bmc150-accel-core.c 47.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3 4 5 6 7
 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
 *  - BMC150
 *  - BMI055
 *  - BMA255
 *  - BMA250E
8
 *  - BMA222
9 10 11
 *  - BMA222E
 *  - BMA280
 *
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 * Copyright (c) 2014, Intel Corporation.
 */

#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
M
Markus Pargmann 已提交
30
#include <linux/regmap.h>
31
#include <linux/regulator/consumer.h>
32

33 34
#include "bmc150-accel.h"

35 36 37 38 39 40 41
#define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
#define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"

#define BMC150_ACCEL_REG_CHIP_ID		0x00

#define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
#define BMC150_ACCEL_ANY_MOTION_MASK		0x07
42 43 44
#define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
#define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
#define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)

#define BMC150_ACCEL_REG_PMU_LPW		0x11
#define BMC150_ACCEL_PMU_MODE_MASK		0xE0
#define BMC150_ACCEL_PMU_MODE_SHIFT		5
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1

#define BMC150_ACCEL_REG_PMU_RANGE		0x0F

#define BMC150_ACCEL_DEF_RANGE_2G		0x03
#define BMC150_ACCEL_DEF_RANGE_4G		0x05
#define BMC150_ACCEL_DEF_RANGE_8G		0x08
#define BMC150_ACCEL_DEF_RANGE_16G		0x0C

/* Default BW: 125Hz */
#define BMC150_ACCEL_REG_PMU_BW		0x10
#define BMC150_ACCEL_DEF_BW			125

64 65 66
#define BMC150_ACCEL_REG_RESET			0x14
#define BMC150_ACCEL_RESET_VAL			0xB6

67 68 69 70
#define BMC150_ACCEL_REG_INT_MAP_0		0x19
#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)

#define BMC150_ACCEL_REG_INT_MAP_1		0x1A
71 72 73
#define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
#define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
#define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
74 75 76 77 78 79 80 81 82 83 84 85

#define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
#define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
#define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00

#define BMC150_ACCEL_REG_INT_EN_0		0x16
#define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)

#define BMC150_ACCEL_REG_INT_EN_1		0x17
86 87 88
#define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
#define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
89 90 91 92 93 94 95 96 97 98 99

#define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)

#define BMC150_ACCEL_REG_INT_5			0x27
#define BMC150_ACCEL_SLOPE_DUR_MASK		0x03

#define BMC150_ACCEL_REG_INT_6			0x28
#define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF

/* Slope duration in terms of number of samples */
100
#define BMC150_ACCEL_DEF_SLOPE_DURATION		1
101
/* in terms of multiples of g's/LSB, based on range */
102
#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

#define BMC150_ACCEL_REG_XOUT_L		0x02

#define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100

/* Sleep Duration values */
#define BMC150_ACCEL_SLEEP_500_MICRO		0x05
#define BMC150_ACCEL_SLEEP_1_MS		0x06
#define BMC150_ACCEL_SLEEP_2_MS		0x07
#define BMC150_ACCEL_SLEEP_4_MS		0x08
#define BMC150_ACCEL_SLEEP_6_MS		0x09
#define BMC150_ACCEL_SLEEP_10_MS		0x0A
#define BMC150_ACCEL_SLEEP_25_MS		0x0B
#define BMC150_ACCEL_SLEEP_50_MS		0x0C
#define BMC150_ACCEL_SLEEP_100_MS		0x0D
#define BMC150_ACCEL_SLEEP_500_MS		0x0E
#define BMC150_ACCEL_SLEEP_1_SEC		0x0F

#define BMC150_ACCEL_REG_TEMP			0x08
122
#define BMC150_ACCEL_TEMP_CENTER_VAL		23
123 124 125 126

#define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
#define BMC150_AUTO_SUSPEND_DELAY_MS		2000

127 128 129 130 131 132
#define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
#define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
#define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
#define BMC150_ACCEL_REG_FIFO_DATA		0x3F
#define BMC150_ACCEL_FIFO_LENGTH		32

