sched.c 163.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
30
#include <linux/capability.h>
L
Linus Torvalds 已提交
31 32
#include <linux/completion.h>
#include <linux/kernel_stat.h>
33
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
37
#include <linux/freezer.h>
38
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/times.h>
52
#include <linux/tsacct_kern.h>
53
#include <linux/kprobes.h>
54
#include <linux/delayacct.h>
55
#include <linux/reciprocal_div.h>
L
Linus Torvalds 已提交
56

57
#include <asm/tlb.h>
L
Linus Torvalds 已提交
58 59
#include <asm/unistd.h>

60 61 62 63 64 65 66 67 68 69
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
94 95 96
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
#define ON_RUNQUEUE_WEIGHT	 30
#define CHILD_PENALTY		 95
#define PARENT_PENALTY		100
#define EXIT_WEIGHT		  3
#define PRIO_BONUS_RATIO	 25
#define MAX_BONUS		(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
#define INTERACTIVE_DELTA	  2
#define MAX_SLEEP_AVG		(DEF_TIMESLICE * MAX_BONUS)
#define STARVATION_LIMIT	(MAX_SLEEP_AVG)
#define NS_MAX_SLEEP_AVG	(JIFFIES_TO_NS(MAX_SLEEP_AVG))

/*
 * If a task is 'interactive' then we reinsert it in the active
 * array after it has expired its current timeslice. (it will not
 * continue to run immediately, it will still roundrobin with
 * other interactive tasks.)
 *
 * This part scales the interactivity limit depending on niceness.
 *
 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
 * Here are a few examples of different nice levels:
 *
 *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
 *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
 *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
 *
 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
 *  priority range a task can explore, a value of '1' means the
 *  task is rated interactive.)
 *
 * Ie. nice +19 tasks can never get 'interactive' enough to be
 * reinserted into the active array. And only heavily CPU-hog nice -20
 * tasks will be expired. Default nice 0 tasks are somewhere between,
 * it takes some effort for them to get interactive, but it's not
 * too hard.
 */

#define CURRENT_BONUS(p) \
	(NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
		MAX_SLEEP_AVG)

#define GRANULARITY	(10 * HZ / 1000 ? : 1)

#ifdef CONFIG_SMP
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
			num_online_cpus())
#else
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
#endif

#define SCALE(v1,v1_max,v2_max) \
	(v1) * (v2_max) / (v1_max)

#define DELTA(p) \
164 165
	(SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
		INTERACTIVE_DELTA)
L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174

#define TASK_INTERACTIVE(p) \
	((p)->prio <= (p)->static_prio - DELTA(p))

#define INTERACTIVE_SLEEP(p) \
	(JIFFIES_TO_NS(MAX_SLEEP_AVG * \
		(MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))

#define TASK_PREEMPTS_CURR(p, rq) \
175
	((p)->prio < (rq)->curr->prio)
L
Linus Torvalds 已提交
176 177

#define SCALE_PRIO(x, prio) \
178
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
L
Linus Torvalds 已提交
179

180
static unsigned int static_prio_timeslice(int static_prio)
L
Linus Torvalds 已提交
181
{
182 183
	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
L
Linus Torvalds 已提交
184
	else
185
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
L
Linus Torvalds 已提交
186
}
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

209 210 211 212 213 214 215 216 217
/*
 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
 * to time slice values: [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */

218
static inline unsigned int task_timeslice(struct task_struct *p)
219 220 221 222
{
	return static_prio_timeslice(p->static_prio);
}

L
Linus Torvalds 已提交
223
/*
I
Ingo Molnar 已提交
224
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
225
 */
I
Ingo Molnar 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
268

I
Ingo Molnar 已提交
269 270 271 272 273 274 275 276 277 278
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

/*
 * The prio-array type of the old scheduler:
 */
L
Linus Torvalds 已提交
279 280
struct prio_array {
	unsigned int nr_active;
281
	DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
L
Linus Torvalds 已提交
282 283 284 285 286 287 288 289 290 291
	struct list_head queue[MAX_PRIO];
};

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
292
struct rq {
I
Ingo Molnar 已提交
293
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
294 295 296 297 298 299

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
300
	unsigned long raw_weighted_load;
I
Ingo Molnar 已提交
301 302
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
303
	unsigned char idle_at_tick;
304 305 306
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
307 308 309 310 311 312 313
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
314
#endif
I
Ingo Molnar 已提交
315
	struct rt_rq  rt;
L
Linus Torvalds 已提交
316 317 318 319 320 321 322 323 324 325

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

	unsigned long expired_timestamp;
326
	unsigned long long most_recent_timestamp;
I
Ingo Molnar 已提交
327

328
	struct task_struct *curr, *idle;
329
	unsigned long next_balance;
L
Linus Torvalds 已提交
330
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
331

332
	struct prio_array *active, *expired, arrays[2];
L
Linus Torvalds 已提交
333
	int best_expired_prio;
I
Ingo Molnar 已提交
334 335 336 337 338 339 340 341 342

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
	unsigned int clock_unstable_events;

	struct sched_class *load_balance_class;

L
Linus Torvalds 已提交
343 344 345 346 347 348 349 350
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
351
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
352

353
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
376
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
377 378
};

379
static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
380
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
381

382 383 384 385 386 387 388 389 390
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
/*
 * Per-runqueue clock, as finegrained as the platform can give us:
 */
static unsigned long long __rq_clock(struct rq *rq)
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
		if (unlikely(delta > 2*TICK_NSEC)) {
			clock++;
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;

	return clock;
}

static inline unsigned long long rq_clock(struct rq *rq)
{
	int this_cpu = smp_processor_id();

	if (this_cpu == cpu_of(rq))
		return __rq_clock(rq);

	return rq->clock;
}

N
Nick Piggin 已提交
437 438
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
439
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
440 441 442 443
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
444 445
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
446 447 448 449 450 451 452

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

#ifndef prepare_arch_switch
453 454 455 456 457 458 459
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
460
static inline int task_running(struct rq *rq, struct task_struct *p)
461 462 463 464
{
	return rq->curr == p;
}

465
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
466 467 468
{
}

469
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
470
{
471 472 473 474
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
475 476 477 478 479 480 481
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

482 483 484 485
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
486
static inline int task_running(struct rq *rq, struct task_struct *p)
487 488 489 490 491 492 493 494
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

495
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

512
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
513 514 515 516 517 518 519 520 521 522 523 524
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
525
#endif
526 527
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
528

529 530 531 532
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
533
static inline struct rq *__task_rq_lock(struct task_struct *p)
534 535
	__acquires(rq->lock)
{
536
	struct rq *rq;
537 538 539 540 541 542 543 544 545 546 547

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
548 549 550 551 552
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
553
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
554 555
	__acquires(rq->lock)
{
556
	struct rq *rq;
L
Linus Torvalds 已提交
557 558 559 560 561 562 563 564 565 566 567 568

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

569
static inline void __task_rq_unlock(struct rq *rq)
570 571 572 573 574
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

575
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
576 577 578 579 580 581
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
582
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
583
 */
584
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
585 586
	__acquires(rq->lock)
{
587
	struct rq *rq;
L
Linus Torvalds 已提交
588 589 590 591 592 593 594 595

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

596
#include "sched_stats.h"
L
Linus Torvalds 已提交
597 598 599 600

/*
 * Adding/removing a task to/from a priority array:
 */
601
static void dequeue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
602 603 604 605 606 607 608
{
	array->nr_active--;
	list_del(&p->run_list);
	if (list_empty(array->queue + p->prio))
		__clear_bit(p->prio, array->bitmap);
}

609
static void enqueue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
610 611 612 613 614 615 616 617 618 619 620 621
{
	sched_info_queued(p);
	list_add_tail(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
	array->nr_active++;
	p->array = array;
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
622
static void requeue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
623 624 625 626
{
	list_move_tail(&p->run_list, array->queue + p->prio);
}

627 628
static inline void
enqueue_task_head(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
629 630 631 632 633 634 635 636
{
	list_add(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
	array->nr_active++;
	p->array = array;
}

/*
637
 * __normal_prio - return the priority that is based on the static
L
Linus Torvalds 已提交
638 639 640 641 642 643 644 645 646 647 648 649
 * priority but is modified by bonuses/penalties.
 *
 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
 * into the -5 ... 0 ... +5 bonus/penalty range.
 *
 * We use 25% of the full 0...39 priority range so that:
 *
 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
 *
 * Both properties are important to certain workloads.
 */
650

651
static inline int __normal_prio(struct task_struct *p)
L
Linus Torvalds 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664
{
	int bonus, prio;

	bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;

	prio = p->static_prio - bonus;
	if (prio < MAX_RT_PRIO)
		prio = MAX_RT_PRIO;
	if (prio > MAX_PRIO-1)
		prio = MAX_PRIO-1;
	return prio;
}

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

/*
 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
 * If static_prio_timeslice() is ever changed to break this assumption then
 * this code will need modification
 */
#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
#define LOAD_WEIGHT(lp) \
	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
#define PRIO_TO_LOAD_WEIGHT(prio) \
	LOAD_WEIGHT(static_prio_timeslice(prio))
#define RTPRIO_TO_LOAD_WEIGHT(rp) \
	(PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))

687
static void set_load_weight(struct task_struct *p)
688
{
689
	if (has_rt_policy(p)) {
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
#ifdef CONFIG_SMP
		if (p == task_rq(p)->migration_thread)
			/*
			 * The migration thread does the actual balancing.
			 * Giving its load any weight will skew balancing
			 * adversely.
			 */
			p->load_weight = 0;
		else
#endif
			p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
	} else
		p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
}

705
static inline void
706
inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
707 708 709 710
{
	rq->raw_weighted_load += p->load_weight;
}

711
static inline void
712
dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
713 714 715 716
{
	rq->raw_weighted_load -= p->load_weight;
}

717
static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
718 719 720 721 722
{
	rq->nr_running++;
	inc_raw_weighted_load(rq, p);
}

723
static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
724 725 726 727 728
{
	rq->nr_running--;
	dec_raw_weighted_load(rq, p);
}

729 730 731 732 733 734 735
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
736
static inline int normal_prio(struct task_struct *p)
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
{
	int prio;

	if (has_rt_policy(p))
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
754
static int effective_prio(struct task_struct *p)
755 756 757 758 759 760 761 762 763 764 765 766
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
767 768 769
/*
 * __activate_task - move a task to the runqueue.
 */
770
static void __activate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
771
{
772
	struct prio_array *target = rq->active;
773

774
	if (batch_task(p))
775 776
		target = rq->expired;
	enqueue_task(p, target);
777
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
778 779 780 781 782
}

/*
 * __activate_idle_task - move idle task to the _front_ of runqueue.
 */
783
static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
784 785
{
	enqueue_task_head(p, rq->active);
786
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
787 788
}

789 790 791 792
/*
 * Recalculate p->normal_prio and p->prio after having slept,
 * updating the sleep-average too:
 */
793
static int recalc_task_prio(struct task_struct *p, unsigned long long now)
L
Linus Torvalds 已提交
794 795
{
	/* Caller must always ensure 'now >= p->timestamp' */
796
	unsigned long sleep_time = now - p->timestamp;
L
Linus Torvalds 已提交
797

