spapr.c 76.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
P
Peter Maydell 已提交
27
#include "qemu/osdep.h"
28
#include "sysemu/sysemu.h"
29
#include "sysemu/numa.h"
30
#include "hw/hw.h"
31
#include "hw/fw-path-provider.h"
32
#include "elf.h"
P
Paolo Bonzini 已提交
33
#include "net/net.h"
A
Andrew Jones 已提交
34
#include "sysemu/device_tree.h"
35
#include "sysemu/block-backend.h"
36 37
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
B
Bharata B Rao 已提交
38
#include "sysemu/device_tree.h"
39
#include "kvm_ppc.h"
40
#include "migration/migration.h"
41
#include "mmu-hash64.h"
42
#include "qom/cpu.h"
43 44

#include "hw/boards.h"
P
Paolo Bonzini 已提交
45
#include "hw/ppc/ppc.h"
46 47
#include "hw/loader.h"

P
Paolo Bonzini 已提交
48 49 50 51
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
52
#include "hw/pci/msi.h"
53

54
#include "hw/pci/pci.h"
55 56
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
57

58
#include "exec/address-spaces.h"
59
#include "hw/usb.h"
60
#include "qemu/config-file.h"
61
#include "qemu/error-report.h"
62
#include "trace.h"
63
#include "hw/nmi.h"
A
Avi Kivity 已提交
64

65
#include "hw/compat.h"
D
David Gibson 已提交
66
#include "qemu-common.h"
67

68 69
#include <libfdt.h>

70 71 72 73 74 75 76 77 78 79
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
80
#define FDT_MAX_SIZE            0x100000
81
#define RTAS_MAX_SIZE           0x10000
82
#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
83 84
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
85 86
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
87

88
#define MIN_RMA_SLOF            128UL
89 90 91

#define TIMEBASE_FREQ           512000000ULL

92 93
#define PHANDLE_XICP            0x00001111

94 95
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

96
static XICSState *try_create_xics(const char *type, int nr_servers,
97
                                  int nr_irqs, Error **errp)
98
{
99
    Error *err = NULL;
100 101 102 103 104
    DeviceState *dev;

    dev = qdev_create(NULL, type);
    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
105 106 107 108
    object_property_set_bool(OBJECT(dev), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        object_unparent(OBJECT(dev));
109 110
        return NULL;
    }
111
    return XICS_COMMON(dev);
112 113
}

114
static XICSState *xics_system_init(MachineState *machine,
115
                                   int nr_servers, int nr_irqs, Error **errp)
116 117 118
{
    XICSState *icp = NULL;

119
    if (kvm_enabled()) {
120 121
        Error *err = NULL;

122
        if (machine_kernel_irqchip_allowed(machine)) {
123
            icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
124
        }
125
        if (machine_kernel_irqchip_required(machine) && !icp) {
126 127 128 129
            error_reportf_err(err,
                              "kernel_irqchip requested but unavailable: ");
        } else {
            error_free(err);
130 131 132 133
        }
    }

    if (!icp) {
134
        icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, errp);
135 136 137 138 139
    }

    return icp;
}

140 141 142 143 144 145 146 147
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
                                  int smt_threads)
{
    int i, ret = 0;
    uint32_t servers_prop[smt_threads];
    uint32_t gservers_prop[smt_threads * 2];
    int index = ppc_get_vcpu_dt_id(cpu);

148
    if (cpu->cpu_version) {
149
        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
150 151 152 153 154
        if (ret < 0) {
            return ret;
        }
    }

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    /* Build interrupt servers and gservers properties */
    for (i = 0; i < smt_threads; i++) {
        servers_prop[i] = cpu_to_be32(index + i);
        /* Hack, direct the group queues back to cpu 0 */
        gservers_prop[i*2] = cpu_to_be32(index + i);
        gservers_prop[i*2 + 1] = 0;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
                      servers_prop, sizeof(servers_prop));
    if (ret < 0) {
        return ret;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
                      gservers_prop, sizeof(gservers_prop));

    return ret;
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
{
    int ret = 0;
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t associativity[] = {cpu_to_be32(0x5),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(cs->numa_node),
                                cpu_to_be32(index)};

    /* Advertise NUMA via ibm,associativity */
    if (nb_numa_nodes > 1) {
        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                          sizeof(associativity));
    }

    return ret;
}

194
static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
195
{
196 197
    int ret = 0, offset, cpus_offset;
    CPUState *cs;
198 199
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
200
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
201

202 203 204 205
    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
206

207
        if ((index % smt) != 0) {
208 209 210
            continue;
        }

211
        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
212

213 214 215 216 217 218 219 220 221
        cpus_offset = fdt_path_offset(fdt, "/cpus");
        if (cpus_offset < 0) {
            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
                                          "cpus");
            if (cpus_offset < 0) {
                return cpus_offset;
            }
        }
        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
222
        if (offset < 0) {
223 224 225 226
            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
            if (offset < 0) {
                return offset;
            }
227 228
        }

229 230
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
231 232 233
        if (ret < 0) {
            return ret;
        }
234

235 236 237 238 239
        ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
        if (ret < 0) {
            return ret;
        }

240
        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
241
                                     ppc_get_compat_smt_threads(cpu));
242 243 244
        if (ret < 0) {
            return ret;
        }
245 246 247 248
    }
    return ret;
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
                                     size_t maxsize)
{
    size_t maxcells = maxsize / sizeof(uint32_t);
    int i, j, count;
    uint32_t *p = prop;

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];

        if (!sps->page_shift) {
            break;
        }
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
            if (sps->enc[count].page_shift == 0) {
                break;
            }
        }
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
            break;
        }
        *(p++) = cpu_to_be32(sps->page_shift);
        *(p++) = cpu_to_be32(sps->slb_enc);
        *(p++) = cpu_to_be32(count);
        for (j = 0; j < count; j++) {
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
        }
    }

    return (p - prop) * sizeof(uint32_t);
}

283 284
static hwaddr spapr_node0_size(void)
{
285 286
    MachineState *machine = MACHINE(qdev_get_machine());

287 288 289 290
    if (nb_numa_nodes) {
        int i;
        for (i = 0; i < nb_numa_nodes; ++i) {
            if (numa_info[i].node_mem) {
291 292
                return MIN(pow2floor(numa_info[i].node_mem),
                           machine->ram_size);
293 294 295
            }
        }
    }
296
    return machine->ram_size;
297 298
}

299 300 301 302 303 304 305 306 307 308
#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
                    #exp, fdt_strerror(ret));                      \
            exit(1);                                               \
        }                                                          \
    } while (0)

309 310 311 312
static void add_str(GString *s, const gchar *s1)
{
    g_string_append_len(s, s1, strlen(s1) + 1);
}
313

314
static void *spapr_create_fdt_skel(hwaddr initrd_base,
A
Avi Kivity 已提交
315 316
                                   hwaddr initrd_size,
                                   hwaddr kernel_size,
317
                                   bool little_endian,
318 319
                                   const char *kernel_cmdline,
                                   uint32_t epow_irq)
320 321 322 323
{
    void *fdt;
    uint32_t start_prop = cpu_to_be32(initrd_base);
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
324 325
    GString *hypertas = g_string_sized_new(256);
    GString *qemu_hypertas = g_string_sized_new(256);
326
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
327
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
328
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
329
    char *buf;
330

