bmc150-accel-core.c 49.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * 3-axis accelerometer driver supporting many Bosch-Sensortec chips
4 5 6 7 8 9 10 11 12
 * Copyright (c) 2014, Intel Corporation.
 */

#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/acpi.h>
13
#include <linux/of_irq.h>
14 15 16 17 18 19 20 21 22
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
M
Markus Pargmann 已提交
23
#include <linux/regmap.h>
24
#include <linux/regulator/consumer.h>
25

26 27
#include "bmc150-accel.h"

28 29 30 31 32 33 34
#define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
#define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"

#define BMC150_ACCEL_REG_CHIP_ID		0x00

#define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
#define BMC150_ACCEL_ANY_MOTION_MASK		0x07
35 36 37
#define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
#define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
#define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)

#define BMC150_ACCEL_REG_PMU_LPW		0x11
#define BMC150_ACCEL_PMU_MODE_MASK		0xE0
#define BMC150_ACCEL_PMU_MODE_SHIFT		5
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1

#define BMC150_ACCEL_REG_PMU_RANGE		0x0F

#define BMC150_ACCEL_DEF_RANGE_2G		0x03
#define BMC150_ACCEL_DEF_RANGE_4G		0x05
#define BMC150_ACCEL_DEF_RANGE_8G		0x08
#define BMC150_ACCEL_DEF_RANGE_16G		0x0C

/* Default BW: 125Hz */
#define BMC150_ACCEL_REG_PMU_BW		0x10
#define BMC150_ACCEL_DEF_BW			125

57 58 59
#define BMC150_ACCEL_REG_RESET			0x14
#define BMC150_ACCEL_RESET_VAL			0xB6

60
#define BMC150_ACCEL_REG_INT_MAP_0		0x19
61
#define BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE	BIT(2)
62 63

#define BMC150_ACCEL_REG_INT_MAP_1		0x1A
64 65 66 67 68 69 70 71 72
#define BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA	BIT(0)
#define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM	BIT(1)
#define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FFULL	BIT(2)
#define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FFULL	BIT(5)
#define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM	BIT(6)
#define BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA	BIT(7)

#define BMC150_ACCEL_REG_INT_MAP_2		0x1B
#define BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE	BIT(2)
73 74 75 76 77 78 79 80 81 82 83 84

#define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
#define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
#define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00

#define BMC150_ACCEL_REG_INT_EN_0		0x16
#define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)

#define BMC150_ACCEL_REG_INT_EN_1		0x17
85 86 87
#define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
#define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
88 89 90

#define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)
91
#define BMC150_ACCEL_INT_OUT_CTRL_INT2_LVL	BIT(2)
92 93 94 95 96 97 98 99

#define BMC150_ACCEL_REG_INT_5			0x27
#define BMC150_ACCEL_SLOPE_DUR_MASK		0x03

#define BMC150_ACCEL_REG_INT_6			0x28
#define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF

/* Slope duration in terms of number of samples */
100
#define BMC150_ACCEL_DEF_SLOPE_DURATION		1
101
/* in terms of multiples of g's/LSB, based on range */
102
#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

#define BMC150_ACCEL_REG_XOUT_L		0x02

#define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100

/* Sleep Duration values */
#define BMC150_ACCEL_SLEEP_500_MICRO		0x05
#define BMC150_ACCEL_SLEEP_1_MS		0x06
#define BMC150_ACCEL_SLEEP_2_MS		0x07
#define BMC150_ACCEL_SLEEP_4_MS		0x08
#define BMC150_ACCEL_SLEEP_6_MS		0x09
#define BMC150_ACCEL_SLEEP_10_MS		0x0A
#define BMC150_ACCEL_SLEEP_25_MS		0x0B
#define BMC150_ACCEL_SLEEP_50_MS		0x0C
#define BMC150_ACCEL_SLEEP_100_MS		0x0D
#define BMC150_ACCEL_SLEEP_500_MS		0x0E
#define BMC150_ACCEL_SLEEP_1_SEC		0x0F

#define BMC150_ACCEL_REG_TEMP			0x08
122
#define BMC150_ACCEL_TEMP_CENTER_VAL		23
123 124 125 126

#define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
#define BMC150_AUTO_SUSPEND_DELAY_MS		2000

127 128 129 130 131 132
#define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
#define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
#define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
#define BMC150_ACCEL_REG_FIFO_DATA		0x3F
#define BMC150_ACCEL_FIFO_LENGTH		32

133 134 135 136
enum bmc150_accel_axis {
	AXIS_X,
	AXIS_Y,
	AXIS_Z,
137
	AXIS_MAX,
138 139 140 141 142 143 144 145 146
};

enum bmc150_power_modes {
	BMC150_ACCEL_SLEEP_MODE_NORMAL,
	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
	BMC150_ACCEL_SLEEP_MODE_LPM,
	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
};

147 148 149 150 151 152
struct bmc150_scale_info {
	int scale;
	u8 reg_range;
};

struct bmc150_accel_chip_info {
153
	const char *name;
154 155 156 157 158 159
	u8 chip_id;
	const struct iio_chan_spec *channels;
	int num_channels;
	const struct bmc150_scale_info scale_table[4];
};

160 161 162 163
static const struct {
	int val;
	int val2;
	u8 bw_bits;
164 165 166 167 168 169 170 171
} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
				     {31, 260000, 0x09},
				     {62, 500000, 0x0A},
				     {125, 0, 0x0B},
				     {250, 0, 0x0C},
				     {500, 0, 0x0D},
				     {1000, 0, 0x0E},
				     {2000, 0, 0x0F} };
172

173
static __maybe_unused const struct {
174 175 176 177 178 179 180 181 182 183 184 185 186
	int bw_bits;
	int msec;
} bmc150_accel_sample_upd_time[] = { {0x08, 64},
				     {0x09, 32},
				     {0x0A, 16},
				     {0x0B, 8},
				     {0x0C, 4},
				     {0x0D, 2},
				     {0x0E, 1},
				     {0x0F, 1} };

static const struct {
	int sleep_dur;
187
	u8 reg_value;
188 189 190 191 192 193 194 195 196 197 198 199 200
} bmc150_accel_sleep_value_table[] = { {0, 0},
				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
				       {1000, BMC150_ACCEL_SLEEP_1_MS},
				       {2000, BMC150_ACCEL_SLEEP_2_MS},
				       {4000, BMC150_ACCEL_SLEEP_4_MS},
				       {6000, BMC150_ACCEL_SLEEP_6_MS},
				       {10000, BMC150_ACCEL_SLEEP_10_MS},
				       {25000, BMC150_ACCEL_SLEEP_25_MS},
				       {50000, BMC150_ACCEL_SLEEP_50_MS},
				       {100000, BMC150_ACCEL_SLEEP_100_MS},
				       {500000, BMC150_ACCEL_SLEEP_500_MS},
				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };

201
const struct regmap_config bmc150_regmap_conf = {
M
Markus Pargmann 已提交
202 203 204 205
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = 0x3f,
};
206
EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
M
Markus Pargmann 已提交
207

208 209 210 211
static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
				 enum bmc150_power_modes mode,
				 int dur_us)
{
212
	struct device *dev = regmap_get_device(data->regmap);
213 214 215 216 217 218 219 220 221 222 223 224 225
	int i;
	int ret;
	u8 lpw_bits;
	int dur_val = -1;

	if (dur_us > 0) {
		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
									 ++i) {
			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
									dur_us)
				dur_val =
				bmc150_accel_sleep_value_table[i].reg_value;
		}
226
	} else {
227
		dur_val = 0;
228
	}
229 230 231 232 233 234 235

	if (dur_val < 0)
		return -EINVAL;

	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);

236
	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
237

M
Markus Pargmann 已提交
238
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
239
	if (ret < 0) {
240
		dev_err(dev, "Error writing reg_pmu_lpw\n");
241 242 243 244 245 246 247 248 249 250 251 252 253 254
		return ret;
	}

	return 0;
}

static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
			       int val2)
{
	int i;
	int ret;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].val == val &&
255
		    bmc150_accel_samp_freq_table[i].val2 == val2) {
M
Markus Pargmann 已提交
256
			ret = regmap_write(data->regmap,
257 258 259 260 261 262 263 264 265 266 267 268 269 270
				BMC150_ACCEL_REG_PMU_BW,
				bmc150_accel_samp_freq_table[i].bw_bits);
			if (ret < 0)
				return ret;

			data->bw_bits =
				bmc150_accel_samp_freq_table[i].bw_bits;
			return 0;
		}
	}

	return -EINVAL;
}

271 272
static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
{
273
	struct device *dev = regmap_get_device(data->regmap);
M
Markus Pargmann 已提交
274
	int ret;
275

M
Markus Pargmann 已提交
276
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
277 278
					data->slope_thres);
	if (ret < 0) {
279
		dev_err(dev, "Error writing reg_int_6\n");
280 281 282
		return ret;
	}

M
Markus Pargmann 已提交
283 284
	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
285
	if (ret < 0) {
286
		dev_err(dev, "Error updating reg_int_5\n");
287 288 289
		return ret;
	}

290
	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
291 292 293 294

	return ret;
}

295 296 297 298 299 300 301 302 303
static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
					 bool state)
{
	if (state)
		return bmc150_accel_update_slope(t->data);

	return 0;
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
			       int *val2)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
			*val = bmc150_accel_samp_freq_table[i].val;
			*val2 = bmc150_accel_samp_freq_table[i].val2;
			return IIO_VAL_INT_PLUS_MICRO;
		}
	}

	return -EINVAL;
}

320
#ifdef CONFIG_PM
321 322 323 324 325 326 327 328 329 330 331 332 333 334
static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
			return bmc150_accel_sample_upd_time[i].msec;
	}

	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
}

static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
335
	struct device *dev = regmap_get_device(data->regmap);
336 337
	int ret;

338
	if (on) {
339
		ret = pm_runtime_resume_and_get(dev);
340
	} else {
341 342
		pm_runtime_mark_last_busy(dev);
		ret = pm_runtime_put_autosuspend(dev);
343
	}
344

345
	if (ret < 0) {
346
		dev_err(dev,
347
			"Failed: %s for %d\n", __func__, on);
348 349 350 351 352
		return ret;
	}

	return 0;
}
353 354 355 356 357 358
#else
static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
	return 0;
}
#endif
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
#ifdef CONFIG_ACPI
/*
 * Support for getting accelerometer information from BOSC0200 ACPI nodes.
 *
 * There are 2 variants of the BOSC0200 ACPI node. Some 2-in-1s with 360 degree
 * hinges declare 2 I2C ACPI-resources for 2 accelerometers, 1 in the display
 * and 1 in the base of the 2-in-1. On these 2-in-1s the ROMS ACPI object
 * contains the mount-matrix for the sensor in the display and ROMK contains
 * the mount-matrix for the sensor in the base. On devices using a single
 * sensor there is a ROTM ACPI object which contains the mount-matrix.
 *
 * Here is an incomplete list of devices known to use 1 of these setups:
 *
 * Yoga devices with 2 accelerometers using ROMS + ROMK for the mount-matrices:
 * Lenovo Thinkpad Yoga 11e 3th gen
 * Lenovo Thinkpad Yoga 11e 4th gen
 *
 * Tablets using a single accelerometer using ROTM for the mount-matrix:
 * Chuwi Hi8 Pro (CWI513)
 * Chuwi Vi8 Plus (CWI519)
 * Chuwi Hi13
 * Irbis TW90
 * Jumper EZpad mini 3
 * Onda V80 plus
 * Predia Basic Tablet
 */
386 387
static bool bmc150_apply_bosc0200_acpi_orientation(struct device *dev,
						   struct iio_mount_matrix *orientation)
388 389
{
	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
390
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
391
	struct acpi_device *adev = ACPI_COMPANION(dev);
392
	char *name, *alt_name, *label, *str;
393 394 395 396
	union acpi_object *obj, *elements;
	acpi_status status;
	int i, j, val[3];

397
	if (strcmp(dev_name(dev), "i2c-BOSC0200:base") == 0) {
398
		alt_name = "ROMK";
399 400
		label = "accel-base";
	} else {
401
		alt_name = "ROMS";
402 403
		label = "accel-display";
	}
404

