bmc150-accel-core.c 45.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3 4 5 6 7
 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
 *  - BMC150
 *  - BMI055
 *  - BMA255
 *  - BMA250E
8
 *  - BMA222
9 10 11
 *  - BMA222E
 *  - BMA280
 *
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 * Copyright (c) 2014, Intel Corporation.
 */

#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
M
Markus Pargmann 已提交
30
#include <linux/regmap.h>
31
#include <linux/regulator/consumer.h>
32

33 34
#include "bmc150-accel.h"

35 36 37 38 39 40 41
#define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
#define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"

#define BMC150_ACCEL_REG_CHIP_ID		0x00

#define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
#define BMC150_ACCEL_ANY_MOTION_MASK		0x07
42 43 44
#define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
#define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
#define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)

#define BMC150_ACCEL_REG_PMU_LPW		0x11
#define BMC150_ACCEL_PMU_MODE_MASK		0xE0
#define BMC150_ACCEL_PMU_MODE_SHIFT		5
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1

#define BMC150_ACCEL_REG_PMU_RANGE		0x0F

#define BMC150_ACCEL_DEF_RANGE_2G		0x03
#define BMC150_ACCEL_DEF_RANGE_4G		0x05
#define BMC150_ACCEL_DEF_RANGE_8G		0x08
#define BMC150_ACCEL_DEF_RANGE_16G		0x0C

/* Default BW: 125Hz */
#define BMC150_ACCEL_REG_PMU_BW		0x10
#define BMC150_ACCEL_DEF_BW			125

64 65 66
#define BMC150_ACCEL_REG_RESET			0x14
#define BMC150_ACCEL_RESET_VAL			0xB6

67 68 69 70
#define BMC150_ACCEL_REG_INT_MAP_0		0x19
#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)

#define BMC150_ACCEL_REG_INT_MAP_1		0x1A
71 72 73
#define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
#define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
#define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
74 75 76 77 78 79 80 81 82 83 84 85

#define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
#define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
#define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00

#define BMC150_ACCEL_REG_INT_EN_0		0x16
#define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)

#define BMC150_ACCEL_REG_INT_EN_1		0x17
86 87 88
#define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
#define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
89 90 91 92 93 94 95 96 97 98 99

#define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)

#define BMC150_ACCEL_REG_INT_5			0x27
#define BMC150_ACCEL_SLOPE_DUR_MASK		0x03

#define BMC150_ACCEL_REG_INT_6			0x28
#define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF

/* Slope duration in terms of number of samples */
100
#define BMC150_ACCEL_DEF_SLOPE_DURATION		1
101
/* in terms of multiples of g's/LSB, based on range */
102
#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

#define BMC150_ACCEL_REG_XOUT_L		0x02

#define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100

/* Sleep Duration values */
#define BMC150_ACCEL_SLEEP_500_MICRO		0x05
#define BMC150_ACCEL_SLEEP_1_MS		0x06
#define BMC150_ACCEL_SLEEP_2_MS		0x07
#define BMC150_ACCEL_SLEEP_4_MS		0x08
#define BMC150_ACCEL_SLEEP_6_MS		0x09
#define BMC150_ACCEL_SLEEP_10_MS		0x0A
#define BMC150_ACCEL_SLEEP_25_MS		0x0B
#define BMC150_ACCEL_SLEEP_50_MS		0x0C
#define BMC150_ACCEL_SLEEP_100_MS		0x0D
#define BMC150_ACCEL_SLEEP_500_MS		0x0E
#define BMC150_ACCEL_SLEEP_1_SEC		0x0F

#define BMC150_ACCEL_REG_TEMP			0x08
122
#define BMC150_ACCEL_TEMP_CENTER_VAL		23
123 124 125 126

#define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
#define BMC150_AUTO_SUSPEND_DELAY_MS		2000

127 128 129 130 131 132
#define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
#define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
#define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
#define BMC150_ACCEL_REG_FIFO_DATA		0x3F
#define BMC150_ACCEL_FIFO_LENGTH		32

133 134 135 136
enum bmc150_accel_axis {
	AXIS_X,
	AXIS_Y,
	AXIS_Z,
137
	AXIS_MAX,
138 139 140 141 142 143 144 145 146
};

enum bmc150_power_modes {
	BMC150_ACCEL_SLEEP_MODE_NORMAL,
	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
	BMC150_ACCEL_SLEEP_MODE_LPM,
	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
};

147 148 149 150 151 152
struct bmc150_scale_info {
	int scale;
	u8 reg_range;
};

struct bmc150_accel_chip_info {
153
	const char *name;
154 155 156 157 158 159
	u8 chip_id;
	const struct iio_chan_spec *channels;
	int num_channels;
	const struct bmc150_scale_info scale_table[4];
};

160 161 162 163 164
struct bmc150_accel_interrupt {
	const struct bmc150_accel_interrupt_info *info;
	atomic_t users;
};

165 166 167 168 169 170 171 172
struct bmc150_accel_trigger {
	struct bmc150_accel_data *data;
	struct iio_trigger *indio_trig;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
	int intr;
	bool enabled;
};

173 174 175 176 177 178 179
enum bmc150_accel_interrupt_id {
	BMC150_ACCEL_INT_DATA_READY,
	BMC150_ACCEL_INT_ANY_MOTION,
	BMC150_ACCEL_INT_WATERMARK,
	BMC150_ACCEL_INTERRUPTS,
};

180 181 182 183 184 185
enum bmc150_accel_trigger_id {
	BMC150_ACCEL_TRIGGER_DATA_READY,
	BMC150_ACCEL_TRIGGER_ANY_MOTION,
	BMC150_ACCEL_TRIGGERS,
};