331 332 333 334 335 336 337 338 339 340 341
    add_str(hypertas, "hcall-pft");
    add_str(hypertas, "hcall-term");
    add_str(hypertas, "hcall-dabr");
    add_str(hypertas, "hcall-interrupt");
    add_str(hypertas, "hcall-tce");
    add_str(hypertas, "hcall-vio");
    add_str(hypertas, "hcall-splpar");
    add_str(hypertas, "hcall-bulk");
    add_str(hypertas, "hcall-set-mode");
    add_str(qemu_hypertas, "hcall-memop1");

342
    fdt = g_malloc0(FDT_MAX_SIZE);
343 344
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));

345 346 347 348 349 350
    if (kernel_size) {
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
    }
    if (initrd_size) {
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
    }
351 352 353 354 355
    _FDT((fdt_finish_reservemap(fdt)));

    /* Root node */
    _FDT((fdt_begin_node(fdt, "")));
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
356
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
357
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    /*
     * Add info to guest to indentify which host is it being run on
     * and what is the uuid of the guest
     */
    if (kvmppc_get_host_model(&buf)) {
        _FDT((fdt_property_string(fdt, "host-model", buf)));
        g_free(buf);
    }
    if (kvmppc_get_host_serial(&buf)) {
        _FDT((fdt_property_string(fdt, "host-serial", buf)));
        g_free(buf);
    }

    buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
                          qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
                          qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
                          qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
                          qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
                          qemu_uuid[14], qemu_uuid[15]);

    _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
A
Alexey Kardashevskiy 已提交
380 381 382
    if (qemu_uuid_set) {
        _FDT((fdt_property_string(fdt, "system-id", buf)));
    }
383 384
    g_free(buf);

S
Sam Bobroff 已提交
385 386 387 388 389
    if (qemu_get_vm_name()) {
        _FDT((fdt_property_string(fdt, "ibm,partition-name",
                                  qemu_get_vm_name())));
    }

390 391 392 393 394 395
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));

    /* /chosen */
    _FDT((fdt_begin_node(fdt, "chosen")));

396 397 398
    /* Set Form1_affinity */
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));

399 400 401 402 403
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
    _FDT((fdt_property(fdt, "linux,initrd-start",
                       &start_prop, sizeof(start_prop))));
    _FDT((fdt_property(fdt, "linux,initrd-end",
                       &end_prop, sizeof(end_prop))));
404 405 406
    if (kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(kernel_size) };
407

408
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
409 410 411
        if (little_endian) {
            _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
        }
412
    }
413 414 415
    if (boot_menu) {
        _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
    }
416 417 418
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
419

420 421
    _FDT((fdt_end_node(fdt)));

422 423 424
    /* RTAS */
    _FDT((fdt_begin_node(fdt, "rtas")));

425 426 427
    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
        add_str(hypertas, "hcall-multi-tce");
    }
428 429 430 431 432 433
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
                       hypertas->len)));
    g_string_free(hypertas, TRUE);
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
                       qemu_hypertas->len)));
    g_string_free(qemu_hypertas, TRUE);
434

435 436 437
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
        refpoints, sizeof(refpoints))));

438
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
439 440
    _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
                            RTAS_EVENT_SCAN_RATE)));
441

442
    if (msi_nonbroken) {
443 444 445
        _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
    }

446
    /*
447
     * According to PAPR, rtas ibm,os-term does not guarantee a return
448 449 450 451 452 453 454
     * back to the guest cpu.
     *
     * While an additional ibm,extended-os-term property indicates that
     * rtas call return will always occur. Set this property.
     */
    _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));

455 456
    _FDT((fdt_end_node(fdt)));

457
    /* interrupt controller */
458
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
459 460 461 462 463 464 465 466

    _FDT((fdt_property_string(fdt, "device_type",
                              "PowerPC-External-Interrupt-Presentation")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
                       interrupt_server_ranges_prop,
                       sizeof(interrupt_server_ranges_prop))));
467 468 469
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
470 471 472

    _FDT((fdt_end_node(fdt)));

473 474 475 476 477 478 479
    /* vdevice */
    _FDT((fdt_begin_node(fdt, "vdevice")));

    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
480 481
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
482 483 484

    _FDT((fdt_end_node(fdt)));

485 486 487
    /* event-sources */
    spapr_events_fdt_skel(fdt, epow_irq);

488 489 490 491 492 493 494 495 496 497 498 499
    /* /hypervisor node */
    if (kvm_enabled()) {
        uint8_t hypercall[16];

        /* indicate KVM hypercall interface */
        _FDT((fdt_begin_node(fdt, "hypervisor")));
        _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
        if (kvmppc_has_cap_fixup_hcalls()) {
            /*
             * Older KVM versions with older guest kernels were broken with the
             * magic page, don't allow the guest to map it.
             */
500 501 502 503 504
            if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
                                      sizeof(hypercall))) {
                _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
                                   sizeof(hypercall))));
            }
505 506 507 508
        }
        _FDT((fdt_end_node(fdt)));
    }

509 510 511
    _FDT((fdt_end_node(fdt))); /* close root node */
    _FDT((fdt_finish(fdt)));

512 513 514
    return fdt;
}

515
static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
516 517 518 519 520
                                       hwaddr size)
{
    uint32_t associativity[] = {
        cpu_to_be32(0x4), /* length */
        cpu_to_be32(0x0), cpu_to_be32(0x0),
521
        cpu_to_be32(0x0), cpu_to_be32(nodeid)
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    };
    char mem_name[32];
    uint64_t mem_reg_property[2];
    int off;

    mem_reg_property[0] = cpu_to_be64(start);
    mem_reg_property[1] = cpu_to_be64(size);

    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
    off = fdt_add_subnode(fdt, 0, mem_name);
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));
538
    return off;
539 540
}

541
static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
542
{
543
    MachineState *machine = MACHINE(spapr);
544 545 546 547 548 549 550 551
    hwaddr mem_start, node_size;
    int i, nb_nodes = nb_numa_nodes;
    NodeInfo *nodes = numa_info;
    NodeInfo ramnode;

    /* No NUMA nodes, assume there is just one node with whole RAM */
    if (!nb_numa_nodes) {
        nb_nodes = 1;
552
        ramnode.node_mem = machine->ram_size;
553
        nodes = &ramnode;
554
    }
555

556 557 558 559
    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
        if (!nodes[i].node_mem) {
            continue;
        }
560
        if (mem_start >= machine->ram_size) {
561 562
            node_size = 0;
        } else {
563
            node_size = nodes[i].node_mem;
564 565
            if (node_size > machine->ram_size - mem_start) {
                node_size = machine->ram_size - mem_start;
566 567
            }
        }
568 569
        if (!mem_start) {
            /* ppc_spapr_init() checks for rma_size <= node0_size already */
570
            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
571 572 573
            mem_start += spapr->rma_size;
            node_size -= spapr->rma_size;
        }
574 575 576 577 578 579 580 581 582 583 584 585
        for ( ; node_size; ) {
            hwaddr sizetmp = pow2floor(node_size);

            /* mem_start != 0 here */
            if (ctzl(mem_start) < ctzl(sizetmp)) {
                sizetmp = 1ULL << ctzl(mem_start);
            }