798
	if (batch_task(p))
799
		sleep_time = 0;
L
Linus Torvalds 已提交
800 801 802

	if (likely(sleep_time > 0)) {
		/*
803 804 805
		 * This ceiling is set to the lowest priority that would allow
		 * a task to be reinserted into the active array on timeslice
		 * completion.
L
Linus Torvalds 已提交
806
		 */
807
		unsigned long ceiling = INTERACTIVE_SLEEP(p);
808

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
		if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
			/*
			 * Prevents user tasks from achieving best priority
			 * with one single large enough sleep.
			 */
			p->sleep_avg = ceiling;
			/*
			 * Using INTERACTIVE_SLEEP() as a ceiling places a
			 * nice(0) task 1ms sleep away from promotion, and
			 * gives it 700ms to round-robin with no chance of
			 * being demoted.  This is more than generous, so
			 * mark this sleep as non-interactive to prevent the
			 * on-runqueue bonus logic from intervening should
			 * this task not receive cpu immediately.
			 */
			p->sleep_type = SLEEP_NONINTERACTIVE;
L
Linus Torvalds 已提交
825 826 827 828 829 830
		} else {
			/*
			 * Tasks waking from uninterruptible sleep are
			 * limited in their sleep_avg rise as they
			 * are likely to be waiting on I/O
			 */
831
			if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
832
				if (p->sleep_avg >= ceiling)
L
Linus Torvalds 已提交
833 834
					sleep_time = 0;
				else if (p->sleep_avg + sleep_time >=
835 836 837
					 ceiling) {
						p->sleep_avg = ceiling;
						sleep_time = 0;
L
Linus Torvalds 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850 851
				}
			}

			/*
			 * This code gives a bonus to interactive tasks.
			 *
			 * The boost works by updating the 'average sleep time'
			 * value here, based on ->timestamp. The more time a
			 * task spends sleeping, the higher the average gets -
			 * and the higher the priority boost gets as well.
			 */
			p->sleep_avg += sleep_time;

		}
852 853
		if (p->sleep_avg > NS_MAX_SLEEP_AVG)
			p->sleep_avg = NS_MAX_SLEEP_AVG;
L
Linus Torvalds 已提交
854 855
	}

856
	return effective_prio(p);
L
Linus Torvalds 已提交
857 858 859 860 861 862 863 864
}

/*
 * activate_task - move a task to the runqueue and do priority recalculation
 *
 * Update all the scheduling statistics stuff. (sleep average
 * calculation, priority modifiers, etc.)
 */
865
static void activate_task(struct task_struct *p, struct rq *rq, int local)
L
Linus Torvalds 已提交
866 867 868
{
	unsigned long long now;

869 870 871
	if (rt_task(p))
		goto out;

L
Linus Torvalds 已提交
872 873 874 875
	now = sched_clock();
#ifdef CONFIG_SMP
	if (!local) {
		/* Compensate for drifting sched_clock */
876
		struct rq *this_rq = this_rq();
877 878
		now = (now - this_rq->most_recent_timestamp)
			+ rq->most_recent_timestamp;
L
Linus Torvalds 已提交
879 880 881
	}
#endif

I
Ingo Molnar 已提交
882 883 884 885 886 887 888 889 890 891 892
	/*
	 * Sleep time is in units of nanosecs, so shift by 20 to get a
	 * milliseconds-range estimation of the amount of time that the task
	 * spent sleeping:
	 */
	if (unlikely(prof_on == SLEEP_PROFILING)) {
		if (p->state == TASK_UNINTERRUPTIBLE)
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
				     (now - p->timestamp) >> 20);
	}

893
	p->prio = recalc_task_prio(p, now);
L
Linus Torvalds 已提交
894 895 896 897 898

	/*
	 * This checks to make sure it's not an uninterruptible task
	 * that is now waking up.
	 */
899
	if (p->sleep_type == SLEEP_NORMAL) {
L
Linus Torvalds 已提交
900 901 902 903 904 905 906 907
		/*
		 * Tasks which were woken up by interrupts (ie. hw events)
		 * are most likely of interactive nature. So we give them
		 * the credit of extending their sleep time to the period
		 * of time they spend on the runqueue, waiting for execution
		 * on a CPU, first time around:
		 */
		if (in_interrupt())
908
			p->sleep_type = SLEEP_INTERRUPTED;
L
Linus Torvalds 已提交
909 910 911 912 913
		else {
			/*
			 * Normal first-time wakeups get a credit too for
			 * on-runqueue time, but it will be weighted down:
			 */
914
			p->sleep_type = SLEEP_INTERACTIVE;
L
Linus Torvalds 已提交
915 916 917
		}
	}
	p->timestamp = now;
918
out:
L
Linus Torvalds 已提交
919 920 921 922 923 924
	__activate_task(p, rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
925
static void deactivate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
926
{
927
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
928 929 930 931 932 933 934 935 936 937 938 939
	dequeue_task(p, p->array);
	p->array = NULL;
}

/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP
940 941 942 943 944

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

945
static void resched_task(struct task_struct *p)
L
Linus Torvalds 已提交
946
{
947
	int cpu;
L
Linus Torvalds 已提交
948 949 950

	assert_spin_locked(&task_rq(p)->lock);

951 952 953 954
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
L
Linus Torvalds 已提交
955

956 957 958 959
	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

960
	/* NEED_RESCHED must be visible before we test polling */
961
	smp_mb();
962
	if (!tsk_is_polling(p))
963
		smp_send_reschedule(cpu);
L
Linus Torvalds 已提交
964
}
965 966 967 968 969 970 971 972 973 974 975

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
L
Linus Torvalds 已提交
976
#else
977
static inline void resched_task(struct task_struct *p)
L
Linus Torvalds 已提交
978
{
979
	assert_spin_locked(&task_rq(p)->lock);
L
Linus Torvalds 已提交
980 981 982 983 984 985 986 987
	set_tsk_need_resched(p);
}
#endif

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
988
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
989 990 991 992
{
	return cpu_curr(task_cpu(p)) == p;
}

993 994 995 996 997 998
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->raw_weighted_load;
}

L
Linus Torvalds 已提交
999
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1000 1001 1002 1003 1004 1005

void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	task_thread_info(p)->cpu = cpu;
}

1006
struct migration_req {
L
Linus Torvalds 已提交
1007 1008
	struct list_head list;

1009
	struct task_struct *task;
L
Linus Torvalds 已提交
1010 1011 1012
	int dest_cpu;

	struct completion done;
1013
};
L
Linus Torvalds 已提交
1014 1015 1016 1017 1018

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1019
static int
1020
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1021
{
1022
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
	if (!p->array && !task_running(rq, p)) {
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1037

L
Linus Torvalds 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1050
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1051 1052
{
	unsigned long flags;
1053
	struct rq *rq;
1054 1055
	struct prio_array *array;
	int running;
L
Linus Torvalds 已提交
1056 1057

repeat:
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1085
	rq = task_rq_lock(p, &flags);
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	running = task_running(rq, p);
	array = p->array;
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1097 1098 1099
		cpu_relax();
		goto repeat;
	}
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
	if (unlikely(array)) {
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1135
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1147 1148
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1149 1150 1151 1152
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1153
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1154
{
1155
	struct rq *rq = cpu_rq(cpu);
1156

1157
	if (type == 0)
1158
		return rq->raw_weighted_load;
1159

1160
	return min(rq->cpu_load[type-1], rq->raw_weighted_load);
L
Linus Torvalds 已提交
1161 1162 1163
}

/*
1164 1165
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1166
 */
N
Nick Piggin 已提交
1167
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1168
{
1169
	struct rq *rq = cpu_rq(cpu);
1170

N
Nick Piggin 已提交
1171
	if (type == 0)
1172
		return rq->raw_weighted_load;
1173

1174 1175 1176 1177 1178 1179 1180 1181
	return max(rq->cpu_load[type-1], rq->raw_weighted_load);
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1182
	struct rq *rq = cpu_rq(cpu);
1183 1184
	unsigned long n = rq->nr_running;

1185
	return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1186 1187
}

N
Nick Piggin 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1205 1206 1207 1208
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1225 1226
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1227 1228 1229 1230 1231 1232 1233 1234

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1235
nextgroup:
N
Nick Piggin 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1245
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1246
 */
I
Ingo Molnar 已提交
1247 1248
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1249
{
1250
	cpumask_t tmp;
N
Nick Piggin 已提交
1251 1252 1253 1254
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1255 1256 1257 1258
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1259
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1285

1286
	for_each_domain(cpu, tmp) {
1287 1288 1289 1290 1291
 		/*
 	 	 * If power savings logic is enabled for a domain, stop there.
 	 	 */
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1292 1293
		if (tmp->flags & flag)
			sd = tmp;
1294
	}
N
Nick Piggin 已提交
1295 1296 1297 1298

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1299 1300 1301 1302 1303 1304
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1305 1306 1307

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1308 1309 1310 1311
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1312

1313
		new_cpu = find_idlest_cpu(group, t, cpu);
1314 1315 1316 1317 1318
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1319

1320
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1347
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1348 1349 1350 1351 1352
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1363 1364 1365 1366
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1367
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1368 1369 1370 1371 1372
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
		}
N
Nick Piggin 已提交
1373 1374
		else
			break;
L
Linus Torvalds 已提交
1375 1376 1377 1378
	}
	return cpu;
}
#else
1379
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1399
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1400 1401 1402 1403
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1404
	struct rq *rq;
L
Linus Torvalds 已提交
1405
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1406
	struct sched_domain *sd, *this_sd = NULL;
1407
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

	if (p->array)
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1426 1427
	new_cpu = cpu;

L
Linus Torvalds 已提交
1428 1429 1430
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1431 1432 1433 1434 1435 1436 1437 1438
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1439 1440 1441
		}
	}

N
Nick Piggin 已提交
1442
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1443 1444 1445
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1446
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1447
	 */
N
Nick Piggin 已提交
1448 1449 1450
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1451

1452 1453
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1454 1455
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1456

N
Nick Piggin 已提交
1457 1458
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1459 1460
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1461 1462 1463
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1464

L
Linus Torvalds 已提交
1465
			/*
1466 1467 1468
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1469
			 */
1470
			if (sync)
1471
				tl -= current->load_weight;
1472 1473

			if ((tl <= load &&
1474 1475
				tl + target_load(cpu, idx) <= tl_per_task) ||
				100*(tl + p->load_weight) <= imbalance*load) {
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
		if (p->array)
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
	if (old_state == TASK_UNINTERRUPTIBLE) {
		rq->nr_uninterruptible--;
		/*
		 * Tasks on involuntary sleep don't earn
		 * sleep_avg beyond just interactive state.
		 */
1524
		p->sleep_type = SLEEP_NONINTERACTIVE;
1525
	} else
L
Linus Torvalds 已提交
1526

I
Ingo Molnar 已提交
1527 1528
	/*
	 * Tasks that have marked their sleep as noninteractive get
1529 1530
	 * woken up with their sleep average not weighted in an
	 * interactive way.
I
Ingo Molnar 已提交
1531
	 */
1532 1533 1534 1535 1536
		if (old_state & TASK_NONINTERACTIVE)
			p->sleep_type = SLEEP_NONINTERACTIVE;


	activate_task(p, rq, cpu == this_cpu);
L
Linus Torvalds 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
	if (!sync || cpu != this_cpu) {
		if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);
	}
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1559
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1560 1561 1562 1563 1564 1565
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1566
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1567 1568 1569 1570
{
	return try_to_wake_up(p, state, 0);
}