133 134 135 136
enum bmc150_accel_axis {
	AXIS_X,
	AXIS_Y,
	AXIS_Z,
137
	AXIS_MAX,
138 139 140 141 142 143 144 145 146
};

enum bmc150_power_modes {
	BMC150_ACCEL_SLEEP_MODE_NORMAL,
	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
	BMC150_ACCEL_SLEEP_MODE_LPM,
	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
};

147 148 149 150 151 152
struct bmc150_scale_info {
	int scale;
	u8 reg_range;
};

struct bmc150_accel_chip_info {
153
	const char *name;
154 155 156 157 158 159
	u8 chip_id;
	const struct iio_chan_spec *channels;
	int num_channels;
	const struct bmc150_scale_info scale_table[4];
};

160 161 162 163
static const struct {
	int val;
	int val2;
	u8 bw_bits;
164 165 166 167 168 169 170 171
} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
				     {31, 260000, 0x09},
				     {62, 500000, 0x0A},
				     {125, 0, 0x0B},
				     {250, 0, 0x0C},
				     {500, 0, 0x0D},
				     {1000, 0, 0x0E},
				     {2000, 0, 0x0F} };
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

static const struct {
	int bw_bits;
	int msec;
} bmc150_accel_sample_upd_time[] = { {0x08, 64},
				     {0x09, 32},
				     {0x0A, 16},
				     {0x0B, 8},
				     {0x0C, 4},
				     {0x0D, 2},
				     {0x0E, 1},
				     {0x0F, 1} };

static const struct {
	int sleep_dur;
187
	u8 reg_value;
188 189 190 191 192 193 194 195 196 197 198 199 200
} bmc150_accel_sleep_value_table[] = { {0, 0},
				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
				       {1000, BMC150_ACCEL_SLEEP_1_MS},
				       {2000, BMC150_ACCEL_SLEEP_2_MS},
				       {4000, BMC150_ACCEL_SLEEP_4_MS},
				       {6000, BMC150_ACCEL_SLEEP_6_MS},
				       {10000, BMC150_ACCEL_SLEEP_10_MS},
				       {25000, BMC150_ACCEL_SLEEP_25_MS},
				       {50000, BMC150_ACCEL_SLEEP_50_MS},
				       {100000, BMC150_ACCEL_SLEEP_100_MS},
				       {500000, BMC150_ACCEL_SLEEP_500_MS},
				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };

201
const struct regmap_config bmc150_regmap_conf = {
M
Markus Pargmann 已提交
202 203 204 205
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = 0x3f,
};
206
EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
M
Markus Pargmann 已提交
207

208 209 210 211
static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
				 enum bmc150_power_modes mode,
				 int dur_us)
{
212
	struct device *dev = regmap_get_device(data->regmap);
213 214 215 216 217 218 219 220 221 222 223 224 225
	int i;
	int ret;
	u8 lpw_bits;
	int dur_val = -1;

	if (dur_us > 0) {
		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
									 ++i) {
			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
									dur_us)
				dur_val =
				bmc150_accel_sleep_value_table[i].reg_value;
		}
226
	} else {
227
		dur_val = 0;
228
	}
229 230 231 232 233 234 235

	if (dur_val < 0)
		return -EINVAL;

	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);

236
	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
237

M
Markus Pargmann 已提交
238
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
239
	if (ret < 0) {
240
		dev_err(dev, "Error writing reg_pmu_lpw\n");
241 242 243 244 245 246 247 248 249 250 251 252 253 254
		return ret;
	}

	return 0;
}

static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
			       int val2)
{
	int i;
	int ret;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].val == val &&
255
		    bmc150_accel_samp_freq_table[i].val2 == val2) {
M
Markus Pargmann 已提交
256
			ret = regmap_write(data->regmap,
257 258 259 260 261 262 263 264 265 266 267 268 269 270
				BMC150_ACCEL_REG_PMU_BW,
				bmc150_accel_samp_freq_table[i].bw_bits);
			if (ret < 0)
				return ret;

			data->bw_bits =
				bmc150_accel_samp_freq_table[i].bw_bits;
			return 0;
		}
	}

	return -EINVAL;
}

271 272
static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
{
273
	struct device *dev = regmap_get_device(data->regmap);
M
Markus Pargmann 已提交
274
	int ret;
275