            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
            node_size -= sizetmp;
            mem_start += sizetmp;
        }
586 587 588 589 590
    }

    return 0;
}

591 592 593 594 595 596 597 598 599 600 601 602 603
static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
                                  sPAPRMachineState *spapr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                       0xffffffff, 0xffffffff};
    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
    uint32_t page_sizes_prop[64];
    size_t page_sizes_prop_size;
604
    uint32_t vcpus_per_socket = smp_threads * smp_cores;
605 606
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    /* Note: we keep CI large pages off for now because a 64K capable guest
     * provisioned with large pages might otherwise try to map a qemu
     * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
     * even if that qemu runs on a 4k host.
     *
     * We can later add this bit back when we are confident this is not
     * an issue (!HV KVM or 64K host)
     */
    uint8_t pa_features_206[] = { 6, 0,
        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
    uint8_t pa_features_207[] = { 24, 0,
        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
        0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
    uint8_t *pa_features;
    size_t pa_size;

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));

    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
                           env->icache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
                           env->icache_line_size)));

    if (pcc->l1_dcache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
                               pcc->l1_dcache_size)));
    } else {
        fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
    }
    if (pcc->l1_icache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
                               pcc->l1_icache_size)));
    } else {
        fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
    }

    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
653
    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));

    if (env->spr_cb[SPR_PURR].oea_read) {
        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
    }

    if (env->mmu_model & POWERPC_MMU_1TSEG) {
        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
                          segs, sizeof(segs))));
    }

    /* Advertise VMX/VSX (vector extensions) if available
     *   0 / no property == no vector extensions
     *   1               == VMX / Altivec available
     *   2               == VSX available */
    if (env->insns_flags & PPC_ALTIVEC) {
        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
    }

    /* Advertise DFP (Decimal Floating Point) if available
     *   0 / no property == no DFP
     *   1               == DFP available */
    if (env->insns_flags2 & PPC2_DFP) {
        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
    }

    page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
                                                  sizeof(page_sizes_prop));
    if (page_sizes_prop_size) {
        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
                          page_sizes_prop, page_sizes_prop_size)));
    }

691 692 693 694 695 696 697 698 699 700 701 702 703
    /* Do the ibm,pa-features property, adjust it for ci-large-pages */
    if (env->mmu_model == POWERPC_MMU_2_06) {
        pa_features = pa_features_206;
        pa_size = sizeof(pa_features_206);
    } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
        pa_features = pa_features_207;
        pa_size = sizeof(pa_features_207);
    }
    if (env->ci_large_pages) {
        pa_features[3] |= 0x20;
    }
    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));

704
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
705
                           cs->cpu_index / vcpus_per_socket)));
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
                      pft_size_prop, sizeof(pft_size_prop))));

    _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));

    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
                                ppc_get_compat_smt_threads(cpu)));
}

static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
{
    CPUState *cs;
    int cpus_offset;
    char *nodename;
    int smt = kvmppc_smt_threads();

    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
    _FDT(cpus_offset);
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));

    /*
     * We walk the CPUs in reverse order to ensure that CPU DT nodes
     * created by fdt_add_subnode() end up in the right order in FDT
     * for the guest kernel the enumerate the CPUs correctly.
     */
    CPU_FOREACH_REVERSE(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int offset;

        if ((index % smt) != 0) {
            continue;
        }

        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
        g_free(nodename);
        _FDT(offset);
        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
    }

}

752 753 754 755 756 757 758 759 760 761 762
/*
 * Adds ibm,dynamic-reconfiguration-memory node.
 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 * of this device tree node.
 */
static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
{
    MachineState *machine = MACHINE(spapr);
    int ret, i, offset;
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
763
    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
764
    uint32_t *int_buf, *cur_index, buf_len;
765
    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
766

767 768 769 770 771 772 773
    /*
     * Don't create the node if there are no DR LMBs.
     */
    if (!nr_lmbs) {
        return 0;
    }

774 775 776 777 778 779
    /*
     * Allocate enough buffer size to fit in ibm,dynamic-memory
     * or ibm,associativity-lookup-arrays
     */
    buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
              * sizeof(uint32_t);
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
    cur_index = int_buf = g_malloc0(buf_len);

    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");

    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
                    sizeof(prop_lmb_size));
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
    if (ret < 0) {
        goto out;
    }

    /* ibm,dynamic-memory */
    int_buf[0] = cpu_to_be32(nr_lmbs);
    cur_index++;
    for (i = 0; i < nr_lmbs; i++) {
        sPAPRDRConnector *drc;
        sPAPRDRConnectorClass *drck;
806
        uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;;
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
        uint32_t *dynamic_memory = cur_index;

        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                       addr/lmb_size);
        g_assert(drc);
        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);

        dynamic_memory[0] = cpu_to_be32(addr >> 32);
        dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
        dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
        dynamic_memory[3] = cpu_to_be32(0); /* reserved */
        dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
        if (addr < machine->ram_size ||
                    memory_region_present(get_system_memory(), addr)) {
            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
        } else {
            dynamic_memory[5] = cpu_to_be32(0);
        }

        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
    }
    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
    if (ret < 0) {
        goto out;
    }

    /* ibm,associativity-lookup-arrays */
    cur_index = int_buf;
835
    int_buf[0] = cpu_to_be32(nr_nodes);
836 837
    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
    cur_index += 2;
838
    for (i = 0; i < nr_nodes; i++) {
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
        uint32_t associativity[] = {
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(i)
        };
        memcpy(cur_index, associativity, sizeof(associativity));
        cur_index += 4;
    }
    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
            (cur_index - int_buf) * sizeof(uint32_t));
out:
    g_free(int_buf);
    return ret;
}

int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
                                 target_ulong addr, target_ulong size,
                                 bool cpu_update, bool memory_update)
{
    void *fdt, *fdt_skel;
    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());

    size -= sizeof(hdr);

    /* Create sceleton */
    fdt_skel = g_malloc0(size);
    _FDT((fdt_create(fdt_skel, size)));
    _FDT((fdt_begin_node(fdt_skel, "")));
    _FDT((fdt_end_node(fdt_skel)));
    _FDT((fdt_finish(fdt_skel)));
    fdt = g_malloc0(size);
    _FDT((fdt_open_into(fdt_skel, fdt, size)));
    g_free(fdt_skel);

    /* Fixup cpu nodes */
    if (cpu_update) {
        _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
    }

880
    /* Generate ibm,dynamic-reconfiguration-memory node if required */
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
    if (memory_update && smc->dr_lmb_enabled) {
        _FDT((spapr_populate_drconf_memory(spapr, fdt)));
    }

    /* Pack resulting tree */
    _FDT((fdt_pack(fdt)));

    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
        trace_spapr_cas_failed(size);
        return -1;
    }

    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
    g_free(fdt);

    return 0;
}

901
static void spapr_finalize_fdt(sPAPRMachineState *spapr,
A
Avi Kivity 已提交
902 903 904
                               hwaddr fdt_addr,
                               hwaddr rtas_addr,
                               hwaddr rtas_size)
905
{
906
    MachineState *machine = MACHINE(qdev_get_machine());
B
Bharata B Rao 已提交
907
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
908
    const char *boot_device = machine->boot_order;
909 910 911
    int ret, i;
    size_t cb = 0;
    char *bootlist;
912
    void *fdt;
913
    sPAPRPHBState *phb;
914

915
    fdt = g_malloc(FDT_MAX_SIZE);
916 917 918

    /* open out the base tree into a temp buffer for the final tweaks */
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
919

920 921 922 923
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
        exit(1);
924 925
    }

926 927 928 929 930 931
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
        exit(1);
    }

932 933 934 935 936 937 938 939
    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
        ret = spapr_rng_populate_dt(fdt);
        if (ret < 0) {
            fprintf(stderr, "could not set up rng device in the fdt\n");
            exit(1);
        }
    }

