bmc150-accel-core.c 47.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * 3-axis accelerometer driver supporting many Bosch-Sensortec chips
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 * Copyright (c) 2014, Intel Corporation.
 */

#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
M
Markus Pargmann 已提交
22
#include <linux/regmap.h>
23
#include <linux/regulator/consumer.h>
24

25 26
#include "bmc150-accel.h"

27 28 29 30 31 32 33
#define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
#define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"

#define BMC150_ACCEL_REG_CHIP_ID		0x00

#define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
#define BMC150_ACCEL_ANY_MOTION_MASK		0x07
34 35 36
#define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
#define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
#define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)

#define BMC150_ACCEL_REG_PMU_LPW		0x11
#define BMC150_ACCEL_PMU_MODE_MASK		0xE0
#define BMC150_ACCEL_PMU_MODE_SHIFT		5
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1

#define BMC150_ACCEL_REG_PMU_RANGE		0x0F

#define BMC150_ACCEL_DEF_RANGE_2G		0x03
#define BMC150_ACCEL_DEF_RANGE_4G		0x05
#define BMC150_ACCEL_DEF_RANGE_8G		0x08
#define BMC150_ACCEL_DEF_RANGE_16G		0x0C

/* Default BW: 125Hz */
#define BMC150_ACCEL_REG_PMU_BW		0x10
#define BMC150_ACCEL_DEF_BW			125

56 57 58
#define BMC150_ACCEL_REG_RESET			0x14
#define BMC150_ACCEL_RESET_VAL			0xB6

59 60 61 62
#define BMC150_ACCEL_REG_INT_MAP_0		0x19
#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)

#define BMC150_ACCEL_REG_INT_MAP_1		0x1A
63 64 65
#define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
#define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
#define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
66 67 68 69 70 71 72 73 74 75 76 77

#define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
#define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
#define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00

#define BMC150_ACCEL_REG_INT_EN_0		0x16
#define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)

#define BMC150_ACCEL_REG_INT_EN_1		0x17
78 79 80
#define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
#define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
81 82 83 84 85 86 87 88 89 90 91

#define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)

#define BMC150_ACCEL_REG_INT_5			0x27
#define BMC150_ACCEL_SLOPE_DUR_MASK		0x03

#define BMC150_ACCEL_REG_INT_6			0x28
#define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF

/* Slope duration in terms of number of samples */
92
#define BMC150_ACCEL_DEF_SLOPE_DURATION		1
93
/* in terms of multiples of g's/LSB, based on range */
94
#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

#define BMC150_ACCEL_REG_XOUT_L		0x02

#define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100

/* Sleep Duration values */
#define BMC150_ACCEL_SLEEP_500_MICRO		0x05
#define BMC150_ACCEL_SLEEP_1_MS		0x06
#define BMC150_ACCEL_SLEEP_2_MS		0x07
#define BMC150_ACCEL_SLEEP_4_MS		0x08
#define BMC150_ACCEL_SLEEP_6_MS		0x09
#define BMC150_ACCEL_SLEEP_10_MS		0x0A
#define BMC150_ACCEL_SLEEP_25_MS		0x0B
#define BMC150_ACCEL_SLEEP_50_MS		0x0C
#define BMC150_ACCEL_SLEEP_100_MS		0x0D
#define BMC150_ACCEL_SLEEP_500_MS		0x0E
#define BMC150_ACCEL_SLEEP_1_SEC		0x0F

#define BMC150_ACCEL_REG_TEMP			0x08
114
#define BMC150_ACCEL_TEMP_CENTER_VAL		23
115 116 117 118

#define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
#define BMC150_AUTO_SUSPEND_DELAY_MS		2000

119 120 121 122 123 124
#define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
#define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
#define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
#define BMC150_ACCEL_REG_FIFO_DATA		0x3F
#define BMC150_ACCEL_FIFO_LENGTH		32

125 126 127 128
enum bmc150_accel_axis {
	AXIS_X,
	AXIS_Y,
	AXIS_Z,
129
	AXIS_MAX,
130 131 132 133 134 135 136 137 138
};

enum bmc150_power_modes {
	BMC150_ACCEL_SLEEP_MODE_NORMAL,
	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
	BMC150_ACCEL_SLEEP_MODE_LPM,
	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
};

139 140 141 142 143 144
struct bmc150_scale_info {
	int scale;
	u8 reg_range;
};

struct bmc150_accel_chip_info {
145
	const char *name;
146 147 148 149 150 151
	u8 chip_id;
	const struct iio_chan_spec *channels;
	int num_channels;
	const struct bmc150_scale_info scale_table[4];
};

152 153 154 155
static const struct {
	int val;
	int val2;
	u8 bw_bits;
156 157 158 159 160 161 162 163
} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
				     {31, 260000, 0x09},
				     {62, 500000, 0x0A},
				     {125, 0, 0x0B},
				     {250, 0, 0x0C},
				     {500, 0, 0x0D},
				     {1000, 0, 0x0E},
				     {2000, 0, 0x0F} };
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

static const struct {
	int bw_bits;
	int msec;
} bmc150_accel_sample_upd_time[] = { {0x08, 64},
				     {0x09, 32},
				     {0x0A, 16},
				     {0x0B, 8},
				     {0x0C, 4},
				     {0x0D, 2},
				     {0x0E, 1},
				     {0x0F, 1} };

static const struct {
	int sleep_dur;
179
	u8 reg_value;
180 181 182 183 184 185 186 187 188 189 190 191 192
} bmc150_accel_sleep_value_table[] = { {0, 0},
				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
				       {1000, BMC150_ACCEL_SLEEP_1_MS},
				       {2000, BMC150_ACCEL_SLEEP_2_MS},
				       {4000, BMC150_ACCEL_SLEEP_4_MS},
				       {6000, BMC150_ACCEL_SLEEP_6_MS},
				       {10000, BMC150_ACCEL_SLEEP_10_MS},
				       {25000, BMC150_ACCEL_SLEEP_25_MS},
				       {50000, BMC150_ACCEL_SLEEP_50_MS},
				       {100000, BMC150_ACCEL_SLEEP_100_MS},
				       {500000, BMC150_ACCEL_SLEEP_500_MS},
				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };

193
const struct regmap_config bmc150_regmap_conf = {
M
Markus Pargmann 已提交
194 195 196 197
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = 0x3f,
};
198
EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
M
Markus Pargmann 已提交
199

200 201 202 203
static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
				 enum bmc150_power_modes mode,
				 int dur_us)
{
204
	struct device *dev = regmap_get_device(data->regmap);
205 206 207 208 209 210 211 212 213 214 215 216 217
	int i;
	int ret;
	u8 lpw_bits;
	int dur_val = -1;

	if (dur_us > 0) {
		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
									 ++i) {
			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
									dur_us)
				dur_val =
				bmc150_accel_sleep_value_table[i].reg_value;
		}
218
	} else {
219
		dur_val = 0;
220
	}
221 222 223 224 225 226 227

	if (dur_val < 0)
		return -EINVAL;

	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);

228
	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
229

M
Markus Pargmann 已提交
230
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
231
	if (ret < 0) {
232
		dev_err(dev, "Error writing reg_pmu_lpw\n");
233 234 235 236 237 238 239 240 241 242 243 244 245 246
		return ret;
	}

	return 0;
}

static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
			       int val2)
{
	int i;
	int ret;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].val == val &&
247
		    bmc150_accel_samp_freq_table[i].val2 == val2) {
M
Markus Pargmann 已提交
248
			ret = regmap_write(data->regmap,
249 250 251 252 253 254 255 256 257 258 259 260 261 262
				BMC150_ACCEL_REG_PMU_BW,
				bmc150_accel_samp_freq_table[i].bw_bits);
			if (ret < 0)
				return ret;

			data->bw_bits =
				bmc150_accel_samp_freq_table[i].bw_bits;
			return 0;
		}
	}

	return -EINVAL;
}

263 264
static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
{
265
	struct device *dev = regmap_get_device(data->regmap);
M
Markus Pargmann 已提交
266
	int ret;
267

M
Markus Pargmann 已提交
268
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
269 270
					data->slope_thres);
	if (ret < 0) {
271
		dev_err(dev, "Error writing reg_int_6\n");
272 273 274
		return ret;
	}

M
Markus Pargmann 已提交
275 276
	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
277
	if (ret < 0) {
278
		dev_err(dev, "Error updating reg_int_5\n");
279 280 281
		return ret;
	}

282
	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
283 284 285 286

	return ret;
}

287 288 289 290 291 292 293 294 295
static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
					 bool state)
{
	if (state)
		return bmc150_accel_update_slope(t->data);

	return 0;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
			       int *val2)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
			*val = bmc150_accel_samp_freq_table[i].val;
			*val2 = bmc150_accel_samp_freq_table[i].val2;
			return IIO_VAL_INT_PLUS_MICRO;
		}
	}

	return -EINVAL;
}

312
#ifdef CONFIG_PM
313 314 315 316 317 318 319 320 321 322 323 324 325 326
static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
			return bmc150_accel_sample_upd_time[i].msec;
	}

	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
}

static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
327
	struct device *dev = regmap_get_device(data->regmap);
328 329
	int ret;

330
	if (on) {
331
		ret = pm_runtime_resume_and_get(dev);
332
	} else {
333 334
		pm_runtime_mark_last_busy(dev);
		ret = pm_runtime_put_autosuspend(dev);
335
	}
336

337
	if (ret < 0) {
338
		dev_err(dev,
339
			"Failed: %s for %d\n", __func__, on);
340 341 342 343 344
		return ret;
	}

	return 0;
}
345 346 347 348 349 350
#else
static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
	return 0;
}
#endif
351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
#ifdef CONFIG_ACPI
/*
 * Support for getting accelerometer information from BOSC0200 ACPI nodes.
 *
 * There are 2 variants of the BOSC0200 ACPI node. Some 2-in-1s with 360 degree
 * hinges declare 2 I2C ACPI-resources for 2 accelerometers, 1 in the display
 * and 1 in the base of the 2-in-1. On these 2-in-1s the ROMS ACPI object
 * contains the mount-matrix for the sensor in the display and ROMK contains
 * the mount-matrix for the sensor in the base. On devices using a single
 * sensor there is a ROTM ACPI object which contains the mount-matrix.
 *
 * Here is an incomplete list of devices known to use 1 of these setups:
 *
 * Yoga devices with 2 accelerometers using ROMS + ROMK for the mount-matrices:
 * Lenovo Thinkpad Yoga 11e 3th gen
 * Lenovo Thinkpad Yoga 11e 4th gen
 *
 * Tablets using a single accelerometer using ROTM for the mount-matrix:
 * Chuwi Hi8 Pro (CWI513)
 * Chuwi Vi8 Plus (CWI519)
 * Chuwi Hi13
 * Irbis TW90
 * Jumper EZpad mini 3
 * Onda V80 plus
 * Predia Basic Tablet
 */
378 379
static bool bmc150_apply_bosc0200_acpi_orientation(struct device *dev,
						   struct iio_mount_matrix *orientation)
380 381
{
	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
382
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
383
	struct acpi_device *adev = ACPI_COMPANION(dev);
384
	char *name, *alt_name, *label, *str;
385 386 387 388
	union acpi_object *obj, *elements;
	acpi_status status;
	int i, j, val[3];

389
	if (strcmp(dev_name(dev), "i2c-BOSC0200:base") == 0) {
390
		alt_name = "ROMK";
391 392
		label = "accel-base";
	} else {
393
		alt_name = "ROMS";
394 395
		label = "accel-display";
	}
396