1571
static void task_running_tick(struct rq *rq, struct task_struct *p);
L
Linus Torvalds 已提交
1572 1573 1574 1575
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
 */
1576
void fastcall sched_fork(struct task_struct *p, int clone_flags)
L
Linus Torvalds 已提交
1577
{
N
Nick Piggin 已提交
1578 1579 1580 1581 1582 1583 1584
	int cpu = get_cpu();

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	set_task_cpu(p, cpu);

L
Linus Torvalds 已提交
1585 1586 1587 1588 1589 1590 1591
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
1592 1593 1594 1595 1596 1597

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

L
Linus Torvalds 已提交
1598 1599
	INIT_LIST_HEAD(&p->run_list);
	p->array = NULL;
1600 1601 1602
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
	if (unlikely(sched_info_on()))
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1603
#endif
1604
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1605 1606
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1607
#ifdef CONFIG_PREEMPT
1608
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1609
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
#endif
	/*
	 * Share the timeslice between parent and child, thus the
	 * total amount of pending timeslices in the system doesn't change,
	 * resulting in more scheduling fairness.
	 */
	local_irq_disable();
	p->time_slice = (current->time_slice + 1) >> 1;
	/*
	 * The remainder of the first timeslice might be recovered by
	 * the parent if the child exits early enough.
	 */
	p->first_time_slice = 1;
	current->time_slice >>= 1;
	p->timestamp = sched_clock();
	if (unlikely(!current->time_slice)) {
		/*
		 * This case is rare, it happens when the parent has only
		 * a single jiffy left from its timeslice. Taking the
		 * runqueue lock is not a problem.
		 */
		current->time_slice = 1;
1632
		task_running_tick(cpu_rq(cpu), current);
N
Nick Piggin 已提交
1633 1634 1635
	}
	local_irq_enable();
	put_cpu();
L
Linus Torvalds 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1645
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1646
{
1647
	struct rq *rq, *this_rq;
L
Linus Torvalds 已提交
1648 1649 1650 1651
	unsigned long flags;
	int this_cpu, cpu;

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1652
	BUG_ON(p->state != TASK_RUNNING);
L
Linus Torvalds 已提交
1653
	this_cpu = smp_processor_id();
N
Nick Piggin 已提交
1654
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

	/*
	 * We decrease the sleep average of forking parents
	 * and children as well, to keep max-interactive tasks
	 * from forking tasks that are max-interactive. The parent
	 * (current) is done further down, under its lock.
	 */
	p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
		CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);

	p->prio = effective_prio(p);

	if (likely(cpu == this_cpu)) {
		if (!(clone_flags & CLONE_VM)) {
			/*
			 * The VM isn't cloned, so we're in a good position to
			 * do child-runs-first in anticipation of an exec. This
			 * usually avoids a lot of COW overhead.
			 */
			if (unlikely(!current->array))
				__activate_task(p, rq);
			else {
				p->prio = current->prio;
1678
				p->normal_prio = current->normal_prio;
L
Linus Torvalds 已提交
1679 1680 1681
				list_add_tail(&p->run_list, &current->run_list);
				p->array = current->array;
				p->array->nr_active++;
1682
				inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
			}
			set_need_resched();
		} else
			/* Run child last */
			__activate_task(p, rq);
		/*
		 * We skip the following code due to cpu == this_cpu
	 	 *
		 *   task_rq_unlock(rq, &flags);
		 *   this_rq = task_rq_lock(current, &flags);
		 */
		this_rq = rq;
	} else {
		this_rq = cpu_rq(this_cpu);

		/*
		 * Not the local CPU - must adjust timestamp. This should
		 * get optimised away in the !CONFIG_SMP case.
		 */
1702 1703
		p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
					+ rq->most_recent_timestamp;
L
Linus Torvalds 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
		__activate_task(p, rq);
		if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);

		/*
		 * Parent and child are on different CPUs, now get the
		 * parent runqueue to update the parent's ->sleep_avg:
		 */
		task_rq_unlock(rq, &flags);
		this_rq = task_rq_lock(current, &flags);
	}
	current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
		PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
	task_rq_unlock(this_rq, &flags);
}

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1732
static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1733 1734 1735 1736 1737
{
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1738 1739
/**
 * finish_task_switch - clean up after a task-switch
1740
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1741 1742
 * @prev: the thread we just switched away from.
 *
1743 1744 1745 1746
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1747 1748 1749 1750 1751 1752
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1753
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1754 1755 1756
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1757
	long prev_state;
L
Linus Torvalds 已提交
1758 1759 1760 1761 1762

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1763
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1764 1765
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1766
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1767 1768 1769 1770 1771
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1772
	prev_state = prev->state;
1773 1774
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
L
Linus Torvalds 已提交
1775 1776
	if (mm)
		mmdrop(mm);
1777
	if (unlikely(prev_state == TASK_DEAD)) {
1778 1779 1780 1781 1782
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
	 	 */
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1783
		put_task_struct(prev);
1784
	}
L
Linus Torvalds 已提交
1785 1786 1787 1788 1789 1790
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1791
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1792 1793
	__releases(rq->lock)
{
1794 1795
	struct rq *rq = this_rq();

1796 1797 1798 1799 1800
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1801 1802 1803 1804 1805 1806 1807 1808
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
1809
static inline struct task_struct *
1810
context_switch(struct rq *rq, struct task_struct *prev,
1811
	       struct task_struct *next)
L
Linus Torvalds 已提交
1812 1813 1814 1815
{
	struct mm_struct *mm = next->mm;
	struct mm_struct *oldmm = prev->active_mm;

1816 1817 1818 1819 1820 1821 1822
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

N
Nick Piggin 已提交
1823
	if (!mm) {
L
Linus Torvalds 已提交
1824 1825 1826 1827 1828 1829
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

N
Nick Piggin 已提交
1830
	if (!prev->mm) {
L
Linus Torvalds 已提交
1831 1832 1833 1834
		prev->active_mm = NULL;
		WARN_ON(rq->prev_mm);
		rq->prev_mm = oldmm;
	}
1835 1836 1837 1838 1839 1840 1841
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1842
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1843
#endif
L
Linus Torvalds 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

	return prev;
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1872
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1887 1888
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1889

1890
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1900
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1901 1902 1903 1904 1905
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

L
Linus Torvalds 已提交
1921 1922
#ifdef CONFIG_SMP

1923 1924 1925 1926 1927 1928 1929 1930 1931
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
{
	return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
}

L
Linus Torvalds 已提交
1932 1933 1934 1935 1936 1937
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
1938
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1939 1940 1941
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
1942
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
1943 1944 1945 1946
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
1947
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
1963
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
1977
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
1978 1979 1980 1981
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1982 1983 1984 1985 1986
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
1987
	if (unlikely(!spin_trylock(&busiest->lock))) {
1988
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2003
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2004
{
2005
	struct migration_req req;
L
Linus Torvalds 已提交
2006
	unsigned long flags;
2007
	struct rq *rq;
L
Linus Torvalds 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2018

L
Linus Torvalds 已提交
2019 2020 2021 2022 2023
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2024

L
Linus Torvalds 已提交
2025 2026 2027 2028 2029 2030 2031
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2032 2033
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2034 2035 2036 2037
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2038
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2039
	put_cpu();
N
Nick Piggin 已提交
2040 2041
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2042 2043 2044 2045 2046 2047
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
2048 2049 2050
static void pull_task(struct rq *src_rq, struct prio_array *src_array,
		      struct task_struct *p, struct rq *this_rq,
		      struct prio_array *this_array, int this_cpu)
L
Linus Torvalds 已提交
2051 2052
{
	dequeue_task(p, src_array);
2053
	dec_nr_running(p, src_rq);
L
Linus Torvalds 已提交
2054
	set_task_cpu(p, this_cpu);
2055
	inc_nr_running(p, this_rq);
L
Linus Torvalds 已提交
2056
	enqueue_task(p, this_array);
2057 2058
	p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
				+ this_rq->most_recent_timestamp;
L
Linus Torvalds 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
	if (TASK_PREEMPTS_CURR(p, this_rq))
		resched_task(this_rq->curr);
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2070
static
2071
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2072
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2073
		     int *all_pinned)
L
Linus Torvalds 已提交
2074 2075 2076 2077 2078 2079 2080 2081 2082
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2083 2084 2085 2086
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2087 2088 2089

	/*
	 * Aggressive migration if:
2090
	 * 1) task is cache cold, or
L
Linus Torvalds 已提交
2091 2092 2093
	 * 2) too many balance attempts have failed.
	 */

2094 2095 2096 2097 2098
	if (sd->nr_balance_failed > sd->cache_nice_tries) {
#ifdef CONFIG_SCHEDSTATS
		if (task_hot(p, rq->most_recent_timestamp, sd))
			schedstat_inc(sd, lb_hot_gained[idle]);
#endif
L
Linus Torvalds 已提交
2099
		return 1;
2100
	}
L
Linus Torvalds 已提交
2101

2102
	if (task_hot(p, rq->most_recent_timestamp, sd))
2103
		return 0;
L
Linus Torvalds 已提交
2104 2105 2106
	return 1;
}

2107
#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2108

L
Linus Torvalds 已提交
2109
/*
2110 2111 2112
 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
 * load from busiest to this_rq, as part of a balancing operation within
 * "domain". Returns the number of tasks moved.
L
Linus Torvalds 已提交
2113 2114 2115
 *
 * Called with both runqueues locked.
 */
2116
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2117
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2118
		      struct sched_domain *sd, enum cpu_idle_type idle,
2119
		      int *all_pinned)
L
Linus Torvalds 已提交
2120
{
2121 2122
	int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
	    best_prio_seen, skip_for_load;
2123
	struct prio_array *array, *dst_array;
L
Linus Torvalds 已提交
2124
	struct list_head *head, *curr;
2125
	struct task_struct *tmp;
2126
	long rem_load_move;
L
Linus Torvalds 已提交
2127

2128
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2129 2130
		goto out;

2131
	rem_load_move = max_load_move;
2132
	pinned = 1;
2133
	this_best_prio = rq_best_prio(this_rq);
2134
	best_prio = rq_best_prio(busiest);
2135 2136 2137
	/*
	 * Enable handling of the case where there is more than one task
	 * with the best priority.   If the current running task is one
2138
	 * of those with prio==best_prio we know it won't be moved
2139 2140 2141
	 * and therefore it's safe to override the skip (based on load) of
	 * any task we find with that prio.
	 */
2142
	best_prio_seen = best_prio == busiest->curr->prio;
2143

L
Linus Torvalds 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
	/*
	 * We first consider expired tasks. Those will likely not be
	 * executed in the near future, and they are most likely to
	 * be cache-cold, thus switching CPUs has the least effect
	 * on them.
	 */
	if (busiest->expired->nr_active) {
		array = busiest->expired;
		dst_array = this_rq->expired;
	} else {
		array = busiest->active;
		dst_array = this_rq->active;
	}

new_array:
	/* Start searching at priority 0: */
	idx = 0;
skip_bitmap:
	if (!idx)
		idx = sched_find_first_bit(array->bitmap);
	else
		idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
	if (idx >= MAX_PRIO) {
		if (array == busiest->expired && busiest->active->nr_active) {
			array = busiest->active;
			dst_array = this_rq->active;
			goto new_array;
		}
		goto out;
	}

	head = array->queue + idx;
	curr = head->prev;
skip_queue:
2178
	tmp = list_entry(curr, struct task_struct, run_list);
L
Linus Torvalds 已提交
2179 2180 2181

	curr = curr->prev;