940
    QLIST_FOREACH(phb, &spapr->phbs, list) {
941
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
942 943 944 945 946 947 948
    }

    if (ret < 0) {
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
        exit(1);
    }

949 950 951 952 953 954
    /* RTAS */
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
    if (ret < 0) {
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
    }

955 956
    /* cpus */
    spapr_populate_cpus_dt_node(fdt, spapr);
957

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
    bootlist = get_boot_devices_list(&cb, true);
    if (cb && bootlist) {
        int offset = fdt_path_offset(fdt, "/chosen");
        if (offset < 0) {
            exit(1);
        }
        for (i = 0; i < cb; i++) {
            if (bootlist[i] == '\n') {
                bootlist[i] = ' ';
            }

        }
        ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
    }

973 974 975 976 977 978 979 980 981
    if (boot_device && strlen(boot_device)) {
        int offset = fdt_path_offset(fdt, "/chosen");

        if (offset < 0) {
            exit(1);
        }
        fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
    }

982
    if (!spapr->has_graphics) {
983 984
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
    }
985

B
Bharata B Rao 已提交
986 987 988 989
    if (smc->dr_lmb_enabled) {
        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
    }

990 991
    _FDT((fdt_pack(fdt)));

992
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
993 994
        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
                     fdt_totalsize(fdt), FDT_MAX_SIZE);
995 996 997
        exit(1);
    }

A
Andrew Jones 已提交
998
    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
999
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1000

G
Gonglei 已提交
1001
    g_free(bootlist);
1002
    g_free(fdt);
1003 1004 1005 1006 1007 1008 1009
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

1010
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1011
{
1012 1013
    CPUPPCState *env = &cpu->env;

1014 1015 1016 1017
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
1018
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1019
    }
1020 1021
}

1022 1023 1024 1025 1026 1027
#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
/*
 * Get the fd to access the kernel htab, re-opening it if necessary
 */
static int get_htab_fd(sPAPRMachineState *spapr)
{
    if (spapr->htab_fd >= 0) {
        return spapr->htab_fd;
    }

    spapr->htab_fd = kvmppc_get_htab_fd(false);
    if (spapr->htab_fd < 0) {
        error_report("Unable to open fd for reading hash table from KVM: %s",
                     strerror(errno));
    }

    return spapr->htab_fd;
}

static void close_htab_fd(sPAPRMachineState *spapr)
{
    if (spapr->htab_fd >= 0) {
        close(spapr->htab_fd);
    }
    spapr->htab_fd = -1;
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
{
    int shift;

    /* We aim for a hash table of size 1/128 the size of RAM (rounded
     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
     * that's much more than is needed for Linux guests */
    shift = ctz64(pow2ceil(ramsize)) - 7;
    shift = MAX(shift, 18); /* Minimum architected size */
    shift = MIN(shift, 46); /* Maximum architected size */
    return shift;
}

1067 1068
static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
                                 Error **errp)
1069
{
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
    long rc;

    /* Clean up any HPT info from a previous boot */
    g_free(spapr->htab);
    spapr->htab = NULL;
    spapr->htab_shift = 0;
    close_htab_fd(spapr);

    rc = kvmppc_reset_htab(shift);
    if (rc < 0) {
        /* kernel-side HPT needed, but couldn't allocate one */
        error_setg_errno(errp, errno,
                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
                         shift);
        /* This is almost certainly fatal, but if the caller really
         * wants to carry on with shift == 0, it's welcome to try */
    } else if (rc > 0) {
        /* kernel-side HPT allocated */
        if (rc != shift) {
            error_setg(errp,
                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
                       shift, rc);
1092 1093
        }

1094
        spapr->htab_shift = shift;
1095
        spapr->htab = NULL;
1096
    } else {
1097 1098 1099
        /* kernel-side HPT not needed, allocate in userspace instead */
        size_t size = 1ULL << shift;
        int i;
1100

1101 1102 1103 1104 1105
        spapr->htab = qemu_memalign(size, size);
        if (!spapr->htab) {
            error_setg_errno(errp, errno,
                             "Could not allocate HPT of order %d", shift);
            return;
1106 1107
        }

1108 1109
        memset(spapr->htab, 0, size);
        spapr->htab_shift = shift;
1110

1111 1112
        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
            DIRTY_HPTE(HPTE(spapr->htab, i));
1113
        }
1114
    }
1115 1116
}

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
{
    bool matched = false;

    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
        matched = true;
    }

    if (!matched) {
        error_report("Device %s is not supported by this machine yet.",
                     qdev_fw_name(DEVICE(sbdev)));
        exit(1);
    }

    return 0;
}

1134
static void ppc_spapr_reset(void)
1135
{
1136 1137
    MachineState *machine = MACHINE(qdev_get_machine());
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1138
    PowerPCCPU *first_ppc_cpu;
1139
    uint32_t rtas_limit;
1140

1141 1142 1143
    /* Check for unknown sysbus devices */
    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
    /* Allocate and/or reset the hash page table */
    spapr_reallocate_hpt(spapr,
                         spapr_hpt_shift_for_ramsize(machine->maxram_size),
                         &error_fatal);

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
                                          spapr->htab_shift);
    }
1154

1155
    qemu_devices_reset();
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165
    /*
     * We place the device tree and RTAS just below either the top of the RMA,
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary
     */
    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;

1166 1167 1168 1169
    /* Load the fdt */
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
                       spapr->rtas_size);

1170 1171 1172 1173
    /* Copy RTAS over */
    cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
                              spapr->rtas_size);

1174
    /* Set up the entry state */
1175 1176 1177 1178
    first_ppc_cpu = POWERPC_CPU(first_cpu);
    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
1179
    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1180 1181 1182

}

1183 1184
static void spapr_cpu_reset(void *opaque)
{
1185
    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1186
    PowerPCCPU *cpu = opaque;
1187
    CPUState *cs = CPU(cpu);
1188
    CPUPPCState *env = &cpu->env;
1189

1190
    cpu_reset(cs);
1191 1192 1193 1194

    /* All CPUs start halted.  CPU0 is unhalted from the machine level
     * reset code and the rest are explicitly started up by the guest
     * using an RTAS call */
1195
    cs->halted = 1;
1196 1197

    env->spr[SPR_HIOR] = 0;
1198

1199 1200
    ppc_hash64_set_external_hpt(cpu, spapr->htab, spapr->htab_shift,
                                &error_fatal);
1201 1202
}

1203
static void spapr_create_nvram(sPAPRMachineState *spapr)
D
David Gibson 已提交
1204
{
1205
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
1206
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
1207

P
Paolo Bonzini 已提交
1208
    if (dinfo) {
1209 1210
        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
                            &error_fatal);
D
David Gibson 已提交
1211 1212 1213 1214 1215 1216 1217
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

1218
static void spapr_rtc_create(sPAPRMachineState *spapr)
1219 1220 1221 1222 1223
{
    DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);

    qdev_init_nofail(dev);
    spapr->rtc = dev;
D
David Gibson 已提交
1224 1225 1226

    object_property_add_alias(qdev_get_machine(), "rtc-time",
                              OBJECT(spapr->rtc), "date", NULL);
1227 1228
}

1229
/* Returns whether we want to use VGA or not */
1230
static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1231
{
1232 1233
    switch (vga_interface_type) {
    case VGA_NONE:
1234 1235 1236
        return false;
    case VGA_DEVICE:
        return true;
1237
    case VGA_STD:
1238
    case VGA_VIRTIO:
1239
        return pci_vga_init(pci_bus) != NULL;
1240
    default:
1241 1242 1243
        error_setg(errp,
                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
        return false;
1244 1245 1246
    }
}