397
	if (acpi_has_method(adev->handle, "ROTM")) {
398
		name = "ROTM";
399
	} else if (acpi_has_method(adev->handle, alt_name)) {
400
		name = alt_name;
401 402
		indio_dev->label = label;
	} else {
403
		return false;
404
	}
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

	status = acpi_evaluate_object(adev->handle, name, NULL, &buffer);
	if (ACPI_FAILURE(status)) {
		dev_warn(dev, "Failed to get ACPI mount matrix: %d\n", status);
		return false;
	}

	obj = buffer.pointer;
	if (obj->type != ACPI_TYPE_PACKAGE || obj->package.count != 3)
		goto unknown_format;

	elements = obj->package.elements;
	for (i = 0; i < 3; i++) {
		if (elements[i].type != ACPI_TYPE_STRING)
			goto unknown_format;

		str = elements[i].string.pointer;
		if (sscanf(str, "%d %d %d", &val[0], &val[1], &val[2]) != 3)
			goto unknown_format;

		for (j = 0; j < 3; j++) {
			switch (val[j]) {
			case -1: str = "-1"; break;
			case 0:  str = "0";  break;
			case 1:  str = "1";  break;
			default: goto unknown_format;
			}
			orientation->rotation[i * 3 + j] = str;
		}
	}

	kfree(buffer.pointer);
	return true;

unknown_format:
	dev_warn(dev, "Unknown ACPI mount matrix format, ignoring\n");
	kfree(buffer.pointer);
	return false;
}
444

445 446 447 448 449 450 451 452 453 454 455 456 457
static bool bmc150_apply_dual250e_acpi_orientation(struct device *dev,
						   struct iio_mount_matrix *orientation)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);

	if (strcmp(dev_name(dev), "i2c-DUAL250E:base") == 0)
		indio_dev->label = "accel-base";
	else
		indio_dev->label = "accel-display";

	return false; /* DUAL250E fwnodes have no mount matrix info */
}

458 459 460 461 462 463 464 465
static bool bmc150_apply_acpi_orientation(struct device *dev,
					  struct iio_mount_matrix *orientation)
{
	struct acpi_device *adev = ACPI_COMPANION(dev);

	if (adev && acpi_dev_hid_uid_match(adev, "BOSC0200", NULL))
		return bmc150_apply_bosc0200_acpi_orientation(dev, orientation);

466 467 468
	if (adev && acpi_dev_hid_uid_match(adev, "DUAL250E", NULL))
		return bmc150_apply_dual250e_acpi_orientation(dev, orientation);

469 470
	return false;
}
471 472 473 474 475 476 477 478
#else
static bool bmc150_apply_acpi_orientation(struct device *dev,
					  struct iio_mount_matrix *orientation)
{
	return false;
}
#endif

479 480 481 482 483
static const struct bmc150_accel_interrupt_info {
	u8 map_reg;
	u8 map_bitmask;
	u8 en_reg;
	u8 en_bitmask;
484
} bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
485 486 487 488 489 490 491 492 493 494 495 496 497 498
	{ /* data ready interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
	},
	{  /* motion interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
			BMC150_ACCEL_INT_EN_BIT_SLP_Z
	},
499 500 501 502 503 504
	{ /* fifo watermark interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
	},
505 506
};

507 508 509 510 511 512 513 514 515 516
static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
					  struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
		data->interrupts[i].info = &bmc150_accel_interrupts[i];
}

static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
517 518
				      bool state)
{
519
	struct device *dev = regmap_get_device(data->regmap);
520 521
	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
	const struct bmc150_accel_interrupt_info *info = intr->info;
522 523
	int ret;

524 525 526 527 528 529 530 531
	if (state) {
		if (atomic_inc_return(&intr->users) > 1)
			return 0;
	} else {
		if (atomic_dec_return(&intr->users) > 0)
			return 0;
	}

532
	/*
533 534 535 536 537 538 539
	 * We will expect the enable and disable to do operation in reverse
	 * order. This will happen here anyway, as our resume operation uses
	 * sync mode runtime pm calls. The suspend operation will be delayed
	 * by autosuspend delay.
	 * So the disable operation will still happen in reverse order of
	 * enable operation. When runtime pm is disabled the mode is always on,
	 * so sequence doesn't matter.
540 541 542 543 544 545
	 */
	ret = bmc150_accel_set_power_state(data, state);
	if (ret < 0)
		return ret;

	/* map the interrupt to the appropriate pins */
M
Markus Pargmann 已提交
546 547
	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
				 (state ? info->map_bitmask : 0));
548
	if (ret < 0) {
549
		dev_err(dev, "Error updating reg_int_map\n");
550 551 552 553
		goto out_fix_power_state;
	}

	/* enable/disable the interrupt */
M
Markus Pargmann 已提交
554 555
	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
				 (state ? info->en_bitmask : 0));
556
	if (ret < 0) {
557
		dev_err(dev, "Error updating reg_int_en\n");
558 559 560 561 562 563 564 565 566 567
		goto out_fix_power_state;
	}

	return 0;

out_fix_power_state:
	bmc150_accel_set_power_state(data, false);
	return ret;
}

568 569
static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
{
570
	struct device *dev = regmap_get_device(data->regmap);
571 572
	int ret, i;

573 574
	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
		if (data->chip_info->scale_table[i].scale == val) {
M
Markus Pargmann 已提交
575
			ret = regmap_write(data->regmap,
576 577
				     BMC150_ACCEL_REG_PMU_RANGE,
				     data->chip_info->scale_table[i].reg_range);
578
			if (ret < 0) {
579
				dev_err(dev, "Error writing pmu_range\n");
580 581 582
				return ret;
			}

583
			data->range = data->chip_info->scale_table[i].reg_range;
584 585 586 587 588 589 590 591 592
			return 0;
		}
	}

	return -EINVAL;
}

static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
{
593
	struct device *dev = regmap_get_device(data->regmap);
594
	int ret;
M
Markus Pargmann 已提交
595
	unsigned int value;
596 597 598

	mutex_lock(&data->mutex);