2182 2183 2184 2185 2186
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
2187 2188
	skip_for_load = tmp->load_weight > rem_load_move;
	if (skip_for_load && idx < this_best_prio)
2189
		skip_for_load = !best_prio_seen && idx == best_prio;
2190
	if (skip_for_load ||
2191
	    !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2192 2193

		best_prio_seen |= idx == best_prio;
L
Linus Torvalds 已提交
2194 2195 2196 2197 2198 2199 2200 2201
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}

	pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
	pulled++;
2202
	rem_load_move -= tmp->load_weight;
L
Linus Torvalds 已提交
2203

2204 2205 2206 2207 2208
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2209 2210
		if (idx < this_best_prio)
			this_best_prio = idx;
L
Linus Torvalds 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2223 2224 2225

	if (all_pinned)
		*all_pinned = pinned;
L
Linus Torvalds 已提交
2226 2227 2228 2229 2230
	return pulled;
}

/*
 * find_busiest_group finds and returns the busiest CPU group within the
2231 2232
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2233 2234 2235
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2236
		   unsigned long *imbalance, enum cpu_idle_type idle, int *sd_idle,
2237
		   cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2238 2239 2240
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2241
	unsigned long max_pull;
2242 2243
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2244
	int load_idx;
2245 2246 2247 2248 2249 2250
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2251 2252

	max_load = this_load = total_load = total_pwr = 0;
2253 2254
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2255
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2256
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2257
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2258 2259 2260
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2261 2262

	do {
2263
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2264 2265
		int local_group;
		int i;
2266
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2267
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2268 2269 2270

		local_group = cpu_isset(this_cpu, group->cpumask);

2271 2272 2273
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2274
		/* Tally up the load of all CPUs in the group */
2275
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2276 2277

		for_each_cpu_mask(i, group->cpumask) {
2278 2279 2280 2281 2282 2283
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2284

N
Nick Piggin 已提交
2285 2286 2287
			if (*sd_idle && !idle_cpu(i))
				*sd_idle = 0;

L
Linus Torvalds 已提交
2288
			/* Bias balancing toward cpus of our domain */
2289 2290 2291 2292 2293 2294
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2295
				load = target_load(i, load_idx);
2296
			} else
N
Nick Piggin 已提交
2297
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2298 2299

			avg_load += load;
2300 2301
			sum_nr_running += rq->nr_running;
			sum_weighted_load += rq->raw_weighted_load;
L
Linus Torvalds 已提交
2302 2303
		}

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
		 * domains.
		 */
		if (local_group && balance_cpu != this_cpu && balance) {
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2314
		total_load += avg_load;
2315
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2316 2317

		/* Adjust by relative CPU power of the group */
2318 2319
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2320

2321
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2322

L
Linus Torvalds 已提交
2323 2324 2325
		if (local_group) {
			this_load = avg_load;
			this = group;
2326 2327 2328
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2329
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2330 2331
			max_load = avg_load;
			busiest = group;
2332 2333
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2334
		}
2335 2336 2337 2338 2339 2340

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2341
 		if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
 			goto group_next;

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

 		/*
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
 		 */
 		if (!power_savings_balance || sum_nr_running >= group_capacity
		    || !sum_nr_running)
 			goto group_next;

 		/*
		 * Calculate the group which has the least non-idle load.
 		 * This is the group from where we need to pick up the load
 		 * for saving power
 		 */
 		if ((sum_nr_running < min_nr_running) ||
 		    (sum_nr_running == min_nr_running &&
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
 			group_min = group;
 			min_nr_running = sum_nr_running;
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
 		}

 		/*
		 * Calculate the group which is almost near its
 		 * capacity but still has some space to pick up some load
 		 * from other group and save more power
 		 */
2380
 		if (sum_nr_running <= group_capacity - 1) {
2381 2382 2383 2384 2385 2386 2387
 			if (sum_nr_running > leader_nr_running ||
 			    (sum_nr_running == leader_nr_running &&
 			     first_cpu(group->cpumask) >
 			      first_cpu(group_leader->cpumask))) {
 				group_leader = group;
 				leader_nr_running = sum_nr_running;
 			}
2388
		}
2389 2390
group_next:
#endif
L
Linus Torvalds 已提交
2391 2392 2393
		group = group->next;
	} while (group != sd->groups);

2394
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2395 2396 2397 2398 2399 2400 2401 2402
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2403
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2427 2428

	/* Don't want to pull so many tasks that a group would go idle */
2429
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2430

L
Linus Torvalds 已提交
2431
	/* How much load to actually move to equalise the imbalance */
2432 2433
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2434 2435
			/ SCHED_LOAD_SCALE;

2436 2437 2438 2439 2440 2441 2442
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
	if (*imbalance < busiest_load_per_task) {
2443
		unsigned long tmp, pwr_now, pwr_move;
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2455

2456 2457
		if (max_load - this_load >= busiest_load_per_task * imbn) {
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2458 2459 2460 2461 2462 2463 2464 2465 2466
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2467 2468 2469 2470
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2471 2472 2473
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2474 2475
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2476
		if (max_load > tmp)
2477
			pwr_move += busiest->__cpu_power *
2478
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2479 2480

		/* Amount of load we'd add */
2481
		if (max_load * busiest->__cpu_power <
2482
				busiest_load_per_task * SCHED_LOAD_SCALE)
2483 2484
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2485
		else
2486 2487 2488 2489
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2490 2491 2492 2493 2494 2495
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2496
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2497 2498 2499 2500 2501
	}

	return busiest;

out_balanced:
2502
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2503
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2504
		goto ret;
L
Linus Torvalds 已提交
2505

2506 2507 2508 2509 2510
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2511
ret:
L
Linus Torvalds 已提交
2512 2513 2514 2515 2516 2517 2518
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2519
static struct rq *
I
Ingo Molnar 已提交
2520
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2521
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2522
{
2523
	struct rq *busiest = NULL, *rq;
2524
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2525 2526 2527
	int i;

	for_each_cpu_mask(i, group->cpumask) {
2528 2529 2530 2531

		if (!cpu_isset(i, *cpus))
			continue;

2532
		rq = cpu_rq(i);
2533

2534
		if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2535
			continue;
L
Linus Torvalds 已提交
2536

2537 2538 2539
		if (rq->raw_weighted_load > max_load) {
			max_load = rq->raw_weighted_load;
			busiest = rq;
L
Linus Torvalds 已提交
2540 2541 2542 2543 2544 2545
		}
	}

	return busiest;
}

2546 2547 2548 2549 2550 2551
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

2552 2553 2554 2555 2556
static inline unsigned long minus_1_or_zero(unsigned long n)
{
	return n > 0 ? n - 1 : 0;
}

L
Linus Torvalds 已提交
2557 2558 2559 2560
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2561
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2562
			struct sched_domain *sd, enum cpu_idle_type idle,
2563
			int *balance)
L
Linus Torvalds 已提交
2564
{
2565
	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2566 2567
	struct sched_group *group;
	unsigned long imbalance;
2568
	struct rq *busiest;
2569
	cpumask_t cpus = CPU_MASK_ALL;
2570
	unsigned long flags;
N
Nick Piggin 已提交
2571

2572 2573 2574 2575
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2576
	 * portraying it as CPU_NOT_IDLE.
2577
	 */
I
Ingo Molnar 已提交
2578
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2579
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2580
		sd_idle = 1;
L
Linus Torvalds 已提交
2581 2582 2583

	schedstat_inc(sd, lb_cnt[idle]);

2584 2585
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2586 2587
				   &cpus, balance);

2588
	if (*balance == 0)
2589 2590
		goto out_balanced;

L
Linus Torvalds 已提交
2591 2592 2593 2594 2595
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2596
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2597 2598 2599 2600 2601
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2602
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. nr_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
2614
		local_irq_save(flags);
N
Nick Piggin 已提交
2615
		double_rq_lock(this_rq, busiest);
L
Linus Torvalds 已提交
2616
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2617 2618
				      minus_1_or_zero(busiest->nr_running),
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2619
		double_rq_unlock(this_rq, busiest);
2620
		local_irq_restore(flags);
2621

2622 2623 2624 2625 2626 2627
		/*
		 * some other cpu did the load balance for us.
		 */
		if (nr_moved && this_cpu != smp_processor_id())
			resched_cpu(this_cpu);

2628
		/* All tasks on this runqueue were pinned by CPU affinity */
2629 2630 2631 2632
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2633
			goto out_balanced;
2634
		}
L
Linus Torvalds 已提交
2635
	}
2636

L
Linus Torvalds 已提交
2637 2638 2639 2640 2641 2642
	if (!nr_moved) {
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2643
			spin_lock_irqsave(&busiest->lock, flags);
2644 2645 2646 2647 2648

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2649
				spin_unlock_irqrestore(&busiest->lock, flags);
2650 2651 2652 2653
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2654 2655 2656
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2657
				active_balance = 1;
L
Linus Torvalds 已提交
2658
			}
2659
			spin_unlock_irqrestore(&busiest->lock, flags);
2660
			if (active_balance)
L
Linus Torvalds 已提交
2661 2662 2663 2664 2665 2666
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2667
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2668
		}
2669
	} else
L
Linus Torvalds 已提交
2670 2671
		sd->nr_balance_failed = 0;

2672
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2673 2674
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2675 2676 2677 2678 2679 2680 2681 2682 2683
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2684 2685
	}

2686
	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2687
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2688
		return -1;
L
Linus Torvalds 已提交
2689 2690 2691 2692 2693
	return nr_moved;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2694
	sd->nr_balance_failed = 0;
2695 2696

out_one_pinned:
L
Linus Torvalds 已提交
2697
	/* tune up the balancing interval */
2698 2699
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2700 2701
		sd->balance_interval *= 2;

2702
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2703
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2704
		return -1;
L
Linus Torvalds 已提交
2705 2706 2707 2708 2709 2710 2711
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2712
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2713 2714
 * this_rq is locked.
 */
2715
static int
2716
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2717 2718
{
	struct sched_group *group;
2719
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2720 2721
	unsigned long imbalance;
	int nr_moved = 0;
N
Nick Piggin 已提交
2722
	int sd_idle = 0;
2723
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2724

2725 2726 2727 2728
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2729
	 * portraying it as CPU_NOT_IDLE.
2730 2731 2732
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2733
		sd_idle = 1;
L
Linus Torvalds 已提交
2734

I
Ingo Molnar 已提交
2735
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2736
redo:
I
Ingo Molnar 已提交
2737
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2738
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2739
	if (!group) {
I
Ingo Molnar 已提交
2740
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2741
		goto out_balanced;
L
Linus Torvalds 已提交
2742 2743
	}

I
Ingo Molnar 已提交
2744
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2745
				&cpus);
N
Nick Piggin 已提交
2746
	if (!busiest) {
I
Ingo Molnar 已提交
2747
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2748
		goto out_balanced;
L
Linus Torvalds 已提交
2749 2750
	}

N
Nick Piggin 已提交
2751 2752
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2753
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2754 2755 2756 2757 2758 2759