1247 1248
static int spapr_post_load(void *opaque, int version_id)
{
1249
    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1250 1251
    int err = 0;

S
Stefan Weil 已提交
1252
    /* In earlier versions, there was no separate qdev for the PAPR
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
     * So when migrating from those versions, poke the incoming offset
     * value into the RTC device */
    if (version_id < 3) {
        err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
    }

    return err;
}

static bool version_before_3(void *opaque, int version_id)
{
    return version_id < 3;
}

1268 1269
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
1270
    .version_id = 3,
1271
    .minimum_version_id = 1,
1272
    .post_load = spapr_post_load,
1273
    .fields = (VMStateField[]) {
1274 1275
        /* used to be @next_irq */
        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1276 1277

        /* RTC offset */
1278
        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1279

1280
        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1281 1282 1283 1284 1285 1286
        VMSTATE_END_OF_LIST()
    },
};

static int htab_save_setup(QEMUFile *f, void *opaque)
{
1287
    sPAPRMachineState *spapr = opaque;
1288 1289 1290 1291

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

1292 1293 1294 1295 1296 1297 1298 1299
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());
    }


1300 1301 1302
    return 0;
}

1303
static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1304 1305
                                 int64_t max_ns)
{
1306
    bool has_timeout = max_ns != -1;
1307 1308
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
1309
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        /* Consume valid HPTEs */
        chunkstart = index;
1325
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

1340 1341
            if (has_timeout &&
                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

1355
static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1356
                                int64_t max_ns)
1357 1358 1359 1360 1361
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
1362
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
1378
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1379 1380 1381 1382 1383 1384 1385 1386 1387
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
1388
        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

1407
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

1429
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1430 1431
}

1432 1433 1434
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

1435 1436
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
1437
    sPAPRMachineState *spapr = opaque;
1438
    int fd;
1439
    int rc = 0;
1440 1441 1442 1443

    /* Iteration header */
    qemu_put_be32(f, 0);

1444 1445 1446
    if (!spapr->htab) {
        assert(kvm_enabled());

1447 1448 1449
        fd = get_htab_fd(spapr);
        if (fd < 0) {
            return fd;
1450 1451
        }

1452
        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1453 1454 1455 1456
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
1457 1458
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
1459
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1460 1461 1462 1463 1464 1465 1466
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

1467
    return rc;
1468 1469 1470 1471
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
1472
    sPAPRMachineState *spapr = opaque;
1473
    int fd;
1474 1475 1476 1477

    /* Iteration header */
    qemu_put_be32(f, 0);

1478 1479 1480 1481 1482
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

1483 1484 1485
        fd = get_htab_fd(spapr);
        if (fd < 0) {
            return fd;
1486 1487
        }

1488
        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1489 1490 1491
        if (rc < 0) {
            return rc;
        }
1492
        close_htab_fd(spapr);
1493
    } else {
1494 1495 1496
        if (spapr->htab_first_pass) {
            htab_save_first_pass(f, spapr, -1);
        }
1497 1498
        htab_save_later_pass(f, spapr, -1);
    }
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
1510
    sPAPRMachineState *spapr = opaque;
1511
    uint32_t section_hdr;
1512
    int fd = -1;
1513 1514

    if (version_id < 1 || version_id > 1) {
1515
        error_report("htab_load() bad version");
1516 1517 1518 1519 1520 1521
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
1522
        Error *local_err = NULL;
1523 1524 1525 1526 1527

        /* First section gives the htab size */
        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
        if (local_err) {
            error_report_err(local_err);
1528 1529 1530 1531 1532
            return -EINVAL;
        }
        return 0;
    }

1533 1534 1535 1536 1537
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
1538 1539
            error_report("Unable to open fd to restore KVM hash table: %s",
                         strerror(errno));
1540 1541 1542
        }
    }

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1556
        if ((index + n_valid + n_invalid) >
1557 1558
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
1559 1560 1561
            error_report(
                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
                index, n_valid, n_invalid, spapr->htab_shift);
1562 1563 1564
            return -EINVAL;
        }

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1583 1584 1585
        }
    }

1586 1587 1588 1589 1590
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1591 1592 1593 1594 1595 1596
    return 0;
}

static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
1597
    .save_live_complete_precopy = htab_save_complete,
1598 1599 1600
    .load_state = htab_load,
};

1601 1602 1603 1604 1605 1606 1607
static void spapr_boot_set(void *opaque, const char *boot_device,
                           Error **errp)
{
    MachineState *machine = MACHINE(qdev_get_machine());
    machine->boot_order = g_strdup(boot_device);
}

1608 1609
static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu,
                           Error **errp)
1610 1611 1612 1613 1614 1615
{
    CPUPPCState *env = &cpu->env;

    /* Set time-base frequency to 512 MHz */
    cpu_ppc_tb_init(env, TIMEBASE_FREQ);

1616 1617
    /* Enable PAPR mode in TCG or KVM */
    cpu_ppc_set_papr(cpu);
1618 1619

    if (cpu->max_compat) {
1620 1621 1622 1623 1624 1625 1626
        Error *local_err = NULL;

        ppc_set_compat(cpu, cpu->max_compat, &local_err);
        if (local_err) {
            error_propagate(errp, local_err);
            return;
        }
1627 1628 1629 1630 1631 1632 1633
    }

    xics_cpu_setup(spapr->icp, cpu);

    qemu_register_reset(spapr_cpu_reset, cpu);
}

D
David Gibson 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
/*
 * Reset routine for LMB DR devices.
 *
 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
 * routine. Reset for PCI DR devices will be handled by PHB reset routine
 * when it walks all its children devices. LMB devices reset occurs
 * as part of spapr_ppc_reset().
 */
static void spapr_drc_reset(void *opaque)
{
    sPAPRDRConnector *drc = opaque;
    DeviceState *d = DEVICE(drc);

    if (d) {
        device_reset(d);
    }
}

static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
{
    MachineState *machine = MACHINE(spapr);
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1656
    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
D
David Gibson 已提交
1657 1658 1659 1660 1661 1662
    int i;

    for (i = 0; i < nr_lmbs; i++) {
        sPAPRDRConnector *drc;
        uint64_t addr;

1663
        addr = i * lmb_size + spapr->hotplug_memory.base;
D
David Gibson 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
        drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
                                     addr/lmb_size);
        qemu_register_reset(spapr_drc_reset, drc);
    }
}

/*
 * If RAM size, maxmem size and individual node mem sizes aren't aligned
 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
 * since we can't support such unaligned sizes with DRCONF_MEMORY.
 */
1675
static void spapr_validate_node_memory(MachineState *machine, Error **errp)
D
David Gibson 已提交
1676 1677 1678
{
    int i;

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
                   " is not aligned to %llu MiB",
                   machine->ram_size,
                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
        return;
    }

    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
                   " is not aligned to %llu MiB",
                   machine->ram_size,
                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
        return;
D
David Gibson 已提交
1693 1694 1695 1696
    }

    for (i = 0; i < nb_numa_nodes; i++) {
        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1697 1698 1699 1700 1701 1702
            error_setg(errp,
                       "Node %d memory size 0x%" PRIx64
                       " is not aligned to %llu MiB",
                       i, numa_info[i].node_mem,
                       SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
            return;
D
David Gibson 已提交
1703 1704 1705 1706
        }
    }
}