M
Markus Pargmann 已提交
599
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
600
	if (ret < 0) {
601
		dev_err(dev, "Error reading reg_temp\n");
602 603 604
		mutex_unlock(&data->mutex);
		return ret;
	}
M
Markus Pargmann 已提交
605
	*val = sign_extend32(value, 7);
606 607 608 609 610 611

	mutex_unlock(&data->mutex);

	return IIO_VAL_INT;
}

612 613
static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
				 struct iio_chan_spec const *chan,
614 615
				 int *val)
{
616
	struct device *dev = regmap_get_device(data->regmap);
617
	int ret;
618
	int axis = chan->scan_index;
619
	__le16 raw_val;
620 621 622 623 624 625 626 627

	mutex_lock(&data->mutex);
	ret = bmc150_accel_set_power_state(data, true);
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

M
Markus Pargmann 已提交
628
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
629
			       &raw_val, sizeof(raw_val));
630
	if (ret < 0) {
631
		dev_err(dev, "Error reading axis %d\n", axis);
632 633 634 635
		bmc150_accel_set_power_state(data, false);
		mutex_unlock(&data->mutex);
		return ret;
	}
636
	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
637
			     chan->scan_type.realbits - 1);
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
	ret = bmc150_accel_set_power_state(data, false);
	mutex_unlock(&data->mutex);
	if (ret < 0)
		return ret;

	return IIO_VAL_INT;
}

static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
				 struct iio_chan_spec const *chan,
				 int *val, int *val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		switch (chan->type) {
		case IIO_TEMP:
			return bmc150_accel_get_temp(data, val);
		case IIO_ACCEL:
			if (iio_buffer_enabled(indio_dev))
				return -EBUSY;
			else
662
				return bmc150_accel_get_axis(data, chan, val);
663 664 665 666 667 668 669
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_OFFSET:
		if (chan->type == IIO_TEMP) {
			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
			return IIO_VAL_INT;
670
		} else {
671
			return -EINVAL;
672
		}
673 674 675 676 677 678 679 680 681
	case IIO_CHAN_INFO_SCALE:
		*val = 0;
		switch (chan->type) {
		case IIO_TEMP:
			*val2 = 500000;
			return IIO_VAL_INT_PLUS_MICRO;
		case IIO_ACCEL:
		{
			int i;
682 683
			const struct bmc150_scale_info *si;
			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
684

685 686 687 688
			for (i = 0; i < st_size; ++i) {
				si = &data->chip_info->scale_table[i];
				if (si->reg_range == data->range) {
					*val2 = si->scale;
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
					return IIO_VAL_INT_PLUS_MICRO;
				}
			}
			return -EINVAL;
		}
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_get_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		return -EINVAL;
	}
}

static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
				  struct iio_chan_spec const *chan,
				  int val, int val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		break;
	case IIO_CHAN_INFO_SCALE:
		if (val)
			return -EINVAL;

		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_scale(data, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int bmc150_accel_read_event(struct iio_dev *indio_dev,
				   const struct iio_chan_spec *chan,
				   enum iio_event_type type,
				   enum iio_event_direction dir,
				   enum iio_event_info info,
				   int *val, int *val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	*val2 = 0;
	switch (info) {
	case IIO_EV_INFO_VALUE:
		*val = data->slope_thres;
		break;
	case IIO_EV_INFO_PERIOD:
750
		*val = data->slope_dur;
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
		break;
	default:
		return -EINVAL;
	}

	return IIO_VAL_INT;
}

static int bmc150_accel_write_event(struct iio_dev *indio_dev,
				    const struct iio_chan_spec *chan,
				    enum iio_event_type type,
				    enum iio_event_direction dir,
				    enum iio_event_info info,
				    int val, int val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (data->ev_enable_state)
		return -EBUSY;

	switch (info) {
	case IIO_EV_INFO_VALUE:
773
		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
774 775
		break;
	case IIO_EV_INFO_PERIOD:
776
		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
					  const struct iio_chan_spec *chan,
					  enum iio_event_type type,
					  enum iio_event_direction dir)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return data->ev_enable_state;
}

static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
					   const struct iio_chan_spec *chan,
					   enum iio_event_type type,
					   enum iio_event_direction dir,
					   int state)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

804
	if (state == data->ev_enable_state)
805 806 807 808
		return 0;

	mutex_lock(&data->mutex);

809 810
	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
					 state);
811 812 813 814 815 816 817 818 819 820 821 822
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

	data->ev_enable_state = state;
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
823
					 struct iio_trigger *trig)
824 825
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
826
	int i;
827

828 829 830 831
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].indio_trig == trig)
			return 0;
	}
832

833
	return -EINVAL;
834 835
}

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
					       struct device_attribute *attr,
					       char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int wm;

	mutex_lock(&data->mutex);
	wm = data->watermark;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", wm);
}

static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	bool state;

	mutex_lock(&data->mutex);
	state = data->fifo_mode;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", state);
}

866 867 868 869 870 871 872 873 874 875 876 877 878 879
static const struct iio_mount_matrix *
bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
				const struct iio_chan_spec *chan)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return &data->orientation;
}

static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
	{ }
};

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
static IIO_CONST_ATTR(hwfifo_watermark_max,
		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
		       bmc150_accel_get_fifo_state, NULL, 0);
static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
		       bmc150_accel_get_fifo_watermark, NULL, 0);

static const struct attribute *bmc150_accel_fifo_attributes[] = {
	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
	NULL,
};

static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (val > BMC150_ACCEL_FIFO_LENGTH)
		val = BMC150_ACCEL_FIFO_LENGTH;

	mutex_lock(&data->mutex);
	data->watermark = val;
	mutex_unlock(&data->mutex);

	return 0;
}

/*
 * We must read at least one full frame in one burst, otherwise the rest of the
 * frame data is discarded.
 */
M
Markus Pargmann 已提交
914
static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
915 916
				      char *buffer, int samples)
{
917
	struct device *dev = regmap_get_device(data->regmap);
918
	int sample_length = 3 * 2;
M
Markus Pargmann 已提交
919 920
	int ret;
	int total_length = samples * sample_length;
921

922 923
	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
			      buffer, total_length);
924
	if (ret)
925
		dev_err(dev,
926
			"Error transferring data from fifo: %d\n", ret);
927 928 929 930 931 932 933 934

	return ret;
}

static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
				     unsigned samples, bool irq)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
935
	struct device *dev = regmap_get_device(data->regmap);
936 937 938 939 940
	int ret, i;
	u8 count;
	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
	int64_t tstamp;
	uint64_t sample_period;
M
Markus Pargmann 已提交
941
	unsigned int val;
942