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2760
					minus_1_or_zero(busiest->nr_running),
I
Ingo Molnar 已提交
2761
					imbalance, sd, CPU_NEWLY_IDLE, NULL);
2762
		spin_unlock(&busiest->lock);
2763 2764 2765 2766 2767 2768

		if (!nr_moved) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2769 2770
	}

N
Nick Piggin 已提交
2771
	if (!nr_moved) {
I
Ingo Molnar 已提交
2772
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2773 2774
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2775 2776
			return -1;
	} else
2777
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2778 2779

	return nr_moved;
2780 2781

out_balanced:
I
Ingo Molnar 已提交
2782
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2783
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2784
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2785
		return -1;
2786
	sd->nr_balance_failed = 0;
2787

2788
	return 0;
L
Linus Torvalds 已提交
2789 2790 2791 2792 2793 2794
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2795
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2796 2797
{
	struct sched_domain *sd;
2798 2799
	int pulled_task = 0;
	unsigned long next_balance = jiffies + 60 *  HZ;
L
Linus Torvalds 已提交
2800 2801

	for_each_domain(this_cpu, sd) {
2802 2803 2804 2805 2806 2807
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2808
			/* If we've pulled tasks over stop searching: */
2809
			pulled_task = load_balance_newidle(this_cpu,
2810 2811 2812 2813 2814 2815 2816
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2817
	}
2818 2819 2820 2821 2822 2823
	if (!pulled_task)
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
L
Linus Torvalds 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2834
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2835
{
2836
	int target_cpu = busiest_rq->push_cpu;
2837 2838
	struct sched_domain *sd;
	struct rq *target_rq;
2839

2840
	/* Is there any task to move? */
2841 2842 2843 2844
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2845 2846

	/*
2847 2848 2849
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2850
	 */
2851
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2852

2853 2854 2855 2856
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2857
	for_each_domain(target_cpu, sd) {
2858
		if ((sd->flags & SD_LOAD_BALANCE) &&
2859
		    cpu_isset(busiest_cpu, sd->span))
2860
				break;
2861
	}
2862

2863 2864
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2865

2866
		if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
I
Ingo Molnar 已提交
2867
			       RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
2868 2869 2870 2871 2872
			       NULL))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2873
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2874 2875
}

2876
static void update_load(struct rq *this_rq)
L
Linus Torvalds 已提交
2877
{
2878
	unsigned long this_load;
2879
	unsigned int i, scale;
L
Linus Torvalds 已提交
2880

2881
	this_load = this_rq->raw_weighted_load;
2882 2883

	/* Update our load: */
2884
	for (i = 0, scale = 1; i < 3; i++, scale += scale) {
2885 2886
		unsigned long old_load, new_load;

2887 2888
		/* scale is effectively 1 << i now, and >> i divides by scale */

N
Nick Piggin 已提交
2889
		old_load = this_rq->cpu_load[i];
2890
		new_load = this_load;
N
Nick Piggin 已提交
2891 2892 2893 2894 2895 2896 2897
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
2898
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
N
Nick Piggin 已提交
2899
	}
2900 2901
}

2902 2903 2904 2905 2906 2907 2908 2909 2910
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2911
/*
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2922
 *
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
2979 2980 2981 2982 2983
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
2984
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2985
{
2986 2987
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
2988 2989
	unsigned long interval;
	struct sched_domain *sd;
2990
	/* Earliest time when we have to do rebalance again */
2991
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
2992

2993
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
2994 2995 2996 2997
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
2998
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
2999 3000 3001 3002 3003 3004 3005
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;

3006 3007 3008 3009 3010
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3011
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3012
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3013 3014
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3015 3016 3017
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3018
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3019
			}
3020
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3021
		}
3022 3023 3024
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3025 3026
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
3027 3028 3029 3030 3031 3032 3033 3034

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3035
	}
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
	int local_cpu = smp_processor_id();
	struct rq *local_rq = cpu_rq(local_cpu);
I
Ingo Molnar 已提交
3048
	enum cpu_idle_type idle = local_rq->idle_at_tick ? CPU_IDLE : CPU_NOT_IDLE;
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073

	rebalance_domains(local_cpu, idle);

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
	if (local_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == local_cpu) {
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

		cpu_clear(local_cpu, cpus);
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

I
Ingo Molnar 已提交
3074
			rebalance_domains(balance_cpu, CPU_IDLE);
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143

			rq = cpu_rq(balance_cpu);
			if (time_after(local_rq->next_balance, rq->next_balance))
				local_rq->next_balance = rq->next_balance;
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
static inline void trigger_load_balance(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3144 3145 3146 3147 3148
}
#else
/*
 * on UP we do not need to balance between CPUs:
 */
3149
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3150 3151 3152 3153 3154 3155 3156 3157 3158
{
}
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3159 3160
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3161
 */
3162
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3163 3164
{
	unsigned long flags;
3165 3166
	u64 ns, delta_exec;
	struct rq *rq;
3167

3168 3169 3170 3171 3172 3173 3174 3175
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
		delta_exec = rq_clock(rq) - p->se.exec_start;
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3176

L
Linus Torvalds 已提交
3177 3178 3179
	return ns;
}

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
/*
 * We place interactive tasks back into the active array, if possible.
 *
 * To guarantee that this does not starve expired tasks we ignore the
 * interactivity of a task if the first expired task had to wait more
 * than a 'reasonable' amount of time. This deadline timeout is
 * load-dependent, as the frequency of array switched decreases with
 * increasing number of running tasks. We also ignore the interactivity
 * if a better static_prio task has expired:
 */
3190
static inline int expired_starving(struct rq *rq)
3191 3192 3193 3194 3195 3196 3197 3198 3199
{
	if (rq->curr->static_prio > rq->best_expired_prio)
		return 1;
	if (!STARVATION_LIMIT || !rq->expired_timestamp)
		return 0;
	if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
		return 1;
	return 0;
}
3200

L
Linus Torvalds 已提交
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3232
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3262
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3274
static void task_running_tick(struct rq *rq, struct task_struct *p)
L
Linus Torvalds 已提交
3275 3276
{
	if (p->array != rq->active) {
3277
		/* Task has expired but was not scheduled yet */
L
Linus Torvalds 已提交
3278
		set_tsk_need_resched(p);
3279
		return;
L
Linus Torvalds 已提交
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
	}
	spin_lock(&rq->lock);
	/*
	 * The task was running during this tick - update the
	 * time slice counter. Note: we do not update a thread's
	 * priority until it either goes to sleep or uses up its
	 * timeslice. This makes it possible for interactive tasks
	 * to use up their timeslices at their highest priority levels.
	 */
	if (rt_task(p)) {
		/*
		 * RR tasks need a special form of timeslice management.
		 * FIFO tasks have no timeslices.
		 */
		if ((p->policy == SCHED_RR) && !--p->time_slice) {
			p->time_slice = task_timeslice(p);
			p->first_time_slice = 0;
			set_tsk_need_resched(p);

			/* put it at the end of the queue: */
			requeue_task(p, rq->active);
		}
		goto out_unlock;
	}
	if (!--p->time_slice) {
		dequeue_task(p, rq->active);
		set_tsk_need_resched(p);
		p->prio = effective_prio(p);
		p->time_slice = task_timeslice(p);
		p->first_time_slice = 0;

		if (!rq->expired_timestamp)
			rq->expired_timestamp = jiffies;
3313
		if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
L
Linus Torvalds 已提交
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
			enqueue_task(p, rq->expired);
			if (p->static_prio < rq->best_expired_prio)
				rq->best_expired_prio = p->static_prio;
		} else
			enqueue_task(p, rq->active);
	} else {
		/*
		 * Prevent a too long timeslice allowing a task to monopolize
		 * the CPU. We do this by splitting up the timeslice into
		 * smaller pieces.
		 *
		 * Note: this does not mean the task's timeslices expire or
		 * get lost in any way, they just might be preempted by
		 * another task of equal priority. (one with higher
		 * priority would have preempted this task already.) We
		 * requeue this task to the end of the list on this priority
		 * level, which is in essence a round-robin of tasks with
		 * equal priority.
		 *
		 * This only applies to tasks in the interactive
		 * delta range with at least TIMESLICE_GRANULARITY to requeue.
		 */
		if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
			p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
			(p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
			(p->array == rq->active)) {

			requeue_task(p, rq->active);
			set_tsk_need_resched(p);
		}
	}
out_unlock:
	spin_unlock(&rq->lock);
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
}

/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	struct task_struct *p = current;
	int cpu = smp_processor_id();
3360
	int idle_at_tick = idle_cpu(cpu);
3361 3362
	struct rq *rq = cpu_rq(cpu);

3363
	if (!idle_at_tick)
3364
		task_running_tick(rq, p);
3365
#ifdef CONFIG_SMP
3366
	update_load(rq);
3367
	rq->idle_at_tick = idle_at_tick;
3368
	trigger_load_balance(cpu);
3369
#endif
L
Linus Torvalds 已提交
3370 3371 3372 3373 3374 3375 3376 3377 3378
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3379 3380
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3381 3382 3383 3384
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3385 3386
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3387 3388 3389 3390 3391 3392 3393 3394
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3395 3396
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3397 3398 3399
	/*
	 * Is the spinlock portion underflowing?
	 */
3400 3401 3402 3403
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3404 3405 3406 3407 3408 3409
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

3410 3411 3412 3413 3414 3415
static inline int interactive_sleep(enum sleep_type sleep_type)
{
	return (sleep_type == SLEEP_INTERACTIVE ||
		sleep_type == SLEEP_INTERRUPTED);
}

L
Linus Torvalds 已提交
3416 3417 3418 3419 3420
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
3421
	struct task_struct *prev, *next;
3422
	struct prio_array *array;
L
Linus Torvalds 已提交
3423 3424 3425
	struct list_head *queue;
	unsigned long long now;
	unsigned long run_time;
3426
	int cpu, idx, new_prio;
3427
	long *switch_count;
3428
	struct rq *rq;
L
Linus Torvalds 已提交
3429 3430 3431 3432 3433 3434

	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3435 3436 3437 3438
	if (unlikely(in_atomic() && !current->exit_state)) {
		printk(KERN_ERR "BUG: scheduling while atomic: "
			"%s/0x%08x/%d\n",
			current->comm, preempt_count(), current->pid);
3439
		debug_show_held_locks(current);
3440 3441
		if (irqs_disabled())
			print_irqtrace_events(current);
3442
		dump_stack();
L
Linus Torvalds 已提交
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
	}
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

need_resched:
	preempt_disable();
	prev = current;
	release_kernel_lock(prev);
need_resched_nonpreemptible:
	rq = this_rq();

	/*
	 * The idle thread is not allowed to schedule!
	 * Remove this check after it has been exercised a bit.
	 */
	if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
		printk(KERN_ERR "bad: scheduling from the idle thread!\n");
		dump_stack();
	}

	schedstat_inc(rq, sched_cnt);
	now = sched_clock();
3464
	if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
L
Linus Torvalds 已提交
3465
		run_time = now - prev->timestamp;
3466
		if (unlikely((long long)(now - prev->timestamp) < 0))
L
Linus Torvalds 已提交
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
			run_time = 0;
	} else
		run_time = NS_MAX_SLEEP_AVG;