1707
/* pSeries LPAR / sPAPR hardware init */
1708
static void ppc_spapr_init(MachineState *machine)
1709
{
1710
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
D
David Gibson 已提交
1711
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1712 1713 1714
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
1715
    PowerPCCPU *cpu;
1716
    PCIHostState *phb;
1717
    int i;
A
Avi Kivity 已提交
1718 1719
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
1720 1721
    MemoryRegion *rma_region;
    void *rma = NULL;
A
Avi Kivity 已提交
1722
    hwaddr rma_alloc_size;
1723
    hwaddr node0_size = spapr_node0_size();
1724 1725
    uint32_t initrd_base = 0;
    long kernel_size = 0, initrd_size = 0;
1726
    long load_limit, fw_size;
1727
    bool kernel_le = false;
1728
    char *filename;
1729

1730
    msi_nonbroken = true;
1731

1732 1733
    QLIST_INIT(&spapr->phbs);

1734 1735
    cpu_ppc_hypercall = emulate_spapr_hypercall;

1736
    /* Allocate RMA if necessary */
1737
    rma_alloc_size = kvmppc_alloc_rma(&rma);
1738 1739

    if (rma_alloc_size == -1) {
1740
        error_report("Unable to create RMA");
1741 1742
        exit(1);
    }
1743

1744
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1745
        spapr->rma_size = rma_alloc_size;
1746
    } else {
1747
        spapr->rma_size = node0_size;
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
1762 1763
    }

1764
    if (spapr->rma_size > node0_size) {
1765 1766
        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
                     spapr->rma_size);
1767 1768 1769
        exit(1);
    }

1770 1771
    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1772

1773
    /* Set up Interrupt Controller before we create the VCPUs */
1774
    spapr->icp = xics_system_init(machine,
1775
                                  DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1776
                                               smp_threads),
1777
                                  XICS_IRQS, &error_fatal);
1778

D
David Gibson 已提交
1779
    if (smc->dr_lmb_enabled) {
1780
        spapr_validate_node_memory(machine, &error_fatal);
D
David Gibson 已提交
1781 1782
    }

1783
    /* init CPUs */
1784 1785
    if (machine->cpu_model == NULL) {
        machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1786 1787
    }
    for (i = 0; i < smp_cpus; i++) {
1788
        cpu = cpu_ppc_init(machine->cpu_model);
1789
        if (cpu == NULL) {
1790
            error_report("Unable to find PowerPC CPU definition");
1791 1792
            exit(1);
        }
1793
        spapr_cpu_init(spapr, cpu, &error_fatal);
1794 1795
    }

1796 1797 1798
    if (kvm_enabled()) {
        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
        kvmppc_enable_logical_ci_hcalls();
1799
        kvmppc_enable_set_mode_hcall();
1800 1801
    }

1802
    /* allocate RAM */
1803
    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1804
                                         machine->ram_size);
1805
    memory_region_add_subregion(sysmem, 0, ram);
1806

1807 1808 1809 1810 1811 1812 1813 1814
    if (rma_alloc_size && rma) {
        rma_region = g_new(MemoryRegion, 1);
        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
                                   rma_alloc_size, rma);
        vmstate_register_ram_global(rma_region);
        memory_region_add_subregion(sysmem, 0, rma_region);
    }

1815 1816 1817 1818 1819
    /* initialize hotplug memory address space */
    if (machine->ram_size < machine->maxram_size) {
        ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;

        if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
1820 1821
            error_report("Specified number of memory slots %"
                         PRIu64" exceeds max supported %d",
1822
                         machine->ram_slots, SPAPR_MAX_RAM_SLOTS);
1823
            exit(1);
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
        }

        spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
                                              SPAPR_HOTPLUG_MEM_ALIGN);
        memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
                           "hotplug-memory", hotplug_mem_size);
        memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
                                    &spapr->hotplug_memory.mr);
    }

D
David Gibson 已提交
1834 1835 1836 1837
    if (smc->dr_lmb_enabled) {
        spapr_create_lmb_dr_connectors(spapr);
    }

1838
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1839
    if (!filename) {
1840
        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1841 1842
        exit(1);
    }
1843 1844 1845
    spapr->rtas_size = get_image_size(filename);
    spapr->rtas_blob = g_malloc(spapr->rtas_size);
    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1846
        error_report("Could not load LPAR rtas '%s'", filename);
1847 1848
        exit(1);
    }
1849
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
1850 1851
        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1852 1853
        exit(1);
    }
1854
    g_free(filename);
1855

1856 1857 1858
    /* Set up EPOW events infrastructure */
    spapr_events_init(spapr);

1859
    /* Set up the RTC RTAS interfaces */
1860
    spapr_rtc_create(spapr);
1861

1862
    /* Set up VIO bus */
1863 1864
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
1865
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1866
        if (serial_hds[i]) {
1867
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1868 1869
        }
    }
1870

D
David Gibson 已提交
1871 1872 1873
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

1874
    /* Set up PCI */
1875 1876
    spapr_pci_rtas_init();

1877
    phb = spapr_create_phb(spapr, 0);
1878

P
Paolo Bonzini 已提交
1879
    for (i = 0; i < nb_nics; i++) {
1880 1881 1882
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
1883
            nd->model = g_strdup("ibmveth");
1884 1885 1886
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
1887
            spapr_vlan_create(spapr->vio_bus, nd);
1888
        } else {
1889
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1890 1891 1892
        }
    }

1893
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1894
        spapr_vscsi_create(spapr->vio_bus);
1895 1896
    }

1897
    /* Graphics */
1898
    if (spapr_vga_init(phb->bus, &error_fatal)) {
1899
        spapr->has_graphics = true;
1900
        machine->usb |= defaults_enabled() && !machine->usb_disabled;
1901 1902
    }

1903
    if (machine->usb) {
1904 1905 1906 1907 1908
        if (smc->use_ohci_by_default) {
            pci_create_simple(phb->bus, -1, "pci-ohci");
        } else {
            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
        }
1909

1910
        if (spapr->has_graphics) {
1911 1912 1913 1914
            USBBus *usb_bus = usb_bus_find(-1);

            usb_create_simple(usb_bus, "usb-kbd");
            usb_create_simple(usb_bus, "usb-mouse");
1915 1916 1917
        }
    }

1918
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1919 1920 1921
        error_report(
            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
            MIN_RMA_SLOF);
1922 1923 1924
        exit(1);
    }

1925 1926 1927 1928
    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1929 1930
                               NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE,
                               0, 0);
1931
        if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1932 1933
            kernel_size = load_elf(kernel_filename,
                                   translate_kernel_address, NULL,
1934 1935
                                   NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE,
                                   0, 0);
1936 1937
            kernel_le = kernel_size > 0;
        }
1938
        if (kernel_size < 0) {
1939 1940
            error_report("error loading %s: %s",
                         kernel_filename, load_elf_strerror(kernel_size));
1941 1942 1943 1944 1945
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
1946 1947 1948 1949
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1950
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
1951
                                              load_limit - initrd_base);
1952
            if (initrd_size < 0) {
1953 1954
                error_report("could not load initial ram disk '%s'",
                             initrd_filename);
1955 1956 1957 1958 1959 1960
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }
1961
    }
1962