M
Markus Pargmann 已提交
943
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
944
	if (ret < 0) {
945
		dev_err(dev, "Error reading reg_fifo_status\n");
946 947 948
		return ret;
	}

M
Markus Pargmann 已提交
949
	count = val & 0x7F;
950 951 952 953 954 955 956 957 958 959 960 961 962 963

	if (!count)
		return 0;

	/*
	 * If we getting called from IRQ handler we know the stored timestamp is
	 * fairly accurate for the last stored sample. Otherwise, if we are
	 * called as a result of a read operation from userspace and hence
	 * before the watermark interrupt was triggered, take a timestamp
	 * now. We can fall anywhere in between two samples so the error in this
	 * case is at most one sample period.
	 */
	if (!irq) {
		data->old_timestamp = data->timestamp;
964
		data->timestamp = iio_get_time_ns(indio_dev);
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	}

	/*
	 * Approximate timestamps for each of the sample based on the sampling
	 * frequency, timestamp for last sample and number of samples.
	 *
	 * Note that we can't use the current bandwidth settings to compute the
	 * sample period because the sample rate varies with the device
	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
	 * small variation adds when we store a large number of samples and
	 * creates significant jitter between the last and first samples in
	 * different batches (e.g. 32ms vs 21ms).
	 *
	 * To avoid this issue we compute the actual sample period ourselves
	 * based on the timestamp delta between the last two flush operations.
	 */
	sample_period = (data->timestamp - data->old_timestamp);
	do_div(sample_period, count);
	tstamp = data->timestamp - (count - 1) * sample_period;

	if (samples && count > samples)
		count = samples;

M
Markus Pargmann 已提交
988
	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
	if (ret)
		return ret;

	/*
	 * Ideally we want the IIO core to handle the demux when running in fifo
	 * mode but not when running in triggered buffer mode. Unfortunately
	 * this does not seem to be possible, so stick with driver demux for
	 * now.
	 */
	for (i = 0; i < count; i++) {
		int j, bit;

		j = 0;
		for_each_set_bit(bit, indio_dev->active_scan_mask,
				 indio_dev->masklength)
1004 1005
			memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
			       sizeof(data->scan.channels[0]));
1006

1007 1008
		iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
						   tstamp);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027

		tstamp += sample_period;
	}

	return count;
}

static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	mutex_lock(&data->mutex);
	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
	mutex_unlock(&data->mutex);

	return ret;
}

1028
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
1029
		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

static struct attribute *bmc150_accel_attributes[] = {
	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group bmc150_accel_attrs_group = {
	.attrs = bmc150_accel_attributes,
};

static const struct iio_event_spec bmc150_accel_event = {
		.type = IIO_EV_TYPE_ROC,
1042
		.dir = IIO_EV_DIR_EITHER,
1043 1044 1045 1046 1047
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
				 BIT(IIO_EV_INFO_ENABLE) |
				 BIT(IIO_EV_INFO_PERIOD)
};

1048
#define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
1049 1050 1051 1052 1053 1054 1055 1056 1057
	.type = IIO_ACCEL,						\
	.modified = 1,							\
	.channel2 = IIO_MOD_##_axis,					\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
	.scan_index = AXIS_##_axis,					\
	.scan_type = {							\
		.sign = 's',						\
1058
		.realbits = (bits),					\
1059
		.storagebits = 16,					\
1060
		.shift = 16 - (bits),					\
1061
		.endianness = IIO_LE,					\
1062
	},								\
1063
	.ext_info = bmc150_accel_ext_info,				\
1064 1065 1066 1067
	.event_spec = &bmc150_accel_event,				\
	.num_event_specs = 1						\
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
#define BMC150_ACCEL_CHANNELS(bits) {					\
	{								\
		.type = IIO_TEMP,					\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
				      BIT(IIO_CHAN_INFO_SCALE) |	\
				      BIT(IIO_CHAN_INFO_OFFSET),	\
		.scan_index = -1,					\
	},								\
	BMC150_ACCEL_CHANNEL(X, bits),					\
	BMC150_ACCEL_CHANNEL(Y, bits),					\
	BMC150_ACCEL_CHANNEL(Z, bits),					\
	IIO_CHAN_SOFT_TIMESTAMP(3),					\
}

static const struct iio_chan_spec bma222e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(8);
static const struct iio_chan_spec bma250e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(10);
static const struct iio_chan_spec bmc150_accel_channels[] =
	BMC150_ACCEL_CHANNELS(12);
static const struct iio_chan_spec bma280_accel_channels[] =
	BMC150_ACCEL_CHANNELS(14);

