bmc150-accel-core.c 47.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3 4 5 6 7
 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
 *  - BMC150
 *  - BMI055
 *  - BMA255
 *  - BMA250E
8
 *  - BMA222
9 10 11
 *  - BMA222E
 *  - BMA280
 *
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 * Copyright (c) 2014, Intel Corporation.
 */

#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
M
Markus Pargmann 已提交
30
#include <linux/regmap.h>
31
#include <linux/regulator/consumer.h>
32

33 34
#include "bmc150-accel.h"

35 36 37 38 39 40 41
#define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
#define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"

#define BMC150_ACCEL_REG_CHIP_ID		0x00

#define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
#define BMC150_ACCEL_ANY_MOTION_MASK		0x07
42 43 44
#define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
#define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
#define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)

#define BMC150_ACCEL_REG_PMU_LPW		0x11
#define BMC150_ACCEL_PMU_MODE_MASK		0xE0
#define BMC150_ACCEL_PMU_MODE_SHIFT		5
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1

#define BMC150_ACCEL_REG_PMU_RANGE		0x0F

#define BMC150_ACCEL_DEF_RANGE_2G		0x03
#define BMC150_ACCEL_DEF_RANGE_4G		0x05
#define BMC150_ACCEL_DEF_RANGE_8G		0x08
#define BMC150_ACCEL_DEF_RANGE_16G		0x0C

/* Default BW: 125Hz */
#define BMC150_ACCEL_REG_PMU_BW		0x10
#define BMC150_ACCEL_DEF_BW			125

64 65 66
#define BMC150_ACCEL_REG_RESET			0x14
#define BMC150_ACCEL_RESET_VAL			0xB6

67 68 69 70
#define BMC150_ACCEL_REG_INT_MAP_0		0x19
#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)

#define BMC150_ACCEL_REG_INT_MAP_1		0x1A
71 72 73
#define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
#define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
#define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
74 75 76 77 78 79 80 81 82 83 84 85

#define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
#define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
#define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00

#define BMC150_ACCEL_REG_INT_EN_0		0x16
#define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)

#define BMC150_ACCEL_REG_INT_EN_1		0x17
86 87 88
#define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
#define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
89 90 91 92 93 94 95 96 97 98 99

#define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)

#define BMC150_ACCEL_REG_INT_5			0x27
#define BMC150_ACCEL_SLOPE_DUR_MASK		0x03

#define BMC150_ACCEL_REG_INT_6			0x28
#define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF

/* Slope duration in terms of number of samples */
100
#define BMC150_ACCEL_DEF_SLOPE_DURATION		1
101
/* in terms of multiples of g's/LSB, based on range */
102
#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

#define BMC150_ACCEL_REG_XOUT_L		0x02

#define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100

/* Sleep Duration values */
#define BMC150_ACCEL_SLEEP_500_MICRO		0x05
#define BMC150_ACCEL_SLEEP_1_MS		0x06
#define BMC150_ACCEL_SLEEP_2_MS		0x07
#define BMC150_ACCEL_SLEEP_4_MS		0x08
#define BMC150_ACCEL_SLEEP_6_MS		0x09
#define BMC150_ACCEL_SLEEP_10_MS		0x0A
#define BMC150_ACCEL_SLEEP_25_MS		0x0B
#define BMC150_ACCEL_SLEEP_50_MS		0x0C
#define BMC150_ACCEL_SLEEP_100_MS		0x0D
#define BMC150_ACCEL_SLEEP_500_MS		0x0E
#define BMC150_ACCEL_SLEEP_1_SEC		0x0F

#define BMC150_ACCEL_REG_TEMP			0x08
122
#define BMC150_ACCEL_TEMP_CENTER_VAL		23
123 124 125 126

#define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
#define BMC150_AUTO_SUSPEND_DELAY_MS		2000

127 128 129 130 131 132
#define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
#define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
#define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
#define BMC150_ACCEL_REG_FIFO_DATA		0x3F
#define BMC150_ACCEL_FIFO_LENGTH		32

133 134 135 136
enum bmc150_accel_axis {
	AXIS_X,
	AXIS_Y,
	AXIS_Z,
137
	AXIS_MAX,
138 139 140 141 142 143 144 145 146
};

enum bmc150_power_modes {
	BMC150_ACCEL_SLEEP_MODE_NORMAL,
	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
	BMC150_ACCEL_SLEEP_MODE_LPM,
	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
};

147 148 149 150 151 152
struct bmc150_scale_info {
	int scale;
	u8 reg_range;
};

struct bmc150_accel_chip_info {
153
	const char *name;
154 155 156 157 158 159
	u8 chip_id;
	const struct iio_chan_spec *channels;
	int num_channels;
	const struct bmc150_scale_info scale_table[4];
};

160 161 162 163
static const struct {
	int val;
	int val2;
	u8 bw_bits;
164 165 166 167 168 169 170 171
} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
				     {31, 260000, 0x09},
				     {62, 500000, 0x0A},
				     {125, 0, 0x0B},
				     {250, 0, 0x0C},
				     {500, 0, 0x0D},
				     {1000, 0, 0x0E},
				     {2000, 0, 0x0F} };
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

static const struct {
	int bw_bits;
	int msec;
} bmc150_accel_sample_upd_time[] = { {0x08, 64},
				     {0x09, 32},
				     {0x0A, 16},
				     {0x0B, 8},
				     {0x0C, 4},
				     {0x0D, 2},
				     {0x0E, 1},
				     {0x0F, 1} };

static const struct {
	int sleep_dur;
187
	u8 reg_value;
188 189 190 191 192 193 194 195 196 197 198 199 200
} bmc150_accel_sleep_value_table[] = { {0, 0},
				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
				       {1000, BMC150_ACCEL_SLEEP_1_MS},
				       {2000, BMC150_ACCEL_SLEEP_2_MS},
				       {4000, BMC150_ACCEL_SLEEP_4_MS},
				       {6000, BMC150_ACCEL_SLEEP_6_MS},
				       {10000, BMC150_ACCEL_SLEEP_10_MS},
				       {25000, BMC150_ACCEL_SLEEP_25_MS},
				       {50000, BMC150_ACCEL_SLEEP_50_MS},
				       {100000, BMC150_ACCEL_SLEEP_100_MS},
				       {500000, BMC150_ACCEL_SLEEP_500_MS},
				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };

201
const struct regmap_config bmc150_regmap_conf = {
M
Markus Pargmann 已提交
202 203 204 205
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = 0x3f,
};
206
EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
M
Markus Pargmann 已提交
207

208 209 210 211
static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
				 enum bmc150_power_modes mode,
				 int dur_us)
{
212
	struct device *dev = regmap_get_device(data->regmap);
213 214 215 216 217 218 219 220 221 222 223 224 225
	int i;
	int ret;
	u8 lpw_bits;
	int dur_val = -1;

	if (dur_us > 0) {
		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
									 ++i) {
			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
									dur_us)
				dur_val =
				bmc150_accel_sleep_value_table[i].reg_value;
		}
226
	} else {
227
		dur_val = 0;
228
	}
229 230 231 232 233 234 235

	if (dur_val < 0)
		return -EINVAL;

	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);

236
	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
237

M
Markus Pargmann 已提交
238
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
239
	if (ret < 0) {
240
		dev_err(dev, "Error writing reg_pmu_lpw\n");
241 242 243 244 245 246 247 248 249 250 251 252 253 254
		return ret;
	}

	return 0;
}

static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
			       int val2)
{
	int i;
	int ret;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].val == val &&
255
		    bmc150_accel_samp_freq_table[i].val2 == val2) {
M
Markus Pargmann 已提交
256
			ret = regmap_write(data->regmap,
257 258 259 260 261 262 263 264 265 266 267 268 269 270
				BMC150_ACCEL_REG_PMU_BW,
				bmc150_accel_samp_freq_table[i].bw_bits);
			if (ret < 0)
				return ret;

			data->bw_bits =
				bmc150_accel_samp_freq_table[i].bw_bits;
			return 0;
		}
	}

	return -EINVAL;
}

271 272
static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
{
273
	struct device *dev = regmap_get_device(data->regmap);
M
Markus Pargmann 已提交
274
	int ret;
275

M
Markus Pargmann 已提交
276
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
277 278
					data->slope_thres);
	if (ret < 0) {
279
		dev_err(dev, "Error writing reg_int_6\n");
280 281 282
		return ret;
	}

M
Markus Pargmann 已提交
283 284
	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
285
	if (ret < 0) {
286
		dev_err(dev, "Error updating reg_int_5\n");
287 288 289
		return ret;
	}

290
	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
291 292 293 294

	return ret;
}

295 296 297 298 299 300 301 302 303
static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
					 bool state)
{
	if (state)
		return bmc150_accel_update_slope(t->data);

	return 0;
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
			       int *val2)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
			*val = bmc150_accel_samp_freq_table[i].val;
			*val2 = bmc150_accel_samp_freq_table[i].val2;
			return IIO_VAL_INT_PLUS_MICRO;
		}
	}

	return -EINVAL;
}

320
#ifdef CONFIG_PM
321 322 323 324 325 326 327 328 329 330 331 332 333 334
static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
			return bmc150_accel_sample_upd_time[i].msec;
	}

	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
}

static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
335
	struct device *dev = regmap_get_device(data->regmap);
336 337
	int ret;

338
	if (on) {
339
		ret = pm_runtime_resume_and_get(dev);
340
	} else {
341 342
		pm_runtime_mark_last_busy(dev);
		ret = pm_runtime_put_autosuspend(dev);
343
	}
344

345
	if (ret < 0) {
346
		dev_err(dev,
347
			"Failed: %s for %d\n", __func__, on);
348 349 350 351 352
		return ret;
	}

	return 0;
}
353 354 355 356 357 358
#else
static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
	return 0;
}
#endif
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
#ifdef CONFIG_ACPI
/*
 * Support for getting accelerometer information from BOSC0200 ACPI nodes.
 *
 * There are 2 variants of the BOSC0200 ACPI node. Some 2-in-1s with 360 degree
 * hinges declare 2 I2C ACPI-resources for 2 accelerometers, 1 in the display
 * and 1 in the base of the 2-in-1. On these 2-in-1s the ROMS ACPI object
 * contains the mount-matrix for the sensor in the display and ROMK contains
 * the mount-matrix for the sensor in the base. On devices using a single
 * sensor there is a ROTM ACPI object which contains the mount-matrix.
 *
 * Here is an incomplete list of devices known to use 1 of these setups:
 *
 * Yoga devices with 2 accelerometers using ROMS + ROMK for the mount-matrices:
 * Lenovo Thinkpad Yoga 11e 3th gen
 * Lenovo Thinkpad Yoga 11e 4th gen
 *
 * Tablets using a single accelerometer using ROTM for the mount-matrix:
 * Chuwi Hi8 Pro (CWI513)
 * Chuwi Vi8 Plus (CWI519)
 * Chuwi Hi13
 * Irbis TW90
 * Jumper EZpad mini 3
 * Onda V80 plus
 * Predia Basic Tablet
 */
386 387
static bool bmc150_apply_bosc0200_acpi_orientation(struct device *dev,
						   struct iio_mount_matrix *orientation)
388 389
{
	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
390
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
391
	struct acpi_device *adev = ACPI_COMPANION(dev);
392
	char *name, *alt_name, *label, *str;
393 394 395 396
	union acpi_object *obj, *elements;
	acpi_status status;
	int i, j, val[3];

397
	if (strcmp(dev_name(dev), "i2c-BOSC0200:base") == 0) {
398
		alt_name = "ROMK";
399 400
		label = "accel-base";
	} else {
401
		alt_name = "ROMS";
402 403
		label = "accel-display";
	}
404

