693 3694 3695 3696
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3697
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3698 3699 3700 3701 3702 3703 3704
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3705
static struct notifier_block slab_notifier = {
3706
	.notifier_call = slab_cpuup_callback
3707
};
C
Christoph Lameter 已提交
3708 3709 3710

#endif

3711
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3712
{
3713
	struct kmem_cache *s;
3714
	void *ret;
3715

3716
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3717 3718
		return kmalloc_large(size, gfpflags);

3719
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3720

3721
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3722
		return s;
C
Christoph Lameter 已提交
3723

3724
	ret = slab_alloc(s, gfpflags, caller);
3725

L
Lucas De Marchi 已提交
3726
	/* Honor the call site pointer we received. */
3727
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3728 3729

	return ret;
C
Christoph Lameter 已提交
3730 3731
}

3732
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3733
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3734
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3735
{
3736
	struct kmem_cache *s;
3737
	void *ret;
3738

3739
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3740 3741 3742 3743 3744 3745 3746 3747
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3748

3749
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3750

3751
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3752
		return s;
C
Christoph Lameter 已提交
3753

3754
	ret = slab_alloc_node(s, gfpflags, node, caller);
3755

L
Lucas De Marchi 已提交
3756
	/* Honor the call site pointer we received. */
3757
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3758 3759

	return ret;
C
Christoph Lameter 已提交
3760
}
3761
#endif
C
Christoph Lameter 已提交
3762

3763
#ifdef CONFIG_SYSFS
3764 3765 3766 3767 3768 3769 3770 3771 3772
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3773
#endif
3774

3775
#ifdef CONFIG_SLUB_DEBUG
3776 3777
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3778 3779
{
	void *p;
3780
	void *addr = page_address(page);
3781 3782 3783 3784 3785 3786

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3787
	bitmap_zero(map, page->objects);
3788

3789 3790 3791 3792 3793
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3794 3795
	}

3796
	for_each_object(p, s, addr, page->objects)
3797
		if (!test_bit(slab_index(p, s, addr), map))
3798
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3799 3800 3801 3802
				return 0;
	return 1;
}

3803 3804
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3805
{
3806 3807 3808
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3809 3810
}

3811 3812
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3813 3814 3815 3816 3817 3818 3819 3820
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3821
		validate_slab_slab(s, page, map);
3822 3823 3824
		count++;
	}
	if (count != n->nr_partial)
3825 3826
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
3827 3828 3829 3830 3831

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3832
		validate_slab_slab(s, page, map);
3833 3834 3835
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
3836 3837
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
3838 3839 3840 3841 3842 3843

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3844
static long validate_slab_cache(struct kmem_cache *s)
3845 3846 3847
{
	int node;
	unsigned long count = 0;
3848
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3849
				sizeof(unsigned long), GFP_KERNEL);
3850
	struct kmem_cache_node *n;
3851 3852 3853

	if (!map)
		return -ENOMEM;
3854 3855

	flush_all(s);
3856
	for_each_kmem_cache_node(s, node, n)
3857 3858
		count += validate_slab_node(s, n, map);
	kfree(map);
3859 3860
	return count;
}
3861
/*
C
Christoph Lameter 已提交
3862
 * Generate lists of code addresses where slabcache objects are allocated
3863 3864 3865 3866 3867
 * and freed.
 */

struct location {
	unsigned long count;
3868
	unsigned long addr;
3869 3870 3871 3872 3873
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3874
	DECLARE_BITMAP(cpus, NR_CPUS);
3875
	nodemask_t nodes;
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3891
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3892 3893 3894 3895 3896 3897
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3898
	l = (void *)__get_free_pages(flags, order);
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3912
				const struct track *track)
3913 3914 3915
{
	long start, end, pos;
	struct location *l;
3916
	unsigned long caddr;
3917
	unsigned long age = jiffies - track->when;
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
3949 3950
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
3951 3952
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3953 3954 3955
			return 1;
		}

3956
		if (track->addr < caddr)
3957 3958 3959 3960 3961 3962
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
3963
	 * Not found. Insert new tracking element.
3964
	 */
3965
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3966 3967 3968 3969 3970 3971 3972 3973
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
3974 3975 3976 3977 3978 3979
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
3980 3981
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3982 3983
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3984 3985 3986 3987
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
3988
		struct page *page, enum track_item alloc,
3989
		unsigned long *map)
3990
{
3991
	void *addr = page_address(page);
3992 3993
	void *p;

3994
	bitmap_zero(map, page->objects);
3995
	get_map(s, page, map);
3996

3997
	for_each_object(p, s, addr, page->objects)
3998 3999
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4000 4001 4002 4003 4004
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4005
	int len = 0;
4006
	unsigned long i;
4007
	struct loc_track t = { 0, 0, NULL };
4008
	int node;
4009 4010
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
4011
	struct kmem_cache_node *n;
4012