1091 1092 1093 1094 1095 1096 1097
/*
 * The range for the Bosch sensors is typically +-2g/4g/8g/16g, distributed
 * over the amount of bits (see above). The scale table can be calculated using
 *     (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2
 * e.g. for +-2g and 12 bits: (4 / 2^12) * 9.80665 m/s^2 = 0.0095768... m/s^2
 * Multiply 10^6 and round to get the values listed below.
 */
1098
static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1099
	{
1100 1101 1102 1103
		.name = "BMA222",
		.chip_id = 0x03,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1104 1105
		.scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G},
				 {306458, BMC150_ACCEL_DEF_RANGE_4G},
1106 1107
				 {612916, BMC150_ACCEL_DEF_RANGE_8G},
				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1108
	},
1109
	{
1110
		.name = "BMA222E",
1111 1112 1113
		.chip_id = 0xF8,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1114 1115 1116
		.scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G},
				 {306458, BMC150_ACCEL_DEF_RANGE_4G},
				 {612916, BMC150_ACCEL_DEF_RANGE_8G},
1117 1118
				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
	},
1119 1120 1121 1122 1123
	{
		.name = "BMA250E",
		.chip_id = 0xF9,
		.channels = bma250e_accel_channels,
		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
1124 1125 1126 1127
		.scale_table = { {38307, BMC150_ACCEL_DEF_RANGE_2G},
				 {76614, BMC150_ACCEL_DEF_RANGE_4G},
				 {153229, BMC150_ACCEL_DEF_RANGE_8G},
				 {306458, BMC150_ACCEL_DEF_RANGE_16G} },
1128 1129
	},
	{
1130
		.name = "BMA253/BMA254/BMA255/BMC150/BMI055",
1131 1132 1133
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1134 1135 1136 1137
		.scale_table = { {9577, BMC150_ACCEL_DEF_RANGE_2G},
				 {19154, BMC150_ACCEL_DEF_RANGE_4G},
				 {38307, BMC150_ACCEL_DEF_RANGE_8G},
				 {76614, BMC150_ACCEL_DEF_RANGE_16G} },
1138
	},
1139 1140
	{
		.name = "BMA280",
1141 1142 1143
		.chip_id = 0xFB,
		.channels = bma280_accel_channels,
		.num_channels = ARRAY_SIZE(bma280_accel_channels),
1144 1145 1146 1147
		.scale_table = { {2394, BMC150_ACCEL_DEF_RANGE_2G},
				 {4788, BMC150_ACCEL_DEF_RANGE_4G},
				 {9577, BMC150_ACCEL_DEF_RANGE_8G},
				 {19154, BMC150_ACCEL_DEF_RANGE_16G} },
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	},
};

static const struct iio_info bmc150_accel_info = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
};

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
static const struct iio_info bmc150_accel_info_fifo = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
	.validate_trigger	= bmc150_accel_validate_trigger,
	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
};

1174 1175 1176 1177
static const unsigned long bmc150_accel_scan_masks[] = {
					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
					0};

1178 1179 1180 1181 1182
static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1183
	int ret;
1184 1185

	mutex_lock(&data->mutex);
1186 1187
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
			       data->buffer, AXIS_MAX * 2);
1188
	mutex_unlock(&data->mutex);
1189 1190
	if (ret < 0)
		goto err_read;
1191 1192

	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1193
					   pf->timestamp);
1194 1195 1196 1197 1198 1199
err_read:
	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

1200
static void bmc150_accel_trig_reen(struct iio_trigger *trig)
1201
{
1202 1203
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1204
	struct device *dev = regmap_get_device(data->regmap);
1205 1206 1207
	int ret;

	/* new data interrupts don't need ack */
1208
	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1209
		return;
1210 1211 1212

	mutex_lock(&data->mutex);
	/* clear any latched interrupt */
M
Markus Pargmann 已提交
1213 1214 1215
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1216
	mutex_unlock(&data->mutex);
1217
	if (ret < 0)
1218
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1219 1220
}

1221
static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1222
					  bool state)
1223
{
1224 1225
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1226 1227 1228 1229
	int ret;

	mutex_lock(&data->mutex);

1230 1231 1232 1233 1234 1235 1236 1237
	if (t->enabled == state) {
		mutex_unlock(&data->mutex);
		return 0;
	}

	if (t->setup) {
		ret = t->setup(t, state);
		if (ret < 0) {
1238
			mutex_unlock(&data->mutex);
1239
			return ret;
1240 1241 1242
		}
	}

1243
	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1244 1245 1246 1247
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}
1248 1249

	t->enabled = state;
1250 1251 1252 1253 1254 1255 1256

	mutex_unlock(&data->mutex);

	return ret;
}

static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1257
	.set_trigger_state = bmc150_accel_trigger_set_state,
1258
	.reenable = bmc150_accel_trig_reen,
1259 1260
};

1261
static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1262 1263
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1264
	struct device *dev = regmap_get_device(data->regmap);
1265
	int dir;
1266
	int ret;
M
Markus Pargmann 已提交
1267
	unsigned int val;
1268

M
Markus Pargmann 已提交
1269
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1270
	if (ret < 0) {
1271
		dev_err(dev, "Error reading reg_int_status_2\n");
1272
		return ret;
1273 1274
	}

M
Markus Pargmann 已提交
1275
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1276 1277 1278 1279
		dir = IIO_EV_DIR_FALLING;
	else
		dir = IIO_EV_DIR_RISING;

M
Markus Pargmann 已提交
1280
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1281 1282 1283 1284 1285 1286 1287 1288
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_X,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1289
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1290 1291 1292 1293 1294 1295 1296 1297
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Y,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1298
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1299 1300 1301 1302 1303 1304 1305 1306
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Z,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

1307 1308 1309 1310 1311 1312 1313
	return ret;
}

static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1314
	struct device *dev = regmap_get_device(data->regmap);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	bool ack = false;
	int ret;

	mutex_lock(&data->mutex);

	if (data->fifo_mode) {
		ret = __bmc150_accel_fifo_flush(indio_dev,
						BMC150_ACCEL_FIFO_LENGTH, true);
		if (ret > 0)
			ack = true;
	}

	if (data->ev_enable_state) {
		ret = bmc150_accel_handle_roc_event(indio_dev);
		if (ret > 0)
			ack = true;
	}

	if (ack) {
M
Markus Pargmann 已提交
1334 1335 1336
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_INT |
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1337
		if (ret)
1338
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1339

1340 1341 1342 1343
		ret = IRQ_HANDLED;
	} else {
		ret = IRQ_NONE;
	}
1344

1345 1346 1347
	mutex_unlock(&data->mutex);

	return ret;
1348 1349
}

1350
static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1351 1352 1353
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1354
	bool ack = false;
1355
	int i;
1356

1357
	data->old_timestamp = data->timestamp;
1358
	data->timestamp = iio_get_time_ns(indio_dev);
1359

1360 1361 1362
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].enabled) {
			iio_trigger_poll(data->triggers[i].indio_trig);
1363
			ack = true;
1364 1365 1366
			break;
		}
	}
1367