	/*
	 * Tasks charged proportionately less run_time at high sleep_avg to
	 * delay them losing their interactive status
	 */
	run_time /= (CURRENT_BONUS(prev) ? : 1);

	spin_lock_irq(&rq->lock);

	switch_count = &prev->nivcsw;
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		switch_count = &prev->nvcsw;
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
				unlikely(signal_pending(prev))))
			prev->state = TASK_RUNNING;
		else {
			if (prev->state == TASK_UNINTERRUPTIBLE)
				rq->nr_uninterruptible++;
			deactivate_task(prev, rq);
		}
	}

	cpu = smp_processor_id();
	if (unlikely(!rq->nr_running)) {
		idle_balance(cpu, rq);
		if (!rq->nr_running) {
			next = rq->idle;
			rq->expired_timestamp = 0;
			goto switch_tasks;
		}
	}

	array = rq->active;
	if (unlikely(!array->nr_active)) {
		/*
		 * Switch the active and expired arrays.
		 */
		schedstat_inc(rq, sched_switch);
		rq->active = rq->expired;
		rq->expired = array;
		array = rq->active;
		rq->expired_timestamp = 0;
		rq->best_expired_prio = MAX_PRIO;
	}

	idx = sched_find_first_bit(array->bitmap);
	queue = array->queue + idx;
3517
	next = list_entry(queue->next, struct task_struct, run_list);
L
Linus Torvalds 已提交
3518

3519
	if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
L
Linus Torvalds 已提交
3520
		unsigned long long delta = now - next->timestamp;
3521
		if (unlikely((long long)(now - next->timestamp) < 0))
L
Linus Torvalds 已提交
3522 3523
			delta = 0;

3524
		if (next->sleep_type == SLEEP_INTERACTIVE)
L
Linus Torvalds 已提交
3525 3526 3527
			delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;

		array = next->array;
3528 3529 3530 3531 3532 3533
		new_prio = recalc_task_prio(next, next->timestamp + delta);

		if (unlikely(next->prio != new_prio)) {
			dequeue_task(next, array);
			next->prio = new_prio;
			enqueue_task(next, array);
3534
		}
L
Linus Torvalds 已提交
3535
	}
3536
	next->sleep_type = SLEEP_NORMAL;
L
Linus Torvalds 已提交
3537 3538 3539 3540
switch_tasks:
	if (next == rq->idle)
		schedstat_inc(rq, sched_goidle);
	prefetch(next);
3541
	prefetch_stack(next);
L
Linus Torvalds 已提交
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
	clear_tsk_need_resched(prev);
	rcu_qsctr_inc(task_cpu(prev));

	prev->sleep_avg -= run_time;
	if ((long)prev->sleep_avg <= 0)
		prev->sleep_avg = 0;
	prev->timestamp = prev->last_ran = now;

	sched_info_switch(prev, next);
	if (likely(prev != next)) {
3552
		next->timestamp = next->last_ran = now;
L
Linus Torvalds 已提交
3553 3554 3555 3556
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3557
		prepare_task_switch(rq, next);
L
Linus Torvalds 已提交
3558 3559
		prev = context_switch(rq, prev, next);
		barrier();
3560 3561 3562 3563 3564 3565
		/*
		 * this_rq must be evaluated again because prev may have moved
		 * CPUs since it called schedule(), thus the 'rq' on its stack
		 * frame will be invalid.
		 */
		finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
	} else
		spin_unlock_irq(&rq->lock);

	prev = current;
	if (unlikely(reacquire_kernel_lock(prev) < 0))
		goto need_resched_nonpreemptible;
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3580
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3595
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3623
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3635
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3665 3666
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3667
{
3668
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3687 3688 3689
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3690
		if (curr->func(curr, mode, sync, key) &&
3691
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3692 3693 3694 3695 3696 3697 3698 3699 3700
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3701
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3702 3703
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3704
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3723
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3735 3736
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3780

L
Linus Torvalds 已提交
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);


#define	SLEEP_ON_VAR					\
	unsigned long flags;				\
	wait_queue_t wait;				\
	init_waitqueue_entry(&wait, current);

#define SLEEP_ON_HEAD					\
	spin_lock_irqsave(&q->lock,flags);		\
	__add_wait_queue(q, &wait);			\
	spin_unlock(&q->lock);

#define	SLEEP_ON_TAIL					\
	spin_lock_irq(&q->lock);			\
	__remove_wait_queue(q, &wait);			\
	spin_unlock_irqrestore(&q->lock, flags);

void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3927 3928
long fastcall __sched
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

void fastcall __sched sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(sleep_on);

long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}

EXPORT_SYMBOL(sleep_on_timeout);

3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3981
void rt_mutex_setprio(struct task_struct *p, int prio)
3982
{
3983
	struct prio_array *array;
3984
	unsigned long flags;
3985
	struct rq *rq;
3986
	int oldprio;
3987 3988 3989 3990 3991

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

3992
	oldprio = p->prio;
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
	array = p->array;
	if (array)
		dequeue_task(p, array);
	p->prio = prio;

	if (array) {
		/*
		 * If changing to an RT priority then queue it
		 * in the active array!
		 */
		if (rt_task(p))
			array = rq->active;
		enqueue_task(p, array);
		/*
		 * Reschedule if we are currently running on this runqueue and
4008 4009
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4010
		 */
4011 4012 4013 4014
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
		} else if (TASK_PREEMPTS_CURR(p, rq))
4015 4016 4017 4018 4019 4020 4021
			resched_task(rq->curr);
	}
	task_rq_unlock(rq, &flags);
}

#endif

4022
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4023
{
4024
	struct prio_array *array;
4025
	int old_prio, delta;
L
Linus Torvalds 已提交
4026
	unsigned long flags;
4027
	struct rq *rq;
L
Linus Torvalds 已提交
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
4040
	 * not SCHED_NORMAL/SCHED_BATCH:
L
Linus Torvalds 已提交
4041
	 */
4042
	if (has_rt_policy(p)) {
L
Linus Torvalds 已提交
4043 4044 4045 4046
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
	array = p->array;
4047
	if (array) {
L
Linus Torvalds 已提交
4048
		dequeue_task(p, array);
4049 4050
		dec_raw_weighted_load(rq, p);
	}
L
Linus Torvalds 已提交
4051 4052

	p->static_prio = NICE_TO_PRIO(nice);
4053
	set_load_weight(p);
4054 4055 4056
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4057 4058 4059

	if (array) {
		enqueue_task(p, array);
4060
		inc_raw_weighted_load(rq, p);
L
Linus Torvalds 已提交
4061
		/*
4062 4063
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4064
		 */
4065
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4066 4067 4068 4069 4070 4071 4072
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4073 4074 4075 4076 4077
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4078
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4079
{
4080 4081
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4082

M
Matt Mackall 已提交
4083 4084 4085 4086
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4098
	long nice, retval;
L
Linus Torvalds 已提交
4099 4100 4101 4102 4103 4104

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4105 4106
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4107 4108 4109 4110 4111 4112 4113 4114 4115
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4116 4117 4118
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4137
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4138 4139 4140 4141 4142 4143 4144 4145
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4146
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4165
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4166 4167 4168 4169 4170 4171 4172 4173
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4174
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4175 4176 4177 4178 4179 4180 4181 4182
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
static void __setscheduler(struct task_struct *p, int policy, int prio)
{
	BUG_ON(p->array);
4183

L
Linus Torvalds 已提交
4184 4185
	p->policy = policy;
	p->rt_priority = prio;
4186 4187 4188 4189 4190 4191 4192 4193
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
	/*
	 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
	 */
	if (policy == SCHED_BATCH)
		p->sleep_avg = 0;
4194
	set_load_weight(p);
L
Linus Torvalds 已提交
4195 4196 4197
}

/**
4198
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4199 4200 4201
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4202
 *
4203
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4204
 */
I
Ingo Molnar 已提交
4205 4206
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4207
{
4208
	int retval, oldprio, oldpolicy = -1;
4209
	struct prio_array *array;
L
Linus Torvalds 已提交
4210
	unsigned long flags;
4211
	struct rq *rq;
L
Linus Torvalds 已提交
4212

4213 4214
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4215 4216 4217 4218 4219
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4220 4221
			policy != SCHED_NORMAL && policy != SCHED_BATCH)
		return -EINVAL;
L
Linus Torvalds 已提交
4222 4223
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4224 4225
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
	 * SCHED_BATCH is 0.
L
Linus Torvalds 已提交
4226 4227
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4228
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4229
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4230
		return -EINVAL;
4231
	if (is_rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4232 4233
		return -EINVAL;

4234 4235 4236 4237
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
		if (is_rt_policy(policy)) {
			unsigned long rlim_rtprio;
			unsigned long flags;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4256

4257 4258 4259 4260 4261
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4262 4263 4264 4265

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4266 4267 4268 4269 4270
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4271 4272 4273 4274
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4275
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4276 4277 4278
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4279 4280
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
		goto recheck;
	}
	array = p->array;
	if (array)
		deactivate_task(p, rq);
	oldprio = p->prio;
	__setscheduler(p, policy, param->sched_priority);
	if (array) {
		__activate_task(p, rq);
		/*
		 * Reschedule if we are currently running on this runqueue and
4292 4293
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4294
		 */
4295 4296 4297 4298
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
		} else if (TASK_PREEMPTS_CURR(p, rq))
L
Linus Torvalds 已提交
4299 4300
			resched_task(rq->curr);
	}
4301 4302 4303
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4304 4305
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4306 4307 4308 4309
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4310 4311
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4312 4313 4314
{
	struct sched_param lparam;
	struct task_struct *p;
4315
	int retval;
L
Linus Torvalds 已提交
4316 4317 4318 4319 4320

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4321 4322 4323

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4324
	p = find_process_by_pid(pid);
4325 4326 4327
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4328

L
Linus Torvalds 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4341 4342 4343 4344
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4364
	struct task_struct *p;
L
Linus Torvalds 已提交
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4392
	struct task_struct *p;
L
Linus Torvalds 已提交
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4427 4428
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4429

4430
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4431 4432 4433 4434 4435
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4436
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4453 4454 4455 4456
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4457 4458 4459 4460 4461 4462
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4463
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4504
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4505 4506 4507
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4508
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4509 4510
EXPORT_SYMBOL(cpu_online_map);

4511
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4512
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4513 4514 4515 4516
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4517
	struct task_struct *p;
L
Linus Torvalds 已提交
4518 4519
	int retval;

4520
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4521 4522 4523 4524 4525 4526 4527
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4528 4529 4530 4531
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4532
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4533 4534 4535

out_unlock:
	read_unlock(&tasklist_lock);
4536
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
	if (retval)
		return retval;

	return 0;
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
4571
 * This function yields the current CPU by moving the calling thread
L
Linus Torvalds 已提交
4572 4573 4574 4575 4576
 * to the expired array. If there are no other threads running on this
 * CPU then this function will return.
 */
asmlinkage long sys_sched_yield(void)
{
4577 4578
	struct rq *rq = this_rq_lock();
	struct prio_array *array = current->array, *target = rq->expired;
L
Linus Torvalds 已提交
4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590

	schedstat_inc(rq, yld_cnt);
	/*
	 * We implement yielding by moving the task into the expired
	 * queue.
	 *
	 * (special rule: RT tasks will just roundrobin in the active
	 *  array.)
	 */
	if (rt_task(current))
		target = rq->active;

4591
	if (array->nr_active == 1) {
L
Linus Torvalds 已提交
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
		schedstat_inc(rq, yld_act_empty);
		if (!rq->expired->nr_active)
			schedstat_inc(rq, yld_both_empty);
	} else if (!rq->expired->nr_active)
		schedstat_inc(rq, yld_exp_empty);

	if (array != target) {
		dequeue_task(current, array);
		enqueue_task(current, target);
	} else
		/*
		 * requeue_task is cheaper so perform that if possible.
		 */
		requeue_task(current, array);