4013 4014 4015
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4016
		return sprintf(buf, "Out of memory\n");
4017
	}
4018 4019 4020
	/* Push back cpu slabs */
	flush_all(s);

4021
	for_each_kmem_cache_node(s, node, n) {
4022 4023 4024
		unsigned long flags;
		struct page *page;

4025
		if (!atomic_long_read(&n->nr_slabs))
4026 4027 4028 4029
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
4030
			process_slab(&t, s, page, alloc, map);
4031
		list_for_each_entry(page, &n->full, lru)
4032
			process_slab(&t, s, page, alloc, map);
4033 4034 4035 4036
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4037
		struct location *l = &t.loc[i];
4038

H
Hugh Dickins 已提交
4039
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4040
			break;
4041
		len += sprintf(buf + len, "%7ld ", l->count);
4042 4043

		if (l->addr)
4044
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4045
		else
4046
			len += sprintf(buf + len, "<not-available>");
4047 4048

		if (l->sum_time != l->min_time) {
4049
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4050 4051 4052
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4053
		} else
4054
			len += sprintf(buf + len, " age=%ld",
4055 4056 4057
				l->min_time);

		if (l->min_pid != l->max_pid)
4058
			len += sprintf(buf + len, " pid=%ld-%ld",
4059 4060
				l->min_pid, l->max_pid);
		else
4061
			len += sprintf(buf + len, " pid=%ld",
4062 4063
				l->min_pid);

R
Rusty Russell 已提交
4064 4065
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4066 4067
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
4068 4069
			len += cpulist_scnprintf(buf + len,
						 PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4070
						 to_cpumask(l->cpus));
4071 4072
		}

4073
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4074 4075
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
4076 4077 4078
			len += nodelist_scnprintf(buf + len,
						  PAGE_SIZE - len - 50,
						  l->nodes);
4079 4080
		}

4081
		len += sprintf(buf + len, "\n");
4082 4083 4084
	}

	free_loc_track(&t);
4085
	kfree(map);
4086
	if (!t.count)
4087 4088
		len += sprintf(buf, "No data\n");
	return len;
4089
}
4090
#endif
4091

4092
#ifdef SLUB_RESILIENCY_TEST
4093
static void __init resiliency_test(void)
4094 4095 4096
{
	u8 *p;

4097
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4098

4099 4100 4101
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4102 4103 4104

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4105 4106
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4107 4108 4109 4110 4111 4112

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4113 4114 4115
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4116 4117 4118 4119 4120

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4121 4122 4123
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4124 4125
	validate_slab_cache(kmalloc_caches[6]);

4126
	pr_err("\nB. Corruption after free\n");
4127 4128 4129
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4130
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4131 4132 4133 4134 4135
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4136
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4137 4138 4139 4140 4141
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4142
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4143 4144 4145 4146 4147 4148 4149 4150
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4151
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4152
enum slab_stat_type {
4153 4154 4155 4156 4157
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4158 4159
};

4160
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4161 4162 4163
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4164
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4165

4166 4167
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4168 4169 4170 4171 4172 4173
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4174
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4175 4176
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4177

4178 4179
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4180

4181
		for_each_possible_cpu(cpu) {
4182 4183
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4184
			int node;
4185
			struct page *page;
4186

4187
			page = ACCESS_ONCE(c->page);
4188 4189
			if (!page)
				continue;
4190

4191 4192 4193 4194 4195 4196 4197
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4198

4199 4200 4201 4202
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4203
			if (page) {
4204 4205 4206 4207 4208 4209 4210
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4211 4212
				total += x;
				nodes[node] += x;
4213
			}
C
Christoph Lameter 已提交
4214 4215 4216
		}
	}

4217
	get_online_mems();
4218
#ifdef CONFIG_SLUB_DEBUG
4219
	if (flags & SO_ALL) {
4220 4221 4222
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4223

4224 4225 4226 4227 4228
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4229
			else
4230
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4231 4232 4233 4234
			total += x;
			nodes[node] += x;
		}

4235 4236 4237
	} else
#endif
	if (flags & SO_PARTIAL) {
4238
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4239

4240
		for_each_kmem_cache_node(s, node, n) {
4241 4242 4243 4244
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4245
			else
4246
				x = n->nr_partial;
C
Christoph Lameter 已提交
4247 4248 4249 4250 4251 4252
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
4253
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4254 4255 4256 4257
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4258
	put_online_mems();
C
Christoph Lameter 已提交
4259 4260 4261 4262
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4263
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4264 4265 4266
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
4267
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4268