1368
	if (data->ev_enable_state || data->fifo_mode)
1369
		return IRQ_WAKE_THREAD;
1370 1371

	if (ack)
1372
		return IRQ_HANDLED;
1373 1374

	return IRQ_NONE;
1375 1376
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static const struct {
	int intr;
	const char *name;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
	{
		.intr = 0,
		.name = "%s-dev%d",
	},
	{
		.intr = 1,
		.name = "%s-any-motion-dev%d",
		.setup = bmc150_accel_any_motion_setup,
	},
};

static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
					     int from)
{
	int i;

1398
	for (i = from; i >= 0; i--) {
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
		if (data->triggers[i].indio_trig) {
			iio_trigger_unregister(data->triggers[i].indio_trig);
			data->triggers[i].indio_trig = NULL;
		}
	}
}

static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
				       struct bmc150_accel_data *data)
{
1409
	struct device *dev = regmap_get_device(data->regmap);
1410 1411 1412 1413 1414
	int i, ret;

	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		struct bmc150_accel_trigger *t = &data->triggers[i];

1415
		t->indio_trig = devm_iio_trigger_alloc(dev,
1416
						       bmc150_accel_triggers[i].name,
1417
						       indio_dev->name,
1418
						       iio_device_id(indio_dev));
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
		if (!t->indio_trig) {
			ret = -ENOMEM;
			break;
		}

		t->indio_trig->ops = &bmc150_accel_trigger_ops;
		t->intr = bmc150_accel_triggers[i].intr;
		t->data = data;
		t->setup = bmc150_accel_triggers[i].setup;
		iio_trigger_set_drvdata(t->indio_trig, t);

		ret = iio_trigger_register(t->indio_trig);
		if (ret)
			break;
	}

	if (ret)
		bmc150_accel_unregister_triggers(data, i - 1);

	return ret;
}

1441 1442 1443 1444 1445 1446
#define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
#define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
#define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00

static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
{
1447
	struct device *dev = regmap_get_device(data->regmap);
1448 1449 1450
	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
	int ret;

M
Markus Pargmann 已提交
1451
	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1452
	if (ret < 0) {
1453
		dev_err(dev, "Error writing reg_fifo_config1\n");
1454 1455 1456 1457 1458 1459
		return ret;
	}

	if (!data->fifo_mode)
		return 0;

M
Markus Pargmann 已提交
1460 1461
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
			   data->watermark);
1462
	if (ret < 0)
1463
		dev_err(dev, "Error writing reg_fifo_config0\n");
1464 1465 1466 1467

	return ret;
}

1468 1469 1470 1471 1472 1473 1474
static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, true);
}

1475 1476 1477 1478 1479 1480
static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret = 0;

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1481
		return 0;
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512

	mutex_lock(&data->mutex);

	if (!data->watermark)
		goto out;

	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					 true);
	if (ret)
		goto out;

	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;

	ret = bmc150_accel_fifo_set_mode(data);
	if (ret) {
		data->fifo_mode = 0;
		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					   false);
	}

out:
	mutex_unlock(&data->mutex);

	return ret;
}

static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1513
		return 0;
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530

	mutex_lock(&data->mutex);

	if (!data->fifo_mode)
		goto out;

	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
	data->fifo_mode = 0;
	bmc150_accel_fifo_set_mode(data);

out:
	mutex_unlock(&data->mutex);

	return 0;
}

1531 1532 1533 1534 1535 1536 1537
static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, false);
}

1538
static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1539
	.preenable = bmc150_accel_buffer_preenable,
1540 1541
	.postenable = bmc150_accel_buffer_postenable,
	.predisable = bmc150_accel_buffer_predisable,
1542
	.postdisable = bmc150_accel_buffer_postdisable,
1543 1544
};

1545 1546
static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
{
1547
	struct device *dev = regmap_get_device(data->regmap);
1548
	int ret, i;
M
Markus Pargmann 已提交
1549
	unsigned int val;
1550

1551 1552 1553 1554 1555 1556 1557 1558
	/*
	 * Reset chip to get it in a known good state. A delay of 1.8ms after
	 * reset is required according to the data sheets of supported chips.
	 */
	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
		     BMC150_ACCEL_RESET_VAL);
	usleep_range(1800, 2500);

M
Markus Pargmann 已提交
1559
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1560
	if (ret < 0) {
1561
		dev_err(dev, "Error: Reading chip id\n");
1562 1563 1564
		return ret;
	}

1565
	dev_dbg(dev, "Chip Id %x\n", val);
1566
	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
M
Markus Pargmann 已提交
1567
		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1568 1569 1570 1571 1572 1573
			data->chip_info = &bmc150_accel_chip_info_tbl[i];
			break;
		}
	}

	if (!data->chip_info) {
1574
		dev_err(dev, "Invalid chip %x\n", val);
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		return -ENODEV;
	}

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
	if (ret < 0)
		return ret;

	/* Set Bandwidth */
	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
	if (ret < 0)
		return ret;

	/* Set Default Range */
M
Markus Pargmann 已提交
1588 1589
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
			   BMC150_ACCEL_DEF_RANGE_4G);
1590
	if (ret < 0) {
1591
		dev_err(dev, "Error writing reg_pmu_range\n");
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
		return ret;
	}

	data->range = BMC150_ACCEL_DEF_RANGE_4G;

	/* Set default slope duration and thresholds */
	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
	ret = bmc150_accel_update_slope(data);
	if (ret < 0)
		return ret;

	/* Set default as latched interrupts */
M
Markus Pargmann 已提交
1605 1606 1607
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1608
	if (ret < 0) {
1609
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1610 1611 1612 1613 1614 1615
		return ret;
	}

	return 0;
}

1616 1617
int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
			    const char *name, bool block_supported)
1618
{
1619
	const struct attribute **fifo_attrs;
1620 1621 1622 1623
	struct bmc150_accel_data *data;
	struct iio_dev *indio_dev;
	int ret;