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4612
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4613 4614 4615 4616 4617 4618 4619 4620
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4621
static void __cond_resched(void)
L
Linus Torvalds 已提交
4622
{
4623 4624 4625
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4626 4627 4628 4629 4630
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4640 4641
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4657
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4658
{
J
Jan Kara 已提交
4659 4660
	int ret = 0;

L
Linus Torvalds 已提交
4661 4662 4663
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4664
		ret = 1;
L
Linus Torvalds 已提交
4665 4666
		spin_lock(lock);
	}
4667
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4668
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4669 4670 4671
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4672
		ret = 1;
L
Linus Torvalds 已提交
4673 4674
		spin_lock(lock);
	}
J
Jan Kara 已提交
4675
	return ret;
L
Linus Torvalds 已提交
4676 4677 4678 4679 4680 4681 4682
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4683
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4684
		local_bh_enable();
L
Linus Torvalds 已提交
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4696
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4715
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4716

4717
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4718 4719 4720
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4721
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4722 4723 4724 4725 4726
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4727
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4728 4729
	long ret;

4730
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4731 4732 4733
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4734
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4755
	case SCHED_BATCH:
L
Linus Torvalds 已提交
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4779
	case SCHED_BATCH:
L
Linus Torvalds 已提交
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4796
	struct task_struct *p;
L
Linus Torvalds 已提交
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4813
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
L
Linus Torvalds 已提交
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
				0 : task_timeslice(p), &t);
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4824
static const char stat_nam[] = "RSDTtZX";
4825 4826

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4827 4828
{
	unsigned long free = 0;
4829
	unsigned state;
L
Linus Torvalds 已提交
4830 4831

	state = p->state ? __ffs(p->state) + 1 : 0;
4832 4833
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
#if (BITS_PER_LONG == 32)
	if (state == TASK_RUNNING)
		printk(" running ");
	else
		printk(" %08lX ", thread_saved_pc(p));
#else
	if (state == TASK_RUNNING)
		printk("  running task   ");
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4847
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4848 4849
		while (!*n)
			n++;
4850
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4851 4852
	}
#endif
4853
	printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4854 4855 4856 4857 4858 4859 4860 4861 4862
	if (!p->mm)
		printk(" (L-TLB)\n");
	else
		printk(" (NOTLB)\n");

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4863
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4864
{
4865
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4866 4867 4868

#if (BITS_PER_LONG == 32)
	printk("\n"
4869 4870
	       "                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4871 4872
#else
	printk("\n"
4873 4874
	       "                                 free                        sibling\n");
	printk("  task                 PC        stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4875 4876 4877 4878 4879 4880 4881 4882
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4883
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4884
			show_task(p);
L
Linus Torvalds 已提交
4885 4886
	} while_each_thread(g, p);

4887 4888
	touch_all_softlockup_watchdogs();

L
Linus Torvalds 已提交
4889
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4890 4891 4892 4893 4894
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4895 4896
}

I
Ingo Molnar 已提交
4897 4898 4899 4900 4901
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
	/* nothing yet */
}

4902 4903 4904 4905 4906 4907 4908 4909
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4910
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4911
{
4912
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4913 4914
	unsigned long flags;

4915
	idle->timestamp = sched_clock();
L
Linus Torvalds 已提交
4916 4917
	idle->sleep_avg = 0;
	idle->array = NULL;
4918
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4919 4920 4921 4922 4923 4924
	idle->state = TASK_RUNNING;
	idle->cpus_allowed = cpumask_of_cpu(cpu);
	set_task_cpu(idle, cpu);

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4925 4926 4927
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4928 4929 4930 4931
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4932
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4933
#else
A
Al Viro 已提交
4934
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
#endif
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4951
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4973
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4974
{
4975
	struct migration_req req;
L
Linus Torvalds 已提交
4976
	unsigned long flags;
4977
	struct rq *rq;
4978
	int ret = 0;
L
Linus Torvalds 已提交
4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5001

L
Linus Torvalds 已提交
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5014 5015
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5016
 */
5017
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5018
{
5019
	struct rq *rq_dest, *rq_src;
5020
	int ret = 0;
L
Linus Torvalds 已提交
5021 5022

	if (unlikely(cpu_is_offline(dest_cpu)))
5023
		return ret;
L
Linus Torvalds 已提交
5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

	set_task_cpu(p, dest_cpu);
	if (p->array) {
		/*
		 * Sync timestamp with rq_dest's before activating.
		 * The same thing could be achieved by doing this step
		 * afterwards, and pretending it was a local activate.
		 * This way is cleaner and logically correct.
		 */
5044 5045
		p->timestamp = p->timestamp - rq_src->most_recent_timestamp
				+ rq_dest->most_recent_timestamp;
L
Linus Torvalds 已提交
5046
		deactivate_task(p, rq_src);
5047
		__activate_task(p, rq_dest);
L
Linus Torvalds 已提交
5048 5049 5050
		if (TASK_PREEMPTS_CURR(p, rq_dest))
			resched_task(rq_dest->curr);
	}
5051
	ret = 1;
L
Linus Torvalds 已提交
5052 5053
out:
	double_rq_unlock(rq_src, rq_dest);
5054
	return ret;
L
Linus Torvalds 已提交
5055 5056 5057 5058 5059 5060 5061
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5062
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5063 5064
{
	int cpu = (long)data;
5065
	struct rq *rq;
L
Linus Torvalds 已提交
5066 5067 5068 5069 5070 5071

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5072
		struct migration_req *req;
L
Linus Torvalds 已提交
5073 5074
		struct list_head *head;

5075
		try_to_freeze();
L
Linus Torvalds 已提交
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5097
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5098 5099
		list_del_init(head->next);

N
Nick Piggin 已提交
5100 5101 5102
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5121 5122 5123 5124
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5125
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5126
{
5127
	unsigned long flags;
L
Linus Torvalds 已提交
5128
	cpumask_t mask;
5129 5130
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5131

5132
restart:
L
Linus Torvalds 已提交
5133 5134
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5135
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5136 5137 5138 5139
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5140
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5141 5142 5143

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5144 5145 5146
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5147
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5148 5149 5150 5151 5152 5153

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5154
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5155 5156
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5157
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5158
	}
5159
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5160
		goto restart;
L
Linus Torvalds 已提交
5161 5162 5163 5164 5165 5166 5167 5168 5169
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5170
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5171
{
5172
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5186
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5187 5188 5189

	write_lock_irq(&tasklist_lock);

5190 5191
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5192 5193
			continue;

5194 5195 5196
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5197 5198 5199 5200 5201 5202

	write_unlock_irq(&tasklist_lock);
}

/* Schedules idle task to be the next runnable task on current CPU.
 * It does so by boosting its priority to highest possible and adding it to
5203
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5204 5205 5206
 */
void sched_idle_next(void)
{
5207
	int this_cpu = smp_processor_id();
5208
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5209 5210 5211 5212
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5213
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5214

5215 5216 5217
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5218 5219 5220 5221
	 */
	spin_lock_irqsave(&rq->lock, flags);

	__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5222 5223

	/* Add idle task to the _front_ of its priority queue: */
L
Linus Torvalds 已提交
5224 5225 5226 5227 5228
	__activate_idle_task(p, rq);

	spin_unlock_irqrestore(&rq->lock, flags);
}

5229 5230
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5244
/* called under rq->lock with disabled interrupts */
5245
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5246
{
5247
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5248 5249

	/* Must be exiting, otherwise would be on tasklist. */
5250
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5251 5252

	/* Cannot have done final schedule yet: would have vanished. */
5253
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5254

5255
	get_task_struct(p);
L
Linus Torvalds 已提交
5256 5257 5258 5259 5260

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5261
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5262
	 */
5263
	spin_unlock(&rq->lock);
5264
	move_task_off_dead_cpu(dead_cpu, p);
5265
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5266

5267
	put_task_struct(p);
L
Linus Torvalds 已提交
5268 5269 5270 5271 5272
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5273
	struct rq *rq = cpu_rq(dead_cpu);
5274
	unsigned int arr, i;
L
Linus Torvalds 已提交
5275 5276 5277 5278

	for (arr = 0; arr < 2; arr++) {
		for (i = 0; i < MAX_PRIO; i++) {
			struct list_head *list = &rq->arrays[arr].queue[i];
5279

L
Linus Torvalds 已提交
5280
			while (!list_empty(list))
5281 5282
				migrate_dead(dead_cpu, list_entry(list->next,
					     struct task_struct, run_list));
L
Linus Torvalds 已提交
5283 5284 5285 5286 5287 5288 5289 5290 5291
		}
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5292 5293
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5294 5295
{
	struct task_struct *p;
5296
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5297
	unsigned long flags;
5298
	struct rq *rq;
L
Linus Torvalds 已提交
5299 5300

	switch (action) {
5301 5302 5303 5304
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5305
	case CPU_UP_PREPARE:
5306
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
		p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
		if (IS_ERR(p))
			return NOTIFY_BAD;
		p->flags |= PF_NOFREEZE;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
		__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5318

L
Linus Torvalds 已提交
5319
	case CPU_ONLINE:
5320
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5321 5322 5323
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5324

L
Linus Torvalds 已提交
5325 5326
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5327
	case CPU_UP_CANCELED_FROZEN:
5328 5329
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5330
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5331 5332
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5333 5334 5335
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5336

L
Linus Torvalds 已提交
5337
	case CPU_DEAD:
5338
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
		deactivate_task(rq->idle, rq);
		rq->idle->static_prio = MAX_PRIO;
		__setscheduler(rq->idle, SCHED_NORMAL, 0);
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5354
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5355 5356 5357
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5358 5359
			struct migration_req *req;

L
Linus Torvalds 已提交
5360
			req = list_entry(rq->migration_queue.next,
5361
					 struct migration_req, list);
L
Linus Torvalds 已提交
5362 5363 5364 5365 5366 5367
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5368 5369 5370
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5371 5372 5373 5374 5375 5376 5377
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5378
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5379 5380 5381 5382 5383 5384 5385
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5386
	int err;
5387 5388

	/* Start one for the boot CPU: */
5389 5390
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5391 5392
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5393

L
Linus Torvalds 已提交
5394 5395 5396 5397 5398
	return 0;
}
#endif

#ifdef CONFIG_SMP
5399 5400 5401 5402 5403

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5404
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5405 5406 5407 5408 5409
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5410 5411 5412 5413 5414
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5434 5435
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5436 5437 5438 5439 5440 5441
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5442 5443
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5444
		if (!cpu_isset(cpu, group->cpumask))
5445 5446
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5459
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5460
				printk("\n");
5461 5462
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5485 5486
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5487 5488 5489

		level++;
		sd = sd->parent;
5490 5491
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5492

5493 5494 5495
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5496 5497 5498 5499

	} while (sd);
}
#else
5500
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5501 5502
#endif

5503
static int sd_degenerate(struct sched_domain *sd)
5504 5505 5506 5507 5508 5509 5510 5511
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5512 5513 5514
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5528 5529
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5548 5549 5550
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5551 5552 5553 5554 5555 5556 5557
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5558 5559 5560 5561
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5562
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5563
{
5564
	struct rq *rq = cpu_rq(cpu);
5565 5566 5567 5568 5569 5570 5571
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5572
		if (sd_parent_degenerate(tmp, parent)) {
5573
			tmp->parent = parent->parent;
5574 5575 5576
			if (parent->parent)
				parent->parent->child = tmp;
		}
5577 5578
	}