186
struct bmc150_accel_data {
M
Markus Pargmann 已提交
187
	struct regmap *regmap;
188
	struct regulator_bulk_data regulators[2];
189
	int irq;
190
	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
191
	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
192
	struct mutex mutex;
193
	u8 fifo_mode, watermark;
194
	s16 buffer[8];
195 196 197 198 199 200 201 202
	/*
	 * Ensure there is sufficient space and correct alignment for
	 * the timestamp if enabled
	 */
	struct {
		__le16 channels[3];
		s64 ts __aligned(8);
	} scan;
203 204 205 206 207
	u8 bw_bits;
	u32 slope_dur;
	u32 slope_thres;
	u32 range;
	int ev_enable_state;
208
	int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
209
	const struct bmc150_accel_chip_info *chip_info;
210
	struct iio_mount_matrix orientation;
211 212 213 214 215 216
};

static const struct {
	int val;
	int val2;
	u8 bw_bits;
217 218 219 220 221 222 223 224
} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
				     {31, 260000, 0x09},
				     {62, 500000, 0x0A},
				     {125, 0, 0x0B},
				     {250, 0, 0x0C},
				     {500, 0, 0x0D},
				     {1000, 0, 0x0E},
				     {2000, 0, 0x0F} };
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

static const struct {
	int bw_bits;
	int msec;
} bmc150_accel_sample_upd_time[] = { {0x08, 64},
				     {0x09, 32},
				     {0x0A, 16},
				     {0x0B, 8},
				     {0x0C, 4},
				     {0x0D, 2},
				     {0x0E, 1},
				     {0x0F, 1} };

static const struct {
	int sleep_dur;
240
	u8 reg_value;
241 242 243 244 245 246 247 248 249 250 251 252 253
} bmc150_accel_sleep_value_table[] = { {0, 0},
				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
				       {1000, BMC150_ACCEL_SLEEP_1_MS},
				       {2000, BMC150_ACCEL_SLEEP_2_MS},
				       {4000, BMC150_ACCEL_SLEEP_4_MS},
				       {6000, BMC150_ACCEL_SLEEP_6_MS},
				       {10000, BMC150_ACCEL_SLEEP_10_MS},
				       {25000, BMC150_ACCEL_SLEEP_25_MS},
				       {50000, BMC150_ACCEL_SLEEP_50_MS},
				       {100000, BMC150_ACCEL_SLEEP_100_MS},
				       {500000, BMC150_ACCEL_SLEEP_500_MS},
				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };

254
const struct regmap_config bmc150_regmap_conf = {
M
Markus Pargmann 已提交
255 256 257 258
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = 0x3f,
};
259
EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
M
Markus Pargmann 已提交
260

261 262 263 264
static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
				 enum bmc150_power_modes mode,
				 int dur_us)
{
265
	struct device *dev = regmap_get_device(data->regmap);
266 267 268 269 270 271 272 273 274 275 276 277 278
	int i;
	int ret;
	u8 lpw_bits;
	int dur_val = -1;

	if (dur_us > 0) {
		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
									 ++i) {
			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
									dur_us)
				dur_val =
				bmc150_accel_sleep_value_table[i].reg_value;
		}
279
	} else {
280
		dur_val = 0;
281
	}
282 283 284 285 286 287 288

	if (dur_val < 0)
		return -EINVAL;

	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);

289
	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
290

M
Markus Pargmann 已提交
291
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
292
	if (ret < 0) {
293
		dev_err(dev, "Error writing reg_pmu_lpw\n");
294 295 296 297 298 299 300 301 302 303 304 305 306 307
		return ret;
	}

	return 0;
}

static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
			       int val2)
{
	int i;
	int ret;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].val == val &&
308
		    bmc150_accel_samp_freq_table[i].val2 == val2) {
M
Markus Pargmann 已提交
309
			ret = regmap_write(data->regmap,
310 311 312 313 314 315 316 317 318 319 320 321 322 323
				BMC150_ACCEL_REG_PMU_BW,
				bmc150_accel_samp_freq_table[i].bw_bits);
			if (ret < 0)
				return ret;

			data->bw_bits =
				bmc150_accel_samp_freq_table[i].bw_bits;
			return 0;
		}
	}

	return -EINVAL;
}

324 325
static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
{
326
	struct device *dev = regmap_get_device(data->regmap);
M
Markus Pargmann 已提交
327
	int ret;
328

M
Markus Pargmann 已提交
329
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
330 331
					data->slope_thres);
	if (ret < 0) {
332
		dev_err(dev, "Error writing reg_int_6\n");
333 334 335
		return ret;
	}

M
Markus Pargmann 已提交
336 337
	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
338
	if (ret < 0) {
339
		dev_err(dev, "Error updating reg_int_5\n");
340 341 342
		return ret;
	}

343
	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
344 345 346 347

	return ret;
}

348 349 350 351 352 353 354 355 356
static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
					 bool state)
{
	if (state)
		return bmc150_accel_update_slope(t->data);

	return 0;
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
			       int *val2)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
			*val = bmc150_accel_samp_freq_table[i].val;
			*val2 = bmc150_accel_samp_freq_table[i].val2;
			return IIO_VAL_INT_PLUS_MICRO;
		}
	}

	return -EINVAL;
}

373
#ifdef CONFIG_PM
374 375 376 377 378 379 380 381 382 383 384 385 386 387
static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
			return bmc150_accel_sample_upd_time[i].msec;
	}

	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
}

static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
388
	struct device *dev = regmap_get_device(data->regmap);
389 390
	int ret;