1963 1964 1965 1966
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1967
    if (!filename) {
1968
        error_report("Could not find LPAR firmware '%s'", bios_name);
1969 1970
        exit(1);
    }
1971
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1972 1973
    if (fw_size <= 0) {
        error_report("Could not load LPAR firmware '%s'", filename);
1974 1975 1976 1977
        exit(1);
    }
    g_free(filename);

1978 1979 1980
    /* FIXME: Should register things through the MachineState's qdev
     * interface, this is a legacy from the sPAPREnvironment structure
     * which predated MachineState but had a similar function */
1981 1982 1983 1984
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

1985
    /* Prepare the device tree */
1986
    spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1987
                                            kernel_size, kernel_le,
1988 1989
                                            kernel_cmdline,
                                            spapr->check_exception_irq);
1990
    assert(spapr->fdt_skel != NULL);
1991

1992 1993 1994 1995
    /* used by RTAS */
    QTAILQ_INIT(&spapr->ccs_list);
    qemu_register_reset(spapr_ccs_reset_hook, spapr);

1996
    qemu_register_boot_set(spapr_boot_set, spapr);
1997 1998
}

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

2017
/*
2018
 * Implementation of an interface to adjust firmware path
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
 * for the bootindex property handling.
 */
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
                                   DeviceState *dev)
{
#define CAST(type, obj, name) \
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (d) {
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);

        if (spapr) {
            /*
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
             * in the top 16 bits of the 64-bit LUN
             */
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 48);
        } else if (virtio) {
            /*
             * We use SRP luns of the form 01000000 | (target << 8) | lun
             * in the top 32 bits of the 64-bit LUN
             * Note: the quote above is from SLOF and it is wrong,
             * the actual binding is:
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
             */
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        } else if (usb) {
            /*
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
             * in the top 32 bits of the 64-bit LUN
             */
            unsigned usb_port = atoi(usb->port->path);
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        }
    }

    if (phb) {
        /* Replace "pci" with "pci@800000020000000" */
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
    }

    return NULL;
}

E
Eduardo Habkost 已提交
2074 2075
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
2076
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2077

2078
    return g_strdup(spapr->kvm_type);
E
Eduardo Habkost 已提交
2079 2080 2081 2082
}

static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
2083
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2084

2085 2086
    g_free(spapr->kvm_type);
    spapr->kvm_type = g_strdup(value);
E
Eduardo Habkost 已提交
2087 2088 2089 2090
}

static void spapr_machine_initfn(Object *obj)
{
2091 2092 2093
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    spapr->htab_fd = -1;
E
Eduardo Habkost 已提交
2094 2095
    object_property_add_str(obj, "kvm-type",
                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2096 2097 2098
    object_property_set_description(obj, "kvm-type",
                                    "Specifies the KVM virtualization mode (HV, PR)",
                                    NULL);
E
Eduardo Habkost 已提交
2099 2100
}

2101 2102 2103 2104 2105 2106 2107
static void spapr_machine_finalizefn(Object *obj)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    g_free(spapr->kvm_type);
}

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
static void ppc_cpu_do_nmi_on_cpu(void *arg)
{
    CPUState *cs = arg;

    cpu_synchronize_state(cs);
    ppc_cpu_do_system_reset(cs);
}

static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
{
    CPUState *cs;

    CPU_FOREACH(cs) {
        async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
    }
}

B
Bharata B Rao 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
                           uint32_t node, Error **errp)
{
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
    int i, fdt_offset, fdt_size;
    void *fdt;

    /*
     * Check for DRC connectors and send hotplug notification to the
     * guest only in case of hotplugged memory. This allows cold plugged
     * memory to be specified at boot time.
     */
    if (!dev->hotplugged) {
        return;
    }

    for (i = 0; i < nr_lmbs; i++) {
        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                addr/SPAPR_MEMORY_BLOCK_SIZE);
        g_assert(drc);

        fdt = create_device_tree(&fdt_size);
        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
                                                SPAPR_MEMORY_BLOCK_SIZE);

        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
        addr += SPAPR_MEMORY_BLOCK_SIZE;
    }
2156
    spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
B
Bharata B Rao 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
}

static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
                              uint32_t node, Error **errp)
{
    Error *local_err = NULL;
    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
    PCDIMMDevice *dimm = PC_DIMM(dev);
    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
    MemoryRegion *mr = ddc->get_memory_region(dimm);
    uint64_t align = memory_region_get_alignment(mr);
    uint64_t size = memory_region_size(mr);
    uint64_t addr;

    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(&local_err, "Hotplugged memory size must be a multiple of "
                      "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
        goto out;
    }

2177
    pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
B
Bharata B Rao 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
    if (local_err) {
        goto out;
    }

    addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
    if (local_err) {
        pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
        goto out;
    }

    spapr_add_lmbs(dev, addr, size, node, &error_abort);

out:
    error_propagate(errp, local_err);
}

static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());

    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2200
        int node;
B
Bharata B Rao 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

        if (!smc->dr_lmb_enabled) {
            error_setg(errp, "Memory hotplug not supported for this machine");
            return;
        }
        node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
        if (*errp) {
            return;
        }

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
        /*
         * Currently PowerPC kernel doesn't allow hot-adding memory to
         * memory-less node, but instead will silently add the memory
         * to the first node that has some memory. This causes two
         * unexpected behaviours for the user.
         *
         * - Memory gets hotplugged to a different node than what the user
         *   specified.
         * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
         *   to memory-less node, a reboot will set things accordingly
         *   and the previously hotplugged memory now ends in the right node.
         *   This appears as if some memory moved from one node to another.
         *
         * So until kernel starts supporting memory hotplug to memory-less
         * nodes, just prevent such attempts upfront in QEMU.
         */
        if (nb_numa_nodes && !numa_info[node].node_mem) {
            error_setg(errp, "Can't hotplug memory to memory-less node %d",
                       node);
            return;
        }

B
Bharata B Rao 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
        spapr_memory_plug(hotplug_dev, dev, node, errp);
    }
}

static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
        error_setg(errp, "Memory hot unplug not supported by sPAPR");
    }
}

static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
                                             DeviceState *dev)
{
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
        return HOTPLUG_HANDLER(machine);
    }
    return NULL;
}

2254 2255 2256 2257 2258 2259 2260
static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
{
    /* Allocate to NUMA nodes on a "socket" basis (not that concept of
     * socket means much for the paravirtualized PAPR platform) */
    return cpu_index / smp_threads / smp_cores;
}

2261 2262 2263
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
D
David Gibson 已提交
2264
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2265
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2266
    NMIClass *nc = NMI_CLASS(oc);
B
Bharata B Rao 已提交
2267
    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2268

2269
    mc->desc = "pSeries Logical Partition (PAPR compliant)";
2270 2271 2272 2273 2274 2275

    /*
     * We set up the default / latest behaviour here.  The class_init
     * functions for the specific versioned machine types can override
     * these details for backwards compatibility
     */
2276 2277 2278
    mc->init = ppc_spapr_init;
    mc->reset = ppc_spapr_reset;
    mc->block_default_type = IF_SCSI;
2279
    mc->max_cpus = MAX_CPUMASK_BITS;
2280
    mc->no_parallel = 1;
2281
    mc->default_boot_order = "";
2282
    mc->default_ram_size = 512 * M_BYTE;
2283
    mc->kvm_type = spapr_kvm_type;
2284
    mc->has_dynamic_sysbus = true;
2285
    mc->pci_allow_0_address = true;
B
Bharata B Rao 已提交
2286 2287 2288
    mc->get_hotplug_handler = spapr_get_hotpug_handler;
    hc->plug = spapr_machine_device_plug;
    hc->unplug = spapr_machine_device_unplug;
2289
    mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2290