5579
	if (sd && sd_degenerate(sd)) {
5580
		sd = sd->parent;
5581 5582 5583
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5584 5585 5586

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5587
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5588 5589 5590
}

/* cpus with isolated domains */
5591
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5609 5610 5611 5612
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5613 5614 5615 5616 5617
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5618
static void
5619 5620 5621
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5622 5623 5624 5625 5626 5627
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5628 5629
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5630 5631 5632 5633 5634 5635
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5636
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5637 5638

		for_each_cpu_mask(j, span) {
5639
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5654
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5655

5656
#ifdef CONFIG_NUMA
5657

5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5710 5711
	cpumask_t span, nodemask;
	int i;
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5722

5723 5724 5725 5726 5727 5728 5729 5730
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5731
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5732

5733
/*
5734
 * SMT sched-domains:
5735
 */
L
Linus Torvalds 已提交
5736 5737
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5738
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5739

5740 5741
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5742
{
5743 5744
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5745 5746 5747 5748
	return cpu;
}
#endif

5749 5750 5751
/*
 * multi-core sched-domains:
 */
5752 5753
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5754
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5755 5756 5757
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5758 5759
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5760
{
5761
	int group;
5762 5763
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5764 5765 5766 5767
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5768 5769
}
#elif defined(CONFIG_SCHED_MC)
5770 5771
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5772
{
5773 5774
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5775 5776 5777 5778
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5779
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5780
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5781

5782 5783
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5784
{
5785
	int group;
5786
#ifdef CONFIG_SCHED_MC
5787
	cpumask_t mask = cpu_coregroup_map(cpu);
5788
	cpus_and(mask, mask, *cpu_map);
5789
	group = first_cpu(mask);
5790
#elif defined(CONFIG_SCHED_SMT)
5791 5792
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5793
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5794
#else
5795
	group = cpu;
L
Linus Torvalds 已提交
5796
#endif
5797 5798 5799
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5800 5801 5802 5803
}

#ifdef CONFIG_NUMA
/*
5804 5805 5806
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5807
 */
5808
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5809
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5810

5811
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5812
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5813

5814 5815
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5816
{
5817 5818 5819 5820 5821 5822 5823 5824 5825
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5826
}
5827

5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5848
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5849 5850 5851 5852 5853
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5854 5855
#endif

5856
#ifdef CONFIG_NUMA
5857 5858 5859
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5860
	int cpu, i;
5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5891 5892 5893 5894 5895
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5896

5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5923 5924
	sd->groups->__cpu_power = 0;

5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5935
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5936 5937 5938 5939 5940 5941 5942 5943
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5944
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5945 5946 5947 5948
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5949
/*
5950 5951
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
5952
 */
5953
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
5954 5955
{
	int i;
5956
	struct sched_domain *sd;
5957 5958
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
5959
	int sd_allnodes = 0;
5960 5961 5962 5963

	/*
	 * Allocate the per-node list of sched groups
	 */
5964
	sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5965
					   GFP_KERNEL);
5966 5967
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
5968
		return -ENOMEM;
5969 5970 5971
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
5972 5973

	/*
5974
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
5975
	 */
5976
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5977 5978 5979
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

5980
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5981 5982

#ifdef CONFIG_NUMA
5983
		if (cpus_weight(*cpu_map)
5984 5985 5986 5987
				> SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
5988
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
5989
			p = sd;
5990
			sd_allnodes = 1;
5991 5992 5993
		} else
			p = NULL;

L
Linus Torvalds 已提交
5994 5995
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
5996 5997
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
5998 5999
		if (p)
			p->child = sd;
6000
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6001 6002 6003 6004 6005 6006 6007
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6008 6009
		if (p)
			p->child = sd;
6010
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6011

6012 6013 6014 6015 6016 6017 6018
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6019
		p->child = sd;
6020
		cpu_to_core_group(i, cpu_map, &sd->groups);
6021 6022
#endif

L
Linus Torvalds 已提交
6023 6024 6025 6026 6027
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6028
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6029
		sd->parent = p;
6030
		p->child = sd;
6031
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6032 6033 6034 6035 6036
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6037
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6038
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6039
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6040 6041 6042
		if (i != first_cpu(this_sibling_map))
			continue;

6043
		init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
L
Linus Torvalds 已提交
6044 6045 6046
	}
#endif

6047 6048 6049 6050 6051 6052 6053
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
6054
		init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
6055 6056 6057 6058
	}
#endif


L
Linus Torvalds 已提交
6059 6060 6061 6062
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6063
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6064 6065 6066
		if (cpus_empty(nodemask))
			continue;

6067
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6068 6069 6070 6071
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6072 6073
	if (sd_allnodes)
		init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6084 6085
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6086
			continue;
6087
		}
6088 6089 6090 6091

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6092
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6093 6094 6095 6096 6097
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6098 6099 6100 6101 6102 6103
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6104
		sg->__cpu_power = 0;
6105
		sg->cpumask = nodemask;
6106
		sg->next = sg;
6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6125 6126
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6127 6128 6129
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6130
				goto error;
6131
			}
6132
			sg->__cpu_power = 0;
6133
			sg->cpumask = tmp;
6134
			sg->next = prev->next;
6135 6136 6137 6138 6139
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6140 6141 6142
#endif

	/* Calculate CPU power for physical packages and nodes */
6143
#ifdef CONFIG_SCHED_SMT
6144
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6145
		sd = &per_cpu(cpu_domains, i);
6146
		init_sched_groups_power(i, sd);
6147
	}
L
Linus Torvalds 已提交
6148
#endif
6149
#ifdef CONFIG_SCHED_MC
6150
	for_each_cpu_mask(i, *cpu_map) {
6151
		sd = &per_cpu(core_domains, i);
6152
		init_sched_groups_power(i, sd);
6153 6154
	}
#endif
6155

6156
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6157
		sd = &per_cpu(phys_domains, i);
6158
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6159 6160
	}

6161
#ifdef CONFIG_NUMA
6162 6163
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6164

6165 6166
	if (sd_allnodes) {
		struct sched_group *sg;
6167

6168
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6169 6170
		init_numa_sched_groups_power(sg);
	}
6171 6172
#endif

L
Linus Torvalds 已提交
6173
	/* Attach the domains */
6174
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6175 6176 6177
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6178 6179
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6180 6181 6182 6183 6184
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6185 6186 6187

	return 0;

6188
#ifdef CONFIG_NUMA
6189 6190 6191
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6192
#endif
L
Linus Torvalds 已提交
6193
}
6194 6195 6196
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6197
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6198 6199
{
	cpumask_t cpu_default_map;
6200
	int err;
L
Linus Torvalds 已提交
6201

6202 6203 6204 6205 6206 6207 6208
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6209 6210 6211
	err = build_sched_domains(&cpu_default_map);

	return err;
6212 6213 6214
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6215
{
6216
	free_sched_groups(cpu_map);
6217
}
L
Linus Torvalds 已提交
6218

6219 6220 6221 6222
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6223
static void detach_destroy_domains(const cpumask_t *cpu_map)
6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6241
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6242 6243
{
	cpumask_t change_map;
6244
	int err = 0;
6245 6246 6247 6248 6249 6250 6251 6252

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6253 6254 6255 6256 6257
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6258 6259
}

6260 6261 6262 6263 6264
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6265
	mutex_lock(&sched_hotcpu_mutex);
6266 6267
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6268
	mutex_unlock(&sched_hotcpu_mutex);
6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6293

6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6313 6314
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6327 6328
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6329 6330 6331 6332 6333 6334 6335
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6336 6337 6338
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6339
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6340 6341 6342 6343 6344 6345 6346
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6347
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6348
	case CPU_DOWN_PREPARE:
6349
	case CPU_DOWN_PREPARE_FROZEN:
6350
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6351 6352 6353
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6354
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6355
	case CPU_DOWN_FAILED:
6356
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6357
	case CPU_ONLINE:
6358
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6359
	case CPU_DEAD:
6360
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6361 6362 6363 6364 6365 6366 6367 6368 6369
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6370
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6371 6372 6373 6374 6375 6376

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6377 6378
	cpumask_t non_isolated_cpus;

6379
	mutex_lock(&sched_hotcpu_mutex);
6380
	arch_init_sched_domains(&cpu_online_map);
6381
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6382 6383
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6384
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6385 6386
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6387 6388 6389 6390

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6402

L
Linus Torvalds 已提交
6403 6404 6405 6406 6407 6408 6409 6410
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

void __init sched_init(void)
{
	int i, j, k;
6411
	int highest_cpu = 0;
L
Linus Torvalds 已提交
6412

6413
	for_each_possible_cpu(i) {
6414 6415
		struct prio_array *array;
		struct rq *rq;
L
Linus Torvalds 已提交
6416 6417 6418

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6419
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6420
		rq->nr_running = 0;
L
Linus Torvalds 已提交
6421 6422 6423 6424 6425
		rq->active = rq->arrays;
		rq->expired = rq->arrays + 1;
		rq->best_expired_prio = MAX_PRIO;

#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6426
		rq->sd = NULL;
N
Nick Piggin 已提交
6427 6428
		for (j = 1; j < 3; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6429 6430
		rq->active_balance = 0;
		rq->push_cpu = 0;
6431
		rq->cpu = i;
L
Linus Torvalds 已提交
6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

		for (j = 0; j < 2; j++) {
			array = rq->arrays + j;
			for (k = 0; k < MAX_PRIO; k++) {
				INIT_LIST_HEAD(array->queue + k);
				__clear_bit(k, array->bitmap);
			}
			// delimiter for bitsearch
			__set_bit(MAX_PRIO, array->bitmap);
		}
6446
		highest_cpu = i;
L
Linus Torvalds 已提交
6447 6448
	}

6449
	set_load_weight(&init_task);
6450

6451
#ifdef CONFIG_SMP
6452
	nr_cpu_ids = highest_cpu + 1;
6453 6454 6455
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6456 6457 6458 6459
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6478
#ifdef in_atomic
L
Linus Torvalds 已提交
6479 6480 6481 6482 6483 6484 6485
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6486
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6487 6488 6489
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6490
		debug_show_held_locks(current);
6491 6492
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6503
	struct prio_array *array;
6504
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6505
	unsigned long flags;
6506
	struct rq *rq;
L
Linus Torvalds 已提交
6507 6508

	read_lock_irq(&tasklist_lock);
6509 6510

	do_each_thread(g, p) {
L
Linus Torvalds 已提交
6511 6512 6513
		if (!rt_task(p))
			continue;

6514 6515
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6516 6517 6518 6519 6520 6521 6522 6523 6524 6525

		array = p->array;
		if (array)
			deactivate_task(p, task_rq(p));
		__setscheduler(p, SCHED_NORMAL, 0);
		if (array) {
			__activate_task(p, task_rq(p));
			resched_task(rq->curr);
		}

6526 6527
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6528 6529
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6530 6531 6532 6533
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6552
struct task_struct *curr_task(int cpu)
6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6572
void set_curr_task(int cpu, struct task_struct *p)
6573 6574 6575 6576 6577
{
	cpu_curr(cpu) = p;
}

#endif