1624
	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1625 1626 1627 1628
	if (!indio_dev)
		return -ENOMEM;

	data = iio_priv(indio_dev);
1629
	dev_set_drvdata(dev, indio_dev);
1630

1631
	data->regmap = regmap;
1632

1633
	if (!bmc150_apply_acpi_orientation(dev, &data->orientation)) {
1634
		ret = iio_read_mount_matrix(dev, &data->orientation);
1635 1636 1637 1638
		if (ret)
			return ret;
	}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	/*
	 * VDD   is the analog and digital domain voltage supply
	 * VDDIO is the digital I/O voltage supply
	 */
	data->regulators[0].supply = "vdd";
	data->regulators[1].supply = "vddio";
	ret = devm_regulator_bulk_get(dev,
				      ARRAY_SIZE(data->regulators),
				      data->regulators);
	if (ret)
		return dev_err_probe(dev, ret, "failed to get regulators\n");

	ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
				    data->regulators);
	if (ret) {
		dev_err(dev, "failed to enable regulators: %d\n", ret);
		return ret;
	}
	/*
	 * 2ms or 3ms power-on time according to datasheets, let's better
	 * be safe than sorry and set this delay to 5ms.
	 */
	msleep(5);
1662

1663 1664
	ret = bmc150_accel_chip_init(data);
	if (ret < 0)
1665
		goto err_disable_regulators;
1666 1667 1668

	mutex_init(&data->mutex);

1669 1670
	indio_dev->channels = data->chip_info->channels;
	indio_dev->num_channels = data->chip_info->num_channels;
1671
	indio_dev->name = name ? name : data->chip_info->name;
1672
	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1673 1674 1675
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &bmc150_accel_info;

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	if (block_supported) {
		indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
		indio_dev->info = &bmc150_accel_info_fifo;
		fifo_attrs = bmc150_accel_fifo_attributes;
	} else {
		fifo_attrs = NULL;
	}

	ret = iio_triggered_buffer_setup_ext(indio_dev,
					     &iio_pollfunc_store_time,
					     bmc150_accel_trigger_handler,
					     &bmc150_accel_buffer_ops,
					     fifo_attrs);
1689
	if (ret < 0) {
1690
		dev_err(dev, "Failed: iio triggered buffer setup\n");
1691
		goto err_disable_regulators;
1692 1693
	}

1694 1695
	if (irq > 0) {
		ret = devm_request_threaded_irq(dev, irq,
1696 1697
						bmc150_accel_irq_handler,
						bmc150_accel_irq_thread_handler,
1698 1699 1700 1701
						IRQF_TRIGGER_RISING,
						BMC150_ACCEL_IRQ_NAME,
						indio_dev);
		if (ret)
1702
			goto err_buffer_cleanup;
1703

1704 1705 1706 1707 1708 1709
		/*
		 * Set latched mode interrupt. While certain interrupts are
		 * non-latched regardless of this settings (e.g. new data) we
		 * want to use latch mode when we can to prevent interrupt
		 * flooding.
		 */
M
Markus Pargmann 已提交
1710 1711
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1712
		if (ret < 0) {
1713
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1714
			goto err_buffer_cleanup;
1715 1716
		}

1717 1718
		bmc150_accel_interrupts_setup(indio_dev, data);

1719
		ret = bmc150_accel_triggers_setup(indio_dev, data);
1720
		if (ret)
1721
			goto err_buffer_cleanup;
1722 1723
	}

1724
	ret = pm_runtime_set_active(dev);
1725
	if (ret)
1726
		goto err_trigger_unregister;
1727

1728 1729 1730
	pm_runtime_enable(dev);
	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
	pm_runtime_use_autosuspend(dev);
1731

1732 1733 1734 1735 1736 1737
	ret = iio_device_register(indio_dev);
	if (ret < 0) {
		dev_err(dev, "Unable to register iio device\n");
		goto err_trigger_unregister;
	}

1738 1739 1740
	return 0;

err_trigger_unregister:
1741
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1742 1743
err_buffer_cleanup:
	iio_triggered_buffer_cleanup(indio_dev);
1744 1745 1746
err_disable_regulators:
	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
			       data->regulators);
1747 1748 1749

	return ret;
}
1750
EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1751

1752
int bmc150_accel_core_remove(struct device *dev)
1753
{
1754
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1755 1756
	struct bmc150_accel_data *data = iio_priv(indio_dev);

1757 1758
	iio_device_unregister(indio_dev);

1759 1760
	pm_runtime_disable(dev);
	pm_runtime_set_suspended(dev);
1761

1762
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1763

1764 1765
	iio_triggered_buffer_cleanup(indio_dev);

1766 1767 1768 1769
	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
	mutex_unlock(&data->mutex);

1770 1771 1772
	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
			       data->regulators);

1773 1774
	return 0;
}
1775
EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1776 1777 1778 1779

#ifdef CONFIG_PM_SLEEP
static int bmc150_accel_suspend(struct device *dev)
{
1780
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_resume(struct device *dev)
{
1792
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1793 1794 1795
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
1796
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1797
	bmc150_accel_fifo_set_mode(data);
1798 1799
	mutex_unlock(&data->mutex);

1800 1801 1802
	if (data->resume_callback)
		data->resume_callback(dev);

1803 1804 1805 1806
	return 0;
}
#endif

1807
#ifdef CONFIG_PM
1808 1809
static int bmc150_accel_runtime_suspend(struct device *dev)
{
1810
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1811
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1812
	int ret;
1813

1814 1815 1816
	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	if (ret < 0)
		return -EAGAIN;
1817

1818
	return 0;
1819 1820 1821 1822
}

static int bmc150_accel_runtime_resume(struct device *dev)
{
1823
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1824 1825 1826 1827 1828
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;
	int sleep_val;

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1829 1830 1831
	if (ret < 0)
		return ret;
	ret = bmc150_accel_fifo_set_mode(data);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	if (ret < 0)
		return ret;

	sleep_val = bmc150_accel_get_startup_times(data);
	if (sleep_val < 20)
		usleep_range(sleep_val * 1000, 20000);
	else
		msleep_interruptible(sleep_val);

	return 0;
}
#endif

1845
const struct dev_pm_ops bmc150_accel_pm_ops = {
1846 1847 1848 1849
	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
			   bmc150_accel_runtime_resume, NULL)
};
1850
EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1851 1852 1853 1854

MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMC150 accelerometer driver");