391
	if (on) {
392
		ret = pm_runtime_get_sync(dev);
393
	} else {
394 395
		pm_runtime_mark_last_busy(dev);
		ret = pm_runtime_put_autosuspend(dev);
396
	}
397

398
	if (ret < 0) {
399
		dev_err(dev,
400
			"Failed: %s for %d\n", __func__, on);
401
		if (on)
402
			pm_runtime_put_noidle(dev);
403

404 405 406 407 408
		return ret;
	}

	return 0;
}
409 410 411 412 413 414
#else
static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
	return 0;
}
#endif
415

416 417 418 419 420
static const struct bmc150_accel_interrupt_info {
	u8 map_reg;
	u8 map_bitmask;
	u8 en_reg;
	u8 en_bitmask;
421
} bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
422 423 424 425 426 427 428 429 430 431 432 433 434 435
	{ /* data ready interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
	},
	{  /* motion interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
			BMC150_ACCEL_INT_EN_BIT_SLP_Z
	},
436 437 438 439 440 441
	{ /* fifo watermark interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
	},
442 443
};

444 445 446 447 448 449 450 451 452 453
static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
					  struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
		data->interrupts[i].info = &bmc150_accel_interrupts[i];
}

static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
454 455
				      bool state)
{
456
	struct device *dev = regmap_get_device(data->regmap);
457 458
	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
	const struct bmc150_accel_interrupt_info *info = intr->info;
459 460
	int ret;

461 462 463 464 465 466 467 468
	if (state) {
		if (atomic_inc_return(&intr->users) > 1)
			return 0;
	} else {
		if (atomic_dec_return(&intr->users) > 0)
			return 0;
	}

469
	/*
470 471 472 473 474 475 476
	 * We will expect the enable and disable to do operation in reverse
	 * order. This will happen here anyway, as our resume operation uses
	 * sync mode runtime pm calls. The suspend operation will be delayed
	 * by autosuspend delay.
	 * So the disable operation will still happen in reverse order of
	 * enable operation. When runtime pm is disabled the mode is always on,
	 * so sequence doesn't matter.
477 478 479 480 481 482
	 */
	ret = bmc150_accel_set_power_state(data, state);
	if (ret < 0)
		return ret;

	/* map the interrupt to the appropriate pins */
M
Markus Pargmann 已提交
483 484
	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
				 (state ? info->map_bitmask : 0));
485
	if (ret < 0) {
486
		dev_err(dev, "Error updating reg_int_map\n");
487 488 489 490
		goto out_fix_power_state;
	}

	/* enable/disable the interrupt */
M
Markus Pargmann 已提交
491 492
	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
				 (state ? info->en_bitmask : 0));
493
	if (ret < 0) {
494
		dev_err(dev, "Error updating reg_int_en\n");
495 496 497 498 499 500 501 502 503 504
		goto out_fix_power_state;
	}

	return 0;

out_fix_power_state:
	bmc150_accel_set_power_state(data, false);
	return ret;
}

505 506
static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
{
507
	struct device *dev = regmap_get_device(data->regmap);
508 509
	int ret, i;

510 511
	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
		if (data->chip_info->scale_table[i].scale == val) {
M
Markus Pargmann 已提交
512
			ret = regmap_write(data->regmap,
513 514
				     BMC150_ACCEL_REG_PMU_RANGE,
				     data->chip_info->scale_table[i].reg_range);
515
			if (ret < 0) {
516
				dev_err(dev, "Error writing pmu_range\n");
517 518 519
				return ret;
			}

520
			data->range = data->chip_info->scale_table[i].reg_range;
521 522 523 524 525 526 527 528 529
			return 0;
		}
	}

	return -EINVAL;
}

static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
{
530
	struct device *dev = regmap_get_device(data->regmap);
531
	int ret;
M
Markus Pargmann 已提交
532
	unsigned int value;
533 534 535

	mutex_lock(&data->mutex);

M
Markus Pargmann 已提交
536
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
537
	if (ret < 0) {
538
		dev_err(dev, "Error reading reg_temp\n");
539 540 541
		mutex_unlock(&data->mutex);
		return ret;
	}
M
Markus Pargmann 已提交
542
	*val = sign_extend32(value, 7);
543 544 545 546 547 548

	mutex_unlock(&data->mutex);

	return IIO_VAL_INT;
}

549 550
static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
				 struct iio_chan_spec const *chan,
551 552
				 int *val)
{
553
	struct device *dev = regmap_get_device(data->regmap);
554
	int ret;
555
	int axis = chan->scan_index;
556
	__le16 raw_val;
557 558 559 560 561 562 563 564

	mutex_lock(&data->mutex);
	ret = bmc150_accel_set_power_state(data, true);
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

M
Markus Pargmann 已提交
565
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
566
			       &raw_val, sizeof(raw_val));
567
	if (ret < 0) {
568
		dev_err(dev, "Error reading axis %d\n", axis);
569 570 571 572
		bmc150_accel_set_power_state(data, false);
		mutex_unlock(&data->mutex);
		return ret;
	}
573
	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
574
			     chan->scan_type.realbits - 1);
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	ret = bmc150_accel_set_power_state(data, false);
	mutex_unlock(&data->mutex);
	if (ret < 0)
		return ret;

	return IIO_VAL_INT;
}

static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
				 struct iio_chan_spec const *chan,
				 int *val, int *val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		switch (chan->type) {
		case IIO_TEMP:
			return bmc150_accel_get_temp(data, val);
		case IIO_ACCEL:
			if (iio_buffer_enabled(indio_dev))
				return -EBUSY;
			else
599
				return bmc150_accel_get_axis(data, chan, val);
600 601 602 603 604 605 606
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_OFFSET:
		if (chan->type == IIO_TEMP) {
			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
			return IIO_VAL_INT;
607
		} else {
608
			return -EINVAL;
609
		}
610 611 612 613 614 615 616 617 618
	case IIO_CHAN_INFO_SCALE:
		*val = 0;
		switch (chan->type) {
		case IIO_TEMP:
			*val2 = 500000;
			return IIO_VAL_INT_PLUS_MICRO;
		case IIO_ACCEL:
		{
			int i;
619 620
			const struct bmc150_scale_info *si;
			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
621