405
	if (acpi_has_method(adev->handle, "ROTM")) {
406
		name = "ROTM";
407
	} else if (acpi_has_method(adev->handle, alt_name)) {
408
		name = alt_name;
409 410
		indio_dev->label = label;
	} else {
411
		return false;
412
	}
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

	status = acpi_evaluate_object(adev->handle, name, NULL, &buffer);
	if (ACPI_FAILURE(status)) {
		dev_warn(dev, "Failed to get ACPI mount matrix: %d\n", status);
		return false;
	}

	obj = buffer.pointer;
	if (obj->type != ACPI_TYPE_PACKAGE || obj->package.count != 3)
		goto unknown_format;

	elements = obj->package.elements;
	for (i = 0; i < 3; i++) {
		if (elements[i].type != ACPI_TYPE_STRING)
			goto unknown_format;

		str = elements[i].string.pointer;
		if (sscanf(str, "%d %d %d", &val[0], &val[1], &val[2]) != 3)
			goto unknown_format;

		for (j = 0; j < 3; j++) {
			switch (val[j]) {
			case -1: str = "-1"; break;
			case 0:  str = "0";  break;
			case 1:  str = "1";  break;
			default: goto unknown_format;
			}
			orientation->rotation[i * 3 + j] = str;
		}
	}

	kfree(buffer.pointer);
	return true;

unknown_format:
	dev_warn(dev, "Unknown ACPI mount matrix format, ignoring\n");
	kfree(buffer.pointer);
	return false;
}
452

453 454 455 456 457 458 459 460 461 462 463 464 465
static bool bmc150_apply_dual250e_acpi_orientation(struct device *dev,
						   struct iio_mount_matrix *orientation)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);

	if (strcmp(dev_name(dev), "i2c-DUAL250E:base") == 0)
		indio_dev->label = "accel-base";
	else
		indio_dev->label = "accel-display";

	return false; /* DUAL250E fwnodes have no mount matrix info */
}

466 467 468 469 470 471 472 473
static bool bmc150_apply_acpi_orientation(struct device *dev,
					  struct iio_mount_matrix *orientation)
{
	struct acpi_device *adev = ACPI_COMPANION(dev);

	if (adev && acpi_dev_hid_uid_match(adev, "BOSC0200", NULL))
		return bmc150_apply_bosc0200_acpi_orientation(dev, orientation);

474 475 476
	if (adev && acpi_dev_hid_uid_match(adev, "DUAL250E", NULL))
		return bmc150_apply_dual250e_acpi_orientation(dev, orientation);

477 478
	return false;
}
479 480 481 482 483 484 485 486
#else
static bool bmc150_apply_acpi_orientation(struct device *dev,
					  struct iio_mount_matrix *orientation)
{
	return false;
}
#endif

487 488 489 490 491
static const struct bmc150_accel_interrupt_info {
	u8 map_reg;
	u8 map_bitmask;
	u8 en_reg;
	u8 en_bitmask;
492
} bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
493 494 495 496 497 498 499 500 501 502 503 504 505 506
	{ /* data ready interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
	},
	{  /* motion interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
			BMC150_ACCEL_INT_EN_BIT_SLP_Z
	},
507 508 509 510 511 512
	{ /* fifo watermark interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
	},
513 514
};

515 516 517 518 519 520 521 522 523 524
static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
					  struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
		data->interrupts[i].info = &bmc150_accel_interrupts[i];
}

static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
525 526
				      bool state)
{
527
	struct device *dev = regmap_get_device(data->regmap);
528 529
	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
	const struct bmc150_accel_interrupt_info *info = intr->info;
530 531
	int ret;

532 533 534 535 536 537 538 539
	if (state) {
		if (atomic_inc_return(&intr->users) > 1)
			return 0;
	} else {
		if (atomic_dec_return(&intr->users) > 0)
			return 0;
	}

540
	/*
541 542 543 544 545 546 547
	 * We will expect the enable and disable to do operation in reverse
	 * order. This will happen here anyway, as our resume operation uses
	 * sync mode runtime pm calls. The suspend operation will be delayed
	 * by autosuspend delay.
	 * So the disable operation will still happen in reverse order of
	 * enable operation. When runtime pm is disabled the mode is always on,
	 * so sequence doesn't matter.
548 549 550 551 552 553
	 */
	ret = bmc150_accel_set_power_state(data, state);
	if (ret < 0)
		return ret;

	/* map the interrupt to the appropriate pins */
M
Markus Pargmann 已提交
554 555
	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
				 (state ? info->map_bitmask : 0));
556
	if (ret < 0) {
557
		dev_err(dev, "Error updating reg_int_map\n");
558 559 560 561
		goto out_fix_power_state;
	}

	/* enable/disable the interrupt */
M
Markus Pargmann 已提交
562 563
	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
				 (state ? info->en_bitmask : 0));
564
	if (ret < 0) {
565
		dev_err(dev, "Error updating reg_int_en\n");
566 567 568 569 570 571 572 573 574 575
		goto out_fix_power_state;
	}

	return 0;

out_fix_power_state:
	bmc150_accel_set_power_state(data, false);
	return ret;
}

576 577
static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
{
578
	struct device *dev = regmap_get_device(data->regmap);
579 580
	int ret, i;

581 582
	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
		if (data->chip_info->scale_table[i].scale == val) {
M
Markus Pargmann 已提交
583
			ret = regmap_write(data->regmap,
584 585
				     BMC150_ACCEL_REG_PMU_RANGE,
				     data->chip_info->scale_table[i].reg_range);
586
			if (ret < 0) {
587
				dev_err(dev, "Error writing pmu_range\n");
588 589 590
				return ret;
			}

591
			data->range = data->chip_info->scale_table[i].reg_range;
592 593 594 595 596 597 598 599 600
			return 0;
		}
	}

	return -EINVAL;
}

static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
{
601
	struct device *dev = regmap_get_device(data->regmap);
602
	int ret;
M
Markus Pargmann 已提交
603
	unsigned int value;
604 605 606

	mutex_lock(&data->mutex);