M
Markus Pargmann 已提交
276
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
277 278
					data->slope_thres);
	if (ret < 0) {
279
		dev_err(dev, "Error writing reg_int_6\n");
280 281 282
		return ret;
	}

M
Markus Pargmann 已提交
283 284
	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
285
	if (ret < 0) {
286
		dev_err(dev, "Error updating reg_int_5\n");
287 288 289
		return ret;
	}

290
	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
291 292 293 294

	return ret;
}

295 296 297 298 299 300 301 302 303
static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
					 bool state)
{
	if (state)
		return bmc150_accel_update_slope(t->data);

	return 0;
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
			       int *val2)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
			*val = bmc150_accel_samp_freq_table[i].val;
			*val2 = bmc150_accel_samp_freq_table[i].val2;
			return IIO_VAL_INT_PLUS_MICRO;
		}
	}

	return -EINVAL;
}

320
#ifdef CONFIG_PM
321 322 323 324 325 326 327 328 329 330 331 332 333 334
static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
			return bmc150_accel_sample_upd_time[i].msec;
	}

	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
}

static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
335
	struct device *dev = regmap_get_device(data->regmap);
336 337
	int ret;

338
	if (on) {
339
		ret = pm_runtime_resume_and_get(dev);
340
	} else {
341 342
		pm_runtime_mark_last_busy(dev);
		ret = pm_runtime_put_autosuspend(dev);
343
	}
344

345
	if (ret < 0) {
346
		dev_err(dev,
347
			"Failed: %s for %d\n", __func__, on);
348 349 350 351 352
		return ret;
	}

	return 0;
}
353 354 355 356 357 358
#else
static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
	return 0;
}
#endif
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
#ifdef CONFIG_ACPI
/*
 * Support for getting accelerometer information from BOSC0200 ACPI nodes.
 *
 * There are 2 variants of the BOSC0200 ACPI node. Some 2-in-1s with 360 degree
 * hinges declare 2 I2C ACPI-resources for 2 accelerometers, 1 in the display
 * and 1 in the base of the 2-in-1. On these 2-in-1s the ROMS ACPI object
 * contains the mount-matrix for the sensor in the display and ROMK contains
 * the mount-matrix for the sensor in the base. On devices using a single
 * sensor there is a ROTM ACPI object which contains the mount-matrix.
 *
 * Here is an incomplete list of devices known to use 1 of these setups:
 *
 * Yoga devices with 2 accelerometers using ROMS + ROMK for the mount-matrices:
 * Lenovo Thinkpad Yoga 11e 3th gen
 * Lenovo Thinkpad Yoga 11e 4th gen
 *
 * Tablets using a single accelerometer using ROTM for the mount-matrix:
 * Chuwi Hi8 Pro (CWI513)
 * Chuwi Vi8 Plus (CWI519)
 * Chuwi Hi13
 * Irbis TW90
 * Jumper EZpad mini 3
 * Onda V80 plus
 * Predia Basic Tablet
 */
static bool bmc150_apply_acpi_orientation(struct device *dev,
					  struct iio_mount_matrix *orientation)
{
	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
390
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
391
	struct acpi_device *adev = ACPI_COMPANION(dev);
392
	char *name, *alt_name, *label, *str;
393 394 395 396 397 398 399
	union acpi_object *obj, *elements;
	acpi_status status;
	int i, j, val[3];

	if (!adev || !acpi_dev_hid_uid_match(adev, "BOSC0200", NULL))
		return false;

400
	if (strcmp(dev_name(dev), "i2c-BOSC0200:base") == 0) {
401
		alt_name = "ROMK";
402 403
		label = "accel-base";
	} else {
404
		alt_name = "ROMS";
405 406
		label = "accel-display";
	}
407