405
	if (acpi_has_method(adev->handle, "ROTM")) {
406
		name = "ROTM";
407
	} else if (acpi_has_method(adev->handle, alt_name)) {
408
		name = alt_name;
409 410
		indio_dev->label = label;
	} else {
411
		return false;
412
	}
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

	status = acpi_evaluate_object(adev->handle, name, NULL, &buffer);
	if (ACPI_FAILURE(status)) {
		dev_warn(dev, "Failed to get ACPI mount matrix: %d\n", status);
		return false;
	}

	obj = buffer.pointer;
	if (obj->type != ACPI_TYPE_PACKAGE || obj->package.count != 3)
		goto unknown_format;

	elements = obj->package.elements;
	for (i = 0; i < 3; i++) {
		if (elements[i].type != ACPI_TYPE_STRING)
			goto unknown_format;

		str = elements[i].string.pointer;
		if (sscanf(str, "%d %d %d", &val[0], &val[1], &val[2]) != 3)
			goto unknown_format;

		for (j = 0; j < 3; j++) {
			switch (val[j]) {
			case -1: str = "-1"; break;
			case 0:  str = "0";  break;
			case 1:  str = "1";  break;
			default: goto unknown_format;
			}
			orientation->rotation[i * 3 + j] = str;
		}
	}

	kfree(buffer.pointer);
	return true;

unknown_format:
	dev_warn(dev, "Unknown ACPI mount matrix format, ignoring\n");
	kfree(buffer.pointer);
	return false;
}
452

453 454 455 456 457 458 459 460 461 462 463 464 465
static bool bmc150_apply_dual250e_acpi_orientation(struct device *dev,
						   struct iio_mount_matrix *orientation)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);

	if (strcmp(dev_name(dev), "i2c-DUAL250E:base") == 0)
		indio_dev->label = "accel-base";
	else
		indio_dev->label = "accel-display";

	return false; /* DUAL250E fwnodes have no mount matrix info */
}

466 467 468 469 470 471 472 473
static bool bmc150_apply_acpi_orientation(struct device *dev,
					  struct iio_mount_matrix *orientation)
{
	struct acpi_device *adev = ACPI_COMPANION(dev);

	if (adev && acpi_dev_hid_uid_match(adev, "BOSC0200", NULL))
		return bmc150_apply_bosc0200_acpi_orientation(dev, orientation);

474 475 476
	if (adev && acpi_dev_hid_uid_match(adev, "DUAL250E", NULL))
		return bmc150_apply_dual250e_acpi_orientation(dev, orientation);

477 478
	return false;
}
479 480 481 482 483 484 485 486
#else
static bool bmc150_apply_acpi_orientation(struct device *dev,
					  struct iio_mount_matrix *orientation)
{
	return false;
}
#endif

487
struct bmc150_accel_interrupt_info {
488 489 490 491
	u8 map_reg;
	u8 map_bitmask;
	u8 en_reg;
	u8 en_bitmask;
492 493 494 495
};

static const struct bmc150_accel_interrupt_info
bmc150_accel_interrupts_int1[BMC150_ACCEL_INTERRUPTS] = {
496 497
	{ /* data ready interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
498
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA,
499 500 501 502 503
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
	},
	{  /* motion interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
504
		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE,
505 506 507 508 509
		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
			BMC150_ACCEL_INT_EN_BIT_SLP_Z
	},
510 511
	{ /* fifo watermark interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
	},
};

static const struct bmc150_accel_interrupt_info
bmc150_accel_interrupts_int2[BMC150_ACCEL_INTERRUPTS] = {
	{ /* data ready interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
	},
	{  /* motion interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_2,
		.map_bitmask = BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE,
		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
			BMC150_ACCEL_INT_EN_BIT_SLP_Z
	},
	{ /* fifo watermark interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM,
537 538 539
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
	},
540 541
};

542
static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
543
					  struct bmc150_accel_data *data, int irq)
544
{
545 546
	const struct bmc150_accel_interrupt_info *irq_info = NULL;
	struct device *dev = regmap_get_device(data->regmap);
547 548
	int i;

549 550 551 552 553 554 555
	/*
	 * For now we map all interrupts to the same output pin.
	 * However, some boards may have just INT2 (and not INT1) connected,
	 * so we try to detect which IRQ it is based on the interrupt-names.
	 * Without interrupt-names, we assume the irq belongs to INT1.
	 */
	irq_info = bmc150_accel_interrupts_int1;
556 557
	if (data->type == BOSCH_BMC156 ||
	    irq == of_irq_get_byname(dev->of_node, "INT2"))
558 559
		irq_info = bmc150_accel_interrupts_int2;

560
	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
561
		data->interrupts[i].info = &irq_info[i];
562 563 564
}

static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
565 566
				      bool state)
{
567
	struct device *dev = regmap_get_device(data->regmap);
568 569
	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
	const struct bmc150_accel_interrupt_info *info = intr->info;
570 571
	int ret;

572 573 574 575 576 577 578 579
	if (state) {
		if (atomic_inc_return(&intr->users) > 1)
			return 0;
	} else {
		if (atomic_dec_return(&intr->users) > 0)
			return 0;
	}

580
	/*
581 582 583 584 585 586 587
	 * We will expect the enable and disable to do operation in reverse
	 * order. This will happen here anyway, as our resume operation uses
	 * sync mode runtime pm calls. The suspend operation will be delayed
	 * by autosuspend delay.
	 * So the disable operation will still happen in reverse order of
	 * enable operation. When runtime pm is disabled the mode is always on,
	 * so sequence doesn't matter.
588 589 590 591 592 593
	 */
	ret = bmc150_accel_set_power_state(data, state);
	if (ret < 0)
		return ret;

	/* map the interrupt to the appropriate pins */
M
Markus Pargmann 已提交
594 595
	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
				 (state ? info->map_bitmask : 0));
596
	if (ret < 0) {
597
		dev_err(dev, "Error updating reg_int_map\n");
598 599 600 601
		goto out_fix_power_state;
	}

	/* enable/disable the interrupt */
M
Markus Pargmann 已提交
602 603
	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
				 (state ? info->en_bitmask : 0));
604
	if (ret < 0) {
605
		dev_err(dev, "Error updating reg_int_en\n");
606 607 608 609 610 611 612 613 614 615
		goto out_fix_power_state;
	}

	return 0;

out_fix_power_state:
	bmc150_accel_set_power_state(data, false);
	return ret;
}

616 617
static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
{
618
	struct device *dev = regmap_get_device(data->regmap);
619 620
	int ret, i;