M
Markus Pargmann 已提交
607
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
608
	if (ret < 0) {
609
		dev_err(dev, "Error reading reg_temp\n");
610 611 612
		mutex_unlock(&data->mutex);
		return ret;
	}
M
Markus Pargmann 已提交
613
	*val = sign_extend32(value, 7);
614 615 616 617 618 619

	mutex_unlock(&data->mutex);

	return IIO_VAL_INT;
}

620 621
static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
				 struct iio_chan_spec const *chan,
622 623
				 int *val)
{
624
	struct device *dev = regmap_get_device(data->regmap);
625
	int ret;
626
	int axis = chan->scan_index;
627
	__le16 raw_val;
628 629 630 631 632 633 634 635

	mutex_lock(&data->mutex);
	ret = bmc150_accel_set_power_state(data, true);
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

M
Markus Pargmann 已提交
636
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
637
			       &raw_val, sizeof(raw_val));
638
	if (ret < 0) {
639
		dev_err(dev, "Error reading axis %d\n", axis);
640 641 642 643
		bmc150_accel_set_power_state(data, false);
		mutex_unlock(&data->mutex);
		return ret;
	}
644
	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
645
			     chan->scan_type.realbits - 1);
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	ret = bmc150_accel_set_power_state(data, false);
	mutex_unlock(&data->mutex);
	if (ret < 0)
		return ret;

	return IIO_VAL_INT;
}

static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
				 struct iio_chan_spec const *chan,
				 int *val, int *val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		switch (chan->type) {
		case IIO_TEMP:
			return bmc150_accel_get_temp(data, val);
		case IIO_ACCEL:
			if (iio_buffer_enabled(indio_dev))
				return -EBUSY;
			else
670
				return bmc150_accel_get_axis(data, chan, val);
671 672 673 674 675 676 677
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_OFFSET:
		if (chan->type == IIO_TEMP) {
			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
			return IIO_VAL_INT;
678
		} else {
679
			return -EINVAL;
680
		}
681 682 683 684 685 686 687 688 689
	case IIO_CHAN_INFO_SCALE:
		*val = 0;
		switch (chan->type) {
		case IIO_TEMP:
			*val2 = 500000;
			return IIO_VAL_INT_PLUS_MICRO;
		case IIO_ACCEL:
		{
			int i;
690 691
			const struct bmc150_scale_info *si;
			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
692

693 694 695 696
			for (i = 0; i < st_size; ++i) {
				si = &data->chip_info->scale_table[i];
				if (si->reg_range == data->range) {
					*val2 = si->scale;
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
					return IIO_VAL_INT_PLUS_MICRO;
				}
			}
			return -EINVAL;
		}
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_get_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		return -EINVAL;
	}
}

static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
				  struct iio_chan_spec const *chan,
				  int val, int val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		break;
	case IIO_CHAN_INFO_SCALE:
		if (val)
			return -EINVAL;

		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_scale(data, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int bmc150_accel_read_event(struct iio_dev *indio_dev,
				   const struct iio_chan_spec *chan,
				   enum iio_event_type type,
				   enum iio_event_direction dir,
				   enum iio_event_info info,
				   int *val, int *val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	*val2 = 0;
	switch (info) {
	case IIO_EV_INFO_VALUE:
		*val = data->slope_thres;
		break;
	case IIO_EV_INFO_PERIOD:
758
		*val = data->slope_dur;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
		break;
	default:
		return -EINVAL;
	}

	return IIO_VAL_INT;
}

static int bmc150_accel_write_event(struct iio_dev *indio_dev,
				    const struct iio_chan_spec *chan,
				    enum iio_event_type type,
				    enum iio_event_direction dir,
				    enum iio_event_info info,
				    int val, int val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (data->ev_enable_state)
		return -EBUSY;

	switch (info) {
	case IIO_EV_INFO_VALUE:
781
		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
782 783
		break;
	case IIO_EV_INFO_PERIOD:
784
		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
					  const struct iio_chan_spec *chan,
					  enum iio_event_type type,
					  enum iio_event_direction dir)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return data->ev_enable_state;
}

static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
					   const struct iio_chan_spec *chan,
					   enum iio_event_type type,
					   enum iio_event_direction dir,
					   int state)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

812
	if (state == data->ev_enable_state)
813 814 815 816
		return 0;

	mutex_lock(&data->mutex);

817 818
	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
					 state);
819 820 821 822 823 824 825 826 827 828 829 830
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

	data->ev_enable_state = state;
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
831
					 struct iio_trigger *trig)
832 833
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
834
	int i;
835

836 837 838 839
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].indio_trig == trig)
			return 0;
	}
840

841
	return -EINVAL;
842 843
}

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
					       struct device_attribute *attr,
					       char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int wm;

	mutex_lock(&data->mutex);
	wm = data->watermark;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", wm);
}

static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	bool state;

	mutex_lock(&data->mutex);
	state = data->fifo_mode;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", state);
}

874 875 876 877 878 879 880 881 882 883 884 885 886 887
static const struct iio_mount_matrix *
bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
				const struct iio_chan_spec *chan)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return &data->orientation;
}

static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
	{ }
};

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
static IIO_CONST_ATTR(hwfifo_watermark_max,
		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
		       bmc150_accel_get_fifo_state, NULL, 0);
static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
		       bmc150_accel_get_fifo_watermark, NULL, 0);

static const struct attribute *bmc150_accel_fifo_attributes[] = {
	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
	NULL,
};

static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (val > BMC150_ACCEL_FIFO_LENGTH)
		val = BMC150_ACCEL_FIFO_LENGTH;

	mutex_lock(&data->mutex);
	data->watermark = val;
	mutex_unlock(&data->mutex);

	return 0;
}

/*
 * We must read at least one full frame in one burst, otherwise the rest of the
 * frame data is discarded.
 */
M
Markus Pargmann 已提交
922
static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
923 924
				      char *buffer, int samples)
{
925
	struct device *dev = regmap_get_device(data->regmap);
926
	int sample_length = 3 * 2;
M
Markus Pargmann 已提交
927 928
	int ret;
	int total_length = samples * sample_length;
929