408
	if (acpi_has_method(adev->handle, "ROTM")) {
409
		name = "ROTM";
410
	} else if (acpi_has_method(adev->handle, alt_name)) {
411
		name = alt_name;
412 413
		indio_dev->label = label;
	} else {
414
		return false;
415
	}
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

	status = acpi_evaluate_object(adev->handle, name, NULL, &buffer);
	if (ACPI_FAILURE(status)) {
		dev_warn(dev, "Failed to get ACPI mount matrix: %d\n", status);
		return false;
	}

	obj = buffer.pointer;
	if (obj->type != ACPI_TYPE_PACKAGE || obj->package.count != 3)
		goto unknown_format;

	elements = obj->package.elements;
	for (i = 0; i < 3; i++) {
		if (elements[i].type != ACPI_TYPE_STRING)
			goto unknown_format;

		str = elements[i].string.pointer;
		if (sscanf(str, "%d %d %d", &val[0], &val[1], &val[2]) != 3)
			goto unknown_format;

		for (j = 0; j < 3; j++) {
			switch (val[j]) {
			case -1: str = "-1"; break;
			case 0:  str = "0";  break;
			case 1:  str = "1";  break;
			default: goto unknown_format;
			}
			orientation->rotation[i * 3 + j] = str;
		}
	}

	kfree(buffer.pointer);
	return true;

unknown_format:
	dev_warn(dev, "Unknown ACPI mount matrix format, ignoring\n");
	kfree(buffer.pointer);
	return false;
}
#else
static bool bmc150_apply_acpi_orientation(struct device *dev,
					  struct iio_mount_matrix *orientation)
{
	return false;
}
#endif

463 464 465 466 467
static const struct bmc150_accel_interrupt_info {
	u8 map_reg;
	u8 map_bitmask;
	u8 en_reg;
	u8 en_bitmask;
468
} bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
469 470 471 472 473 474 475 476 477 478 479 480 481 482
	{ /* data ready interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
	},
	{  /* motion interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
			BMC150_ACCEL_INT_EN_BIT_SLP_Z
	},
483 484 485 486 487 488
	{ /* fifo watermark interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
	},
489 490
};

491 492 493 494 495 496 497 498 499 500
static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
					  struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
		data->interrupts[i].info = &bmc150_accel_interrupts[i];
}

static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
501 502
				      bool state)
{
503
	struct device *dev = regmap_get_device(data->regmap);
504 505
	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
	const struct bmc150_accel_interrupt_info *info = intr->info;
506 507
	int ret;

508 509 510 511 512 513 514 515
	if (state) {
		if (atomic_inc_return(&intr->users) > 1)
			return 0;
	} else {
		if (atomic_dec_return(&intr->users) > 0)
			return 0;
	}

516
	/*
517 518 519 520 521 522 523
	 * We will expect the enable and disable to do operation in reverse
	 * order. This will happen here anyway, as our resume operation uses
	 * sync mode runtime pm calls. The suspend operation will be delayed
	 * by autosuspend delay.
	 * So the disable operation will still happen in reverse order of
	 * enable operation. When runtime pm is disabled the mode is always on,
	 * so sequence doesn't matter.
524 525 526 527 528 529
	 */
	ret = bmc150_accel_set_power_state(data, state);
	if (ret < 0)
		return ret;

	/* map the interrupt to the appropriate pins */
M
Markus Pargmann 已提交
530 531
	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
				 (state ? info->map_bitmask : 0));
532
	if (ret < 0) {
533
		dev_err(dev, "Error updating reg_int_map\n");
534 535 536 537
		goto out_fix_power_state;
	}

	/* enable/disable the interrupt */
M
Markus Pargmann 已提交
538 539
	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
				 (state ? info->en_bitmask : 0));
540
	if (ret < 0) {
541
		dev_err(dev, "Error updating reg_int_en\n");
542 543 544 545 546 547 548 549 550 551
		goto out_fix_power_state;
	}

	return 0;

out_fix_power_state:
	bmc150_accel_set_power_state(data, false);
	return ret;
}

552 553
static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
{
554
	struct device *dev = regmap_get_device(data->regmap);
555 556
	int ret, i;