621 622
	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
		if (data->chip_info->scale_table[i].scale == val) {
M
Markus Pargmann 已提交
623
			ret = regmap_write(data->regmap,
624 625
				     BMC150_ACCEL_REG_PMU_RANGE,
				     data->chip_info->scale_table[i].reg_range);
626
			if (ret < 0) {
627
				dev_err(dev, "Error writing pmu_range\n");
628 629 630
				return ret;
			}

631
			data->range = data->chip_info->scale_table[i].reg_range;
632 633 634 635 636 637 638 639 640
			return 0;
		}
	}

	return -EINVAL;
}

static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
{
641
	struct device *dev = regmap_get_device(data->regmap);
642
	int ret;
M
Markus Pargmann 已提交
643
	unsigned int value;
644 645 646

	mutex_lock(&data->mutex);

M
Markus Pargmann 已提交
647
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
648
	if (ret < 0) {
649
		dev_err(dev, "Error reading reg_temp\n");
650 651 652
		mutex_unlock(&data->mutex);
		return ret;
	}
M
Markus Pargmann 已提交
653
	*val = sign_extend32(value, 7);
654 655 656 657 658 659

	mutex_unlock(&data->mutex);

	return IIO_VAL_INT;
}

660 661
static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
				 struct iio_chan_spec const *chan,
662 663
				 int *val)
{
664
	struct device *dev = regmap_get_device(data->regmap);
665
	int ret;
666
	int axis = chan->scan_index;
667
	__le16 raw_val;
668 669 670 671 672 673 674 675

	mutex_lock(&data->mutex);
	ret = bmc150_accel_set_power_state(data, true);
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

M
Markus Pargmann 已提交
676
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
677
			       &raw_val, sizeof(raw_val));
678
	if (ret < 0) {
679
		dev_err(dev, "Error reading axis %d\n", axis);
680 681 682 683
		bmc150_accel_set_power_state(data, false);
		mutex_unlock(&data->mutex);
		return ret;
	}
684
	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
685
			     chan->scan_type.realbits - 1);
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	ret = bmc150_accel_set_power_state(data, false);
	mutex_unlock(&data->mutex);
	if (ret < 0)
		return ret;

	return IIO_VAL_INT;
}

static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
				 struct iio_chan_spec const *chan,
				 int *val, int *val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		switch (chan->type) {
		case IIO_TEMP:
			return bmc150_accel_get_temp(data, val);
		case IIO_ACCEL:
			if (iio_buffer_enabled(indio_dev))
				return -EBUSY;
			else
710
				return bmc150_accel_get_axis(data, chan, val);
711 712 713 714 715 716 717
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_OFFSET:
		if (chan->type == IIO_TEMP) {
			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
			return IIO_VAL_INT;
718
		} else {
719
			return -EINVAL;
720
		}
721 722 723 724 725 726 727 728 729
	case IIO_CHAN_INFO_SCALE:
		*val = 0;
		switch (chan->type) {
		case IIO_TEMP:
			*val2 = 500000;
			return IIO_VAL_INT_PLUS_MICRO;
		case IIO_ACCEL:
		{
			int i;
730 731
			const struct bmc150_scale_info *si;
			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
732

733 734 735 736
			for (i = 0; i < st_size; ++i) {
				si = &data->chip_info->scale_table[i];
				if (si->reg_range == data->range) {
					*val2 = si->scale;
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
					return IIO_VAL_INT_PLUS_MICRO;
				}
			}
			return -EINVAL;
		}
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_get_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		return -EINVAL;
	}
}

static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
				  struct iio_chan_spec const *chan,
				  int val, int val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		break;
	case IIO_CHAN_INFO_SCALE:
		if (val)
			return -EINVAL;

		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_scale(data, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int bmc150_accel_read_event(struct iio_dev *indio_dev,
				   const struct iio_chan_spec *chan,
				   enum iio_event_type type,
				   enum iio_event_direction dir,
				   enum iio_event_info info,
				   int *val, int *val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	*val2 = 0;
	switch (info) {
	case IIO_EV_INFO_VALUE:
		*val = data->slope_thres;
		break;
	case IIO_EV_INFO_PERIOD:
798
		*val = data->slope_dur;
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
		break;
	default:
		return -EINVAL;
	}

	return IIO_VAL_INT;
}

static int bmc150_accel_write_event(struct iio_dev *indio_dev,
				    const struct iio_chan_spec *chan,
				    enum iio_event_type type,
				    enum iio_event_direction dir,
				    enum iio_event_info info,
				    int val, int val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (data->ev_enable_state)
		return -EBUSY;

	switch (info) {
	case IIO_EV_INFO_VALUE:
821
		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
822 823
		break;
	case IIO_EV_INFO_PERIOD:
824
		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
					  const struct iio_chan_spec *chan,
					  enum iio_event_type type,
					  enum iio_event_direction dir)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return data->ev_enable_state;
}

static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
					   const struct iio_chan_spec *chan,
					   enum iio_event_type type,
					   enum iio_event_direction dir,
					   int state)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

852
	if (state == data->ev_enable_state)
853 854 855 856
		return 0;

	mutex_lock(&data->mutex);

857 858
	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
					 state);
859 860 861 862 863 864 865 866 867 868 869 870
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

	data->ev_enable_state = state;
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
871
					 struct iio_trigger *trig)
872 873
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
874
	int i;
875

876 877 878 879
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].indio_trig == trig)
			return 0;
	}
880

881
	return -EINVAL;
882 883
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
					       struct device_attribute *attr,
					       char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int wm;

	mutex_lock(&data->mutex);
	wm = data->watermark;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", wm);
}

static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	bool state;

	mutex_lock(&data->mutex);
	state = data->fifo_mode;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", state);
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927
static const struct iio_mount_matrix *
bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
				const struct iio_chan_spec *chan)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return &data->orientation;
}

static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
	{ }
};