622 623 624 625
			for (i = 0; i < st_size; ++i) {
				si = &data->chip_info->scale_table[i];
				if (si->reg_range == data->range) {
					*val2 = si->scale;
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
					return IIO_VAL_INT_PLUS_MICRO;
				}
			}
			return -EINVAL;
		}
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_get_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		return -EINVAL;
	}
}

static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
				  struct iio_chan_spec const *chan,
				  int val, int val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		break;
	case IIO_CHAN_INFO_SCALE:
		if (val)
			return -EINVAL;

		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_scale(data, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int bmc150_accel_read_event(struct iio_dev *indio_dev,
				   const struct iio_chan_spec *chan,
				   enum iio_event_type type,
				   enum iio_event_direction dir,
				   enum iio_event_info info,
				   int *val, int *val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	*val2 = 0;
	switch (info) {
	case IIO_EV_INFO_VALUE:
		*val = data->slope_thres;
		break;
	case IIO_EV_INFO_PERIOD:
687
		*val = data->slope_dur;
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
		break;
	default:
		return -EINVAL;
	}

	return IIO_VAL_INT;
}

static int bmc150_accel_write_event(struct iio_dev *indio_dev,
				    const struct iio_chan_spec *chan,
				    enum iio_event_type type,
				    enum iio_event_direction dir,
				    enum iio_event_info info,
				    int val, int val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (data->ev_enable_state)
		return -EBUSY;

	switch (info) {
	case IIO_EV_INFO_VALUE:
710
		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
711 712
		break;
	case IIO_EV_INFO_PERIOD:
713
		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
					  const struct iio_chan_spec *chan,
					  enum iio_event_type type,
					  enum iio_event_direction dir)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return data->ev_enable_state;
}

static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
					   const struct iio_chan_spec *chan,
					   enum iio_event_type type,
					   enum iio_event_direction dir,
					   int state)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

741
	if (state == data->ev_enable_state)
742 743 744 745
		return 0;

	mutex_lock(&data->mutex);

746 747
	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
					 state);
748 749 750 751 752 753 754 755 756 757 758 759
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

	data->ev_enable_state = state;
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
760
					 struct iio_trigger *trig)
761 762
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
763
	int i;
764

765 766 767 768
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].indio_trig == trig)
			return 0;
	}
769

770
	return -EINVAL;
771 772
}

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
					       struct device_attribute *attr,
					       char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int wm;

	mutex_lock(&data->mutex);
	wm = data->watermark;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", wm);
}

static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	bool state;

	mutex_lock(&data->mutex);
	state = data->fifo_mode;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", state);
}

803 804 805 806 807 808 809 810 811 812 813 814 815 816
static const struct iio_mount_matrix *
bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
				const struct iio_chan_spec *chan)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return &data->orientation;
}

static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
	{ }
};

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
static IIO_CONST_ATTR(hwfifo_watermark_max,
		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
		       bmc150_accel_get_fifo_state, NULL, 0);
static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
		       bmc150_accel_get_fifo_watermark, NULL, 0);

static const struct attribute *bmc150_accel_fifo_attributes[] = {
	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
	NULL,
};

static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (val > BMC150_ACCEL_FIFO_LENGTH)
		val = BMC150_ACCEL_FIFO_LENGTH;

	mutex_lock(&data->mutex);
	data->watermark = val;
	mutex_unlock(&data->mutex);

	return 0;
}

/*
 * We must read at least one full frame in one burst, otherwise the rest of the
 * frame data is discarded.
 */
M
Markus Pargmann 已提交
851
static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
852 853
				      char *buffer, int samples)
{
854
	struct device *dev = regmap_get_device(data->regmap);
855
	int sample_length = 3 * 2;
M
Markus Pargmann 已提交
856 857
	int ret;
	int total_length = samples * sample_length;
858

859 860
	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
			      buffer, total_length);
861
	if (ret)
862
		dev_err(dev,
863
			"Error transferring data from fifo: %d\n", ret);
864 865 866 867 868 869 870 871

	return ret;
}

static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
				     unsigned samples, bool irq)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
872
	struct device *dev = regmap_get_device(data->regmap);
873 874 875 876 877
	int ret, i;
	u8 count;
	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
	int64_t tstamp;
	uint64_t sample_period;
M
Markus Pargmann 已提交
878
	unsigned int val;
879

M
Markus Pargmann 已提交
880
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
881
	if (ret < 0) {
882
		dev_err(dev, "Error reading reg_fifo_status\n");
883 884 885
		return ret;
	}

M
Markus Pargmann 已提交
886
	count = val & 0x7F;
887 888 889 890 891 892 893 894 895 896 897 898 899 900

	if (!count)
		return 0;