4269
	for_each_kmem_cache_node(s, node, n)
4270
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4271
			return 1;
4272

C
Christoph Lameter 已提交
4273 4274
	return 0;
}
4275
#endif
C
Christoph Lameter 已提交
4276 4277

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4278
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4279 4280 4281 4282 4283 4284 4285 4286

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4287 4288
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4289 4290 4291

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4292
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4308
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4309 4310 4311 4312 4313
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4314
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4315 4316 4317
}
SLAB_ATTR_RO(objs_per_slab);

4318 4319 4320
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4321 4322 4323
	unsigned long order;
	int err;

4324
	err = kstrtoul(buf, 10, &order);
4325 4326
	if (err)
		return err;
4327 4328 4329 4330 4331 4332 4333 4334

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4335 4336
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4337
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4338
}
4339
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4340

4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4352
	err = kstrtoul(buf, 10, &min);
4353 4354 4355
	if (err)
		return err;

4356
	set_min_partial(s, min);
4357 4358 4359 4360
	return length;
}
SLAB_ATTR(min_partial);

4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4372
	err = kstrtoul(buf, 10, &objects);
4373 4374
	if (err)
		return err;
4375
	if (objects && !kmem_cache_has_cpu_partial(s))
4376
		return -EINVAL;
4377 4378 4379 4380 4381 4382 4383

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4384 4385
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
4386 4387 4388
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4389 4390 4391 4392 4393
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4394
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4395 4396 4397 4398 4399
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4400
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4401 4402 4403 4404 4405
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4406
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4407 4408 4409 4410 4411
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4412
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4413 4414 4415
}
SLAB_ATTR_RO(objects);

4416 4417 4418 4419 4420 4421
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4488 4489 4490 4491 4492 4493
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4494
#ifdef CONFIG_SLUB_DEBUG
4495 4496 4497 4498 4499 4500
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4501 4502 4503 4504 4505 4506
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4507 4508 4509 4510 4511 4512 4513 4514 4515
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4516 4517
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4518
		s->flags |= SLAB_DEBUG_FREE;
4519
	}
C
Christoph Lameter 已提交
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4532 4533 4534 4535 4536 4537 4538 4539
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
4540
	s->flags &= ~SLAB_TRACE;
4541 4542
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4543
		s->flags |= SLAB_TRACE;
4544
	}
C
Christoph Lameter 已提交
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4561 4562
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4563
		s->flags |= SLAB_RED_ZONE;
4564
	}
4565
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4582 4583
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4584
		s->flags |= SLAB_POISON;
4585
	}
4586
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4603 4604
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4605
		s->flags |= SLAB_STORE_USER;
4606
	}
4607
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4608 4609 4610 4611
	return length;
}
SLAB_ATTR(store_user);

4612 4613 4614 4615 4616 4617 4618 4619
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4620 4621 4622 4623 4624 4625 4626 4627
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4628 4629
}
SLAB_ATTR(validate);
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4657 4658 4659
	if (s->refcount > 1)
		return -EINVAL;

4660 4661 4662 4663 4664 4665
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4666
#endif
4667

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4687
#ifdef CONFIG_NUMA
4688
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4689
{
4690
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4691 4692
}

4693
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4694 4695
				const char *buf, size_t length)
{
4696 4697 4698
	unsigned long ratio;
	int err;

4699
	err = kstrtoul(buf, 10, &ratio);
4700 4701 4702
	if (err)
		return err;

4703
	if (ratio <= 100)
4704
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4705 4706 4707

	return length;
}
4708
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4709 4710
#endif

4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4723
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4724 4725 4726 4727 4728 4729 4730

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4731
#ifdef CONFIG_SMP
4732 4733
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4734
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4735
	}
4736
#endif
4737 4738 4739 4740
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

4741 4742 4743 4744 4745
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4746
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4747 4748
}

4749 4750 4751 4752 4753
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
4754 4755 4756 4757 4758 4759 4760 4761 4762
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4774
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4775 4776 4777 4778 4779 4780 4781
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4782
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4783
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4784 4785
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4786 4787
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4788 4789
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4790 4791
#endif

4792
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4793 4794 4795 4796
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4797
	&min_partial_attr.attr,
4798
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4799
	&objects_attr.attr,
4800
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4801 4802 4803 4804 4805 4806 4807 4808
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4809
	&shrink_attr.attr,
4810
	&reserved_attr.attr,
4811
	&slabs_cpu_partial_attr.attr,
4812
#ifdef CONFIG_SLUB_DEBUG
4813 4814 4815 4816
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4817 4818 4819
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4820
	&validate_attr.attr,
4821 4822
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4823
#endif
C
Christoph Lameter 已提交
4824 4825 4826 4827
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4828
	&remote_node_defrag_ratio_attr.attr,
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4841
	&alloc_node_mismatch_attr.attr,
4842 4843 4844 4845 4846 4847 4848
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4849
	&deactivate_bypass_attr.attr,
4850
	&order_fallback_attr.attr,
4851 4852
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4853 4854
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4855 4856
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4857
#endif
4858 4859 4860 4861
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
4903 4904 4905
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
4906