930 931
	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
			      buffer, total_length);
932
	if (ret)
933
		dev_err(dev,
934
			"Error transferring data from fifo: %d\n", ret);
935 936 937 938 939 940 941 942

	return ret;
}

static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
				     unsigned samples, bool irq)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
943
	struct device *dev = regmap_get_device(data->regmap);
944 945 946 947 948
	int ret, i;
	u8 count;
	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
	int64_t tstamp;
	uint64_t sample_period;
M
Markus Pargmann 已提交
949
	unsigned int val;
950

M
Markus Pargmann 已提交
951
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
952
	if (ret < 0) {
953
		dev_err(dev, "Error reading reg_fifo_status\n");
954 955 956
		return ret;
	}

M
Markus Pargmann 已提交
957
	count = val & 0x7F;
958 959 960 961 962 963 964 965 966 967 968 969 970 971

	if (!count)
		return 0;

	/*
	 * If we getting called from IRQ handler we know the stored timestamp is
	 * fairly accurate for the last stored sample. Otherwise, if we are
	 * called as a result of a read operation from userspace and hence
	 * before the watermark interrupt was triggered, take a timestamp
	 * now. We can fall anywhere in between two samples so the error in this
	 * case is at most one sample period.
	 */
	if (!irq) {
		data->old_timestamp = data->timestamp;
972
		data->timestamp = iio_get_time_ns(indio_dev);
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	}

	/*
	 * Approximate timestamps for each of the sample based on the sampling
	 * frequency, timestamp for last sample and number of samples.
	 *
	 * Note that we can't use the current bandwidth settings to compute the
	 * sample period because the sample rate varies with the device
	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
	 * small variation adds when we store a large number of samples and
	 * creates significant jitter between the last and first samples in
	 * different batches (e.g. 32ms vs 21ms).
	 *
	 * To avoid this issue we compute the actual sample period ourselves
	 * based on the timestamp delta between the last two flush operations.
	 */
	sample_period = (data->timestamp - data->old_timestamp);
	do_div(sample_period, count);
	tstamp = data->timestamp - (count - 1) * sample_period;

	if (samples && count > samples)
		count = samples;

M
Markus Pargmann 已提交
996
	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	if (ret)
		return ret;

	/*
	 * Ideally we want the IIO core to handle the demux when running in fifo
	 * mode but not when running in triggered buffer mode. Unfortunately
	 * this does not seem to be possible, so stick with driver demux for
	 * now.
	 */
	for (i = 0; i < count; i++) {
		int j, bit;

		j = 0;
		for_each_set_bit(bit, indio_dev->active_scan_mask,
				 indio_dev->masklength)
1012 1013
			memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
			       sizeof(data->scan.channels[0]));
1014

1015 1016
		iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
						   tstamp);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

		tstamp += sample_period;
	}

	return count;
}

static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	mutex_lock(&data->mutex);
	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
	mutex_unlock(&data->mutex);

	return ret;
}

1036
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
1037
		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

static struct attribute *bmc150_accel_attributes[] = {
	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group bmc150_accel_attrs_group = {
	.attrs = bmc150_accel_attributes,
};

static const struct iio_event_spec bmc150_accel_event = {
		.type = IIO_EV_TYPE_ROC,
1050
		.dir = IIO_EV_DIR_EITHER,
1051 1052 1053 1054 1055
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
				 BIT(IIO_EV_INFO_ENABLE) |
				 BIT(IIO_EV_INFO_PERIOD)
};

1056
#define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
1057 1058 1059 1060 1061 1062 1063 1064 1065
	.type = IIO_ACCEL,						\
	.modified = 1,							\
	.channel2 = IIO_MOD_##_axis,					\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
	.scan_index = AXIS_##_axis,					\
	.scan_type = {							\
		.sign = 's',						\
1066
		.realbits = (bits),					\
1067
		.storagebits = 16,					\
1068
		.shift = 16 - (bits),					\
1069
		.endianness = IIO_LE,					\
1070
	},								\
1071
	.ext_info = bmc150_accel_ext_info,				\
1072 1073 1074 1075
	.event_spec = &bmc150_accel_event,				\
	.num_event_specs = 1						\
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
#define BMC150_ACCEL_CHANNELS(bits) {					\
	{								\
		.type = IIO_TEMP,					\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
				      BIT(IIO_CHAN_INFO_SCALE) |	\
				      BIT(IIO_CHAN_INFO_OFFSET),	\
		.scan_index = -1,					\
	},								\
	BMC150_ACCEL_CHANNEL(X, bits),					\
	BMC150_ACCEL_CHANNEL(Y, bits),					\
	BMC150_ACCEL_CHANNEL(Z, bits),					\
	IIO_CHAN_SOFT_TIMESTAMP(3),					\
}

static const struct iio_chan_spec bma222e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(8);
static const struct iio_chan_spec bma250e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(10);
static const struct iio_chan_spec bmc150_accel_channels[] =
	BMC150_ACCEL_CHANNELS(12);
static const struct iio_chan_spec bma280_accel_channels[] =
	BMC150_ACCEL_CHANNELS(14);