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
static IIO_CONST_ATTR(hwfifo_watermark_max,
		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
		       bmc150_accel_get_fifo_state, NULL, 0);
static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
		       bmc150_accel_get_fifo_watermark, NULL, 0);

static const struct attribute *bmc150_accel_fifo_attributes[] = {
	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
	NULL,
};

static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (val > BMC150_ACCEL_FIFO_LENGTH)
		val = BMC150_ACCEL_FIFO_LENGTH;

	mutex_lock(&data->mutex);
	data->watermark = val;
	mutex_unlock(&data->mutex);

	return 0;
}

/*
 * We must read at least one full frame in one burst, otherwise the rest of the
 * frame data is discarded.
 */
M
Markus Pargmann 已提交
962
static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
963 964
				      char *buffer, int samples)
{
965
	struct device *dev = regmap_get_device(data->regmap);
966
	int sample_length = 3 * 2;
M
Markus Pargmann 已提交
967 968
	int ret;
	int total_length = samples * sample_length;
969

970 971
	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
			      buffer, total_length);
972
	if (ret)
973
		dev_err(dev,
974
			"Error transferring data from fifo: %d\n", ret);
975 976 977 978 979 980 981 982

	return ret;
}

static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
				     unsigned samples, bool irq)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
983
	struct device *dev = regmap_get_device(data->regmap);
984 985 986 987 988
	int ret, i;
	u8 count;
	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
	int64_t tstamp;
	uint64_t sample_period;
M
Markus Pargmann 已提交
989
	unsigned int val;
990

M
Markus Pargmann 已提交
991
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
992
	if (ret < 0) {
993
		dev_err(dev, "Error reading reg_fifo_status\n");
994 995 996
		return ret;
	}

M
Markus Pargmann 已提交
997
	count = val & 0x7F;
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

	if (!count)
		return 0;

	/*
	 * If we getting called from IRQ handler we know the stored timestamp is
	 * fairly accurate for the last stored sample. Otherwise, if we are
	 * called as a result of a read operation from userspace and hence
	 * before the watermark interrupt was triggered, take a timestamp
	 * now. We can fall anywhere in between two samples so the error in this
	 * case is at most one sample period.
	 */
	if (!irq) {
		data->old_timestamp = data->timestamp;
1012
		data->timestamp = iio_get_time_ns(indio_dev);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	}

	/*
	 * Approximate timestamps for each of the sample based on the sampling
	 * frequency, timestamp for last sample and number of samples.
	 *
	 * Note that we can't use the current bandwidth settings to compute the
	 * sample period because the sample rate varies with the device
	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
	 * small variation adds when we store a large number of samples and
	 * creates significant jitter between the last and first samples in
	 * different batches (e.g. 32ms vs 21ms).
	 *
	 * To avoid this issue we compute the actual sample period ourselves
	 * based on the timestamp delta between the last two flush operations.
	 */
	sample_period = (data->timestamp - data->old_timestamp);
	do_div(sample_period, count);
	tstamp = data->timestamp - (count - 1) * sample_period;

	if (samples && count > samples)
		count = samples;

M
Markus Pargmann 已提交
1036
	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	if (ret)
		return ret;

	/*
	 * Ideally we want the IIO core to handle the demux when running in fifo
	 * mode but not when running in triggered buffer mode. Unfortunately
	 * this does not seem to be possible, so stick with driver demux for
	 * now.
	 */
	for (i = 0; i < count; i++) {
		int j, bit;

		j = 0;
		for_each_set_bit(bit, indio_dev->active_scan_mask,
				 indio_dev->masklength)
1052 1053
			memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
			       sizeof(data->scan.channels[0]));
1054

1055 1056
		iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
						   tstamp);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

		tstamp += sample_period;
	}

	return count;
}

static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	mutex_lock(&data->mutex);
	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
	mutex_unlock(&data->mutex);

	return ret;
}

1076
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
1077
		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

static struct attribute *bmc150_accel_attributes[] = {
	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group bmc150_accel_attrs_group = {
	.attrs = bmc150_accel_attributes,
};

static const struct iio_event_spec bmc150_accel_event = {
		.type = IIO_EV_TYPE_ROC,
1090
		.dir = IIO_EV_DIR_EITHER,
1091 1092 1093 1094 1095
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
				 BIT(IIO_EV_INFO_ENABLE) |
				 BIT(IIO_EV_INFO_PERIOD)
};

1096
#define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
1097 1098 1099 1100 1101 1102 1103 1104 1105
	.type = IIO_ACCEL,						\
	.modified = 1,							\
	.channel2 = IIO_MOD_##_axis,					\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
	.scan_index = AXIS_##_axis,					\
	.scan_type = {							\
		.sign = 's',						\
1106
		.realbits = (bits),					\
1107
		.storagebits = 16,					\
1108
		.shift = 16 - (bits),					\
1109
		.endianness = IIO_LE,					\
1110
	},								\
1111
	.ext_info = bmc150_accel_ext_info,				\
1112 1113 1114 1115
	.event_spec = &bmc150_accel_event,				\
	.num_event_specs = 1						\
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
#define BMC150_ACCEL_CHANNELS(bits) {					\
	{								\
		.type = IIO_TEMP,					\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
				      BIT(IIO_CHAN_INFO_SCALE) |	\
				      BIT(IIO_CHAN_INFO_OFFSET),	\
		.scan_index = -1,					\
	},								\
	BMC150_ACCEL_CHANNEL(X, bits),					\
	BMC150_ACCEL_CHANNEL(Y, bits),					\
	BMC150_ACCEL_CHANNEL(Z, bits),					\
	IIO_CHAN_SOFT_TIMESTAMP(3),					\
}

static const struct iio_chan_spec bma222e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(8);
static const struct iio_chan_spec bma250e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(10);
static const struct iio_chan_spec bmc150_accel_channels[] =
	BMC150_ACCEL_CHANNELS(12);
static const struct iio_chan_spec bma280_accel_channels[] =
	BMC150_ACCEL_CHANNELS(14);