	/*
	 * If we getting called from IRQ handler we know the stored timestamp is
	 * fairly accurate for the last stored sample. Otherwise, if we are
	 * called as a result of a read operation from userspace and hence
	 * before the watermark interrupt was triggered, take a timestamp
	 * now. We can fall anywhere in between two samples so the error in this
	 * case is at most one sample period.
	 */
	if (!irq) {
		data->old_timestamp = data->timestamp;
901
		data->timestamp = iio_get_time_ns(indio_dev);
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	}

	/*
	 * Approximate timestamps for each of the sample based on the sampling
	 * frequency, timestamp for last sample and number of samples.
	 *
	 * Note that we can't use the current bandwidth settings to compute the
	 * sample period because the sample rate varies with the device
	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
	 * small variation adds when we store a large number of samples and
	 * creates significant jitter between the last and first samples in
	 * different batches (e.g. 32ms vs 21ms).
	 *
	 * To avoid this issue we compute the actual sample period ourselves
	 * based on the timestamp delta between the last two flush operations.
	 */
	sample_period = (data->timestamp - data->old_timestamp);
	do_div(sample_period, count);
	tstamp = data->timestamp - (count - 1) * sample_period;

	if (samples && count > samples)
		count = samples;

M
Markus Pargmann 已提交
925
	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
	if (ret)
		return ret;

	/*
	 * Ideally we want the IIO core to handle the demux when running in fifo
	 * mode but not when running in triggered buffer mode. Unfortunately
	 * this does not seem to be possible, so stick with driver demux for
	 * now.
	 */
	for (i = 0; i < count; i++) {
		int j, bit;

		j = 0;
		for_each_set_bit(bit, indio_dev->active_scan_mask,
				 indio_dev->masklength)
941 942
			memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
			       sizeof(data->scan.channels[0]));
943

944 945
		iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
						   tstamp);
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964

		tstamp += sample_period;
	}

	return count;
}

static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	mutex_lock(&data->mutex);
	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
	mutex_unlock(&data->mutex);

	return ret;
}

965
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
966
		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
967 968 969 970 971 972 973 974 975 976 977 978

static struct attribute *bmc150_accel_attributes[] = {
	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group bmc150_accel_attrs_group = {
	.attrs = bmc150_accel_attributes,
};

static const struct iio_event_spec bmc150_accel_event = {
		.type = IIO_EV_TYPE_ROC,
979
		.dir = IIO_EV_DIR_EITHER,
980 981 982 983 984
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
				 BIT(IIO_EV_INFO_ENABLE) |
				 BIT(IIO_EV_INFO_PERIOD)
};

985
#define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
986 987 988 989 990 991 992 993 994
	.type = IIO_ACCEL,						\
	.modified = 1,							\
	.channel2 = IIO_MOD_##_axis,					\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
	.scan_index = AXIS_##_axis,					\
	.scan_type = {							\
		.sign = 's',						\
995
		.realbits = (bits),					\
996
		.storagebits = 16,					\
997
		.shift = 16 - (bits),					\
998
		.endianness = IIO_LE,					\
999
	},								\
1000
	.ext_info = bmc150_accel_ext_info,				\
1001 1002 1003 1004
	.event_spec = &bmc150_accel_event,				\
	.num_event_specs = 1						\
}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
#define BMC150_ACCEL_CHANNELS(bits) {					\
	{								\
		.type = IIO_TEMP,					\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
				      BIT(IIO_CHAN_INFO_SCALE) |	\
				      BIT(IIO_CHAN_INFO_OFFSET),	\
		.scan_index = -1,					\
	},								\
	BMC150_ACCEL_CHANNEL(X, bits),					\
	BMC150_ACCEL_CHANNEL(Y, bits),					\
	BMC150_ACCEL_CHANNEL(Z, bits),					\
	IIO_CHAN_SOFT_TIMESTAMP(3),					\
}

static const struct iio_chan_spec bma222e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(8);
static const struct iio_chan_spec bma250e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(10);
static const struct iio_chan_spec bmc150_accel_channels[] =
	BMC150_ACCEL_CHANNELS(12);
static const struct iio_chan_spec bma280_accel_channels[] =
	BMC150_ACCEL_CHANNELS(14);

static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
	[bmc150] = {
1030
		.name = "BMC150A",
1031 1032 1033 1034 1035 1036 1037 1038 1039
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bmi055] = {
1040
		.name = "BMI055A",
1041 1042 1043 1044 1045 1046 1047 1048 1049
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma255] = {
1050
		.name = "BMA0255",
1051 1052 1053 1054 1055 1056 1057 1058 1059
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma250e] = {
1060
		.name = "BMA250E",
1061 1062 1063 1064 1065 1066 1067 1068
		.chip_id = 0xF9,
		.channels = bma250e_accel_channels,
		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
	},
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	[bma222] = {
		.name = "BMA222",
		.chip_id = 0x03,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
		/*
		 * The datasheet page 17 says:
		 * 15.6, 31.3, 62.5 and 125 mg per LSB.
		 */
		.scale_table = { {156000, BMC150_ACCEL_DEF_RANGE_2G},
				 {313000, BMC150_ACCEL_DEF_RANGE_4G},
				 {625000, BMC150_ACCEL_DEF_RANGE_8G},
				 {1250000, BMC150_ACCEL_DEF_RANGE_16G} },
	},
1083
	[bma222e] = {
1084
		.name = "BMA222E",
1085 1086 1087 1088 1089 1090 1091 1092 1093
		.chip_id = 0xF8,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma280] = {
1094
		.name = "BMA0280",
1095 1096 1097 1098 1099 1100 1101
		.chip_id = 0xFB,
		.channels = bma280_accel_channels,
		.num_channels = ARRAY_SIZE(bma280_accel_channels),
		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	},
};

static const struct iio_info bmc150_accel_info = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
};