4907 4908 4909 4910
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
4928
		for_each_memcg_cache_index(i) {
4929
			struct kmem_cache *c = cache_from_memcg_idx(s, i);
4930 4931 4932 4933 4934 4935
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
4936 4937 4938
	return err;
}

4939 4940 4941 4942 4943
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;
4944
	struct kmem_cache *root_cache;
4945

4946
	if (is_root_cache(s))
4947 4948
		return;

4949 4950
	root_cache = s->memcg_params->root_cache;

4951 4952 4953 4954
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
4955
	if (!root_cache->max_attr_size)
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
4977
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
4978 4979 4980 4981 4982 4983 4984 4985
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

4986
		attr->show(root_cache, buf);
4987 4988 4989 4990 4991 4992 4993 4994
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

4995 4996 4997 4998 4999
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5000
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5001 5002 5003 5004 5005 5006
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5007
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5019
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5020 5021 5022
	.filter = uevent_filter,
};

5023
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5024

5025 5026 5027 5028 5029 5030 5031 5032 5033
static inline struct kset *cache_kset(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
		return s->memcg_params->root_cache->memcg_kset;
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5034 5035 5036
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5037 5038
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
5061 5062
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5063 5064 5065
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5066

C
Christoph Lameter 已提交
5067 5068 5069 5070 5071 5072 5073 5074
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5075
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5076 5077 5078 5079 5080 5081 5082

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5083
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5084 5085 5086 5087 5088 5089 5090 5091 5092
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5093
	s->kobj.kset = cache_kset(s);
5094
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5095 5096
	if (err)
		goto out_put_kobj;
C
Christoph Lameter 已提交
5097 5098

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5099 5100
	if (err)
		goto out_del_kobj;
5101 5102 5103 5104 5105

#ifdef CONFIG_MEMCG_KMEM
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5106 5107
			err = -ENOMEM;
			goto out_del_kobj;
5108 5109 5110 5111
		}
	}
#endif

C
Christoph Lameter 已提交
5112 5113 5114 5115 5116
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5117 5118 5119 5120 5121 5122 5123 5124 5125
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
out_put_kobj:
	kobject_put(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5126 5127
}

5128
void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5129
{
5130
	if (slab_state < FULL)
5131 5132 5133 5134 5135 5136
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5137 5138 5139
#ifdef CONFIG_MEMCG_KMEM
	kset_unregister(s->memcg_kset);
#endif
C
Christoph Lameter 已提交
5140 5141
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
5142
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5143 5144 5145 5146
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
5147
 * available lest we lose that information.
C
Christoph Lameter 已提交
5148 5149 5150 5151 5152 5153 5154
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5155
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5156 5157 5158 5159 5160

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5161
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5162 5163 5164
		/*
		 * If we have a leftover link then remove it.
		 */
5165 5166
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5182
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5183 5184
	int err;

5185
	mutex_lock(&slab_mutex);
5186

5187
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5188
	if (!slab_kset) {
5189
		mutex_unlock(&slab_mutex);
5190
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5191 5192 5193
		return -ENOSYS;
	}

5194
	slab_state = FULL;
5195

5196
	list_for_each_entry(s, &slab_caches, list) {
5197
		err = sysfs_slab_add(s);
5198
		if (err)
5199 5200
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5201
	}
C
Christoph Lameter 已提交
5202 5203 5204 5205 5206 5207

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5208
		if (err)
5209 5210
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5211 5212 5213
		kfree(al);
	}

5214
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5215 5216 5217 5218 5219
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5220
#endif /* CONFIG_SYSFS */
5221 5222 5223 5224

/*
 * The /proc/slabinfo ABI
 */
5225
#ifdef CONFIG_SLABINFO
5226
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5227 5228
{
	unsigned long nr_slabs = 0;
5229 5230
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
5231
	int node;
5232
	struct kmem_cache_node *n;
5233

5234
	for_each_kmem_cache_node(s, node, n) {
5235 5236
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5237
		nr_free += count_partial(n, count_free);
5238 5239
	}

5240 5241 5242 5243 5244 5245
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
5246 5247
}

5248
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5249 5250 5251
{
}

5252 5253
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5254
{
5255
	return -EIO;
5256
}
5257
#endif /* CONFIG_SLABINFO */
新手
引导
客服 返回
顶部