1139 1140 1141 1142 1143 1144 1145
/*
 * The range for the Bosch sensors is typically +-2g/4g/8g/16g, distributed
 * over the amount of bits (see above). The scale table can be calculated using
 *     (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2
 * e.g. for +-2g and 12 bits: (4 / 2^12) * 9.80665 m/s^2 = 0.0095768... m/s^2
 * Multiply 10^6 and round to get the values listed below.
 */
1146
static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1147
	{
1148 1149 1150 1151
		.name = "BMA222",
		.chip_id = 0x03,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1152 1153
		.scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G},
				 {306458, BMC150_ACCEL_DEF_RANGE_4G},
1154 1155
				 {612916, BMC150_ACCEL_DEF_RANGE_8G},
				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1156
	},
1157
	{
1158
		.name = "BMA222E",
1159 1160 1161
		.chip_id = 0xF8,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1162 1163 1164
		.scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G},
				 {306458, BMC150_ACCEL_DEF_RANGE_4G},
				 {612916, BMC150_ACCEL_DEF_RANGE_8G},
1165 1166
				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
	},
1167 1168 1169 1170 1171
	{
		.name = "BMA250E",
		.chip_id = 0xF9,
		.channels = bma250e_accel_channels,
		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
1172 1173 1174 1175
		.scale_table = { {38307, BMC150_ACCEL_DEF_RANGE_2G},
				 {76614, BMC150_ACCEL_DEF_RANGE_4G},
				 {153229, BMC150_ACCEL_DEF_RANGE_8G},
				 {306458, BMC150_ACCEL_DEF_RANGE_16G} },
1176 1177
	},
	{
1178
		.name = "BMA253/BMA254/BMA255/BMC150/BMC156/BMI055",
1179 1180 1181
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1182 1183 1184 1185
		.scale_table = { {9577, BMC150_ACCEL_DEF_RANGE_2G},
				 {19154, BMC150_ACCEL_DEF_RANGE_4G},
				 {38307, BMC150_ACCEL_DEF_RANGE_8G},
				 {76614, BMC150_ACCEL_DEF_RANGE_16G} },
1186
	},
1187 1188
	{
		.name = "BMA280",
1189 1190 1191
		.chip_id = 0xFB,
		.channels = bma280_accel_channels,
		.num_channels = ARRAY_SIZE(bma280_accel_channels),
1192 1193 1194 1195
		.scale_table = { {2394, BMC150_ACCEL_DEF_RANGE_2G},
				 {4788, BMC150_ACCEL_DEF_RANGE_4G},
				 {9577, BMC150_ACCEL_DEF_RANGE_8G},
				 {19154, BMC150_ACCEL_DEF_RANGE_16G} },
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	},
};

static const struct iio_info bmc150_accel_info = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
};

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
static const struct iio_info bmc150_accel_info_fifo = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
	.validate_trigger	= bmc150_accel_validate_trigger,
	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
};

1222 1223 1224 1225
static const unsigned long bmc150_accel_scan_masks[] = {
					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
					0};

1226 1227 1228 1229 1230
static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1231
	int ret;
1232 1233

	mutex_lock(&data->mutex);
1234 1235
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
			       data->buffer, AXIS_MAX * 2);
1236
	mutex_unlock(&data->mutex);
1237 1238
	if (ret < 0)
		goto err_read;
1239 1240

	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1241
					   pf->timestamp);
1242 1243 1244 1245 1246 1247
err_read:
	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

1248
static void bmc150_accel_trig_reen(struct iio_trigger *trig)
1249
{
1250 1251
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1252
	struct device *dev = regmap_get_device(data->regmap);
1253 1254 1255
	int ret;

	/* new data interrupts don't need ack */
1256
	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1257
		return;
1258 1259 1260

	mutex_lock(&data->mutex);
	/* clear any latched interrupt */
M
Markus Pargmann 已提交
1261 1262 1263
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1264
	mutex_unlock(&data->mutex);
1265
	if (ret < 0)
1266
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1267 1268
}

1269
static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1270
					  bool state)
1271
{
1272 1273
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1274 1275 1276 1277
	int ret;

	mutex_lock(&data->mutex);

1278 1279 1280 1281 1282 1283 1284 1285
	if (t->enabled == state) {
		mutex_unlock(&data->mutex);
		return 0;
	}

	if (t->setup) {
		ret = t->setup(t, state);
		if (ret < 0) {
1286
			mutex_unlock(&data->mutex);
1287
			return ret;
1288 1289 1290
		}
	}

1291
	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1292 1293 1294 1295
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}
1296 1297

	t->enabled = state;
1298 1299 1300 1301 1302 1303 1304

	mutex_unlock(&data->mutex);

	return ret;
}

static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1305
	.set_trigger_state = bmc150_accel_trigger_set_state,
1306
	.reenable = bmc150_accel_trig_reen,
1307 1308
};

1309
static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1310 1311
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1312
	struct device *dev = regmap_get_device(data->regmap);
1313
	int dir;
1314
	int ret;
M
Markus Pargmann 已提交
1315
	unsigned int val;
1316

M
Markus Pargmann 已提交
1317
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1318
	if (ret < 0) {
1319
		dev_err(dev, "Error reading reg_int_status_2\n");
1320
		return ret;
1321 1322
	}

M
Markus Pargmann 已提交
1323
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1324 1325 1326 1327
		dir = IIO_EV_DIR_FALLING;
	else
		dir = IIO_EV_DIR_RISING;

M
Markus Pargmann 已提交
1328
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1329 1330 1331 1332 1333 1334 1335 1336
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_X,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1337
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1338 1339 1340 1341 1342 1343 1344 1345
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Y,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1346
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1347 1348 1349 1350 1351 1352 1353 1354
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Z,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

1355 1356 1357 1358 1359 1360 1361
	return ret;
}

static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1362
	struct device *dev = regmap_get_device(data->regmap);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	bool ack = false;
	int ret;

	mutex_lock(&data->mutex);

	if (data->fifo_mode) {
		ret = __bmc150_accel_fifo_flush(indio_dev,
						BMC150_ACCEL_FIFO_LENGTH, true);
		if (ret > 0)
			ack = true;
	}

	if (data->ev_enable_state) {
		ret = bmc150_accel_handle_roc_event(indio_dev);
		if (ret > 0)
			ack = true;
	}

	if (ack) {
M
Markus Pargmann 已提交
1382 1383 1384
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_INT |
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1385
		if (ret)
1386
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1387

1388 1389 1390 1391
		ret = IRQ_HANDLED;
	} else {
		ret = IRQ_NONE;
	}
1392

1393 1394 1395
	mutex_unlock(&data->mutex);

	return ret;
1396 1397
}

1398
static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1399 1400 1401
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1402
	bool ack = false;
1403
	int i;
1404

1405
	data->old_timestamp = data->timestamp;
1406
	data->timestamp = iio_get_time_ns(indio_dev);
1407