static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
	[bmc150] = {
1101
		.name = "BMC150A",
1102 1103 1104 1105 1106 1107 1108 1109 1110
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bmi055] = {
1111
		.name = "BMI055A",
1112 1113 1114 1115 1116 1117 1118 1119 1120
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma255] = {
1121
		.name = "BMA0255",
1122 1123 1124 1125 1126 1127 1128 1129 1130
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma250e] = {
1131
		.name = "BMA250E",
1132 1133 1134 1135 1136 1137 1138 1139
		.chip_id = 0xF9,
		.channels = bma250e_accel_channels,
		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
	},
1140 1141 1142 1143 1144 1145 1146 1147
	[bma222] = {
		.name = "BMA222",
		.chip_id = 0x03,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
		/*
		 * The datasheet page 17 says:
		 * 15.6, 31.3, 62.5 and 125 mg per LSB.
1148
		 * IIO unit is m/s^2 so multiply by g = 9.80665 m/s^2.
1149
		 */
1150 1151 1152 1153
		.scale_table = { {152984, BMC150_ACCEL_DEF_RANGE_2G},
				 {306948, BMC150_ACCEL_DEF_RANGE_4G},
				 {612916, BMC150_ACCEL_DEF_RANGE_8G},
				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1154
	},
1155
	[bma222e] = {
1156
		.name = "BMA222E",
1157 1158 1159 1160 1161 1162 1163 1164 1165
		.chip_id = 0xF8,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma280] = {
1166
		.name = "BMA0280",
1167 1168 1169 1170 1171 1172 1173
		.chip_id = 0xFB,
		.channels = bma280_accel_channels,
		.num_channels = ARRAY_SIZE(bma280_accel_channels),
		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	},
};

static const struct iio_info bmc150_accel_info = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
};

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
static const struct iio_info bmc150_accel_info_fifo = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
	.validate_trigger	= bmc150_accel_validate_trigger,
	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
};

1200 1201 1202 1203
static const unsigned long bmc150_accel_scan_masks[] = {
					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
					0};

1204 1205 1206 1207 1208
static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1209
	int ret;
1210 1211

	mutex_lock(&data->mutex);
1212 1213
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
			       data->buffer, AXIS_MAX * 2);
1214
	mutex_unlock(&data->mutex);
1215 1216
	if (ret < 0)
		goto err_read;
1217 1218

	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1219
					   pf->timestamp);
1220 1221 1222 1223 1224 1225
err_read:
	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

1226
static void bmc150_accel_trig_reen(struct iio_trigger *trig)
1227
{
1228 1229
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1230
	struct device *dev = regmap_get_device(data->regmap);
1231 1232 1233
	int ret;

	/* new data interrupts don't need ack */
1234
	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1235
		return;
1236 1237 1238

	mutex_lock(&data->mutex);
	/* clear any latched interrupt */
M
Markus Pargmann 已提交
1239 1240 1241
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1242
	mutex_unlock(&data->mutex);
1243
	if (ret < 0)
1244
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1245 1246
}

1247
static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1248
					  bool state)
1249
{
1250 1251
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1252 1253 1254 1255
	int ret;

	mutex_lock(&data->mutex);

1256 1257 1258 1259 1260 1261 1262 1263
	if (t->enabled == state) {
		mutex_unlock(&data->mutex);
		return 0;
	}

	if (t->setup) {
		ret = t->setup(t, state);
		if (ret < 0) {
1264
			mutex_unlock(&data->mutex);
1265
			return ret;
1266 1267 1268
		}
	}

1269
	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1270 1271 1272 1273
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}
1274 1275

	t->enabled = state;
1276 1277 1278 1279 1280 1281 1282

	mutex_unlock(&data->mutex);

	return ret;
}

static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1283
	.set_trigger_state = bmc150_accel_trigger_set_state,
1284
	.reenable = bmc150_accel_trig_reen,
1285 1286
};

1287
static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1288 1289
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1290
	struct device *dev = regmap_get_device(data->regmap);
1291
	int dir;
1292
	int ret;
M
Markus Pargmann 已提交
1293
	unsigned int val;
1294

M
Markus Pargmann 已提交
1295
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1296
	if (ret < 0) {
1297
		dev_err(dev, "Error reading reg_int_status_2\n");
1298
		return ret;
1299 1300
	}

M
Markus Pargmann 已提交
1301
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1302 1303 1304 1305
		dir = IIO_EV_DIR_FALLING;
	else
		dir = IIO_EV_DIR_RISING;

M
Markus Pargmann 已提交
1306
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1307 1308 1309 1310 1311 1312 1313 1314
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_X,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1315
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1316 1317 1318 1319 1320 1321 1322 1323
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Y,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1324
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1325 1326 1327 1328 1329 1330 1331 1332
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Z,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

1333 1334 1335 1336 1337 1338 1339
	return ret;
}

static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1340
	struct device *dev = regmap_get_device(data->regmap);
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	bool ack = false;
	int ret;

	mutex_lock(&data->mutex);

	if (data->fifo_mode) {
		ret = __bmc150_accel_fifo_flush(indio_dev,
						BMC150_ACCEL_FIFO_LENGTH, true);
		if (ret > 0)
			ack = true;
	}

	if (data->ev_enable_state) {
		ret = bmc150_accel_handle_roc_event(indio_dev);
		if (ret > 0)
			ack = true;
	}

	if (ack) {
M
Markus Pargmann 已提交
1360 1361 1362
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_INT |
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1363
		if (ret)
1364
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1365

1366 1367 1368 1369
		ret = IRQ_HANDLED;
	} else {
		ret = IRQ_NONE;
	}
1370

1371 1372 1373
	mutex_unlock(&data->mutex);

	return ret;
1374 1375
}

1376
static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1377 1378 1379
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1380
	bool ack = false;
1381
	int i;
1382

1383
	data->old_timestamp = data->timestamp;
1384
	data->timestamp = iio_get_time_ns(indio_dev);
1385

1386 1387 1388
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].enabled) {
			iio_trigger_poll(data->triggers[i].indio_trig);
1389
			ack = true;
1390 1391 1392
			break;
		}
	}
1393

1394
	if (data->ev_enable_state || data->fifo_mode)
1395
		return IRQ_WAKE_THREAD;
1396 1397

	if (ack)
1398
		return IRQ_HANDLED;
1399 1400

	return IRQ_NONE;
1401 1402
}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
static const struct {
	int intr;
	const char *name;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
	{
		.intr = 0,
		.name = "%s-dev%d",
	},
	{
		.intr = 1,
		.name = "%s-any-motion-dev%d",
		.setup = bmc150_accel_any_motion_setup,
	},
};

static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
					     int from)
{
	int i;