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
static const struct iio_info bmc150_accel_info_fifo = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
	.validate_trigger	= bmc150_accel_validate_trigger,
	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
};

1128 1129 1130 1131
static const unsigned long bmc150_accel_scan_masks[] = {
					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
					0};

1132 1133 1134 1135 1136
static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1137
	int ret;
1138 1139

	mutex_lock(&data->mutex);
1140 1141
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
			       data->buffer, AXIS_MAX * 2);
1142
	mutex_unlock(&data->mutex);
1143 1144
	if (ret < 0)
		goto err_read;
1145 1146

	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1147
					   pf->timestamp);
1148 1149 1150 1151 1152 1153 1154 1155
err_read:
	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
{
1156 1157
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1158
	struct device *dev = regmap_get_device(data->regmap);
1159 1160 1161
	int ret;

	/* new data interrupts don't need ack */
1162
	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1163 1164 1165 1166
		return 0;

	mutex_lock(&data->mutex);
	/* clear any latched interrupt */
M
Markus Pargmann 已提交
1167 1168 1169
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1170 1171
	mutex_unlock(&data->mutex);
	if (ret < 0) {
1172
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1173 1174 1175 1176 1177 1178
		return ret;
	}

	return 0;
}

1179
static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1180
					  bool state)
1181
{
1182 1183
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1184 1185 1186 1187
	int ret;

	mutex_lock(&data->mutex);

1188 1189 1190 1191 1192 1193 1194 1195
	if (t->enabled == state) {
		mutex_unlock(&data->mutex);
		return 0;
	}

	if (t->setup) {
		ret = t->setup(t, state);
		if (ret < 0) {
1196
			mutex_unlock(&data->mutex);
1197
			return ret;
1198 1199 1200
		}
	}

1201
	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1202 1203 1204 1205
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}
1206 1207

	t->enabled = state;
1208 1209 1210 1211 1212 1213 1214

	mutex_unlock(&data->mutex);

	return ret;
}

static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1215
	.set_trigger_state = bmc150_accel_trigger_set_state,
1216 1217 1218
	.try_reenable = bmc150_accel_trig_try_reen,
};

1219
static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1220 1221
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1222
	struct device *dev = regmap_get_device(data->regmap);
1223
	int dir;
1224
	int ret;
M
Markus Pargmann 已提交
1225
	unsigned int val;
1226

M
Markus Pargmann 已提交
1227
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1228
	if (ret < 0) {
1229
		dev_err(dev, "Error reading reg_int_status_2\n");
1230
		return ret;
1231 1232
	}

M
Markus Pargmann 已提交
1233
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1234 1235 1236 1237
		dir = IIO_EV_DIR_FALLING;
	else
		dir = IIO_EV_DIR_RISING;

M
Markus Pargmann 已提交
1238
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1239 1240 1241 1242 1243 1244 1245 1246
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_X,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1247
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1248 1249 1250 1251 1252 1253 1254 1255
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Y,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1256
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1257 1258 1259 1260 1261 1262 1263 1264
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Z,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

1265 1266 1267 1268 1269 1270 1271
	return ret;
}

static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1272
	struct device *dev = regmap_get_device(data->regmap);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	bool ack = false;
	int ret;

	mutex_lock(&data->mutex);

	if (data->fifo_mode) {
		ret = __bmc150_accel_fifo_flush(indio_dev,
						BMC150_ACCEL_FIFO_LENGTH, true);
		if (ret > 0)
			ack = true;
	}

	if (data->ev_enable_state) {
		ret = bmc150_accel_handle_roc_event(indio_dev);
		if (ret > 0)
			ack = true;
	}

	if (ack) {
M
Markus Pargmann 已提交
1292 1293 1294
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_INT |
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1295
		if (ret)
1296
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1297

1298 1299 1300 1301
		ret = IRQ_HANDLED;
	} else {
		ret = IRQ_NONE;
	}
1302

1303 1304 1305
	mutex_unlock(&data->mutex);

	return ret;
1306 1307
}

1308
static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1309 1310 1311
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1312
	bool ack = false;
1313
	int i;
1314

1315
	data->old_timestamp = data->timestamp;
1316
	data->timestamp = iio_get_time_ns(indio_dev);
1317

1318 1319 1320
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].enabled) {
			iio_trigger_poll(data->triggers[i].indio_trig);
1321
			ack = true;
1322 1323 1324
			break;
		}
	}
1325

1326
	if (data->ev_enable_state || data->fifo_mode)
1327
		return IRQ_WAKE_THREAD;
1328 1329

	if (ack)
1330
		return IRQ_HANDLED;
1331 1332

	return IRQ_NONE;
1333 1334
}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
static const struct {
	int intr;
	const char *name;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
	{
		.intr = 0,
		.name = "%s-dev%d",
	},
	{
		.intr = 1,
		.name = "%s-any-motion-dev%d",
		.setup = bmc150_accel_any_motion_setup,
	},
};

static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
					     int from)
{
	int i;

1356
	for (i = from; i >= 0; i--) {
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
		if (data->triggers[i].indio_trig) {
			iio_trigger_unregister(data->triggers[i].indio_trig);
			data->triggers[i].indio_trig = NULL;
		}
	}
}

static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
				       struct bmc150_accel_data *data)
{
1367
	struct device *dev = regmap_get_device(data->regmap);
1368 1369 1370 1371 1372
	int i, ret;

	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		struct bmc150_accel_trigger *t = &data->triggers[i];