1408 1409 1410
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].enabled) {
			iio_trigger_poll(data->triggers[i].indio_trig);
1411
			ack = true;
1412 1413 1414
			break;
		}
	}
1415

1416
	if (data->ev_enable_state || data->fifo_mode)
1417
		return IRQ_WAKE_THREAD;
1418 1419

	if (ack)
1420
		return IRQ_HANDLED;
1421 1422

	return IRQ_NONE;
1423 1424
}

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
static const struct {
	int intr;
	const char *name;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
	{
		.intr = 0,
		.name = "%s-dev%d",
	},
	{
		.intr = 1,
		.name = "%s-any-motion-dev%d",
		.setup = bmc150_accel_any_motion_setup,
	},
};

static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
					     int from)
{
	int i;

1446
	for (i = from; i >= 0; i--) {
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
		if (data->triggers[i].indio_trig) {
			iio_trigger_unregister(data->triggers[i].indio_trig);
			data->triggers[i].indio_trig = NULL;
		}
	}
}

static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
				       struct bmc150_accel_data *data)
{
1457
	struct device *dev = regmap_get_device(data->regmap);
1458 1459 1460 1461 1462
	int i, ret;

	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		struct bmc150_accel_trigger *t = &data->triggers[i];

1463
		t->indio_trig = devm_iio_trigger_alloc(dev,
1464
						       bmc150_accel_triggers[i].name,
1465
						       indio_dev->name,
1466
						       iio_device_id(indio_dev));
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
		if (!t->indio_trig) {
			ret = -ENOMEM;
			break;
		}

		t->indio_trig->ops = &bmc150_accel_trigger_ops;
		t->intr = bmc150_accel_triggers[i].intr;
		t->data = data;
		t->setup = bmc150_accel_triggers[i].setup;
		iio_trigger_set_drvdata(t->indio_trig, t);

		ret = iio_trigger_register(t->indio_trig);
		if (ret)
			break;
	}

	if (ret)
		bmc150_accel_unregister_triggers(data, i - 1);

	return ret;
}

1489 1490 1491 1492 1493 1494
#define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
#define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
#define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00

static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
{
1495
	struct device *dev = regmap_get_device(data->regmap);
1496 1497 1498
	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
	int ret;

M
Markus Pargmann 已提交
1499
	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1500
	if (ret < 0) {
1501
		dev_err(dev, "Error writing reg_fifo_config1\n");
1502 1503 1504 1505 1506 1507
		return ret;
	}

	if (!data->fifo_mode)
		return 0;

M
Markus Pargmann 已提交
1508 1509
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
			   data->watermark);
1510
	if (ret < 0)
1511
		dev_err(dev, "Error writing reg_fifo_config0\n");
1512 1513 1514 1515

	return ret;
}

1516 1517 1518 1519 1520 1521 1522
static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, true);
}

1523 1524 1525 1526 1527 1528
static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret = 0;

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1529
		return 0;
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560

	mutex_lock(&data->mutex);

	if (!data->watermark)
		goto out;

	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					 true);
	if (ret)
		goto out;

	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;

	ret = bmc150_accel_fifo_set_mode(data);
	if (ret) {
		data->fifo_mode = 0;
		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					   false);
	}

out:
	mutex_unlock(&data->mutex);

	return ret;
}

static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1561
		return 0;
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

	mutex_lock(&data->mutex);

	if (!data->fifo_mode)
		goto out;

	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
	data->fifo_mode = 0;
	bmc150_accel_fifo_set_mode(data);

out:
	mutex_unlock(&data->mutex);

	return 0;
}

1579 1580 1581 1582 1583 1584 1585
static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, false);
}

1586
static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1587
	.preenable = bmc150_accel_buffer_preenable,
1588 1589
	.postenable = bmc150_accel_buffer_postenable,
	.predisable = bmc150_accel_buffer_predisable,
1590
	.postdisable = bmc150_accel_buffer_postdisable,
1591 1592
};

1593 1594
static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
{
1595
	struct device *dev = regmap_get_device(data->regmap);
1596
	int ret, i;
M
Markus Pargmann 已提交
1597
	unsigned int val;
1598

1599 1600 1601 1602 1603 1604 1605 1606
	/*
	 * Reset chip to get it in a known good state. A delay of 1.8ms after
	 * reset is required according to the data sheets of supported chips.
	 */
	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
		     BMC150_ACCEL_RESET_VAL);
	usleep_range(1800, 2500);

M
Markus Pargmann 已提交
1607
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1608
	if (ret < 0) {
1609
		dev_err(dev, "Error: Reading chip id\n");
1610 1611 1612
		return ret;
	}

1613
	dev_dbg(dev, "Chip Id %x\n", val);
1614
	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
M
Markus Pargmann 已提交
1615
		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1616 1617 1618 1619 1620 1621
			data->chip_info = &bmc150_accel_chip_info_tbl[i];
			break;
		}
	}

	if (!data->chip_info) {
1622
		dev_err(dev, "Invalid chip %x\n", val);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
		return -ENODEV;
	}

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
	if (ret < 0)
		return ret;

	/* Set Bandwidth */
	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
	if (ret < 0)
		return ret;

	/* Set Default Range */
M
Markus Pargmann 已提交
1636 1637
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
			   BMC150_ACCEL_DEF_RANGE_4G);
1638
	if (ret < 0) {
1639
		dev_err(dev, "Error writing reg_pmu_range\n");
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
		return ret;
	}

	data->range = BMC150_ACCEL_DEF_RANGE_4G;

	/* Set default slope duration and thresholds */
	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
	ret = bmc150_accel_update_slope(data);
	if (ret < 0)
		return ret;

	/* Set default as latched interrupts */
M
Markus Pargmann 已提交
1653 1654 1655
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1656
	if (ret < 0) {
1657
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1658 1659 1660 1661 1662 1663
		return ret;
	}

	return 0;
}

1664
int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1665 1666
			    enum bmc150_type type, const char *name,
			    bool block_supported)
1667
{
1668
	const struct attribute **fifo_attrs;
1669 1670 1671 1672
	struct bmc150_accel_data *data;
	struct iio_dev *indio_dev;
	int ret;