1424
	for (i = from; i >= 0; i--) {
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
		if (data->triggers[i].indio_trig) {
			iio_trigger_unregister(data->triggers[i].indio_trig);
			data->triggers[i].indio_trig = NULL;
		}
	}
}

static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
				       struct bmc150_accel_data *data)
{
1435
	struct device *dev = regmap_get_device(data->regmap);
1436 1437 1438 1439 1440
	int i, ret;

	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		struct bmc150_accel_trigger *t = &data->triggers[i];

1441
		t->indio_trig = devm_iio_trigger_alloc(dev,
1442
						       bmc150_accel_triggers[i].name,
1443
						       indio_dev->name,
1444
						       iio_device_id(indio_dev));
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
		if (!t->indio_trig) {
			ret = -ENOMEM;
			break;
		}

		t->indio_trig->ops = &bmc150_accel_trigger_ops;
		t->intr = bmc150_accel_triggers[i].intr;
		t->data = data;
		t->setup = bmc150_accel_triggers[i].setup;
		iio_trigger_set_drvdata(t->indio_trig, t);

		ret = iio_trigger_register(t->indio_trig);
		if (ret)
			break;
	}

	if (ret)
		bmc150_accel_unregister_triggers(data, i - 1);

	return ret;
}

1467 1468 1469 1470 1471 1472
#define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
#define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
#define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00

static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
{
1473
	struct device *dev = regmap_get_device(data->regmap);
1474 1475 1476
	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
	int ret;

M
Markus Pargmann 已提交
1477
	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1478
	if (ret < 0) {
1479
		dev_err(dev, "Error writing reg_fifo_config1\n");
1480 1481 1482 1483 1484 1485
		return ret;
	}

	if (!data->fifo_mode)
		return 0;

M
Markus Pargmann 已提交
1486 1487
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
			   data->watermark);
1488
	if (ret < 0)
1489
		dev_err(dev, "Error writing reg_fifo_config0\n");
1490 1491 1492 1493

	return ret;
}

1494 1495 1496 1497 1498 1499 1500
static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, true);
}

1501 1502 1503 1504 1505 1506
static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret = 0;

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1507
		return 0;
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

	mutex_lock(&data->mutex);

	if (!data->watermark)
		goto out;

	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					 true);
	if (ret)
		goto out;

	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;

	ret = bmc150_accel_fifo_set_mode(data);
	if (ret) {
		data->fifo_mode = 0;
		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					   false);
	}

out:
	mutex_unlock(&data->mutex);

	return ret;
}

static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1539
		return 0;
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

	mutex_lock(&data->mutex);

	if (!data->fifo_mode)
		goto out;

	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
	data->fifo_mode = 0;
	bmc150_accel_fifo_set_mode(data);

out:
	mutex_unlock(&data->mutex);

	return 0;
}

1557 1558 1559 1560 1561 1562 1563
static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, false);
}

1564
static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1565
	.preenable = bmc150_accel_buffer_preenable,
1566 1567
	.postenable = bmc150_accel_buffer_postenable,
	.predisable = bmc150_accel_buffer_predisable,
1568
	.postdisable = bmc150_accel_buffer_postdisable,
1569 1570
};

1571 1572
static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
{
1573
	struct device *dev = regmap_get_device(data->regmap);
1574
	int ret, i;
M
Markus Pargmann 已提交
1575
	unsigned int val;
1576

1577 1578 1579 1580 1581 1582 1583 1584
	/*
	 * Reset chip to get it in a known good state. A delay of 1.8ms after
	 * reset is required according to the data sheets of supported chips.
	 */
	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
		     BMC150_ACCEL_RESET_VAL);
	usleep_range(1800, 2500);

M
Markus Pargmann 已提交
1585
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1586
	if (ret < 0) {
1587
		dev_err(dev, "Error: Reading chip id\n");
1588 1589 1590
		return ret;
	}

1591
	dev_dbg(dev, "Chip Id %x\n", val);
1592
	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
M
Markus Pargmann 已提交
1593
		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1594 1595 1596 1597 1598 1599
			data->chip_info = &bmc150_accel_chip_info_tbl[i];
			break;
		}
	}

	if (!data->chip_info) {
1600
		dev_err(dev, "Invalid chip %x\n", val);
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
		return -ENODEV;
	}

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
	if (ret < 0)
		return ret;

	/* Set Bandwidth */
	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
	if (ret < 0)
		return ret;

	/* Set Default Range */
M
Markus Pargmann 已提交
1614 1615
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
			   BMC150_ACCEL_DEF_RANGE_4G);
1616
	if (ret < 0) {
1617
		dev_err(dev, "Error writing reg_pmu_range\n");
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
		return ret;
	}

	data->range = BMC150_ACCEL_DEF_RANGE_4G;

	/* Set default slope duration and thresholds */
	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
	ret = bmc150_accel_update_slope(data);
	if (ret < 0)
		return ret;

	/* Set default as latched interrupts */
M
Markus Pargmann 已提交
1631 1632 1633
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1634
	if (ret < 0) {
1635
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1636 1637 1638 1639 1640 1641
		return ret;
	}

	return 0;
}

1642 1643
int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
			    const char *name, bool block_supported)
1644
{
1645
	const struct attribute **fifo_attrs;
1646 1647 1648 1649
	struct bmc150_accel_data *data;
	struct iio_dev *indio_dev;
	int ret;

1650
	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1651 1652 1653 1654
	if (!indio_dev)
		return -ENOMEM;

	data = iio_priv(indio_dev);
1655
	dev_set_drvdata(dev, indio_dev);
1656

1657
	data->regmap = regmap;
1658

1659
	if (!bmc150_apply_acpi_orientation(dev, &data->orientation)) {
1660
		ret = iio_read_mount_matrix(dev, &data->orientation);
1661 1662 1663 1664
		if (ret)
			return ret;
	}