1373 1374
		t->indio_trig = devm_iio_trigger_alloc(dev,
					bmc150_accel_triggers[i].name,
1375 1376 1377 1378 1379 1380 1381
						       indio_dev->name,
						       indio_dev->id);
		if (!t->indio_trig) {
			ret = -ENOMEM;
			break;
		}

1382
		t->indio_trig->dev.parent = dev;
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		t->indio_trig->ops = &bmc150_accel_trigger_ops;
		t->intr = bmc150_accel_triggers[i].intr;
		t->data = data;
		t->setup = bmc150_accel_triggers[i].setup;
		iio_trigger_set_drvdata(t->indio_trig, t);

		ret = iio_trigger_register(t->indio_trig);
		if (ret)
			break;
	}

	if (ret)
		bmc150_accel_unregister_triggers(data, i - 1);

	return ret;
}

1400 1401 1402 1403 1404 1405
#define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
#define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
#define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00

static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
{
1406
	struct device *dev = regmap_get_device(data->regmap);
1407 1408 1409
	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
	int ret;

M
Markus Pargmann 已提交
1410
	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1411
	if (ret < 0) {
1412
		dev_err(dev, "Error writing reg_fifo_config1\n");
1413 1414 1415 1416 1417 1418
		return ret;
	}

	if (!data->fifo_mode)
		return 0;

M
Markus Pargmann 已提交
1419 1420
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
			   data->watermark);
1421
	if (ret < 0)
1422
		dev_err(dev, "Error writing reg_fifo_config0\n");
1423 1424 1425 1426

	return ret;
}

1427 1428 1429 1430 1431 1432 1433
static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, true);
}

1434 1435 1436 1437 1438 1439
static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret = 0;

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1440
		return 0;
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

	mutex_lock(&data->mutex);

	if (!data->watermark)
		goto out;

	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					 true);
	if (ret)
		goto out;

	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;

	ret = bmc150_accel_fifo_set_mode(data);
	if (ret) {
		data->fifo_mode = 0;
		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					   false);
	}

out:
	mutex_unlock(&data->mutex);

	return ret;
}

static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1472
		return 0;
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

	mutex_lock(&data->mutex);

	if (!data->fifo_mode)
		goto out;

	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
	data->fifo_mode = 0;
	bmc150_accel_fifo_set_mode(data);

out:
	mutex_unlock(&data->mutex);

	return 0;
}

1490 1491 1492 1493 1494 1495 1496
static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, false);
}

1497
static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1498
	.preenable = bmc150_accel_buffer_preenable,
1499 1500
	.postenable = bmc150_accel_buffer_postenable,
	.predisable = bmc150_accel_buffer_predisable,
1501
	.postdisable = bmc150_accel_buffer_postdisable,
1502 1503
};

1504 1505
static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
{
1506
	struct device *dev = regmap_get_device(data->regmap);
1507
	int ret, i;
M
Markus Pargmann 已提交
1508
	unsigned int val;
1509

1510 1511 1512 1513 1514 1515 1516 1517
	/*
	 * Reset chip to get it in a known good state. A delay of 1.8ms after
	 * reset is required according to the data sheets of supported chips.
	 */
	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
		     BMC150_ACCEL_RESET_VAL);
	usleep_range(1800, 2500);

M
Markus Pargmann 已提交
1518
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1519
	if (ret < 0) {
1520
		dev_err(dev, "Error: Reading chip id\n");
1521 1522 1523
		return ret;
	}

1524
	dev_dbg(dev, "Chip Id %x\n", val);
1525
	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
M
Markus Pargmann 已提交
1526
		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1527 1528 1529 1530 1531 1532
			data->chip_info = &bmc150_accel_chip_info_tbl[i];
			break;
		}
	}

	if (!data->chip_info) {
1533
		dev_err(dev, "Invalid chip %x\n", val);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
		return -ENODEV;
	}

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
	if (ret < 0)
		return ret;

	/* Set Bandwidth */
	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
	if (ret < 0)
		return ret;

	/* Set Default Range */
M
Markus Pargmann 已提交
1547 1548
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
			   BMC150_ACCEL_DEF_RANGE_4G);
1549
	if (ret < 0) {
1550
		dev_err(dev, "Error writing reg_pmu_range\n");
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
		return ret;
	}

	data->range = BMC150_ACCEL_DEF_RANGE_4G;

	/* Set default slope duration and thresholds */
	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
	ret = bmc150_accel_update_slope(data);
	if (ret < 0)
		return ret;

	/* Set default as latched interrupts */
M
Markus Pargmann 已提交
1564 1565 1566
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1567
	if (ret < 0) {
1568
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1569 1570 1571 1572 1573 1574
		return ret;
	}

	return 0;
}

1575 1576
int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
			    const char *name, bool block_supported)
1577
{
1578
	const struct attribute **fifo_attrs;
1579 1580 1581 1582
	struct bmc150_accel_data *data;
	struct iio_dev *indio_dev;
	int ret;

1583
	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1584 1585 1586 1587
	if (!indio_dev)
		return -ENOMEM;

	data = iio_priv(indio_dev);
1588 1589
	dev_set_drvdata(dev, indio_dev);
	data->irq = irq;
1590

1591
	data->regmap = regmap;
1592

1593 1594 1595 1596
	ret = iio_read_mount_matrix(dev, "mount-matrix",
				     &data->orientation);
	if (ret)
		return ret;
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	/*
	 * VDD   is the analog and digital domain voltage supply
	 * VDDIO is the digital I/O voltage supply
	 */
	data->regulators[0].supply = "vdd";
	data->regulators[1].supply = "vddio";
	ret = devm_regulator_bulk_get(dev,
				      ARRAY_SIZE(data->regulators),
				      data->regulators);
	if (ret)
		return dev_err_probe(dev, ret, "failed to get regulators\n");

	ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
				    data->regulators);
	if (ret) {
		dev_err(dev, "failed to enable regulators: %d\n", ret);
		return ret;
	}
	/*
	 * 2ms or 3ms power-on time according to datasheets, let's better
	 * be safe than sorry and set this delay to 5ms.
	 */
	msleep(5);
1620

1621 1622
	ret = bmc150_accel_chip_init(data);
	if (ret < 0)
1623
		goto err_disable_regulators;
1624 1625 1626

	mutex_init(&data->mutex);

1627 1628
	indio_dev->channels = data->chip_info->channels;
	indio_dev->num_channels = data->chip_info->num_channels;
1629
	indio_dev->name = name ? name : data->chip_info->name;
1630
	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1631 1632 1633
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &bmc150_accel_info;

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	if (block_supported) {
		indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
		indio_dev->info = &bmc150_accel_info_fifo;
		fifo_attrs = bmc150_accel_fifo_attributes;
	} else {
		fifo_attrs = NULL;
	}

	ret = iio_triggered_buffer_setup_ext(indio_dev,
					     &iio_pollfunc_store_time,
					     bmc150_accel_trigger_handler,
					     &bmc150_accel_buffer_ops,
					     fifo_attrs);
1647
	if (ret < 0) {
1648
		dev_err(dev, "Failed: iio triggered buffer setup\n");
1649
		goto err_disable_regulators;
1650 1651
	}

1652
	if (data->irq > 0) {
1653
		ret = devm_request_threaded_irq(
1654
						dev, data->irq,
1655 1656
						bmc150_accel_irq_handler,
						bmc150_accel_irq_thread_handler,
1657 1658 1659 1660
						IRQF_TRIGGER_RISING,
						BMC150_ACCEL_IRQ_NAME,
						indio_dev);
		if (ret)
1661
			goto err_buffer_cleanup;
1662

1663 1664 1665 1666 1667 1668
		/*
		 * Set latched mode interrupt. While certain interrupts are
		 * non-latched regardless of this settings (e.g. new data) we
		 * want to use latch mode when we can to prevent interrupt
		 * flooding.
		 */
M
Markus Pargmann 已提交
1669 1670
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1671
		if (ret < 0) {
1672
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1673
			goto err_buffer_cleanup;
1674 1675
		}

1676 1677
		bmc150_accel_interrupts_setup(indio_dev, data);

1678
		ret = bmc150_accel_triggers_setup(indio_dev, data);
1679
		if (ret)
1680
			goto err_buffer_cleanup;
1681 1682
	}

1683
	ret = pm_runtime_set_active(dev);
1684
	if (ret)
1685
		goto err_trigger_unregister;
1686

1687 1688 1689
	pm_runtime_enable(dev);
	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
	pm_runtime_use_autosuspend(dev);
1690

1691 1692 1693 1694 1695 1696
	ret = iio_device_register(indio_dev);
	if (ret < 0) {
		dev_err(dev, "Unable to register iio device\n");
		goto err_trigger_unregister;
	}

1697 1698 1699
	return 0;

err_trigger_unregister:
1700
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1701 1702
err_buffer_cleanup:
	iio_triggered_buffer_cleanup(indio_dev);
1703 1704 1705
err_disable_regulators:
	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
			       data->regulators);
1706 1707 1708

	return ret;
}
1709
EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1710

1711
int bmc150_accel_core_remove(struct device *dev)
1712
{
1713
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1714 1715
	struct bmc150_accel_data *data = iio_priv(indio_dev);

1716 1717
	iio_device_unregister(indio_dev);

1718 1719 1720
	pm_runtime_disable(dev);
	pm_runtime_set_suspended(dev);
	pm_runtime_put_noidle(dev);
1721

1722
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1723

1724 1725
	iio_triggered_buffer_cleanup(indio_dev);

1726 1727 1728 1729
	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
	mutex_unlock(&data->mutex);

1730 1731 1732
	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
			       data->regulators);

1733 1734
	return 0;
}
1735
EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1736 1737 1738 1739

#ifdef CONFIG_PM_SLEEP
static int bmc150_accel_suspend(struct device *dev)
{
1740
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_resume(struct device *dev)
{
1752
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1753 1754 1755
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
1756
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1757
	bmc150_accel_fifo_set_mode(data);
1758 1759 1760 1761 1762 1763
	mutex_unlock(&data->mutex);

	return 0;
}
#endif

1764
#ifdef CONFIG_PM
1765 1766
static int bmc150_accel_runtime_suspend(struct device *dev)
{
1767
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1768
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1769
	int ret;
1770

1771 1772 1773
	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	if (ret < 0)
		return -EAGAIN;
1774

1775
	return 0;
1776 1777 1778 1779
}

static int bmc150_accel_runtime_resume(struct device *dev)
{
1780
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1781 1782 1783 1784 1785
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;
	int sleep_val;

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1786 1787 1788
	if (ret < 0)
		return ret;
	ret = bmc150_accel_fifo_set_mode(data);
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	if (ret < 0)
		return ret;

	sleep_val = bmc150_accel_get_startup_times(data);
	if (sleep_val < 20)
		usleep_range(sleep_val * 1000, 20000);
	else
		msleep_interruptible(sleep_val);

	return 0;
}
#endif

1802
const struct dev_pm_ops bmc150_accel_pm_ops = {
1803 1804 1805 1806
	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
			   bmc150_accel_runtime_resume, NULL)
};
1807
EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1808 1809 1810 1811

MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMC150 accelerometer driver");