557 558
	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
		if (data->chip_info->scale_table[i].scale == val) {
M
Markus Pargmann 已提交
559
			ret = regmap_write(data->regmap,
560 561
				     BMC150_ACCEL_REG_PMU_RANGE,
				     data->chip_info->scale_table[i].reg_range);
562
			if (ret < 0) {
563
				dev_err(dev, "Error writing pmu_range\n");
564 565 566
				return ret;
			}

567
			data->range = data->chip_info->scale_table[i].reg_range;
568 569 570 571 572 573 574 575 576
			return 0;
		}
	}

	return -EINVAL;
}

static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
{
577
	struct device *dev = regmap_get_device(data->regmap);
578
	int ret;
M
Markus Pargmann 已提交
579
	unsigned int value;
580 581 582

	mutex_lock(&data->mutex);

M
Markus Pargmann 已提交
583
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
584
	if (ret < 0) {
585
		dev_err(dev, "Error reading reg_temp\n");
586 587 588
		mutex_unlock(&data->mutex);
		return ret;
	}
M
Markus Pargmann 已提交
589
	*val = sign_extend32(value, 7);
590 591 592 593 594 595

	mutex_unlock(&data->mutex);

	return IIO_VAL_INT;
}

596 597
static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
				 struct iio_chan_spec const *chan,
598 599
				 int *val)
{
600
	struct device *dev = regmap_get_device(data->regmap);
601
	int ret;
602
	int axis = chan->scan_index;
603
	__le16 raw_val;
604 605 606 607 608 609 610 611

	mutex_lock(&data->mutex);
	ret = bmc150_accel_set_power_state(data, true);
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

M
Markus Pargmann 已提交
612
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
613
			       &raw_val, sizeof(raw_val));
614
	if (ret < 0) {
615
		dev_err(dev, "Error reading axis %d\n", axis);
616 617 618 619
		bmc150_accel_set_power_state(data, false);
		mutex_unlock(&data->mutex);
		return ret;
	}
620
	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
621
			     chan->scan_type.realbits - 1);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
	ret = bmc150_accel_set_power_state(data, false);
	mutex_unlock(&data->mutex);
	if (ret < 0)
		return ret;

	return IIO_VAL_INT;
}

static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
				 struct iio_chan_spec const *chan,
				 int *val, int *val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		switch (chan->type) {
		case IIO_TEMP:
			return bmc150_accel_get_temp(data, val);
		case IIO_ACCEL:
			if (iio_buffer_enabled(indio_dev))
				return -EBUSY;
			else
646
				return bmc150_accel_get_axis(data, chan, val);
647 648 649 650 651 652 653
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_OFFSET:
		if (chan->type == IIO_TEMP) {
			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
			return IIO_VAL_INT;
654
		} else {
655
			return -EINVAL;
656
		}
657 658 659 660 661 662 663 664 665
	case IIO_CHAN_INFO_SCALE:
		*val = 0;
		switch (chan->type) {
		case IIO_TEMP:
			*val2 = 500000;
			return IIO_VAL_INT_PLUS_MICRO;
		case IIO_ACCEL:
		{
			int i;
666 667
			const struct bmc150_scale_info *si;
			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
668

669 670 671 672
			for (i = 0; i < st_size; ++i) {
				si = &data->chip_info->scale_table[i];
				if (si->reg_range == data->range) {
					*val2 = si->scale;
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
					return IIO_VAL_INT_PLUS_MICRO;
				}
			}
			return -EINVAL;
		}
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_get_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		return -EINVAL;
	}
}

static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
				  struct iio_chan_spec const *chan,
				  int val, int val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		break;
	case IIO_CHAN_INFO_SCALE:
		if (val)
			return -EINVAL;