2291
    smc->dr_lmb_enabled = true;
2292
    fwc->get_dev_path = spapr_get_fw_dev_path;
2293
    nc->nmi_monitor_handler = spapr_nmi;
2294 2295 2296 2297 2298
}

static const TypeInfo spapr_machine_info = {
    .name          = TYPE_SPAPR_MACHINE,
    .parent        = TYPE_MACHINE,
2299
    .abstract      = true,
2300
    .instance_size = sizeof(sPAPRMachineState),
E
Eduardo Habkost 已提交
2301
    .instance_init = spapr_machine_initfn,
2302
    .instance_finalize = spapr_machine_finalizefn,
D
David Gibson 已提交
2303
    .class_size    = sizeof(sPAPRMachineClass),
2304
    .class_init    = spapr_machine_class_init,
2305 2306
    .interfaces = (InterfaceInfo[]) {
        { TYPE_FW_PATH_PROVIDER },
2307
        { TYPE_NMI },
B
Bharata B Rao 已提交
2308
        { TYPE_HOTPLUG_HANDLER },
2309 2310
        { }
    },
2311 2312
};

2313
#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
D
David Gibson 已提交
2314 2315 2316 2317 2318
    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
                                                    void *data)      \
    {                                                                \
        MachineClass *mc = MACHINE_CLASS(oc);                        \
        spapr_machine_##suffix##_class_options(mc);                  \
2319 2320 2321 2322
        if (latest) {                                                \
            mc->alias = "pseries";                                   \
            mc->is_default = 1;                                      \
        }                                                            \
D
David Gibson 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
    }                                                                \
    static void spapr_machine_##suffix##_instance_init(Object *obj)  \
    {                                                                \
        MachineState *machine = MACHINE(obj);                        \
        spapr_machine_##suffix##_instance_options(machine);          \
    }                                                                \
    static const TypeInfo spapr_machine_##suffix##_info = {          \
        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
        .parent = TYPE_SPAPR_MACHINE,                                \
        .class_init = spapr_machine_##suffix##_class_init,           \
        .instance_init = spapr_machine_##suffix##_instance_init,     \
    };                                                               \
    static void spapr_machine_register_##suffix(void)                \
    {                                                                \
        type_register(&spapr_machine_##suffix##_info);               \
    }                                                                \
2339
    type_init(spapr_machine_register_##suffix)
D
David Gibson 已提交
2340

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
/*
 * pseries-2.6
 */
static void spapr_machine_2_6_instance_options(MachineState *machine)
{
}

static void spapr_machine_2_6_class_options(MachineClass *mc)
{
    /* Defaults for the latest behaviour inherited from the base class */
}

DEFINE_SPAPR_MACHINE(2_6, "2.6", true);

2355 2356 2357
/*
 * pseries-2.5
 */
2358
#define SPAPR_COMPAT_2_5 \
2359 2360 2361 2362 2363 2364
    HW_COMPAT_2_5 \
    { \
        .driver   = "spapr-vlan", \
        .property = "use-rx-buffer-pools", \
        .value    = "off", \
    },
2365

D
David Gibson 已提交
2366
static void spapr_machine_2_5_instance_options(MachineState *machine)
2367
{
D
David Gibson 已提交
2368 2369 2370 2371
}

static void spapr_machine_2_5_class_options(MachineClass *mc)
{
2372 2373
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

2374
    spapr_machine_2_6_class_options(mc);
2375
    smc->use_ohci_by_default = true;
2376
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2377 2378
}

2379
DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2380 2381 2382 2383

/*
 * pseries-2.4
 */
C
Cornelia Huck 已提交
2384
#define SPAPR_COMPAT_2_4 \
2385
        SPAPR_COMPAT_2_5 \
C
Cornelia Huck 已提交
2386 2387
        HW_COMPAT_2_4

D
David Gibson 已提交
2388
static void spapr_machine_2_4_instance_options(MachineState *machine)
2389
{
D
David Gibson 已提交
2390 2391
    spapr_machine_2_5_instance_options(machine);
}
2392

D
David Gibson 已提交
2393 2394
static void spapr_machine_2_4_class_options(MachineClass *mc)
{
2395 2396 2397 2398
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

    spapr_machine_2_5_class_options(mc);
    smc->dr_lmb_enabled = false;
D
David Gibson 已提交
2399
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2400 2401
}

2402
DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2403 2404 2405 2406

/*
 * pseries-2.3
 */
E
Eduardo Habkost 已提交
2407
#define SPAPR_COMPAT_2_3 \
C
Cornelia Huck 已提交
2408
        SPAPR_COMPAT_2_4 \
2409 2410 2411 2412 2413 2414
        HW_COMPAT_2_3 \
        {\
            .driver   = "spapr-pci-host-bridge",\
            .property = "dynamic-reconfiguration",\
            .value    = "off",\
        },
E
Eduardo Habkost 已提交
2415

D
David Gibson 已提交
2416
static void spapr_machine_2_3_instance_options(MachineState *machine)
J
Jason Wang 已提交
2417
{
D
David Gibson 已提交
2418
    spapr_machine_2_4_instance_options(machine);
2419
    savevm_skip_section_footers();
2420
    global_state_set_optional();
2421
    savevm_skip_configuration();
J
Jason Wang 已提交
2422 2423
}

D
David Gibson 已提交
2424
static void spapr_machine_2_3_class_options(MachineClass *mc)
2425
{
2426
    spapr_machine_2_4_class_options(mc);
D
David Gibson 已提交
2427
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2428
}
2429
DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2430

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
/*
 * pseries-2.2
 */

#define SPAPR_COMPAT_2_2 \
        SPAPR_COMPAT_2_3 \
        HW_COMPAT_2_2 \
        {\
            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
            .property = "mem_win_size",\
            .value    = "0x20000000",\
        },

D
David Gibson 已提交
2444
static void spapr_machine_2_2_instance_options(MachineState *machine)
2445
{
D
David Gibson 已提交
2446
    spapr_machine_2_3_instance_options(machine);
2447
    machine->suppress_vmdesc = true;
2448 2449
}

D
David Gibson 已提交
2450
static void spapr_machine_2_2_class_options(MachineClass *mc)
2451
{
2452
    spapr_machine_2_3_class_options(mc);
D
David Gibson 已提交
2453
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2454
}
2455
DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2456

2457 2458 2459 2460 2461 2462
/*
 * pseries-2.1
 */
#define SPAPR_COMPAT_2_1 \
        SPAPR_COMPAT_2_2 \
        HW_COMPAT_2_1
2463

D
David Gibson 已提交
2464
static void spapr_machine_2_1_instance_options(MachineState *machine)
2465
{
D
David Gibson 已提交
2466
    spapr_machine_2_2_instance_options(machine);
2467
}
J
Jason Wang 已提交
2468

D
David Gibson 已提交
2469
static void spapr_machine_2_1_class_options(MachineClass *mc)
J
Jason Wang 已提交
2470
{
2471
    spapr_machine_2_2_class_options(mc);
D
David Gibson 已提交
2472
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
J
Jason Wang 已提交
2473
}
2474
DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
D
David Gibson 已提交
2475

2476
static void spapr_machine_register_types(void)
2477
{
2478
    type_register_static(&spapr_machine_info);
2479 2480
}

2481
type_init(spapr_machine_register_types)