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	/*
	 * VDD   is the analog and digital domain voltage supply
	 * VDDIO is the digital I/O voltage supply
	 */
	data->regulators[0].supply = "vdd";
	data->regulators[1].supply = "vddio";
	ret = devm_regulator_bulk_get(dev,
				      ARRAY_SIZE(data->regulators),
				      data->regulators);
	if (ret)
		return dev_err_probe(dev, ret, "failed to get regulators\n");

	ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
				    data->regulators);
	if (ret) {
		dev_err(dev, "failed to enable regulators: %d\n", ret);
		return ret;
	}
	/*
	 * 2ms or 3ms power-on time according to datasheets, let's better
	 * be safe than sorry and set this delay to 5ms.
	 */
	msleep(5);
1688

1689 1690
	ret = bmc150_accel_chip_init(data);
	if (ret < 0)
1691
		goto err_disable_regulators;
1692 1693 1694

	mutex_init(&data->mutex);

1695 1696
	indio_dev->channels = data->chip_info->channels;
	indio_dev->num_channels = data->chip_info->num_channels;
1697
	indio_dev->name = name ? name : data->chip_info->name;
1698
	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1699 1700 1701
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &bmc150_accel_info;

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	if (block_supported) {
		indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
		indio_dev->info = &bmc150_accel_info_fifo;
		fifo_attrs = bmc150_accel_fifo_attributes;
	} else {
		fifo_attrs = NULL;
	}

	ret = iio_triggered_buffer_setup_ext(indio_dev,
					     &iio_pollfunc_store_time,
					     bmc150_accel_trigger_handler,
					     &bmc150_accel_buffer_ops,
					     fifo_attrs);
1715
	if (ret < 0) {
1716
		dev_err(dev, "Failed: iio triggered buffer setup\n");
1717
		goto err_disable_regulators;
1718 1719
	}

1720 1721
	if (irq > 0) {
		ret = devm_request_threaded_irq(dev, irq,
1722 1723
						bmc150_accel_irq_handler,
						bmc150_accel_irq_thread_handler,
1724 1725 1726 1727
						IRQF_TRIGGER_RISING,
						BMC150_ACCEL_IRQ_NAME,
						indio_dev);
		if (ret)
1728
			goto err_buffer_cleanup;
1729

1730 1731 1732 1733 1734 1735
		/*
		 * Set latched mode interrupt. While certain interrupts are
		 * non-latched regardless of this settings (e.g. new data) we
		 * want to use latch mode when we can to prevent interrupt
		 * flooding.
		 */
M
Markus Pargmann 已提交
1736 1737
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1738
		if (ret < 0) {
1739
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1740
			goto err_buffer_cleanup;
1741 1742
		}

1743 1744
		bmc150_accel_interrupts_setup(indio_dev, data);

1745
		ret = bmc150_accel_triggers_setup(indio_dev, data);
1746
		if (ret)
1747
			goto err_buffer_cleanup;
1748 1749
	}

1750
	ret = pm_runtime_set_active(dev);
1751
	if (ret)
1752
		goto err_trigger_unregister;
1753

1754 1755 1756
	pm_runtime_enable(dev);
	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
	pm_runtime_use_autosuspend(dev);
1757

1758 1759 1760 1761 1762 1763
	ret = iio_device_register(indio_dev);
	if (ret < 0) {
		dev_err(dev, "Unable to register iio device\n");
		goto err_trigger_unregister;
	}

1764 1765 1766
	return 0;

err_trigger_unregister:
1767
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1768 1769
err_buffer_cleanup:
	iio_triggered_buffer_cleanup(indio_dev);
1770 1771 1772
err_disable_regulators:
	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
			       data->regulators);
1773 1774 1775

	return ret;
}
1776
EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1777

1778
int bmc150_accel_core_remove(struct device *dev)
1779
{
1780
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1781 1782
	struct bmc150_accel_data *data = iio_priv(indio_dev);

1783 1784
	iio_device_unregister(indio_dev);

1785 1786
	pm_runtime_disable(dev);
	pm_runtime_set_suspended(dev);
1787

1788
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1789

1790 1791
	iio_triggered_buffer_cleanup(indio_dev);

1792 1793 1794 1795
	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
	mutex_unlock(&data->mutex);

1796 1797 1798
	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
			       data->regulators);

1799 1800
	return 0;
}
1801
EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1802 1803 1804 1805

#ifdef CONFIG_PM_SLEEP
static int bmc150_accel_suspend(struct device *dev)
{
1806
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_resume(struct device *dev)
{
1818
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1819 1820 1821
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
1822
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1823
	bmc150_accel_fifo_set_mode(data);
1824 1825
	mutex_unlock(&data->mutex);

1826 1827 1828
	if (data->resume_callback)
		data->resume_callback(dev);

1829 1830 1831 1832
	return 0;
}
#endif

1833
#ifdef CONFIG_PM
1834 1835
static int bmc150_accel_runtime_suspend(struct device *dev)
{
1836
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1837
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1838
	int ret;
1839

1840 1841 1842
	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	if (ret < 0)
		return -EAGAIN;
1843

1844
	return 0;
1845 1846 1847 1848
}

static int bmc150_accel_runtime_resume(struct device *dev)
{
1849
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1850 1851 1852 1853 1854
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;
	int sleep_val;

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1855 1856 1857
	if (ret < 0)
		return ret;
	ret = bmc150_accel_fifo_set_mode(data);
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	if (ret < 0)
		return ret;

	sleep_val = bmc150_accel_get_startup_times(data);
	if (sleep_val < 20)
		usleep_range(sleep_val * 1000, 20000);
	else
		msleep_interruptible(sleep_val);

	return 0;
}
#endif

1871
const struct dev_pm_ops bmc150_accel_pm_ops = {
1872 1873 1874 1875
	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
			   bmc150_accel_runtime_resume, NULL)
};
1876
EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1877 1878 1879 1880

MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMC150 accelerometer driver");