		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_scale(data, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int bmc150_accel_read_event(struct iio_dev *indio_dev,
				   const struct iio_chan_spec *chan,
				   enum iio_event_type type,
				   enum iio_event_direction dir,
				   enum iio_event_info info,
				   int *val, int *val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	*val2 = 0;
	switch (info) {
	case IIO_EV_INFO_VALUE:
		*val = data->slope_thres;
		break;
	case IIO_EV_INFO_PERIOD:
734
		*val = data->slope_dur;
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
		break;
	default:
		return -EINVAL;
	}

	return IIO_VAL_INT;
}

static int bmc150_accel_write_event(struct iio_dev *indio_dev,
				    const struct iio_chan_spec *chan,
				    enum iio_event_type type,
				    enum iio_event_direction dir,
				    enum iio_event_info info,
				    int val, int val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (data->ev_enable_state)
		return -EBUSY;

	switch (info) {
	case IIO_EV_INFO_VALUE:
757
		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
758 759
		break;
	case IIO_EV_INFO_PERIOD:
760
		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
					  const struct iio_chan_spec *chan,
					  enum iio_event_type type,
					  enum iio_event_direction dir)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return data->ev_enable_state;
}

static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
					   const struct iio_chan_spec *chan,
					   enum iio_event_type type,
					   enum iio_event_direction dir,
					   int state)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

788
	if (state == data->ev_enable_state)
789 790 791 792
		return 0;

	mutex_lock(&data->mutex);

793 794
	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
					 state);
795 796 797 798 799 800 801 802 803 804 805 806
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

	data->ev_enable_state = state;
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
807
					 struct iio_trigger *trig)
808 809
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
810
	int i;
811

812 813 814 815
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].indio_trig == trig)
			return 0;
	}
816

817
	return -EINVAL;
818 819
}

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
					       struct device_attribute *attr,
					       char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int wm;

	mutex_lock(&data->mutex);
	wm = data->watermark;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", wm);
}

static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	bool state;

	mutex_lock(&data->mutex);
	state = data->fifo_mode;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", state);
}

850 851 852 853 854 855 856 857 858 859 860 861 862 863
static const struct iio_mount_matrix *
bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
				const struct iio_chan_spec *chan)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return &data->orientation;
}

static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
	{ }
};

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
static IIO_CONST_ATTR(hwfifo_watermark_max,
		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
		       bmc150_accel_get_fifo_state, NULL, 0);
static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
		       bmc150_accel_get_fifo_watermark, NULL, 0);

static const struct attribute *bmc150_accel_fifo_attributes[] = {
	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
	NULL,
};

static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (val > BMC150_ACCEL_FIFO_LENGTH)
		val = BMC150_ACCEL_FIFO_LENGTH;

	mutex_lock(&data->mutex);
	data->watermark = val;
	mutex_unlock(&data->mutex);

	return 0;
}

/*
 * We must read at least one full frame in one burst, otherwise the rest of the
 * frame data is discarded.
 */
M
Markus Pargmann 已提交
898
static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
899 900
				      char *buffer, int samples)
{
901
	struct device *dev = regmap_get_device(data->regmap);
902
	int sample_length = 3 * 2;
M
Markus Pargmann 已提交
903 904
	int ret;
	int total_length = samples * sample_length;
905

906 907
	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
			      buffer, total_length);
908
	if (ret)
909
		dev_err(dev,
910
			"Error transferring data from fifo: %d\n", ret);
911 912 913 914 915 916 917 918

	return ret;
}

static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
				     unsigned samples, bool irq)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
919
	struct device *dev = regmap_get_device(data->regmap);
920 921 922 923 924
	int ret, i;
	u8 count;
	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
	int64_t tstamp;
	uint64_t sample_period;
M
Markus Pargmann 已提交
925
	unsigned int val;
926

M
Markus Pargmann 已提交
927
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
928
	if (ret < 0) {
929
		dev_err(dev, "Error reading reg_fifo_status\n");
930 931 932
		return ret;
	}

M
Markus Pargmann 已提交
933
	count = val & 0x7F;
934 935 936 937 938 939 940 941 942 943 944 945 946 947

	if (!count)
		return 0;

	/*
	 * If we getting called from IRQ handler we know the stored timestamp is
	 * fairly accurate for the last stored sample. Otherwise, if we are
	 * called as a result of a read operation from userspace and hence
	 * before the watermark interrupt was triggered, take a timestamp
	 * now. We can fall anywhere in between two samples so the error in this
	 * case is at most one sample period.
	 */
	if (!irq) {
		data->old_timestamp = data->timestamp;
948
		data->timestamp = iio_get_time_ns(indio_dev);
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
	}