1673
	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1674 1675 1676 1677
	if (!indio_dev)
		return -ENOMEM;

	data = iio_priv(indio_dev);
1678
	dev_set_drvdata(dev, indio_dev);
1679

1680
	data->regmap = regmap;
1681
	data->type = type;
1682

1683
	if (!bmc150_apply_acpi_orientation(dev, &data->orientation)) {
1684
		ret = iio_read_mount_matrix(dev, &data->orientation);
1685 1686 1687 1688
		if (ret)
			return ret;
	}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	/*
	 * VDD   is the analog and digital domain voltage supply
	 * VDDIO is the digital I/O voltage supply
	 */
	data->regulators[0].supply = "vdd";
	data->regulators[1].supply = "vddio";
	ret = devm_regulator_bulk_get(dev,
				      ARRAY_SIZE(data->regulators),
				      data->regulators);
	if (ret)
		return dev_err_probe(dev, ret, "failed to get regulators\n");

	ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
				    data->regulators);
	if (ret) {
		dev_err(dev, "failed to enable regulators: %d\n", ret);
		return ret;
	}
	/*
	 * 2ms or 3ms power-on time according to datasheets, let's better
	 * be safe than sorry and set this delay to 5ms.
	 */
	msleep(5);
1712

1713 1714
	ret = bmc150_accel_chip_init(data);
	if (ret < 0)
1715
		goto err_disable_regulators;
1716 1717 1718

	mutex_init(&data->mutex);

1719 1720
	indio_dev->channels = data->chip_info->channels;
	indio_dev->num_channels = data->chip_info->num_channels;
1721
	indio_dev->name = name ? name : data->chip_info->name;
1722
	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1723 1724 1725
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &bmc150_accel_info;

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	if (block_supported) {
		indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
		indio_dev->info = &bmc150_accel_info_fifo;
		fifo_attrs = bmc150_accel_fifo_attributes;
	} else {
		fifo_attrs = NULL;
	}

	ret = iio_triggered_buffer_setup_ext(indio_dev,
					     &iio_pollfunc_store_time,
					     bmc150_accel_trigger_handler,
1737
					     IIO_BUFFER_DIRECTION_IN,
1738 1739
					     &bmc150_accel_buffer_ops,
					     fifo_attrs);
1740
	if (ret < 0) {
1741
		dev_err(dev, "Failed: iio triggered buffer setup\n");
1742
		goto err_disable_regulators;
1743 1744
	}

1745 1746
	if (irq > 0) {
		ret = devm_request_threaded_irq(dev, irq,
1747 1748
						bmc150_accel_irq_handler,
						bmc150_accel_irq_thread_handler,
1749 1750 1751 1752
						IRQF_TRIGGER_RISING,
						BMC150_ACCEL_IRQ_NAME,
						indio_dev);
		if (ret)
1753
			goto err_buffer_cleanup;
1754

1755 1756 1757 1758 1759 1760
		/*
		 * Set latched mode interrupt. While certain interrupts are
		 * non-latched regardless of this settings (e.g. new data) we
		 * want to use latch mode when we can to prevent interrupt
		 * flooding.
		 */
M
Markus Pargmann 已提交
1761 1762
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1763
		if (ret < 0) {
1764
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1765
			goto err_buffer_cleanup;
1766 1767
		}

1768
		bmc150_accel_interrupts_setup(indio_dev, data, irq);
1769

1770
		ret = bmc150_accel_triggers_setup(indio_dev, data);
1771
		if (ret)
1772
			goto err_buffer_cleanup;
1773 1774
	}

1775
	ret = pm_runtime_set_active(dev);
1776
	if (ret)
1777
		goto err_trigger_unregister;
1778

1779 1780 1781
	pm_runtime_enable(dev);
	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
	pm_runtime_use_autosuspend(dev);
1782

1783 1784 1785 1786 1787 1788
	ret = iio_device_register(indio_dev);
	if (ret < 0) {
		dev_err(dev, "Unable to register iio device\n");
		goto err_trigger_unregister;
	}

1789 1790 1791
	return 0;

err_trigger_unregister:
1792
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1793 1794
err_buffer_cleanup:
	iio_triggered_buffer_cleanup(indio_dev);
1795 1796 1797
err_disable_regulators:
	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
			       data->regulators);
1798 1799 1800

	return ret;
}
1801
EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1802

1803
void bmc150_accel_core_remove(struct device *dev)
1804
{
1805
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1806 1807
	struct bmc150_accel_data *data = iio_priv(indio_dev);

1808 1809
	iio_device_unregister(indio_dev);

1810 1811
	pm_runtime_disable(dev);
	pm_runtime_set_suspended(dev);
1812

1813
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1814

1815 1816
	iio_triggered_buffer_cleanup(indio_dev);

1817 1818 1819 1820
	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
	mutex_unlock(&data->mutex);

1821 1822
	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
			       data->regulators);
1823
}
1824
EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1825 1826 1827 1828

#ifdef CONFIG_PM_SLEEP
static int bmc150_accel_suspend(struct device *dev)
{
1829
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_resume(struct device *dev)
{
1841
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1842 1843 1844
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
1845
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1846
	bmc150_accel_fifo_set_mode(data);
1847 1848
	mutex_unlock(&data->mutex);

1849 1850 1851
	if (data->resume_callback)
		data->resume_callback(dev);

1852 1853 1854 1855
	return 0;
}
#endif

1856
#ifdef CONFIG_PM
1857 1858
static int bmc150_accel_runtime_suspend(struct device *dev)
{
1859
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1860
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1861
	int ret;
1862

1863 1864 1865
	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	if (ret < 0)
		return -EAGAIN;
1866

1867
	return 0;
1868 1869 1870 1871
}

static int bmc150_accel_runtime_resume(struct device *dev)
{
1872
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1873 1874 1875 1876 1877
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;
	int sleep_val;

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1878 1879 1880
	if (ret < 0)
		return ret;
	ret = bmc150_accel_fifo_set_mode(data);
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	if (ret < 0)
		return ret;

	sleep_val = bmc150_accel_get_startup_times(data);
	if (sleep_val < 20)
		usleep_range(sleep_val * 1000, 20000);
	else
		msleep_interruptible(sleep_val);

	return 0;
}
#endif

1894
const struct dev_pm_ops bmc150_accel_pm_ops = {
1895 1896 1897 1898
	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
			   bmc150_accel_runtime_resume, NULL)
};
1899
EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1900 1901 1902 1903

MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMC150 accelerometer driver");