	/*
	 * Approximate timestamps for each of the sample based on the sampling
	 * frequency, timestamp for last sample and number of samples.
	 *
	 * Note that we can't use the current bandwidth settings to compute the
	 * sample period because the sample rate varies with the device
	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
	 * small variation adds when we store a large number of samples and
	 * creates significant jitter between the last and first samples in
	 * different batches (e.g. 32ms vs 21ms).
	 *
	 * To avoid this issue we compute the actual sample period ourselves
	 * based on the timestamp delta between the last two flush operations.
	 */
	sample_period = (data->timestamp - data->old_timestamp);
	do_div(sample_period, count);
	tstamp = data->timestamp - (count - 1) * sample_period;

	if (samples && count > samples)
		count = samples;

M
Markus Pargmann 已提交
972
	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	if (ret)
		return ret;

	/*
	 * Ideally we want the IIO core to handle the demux when running in fifo
	 * mode but not when running in triggered buffer mode. Unfortunately
	 * this does not seem to be possible, so stick with driver demux for
	 * now.
	 */
	for (i = 0; i < count; i++) {
		int j, bit;

		j = 0;
		for_each_set_bit(bit, indio_dev->active_scan_mask,
				 indio_dev->masklength)
988 989
			memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
			       sizeof(data->scan.channels[0]));
990

991 992
		iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
						   tstamp);
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

		tstamp += sample_period;
	}

	return count;
}

static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	mutex_lock(&data->mutex);
	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
	mutex_unlock(&data->mutex);

	return ret;
}

1012
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
1013
		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

static struct attribute *bmc150_accel_attributes[] = {
	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group bmc150_accel_attrs_group = {
	.attrs = bmc150_accel_attributes,
};

static const struct iio_event_spec bmc150_accel_event = {
		.type = IIO_EV_TYPE_ROC,
1026
		.dir = IIO_EV_DIR_EITHER,
1027 1028 1029 1030 1031
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
				 BIT(IIO_EV_INFO_ENABLE) |
				 BIT(IIO_EV_INFO_PERIOD)
};

1032
#define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
1033 1034 1035 1036 1037 1038 1039 1040 1041
	.type = IIO_ACCEL,						\
	.modified = 1,							\
	.channel2 = IIO_MOD_##_axis,					\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
	.scan_index = AXIS_##_axis,					\
	.scan_type = {							\
		.sign = 's',						\
1042
		.realbits = (bits),					\
1043
		.storagebits = 16,					\
1044
		.shift = 16 - (bits),					\
1045
		.endianness = IIO_LE,					\
1046
	},								\
1047
	.ext_info = bmc150_accel_ext_info,				\
1048 1049 1050 1051
	.event_spec = &bmc150_accel_event,				\
	.num_event_specs = 1						\
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
#define BMC150_ACCEL_CHANNELS(bits) {					\
	{								\
		.type = IIO_TEMP,					\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
				      BIT(IIO_CHAN_INFO_SCALE) |	\
				      BIT(IIO_CHAN_INFO_OFFSET),	\
		.scan_index = -1,					\
	},								\
	BMC150_ACCEL_CHANNEL(X, bits),					\
	BMC150_ACCEL_CHANNEL(Y, bits),					\
	BMC150_ACCEL_CHANNEL(Z, bits),					\
	IIO_CHAN_SOFT_TIMESTAMP(3),					\
}

static const struct iio_chan_spec bma222e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(8);
static const struct iio_chan_spec bma250e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(10);
static const struct iio_chan_spec bmc150_accel_channels[] =
	BMC150_ACCEL_CHANNELS(12);
static const struct iio_chan_spec bma280_accel_channels[] =
	BMC150_ACCEL_CHANNELS(14);

static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
	[bmc150] = {
1077
		.name = "BMC150A",
1078 1079 1080 1081 1082 1083 1084 1085 1086
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bmi055] = {
1087
		.name = "BMI055A",
1088 1089 1090 1091 1092 1093 1094 1095 1096
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma255] = {
1097
		.name = "BMA0255",
1098 1099 1100 1101 1102 1103 1104 1105 1106
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma250e] = {
1107
		.name = "BMA250E",
1108 1109 1110 1111 1112 1113 1114 1115
		.chip_id = 0xF9,
		.channels = bma250e_accel_channels,
		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
	},
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	[bma222] = {
		.name = "BMA222",
		.chip_id = 0x03,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
		/*
		 * The datasheet page 17 says:
		 * 15.6, 31.3, 62.5 and 125 mg per LSB.
		 */
		.scale_table = { {156000, BMC150_ACCEL_DEF_RANGE_2G},
				 {313000, BMC150_ACCEL_DEF_RANGE_4G},
				 {625000, BMC150_ACCEL_DEF_RANGE_8G},
				 {1250000, BMC150_ACCEL_DEF_RANGE_16G} },
	},
1130
	[bma222e] = {
1131
		.name = "BMA222E",
1132 1133 1134 1135 1136 1137 1138 1139 1140
		.chip_id = 0xF8,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma280] = {
1141
		.name = "BMA0280",
1142 1143 1144 1145 1146 1147 1148
		.chip_id = 0xFB,
		.channels = bma280_accel_channels,
		.num_channels = ARRAY_SIZE(bma280_accel_channels),
		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	},
};

static const struct iio_info bmc150_accel_info = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
};

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
static const struct iio_info bmc150_accel_info_fifo = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
	.validate_trigger	= bmc150_accel_validate_trigger,
	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
};

1175 1176 1177 1178
static const unsigned long bmc150_accel_scan_masks[] = {
					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
					0};

1179 1180 1181 1182 1183
static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1184
	int ret;
1185 1186

	mutex_lock(&data->mutex);
1187 1188
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
			       data->buffer, AXIS_MAX * 2);
1189
	mutex_unlock(&data->mutex);
1190 1191
	if (ret < 0)
		goto err_read;
1192 1193

	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1194
					   pf->timestamp);
1195 1196 1197 1198 1199 1200
err_read:
	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

1201
static void bmc150_accel_trig_reen(struct iio_trigger *trig)
1202
{
1203 1204
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1205
	struct device *dev = regmap_get_device(data->regmap);
1206 1207 1208
	int ret;

	/* new data interrupts don't need ack */
1209
	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1210
		return;
1211 1212 1213

	mutex_lock(&data->mutex);
	/* clear any latched interrupt */
M
Markus Pargmann 已提交
1214 1215 1216
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1217
	mutex_unlock(&data->mutex);
1218
	if (ret < 0)
1219
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1220 1221
}

1222
static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1223
					  bool state)
1224
{
1225 1226
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1227 1228 1229 1230
	int ret;

	mutex_lock(&data->mutex);

1231 1232 1233 1234 1235 1236 1237 1238
	if (t->enabled == state) {
		mutex_unlock(&data->mutex);
		return 0;
	}

	if (t->setup) {
		ret = t->setup(t, state);
		if (ret < 0) {
1239
			mutex_unlock(&data->mutex);
1240
			return ret;
1241 1242 1243
		}
	}

1244
	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1245 1246 1247 1248
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}
1249 1250

	t->enabled = state;
1251 1252 1253 1254 1255 1256 1257

	mutex_unlock(&data->mutex);

	return ret;
}

static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1258
	.set_trigger_state = bmc150_accel_trigger_set_state,
1259
	.reenable = bmc150_accel_trig_reen,
1260 1261
};

1262
static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1263 1264
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1265
	struct device *dev = regmap_get_device(data->regmap);
1266
	int dir;
1267
	int ret;
M
Markus Pargmann 已提交
1268
	unsigned int val;
1269

M
Markus Pargmann 已提交
1270
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1271
	if (ret < 0) {
1272
		dev_err(dev, "Error reading reg_int_status_2\n");
1273
		return ret;
1274 1275
	}

M
Markus Pargmann 已提交
1276
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1277 1278 1279 1280
		dir = IIO_EV_DIR_FALLING;
	else
		dir = IIO_EV_DIR_RISING;

M
Markus Pargmann 已提交
1281
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1282 1283 1284 1285 1286 1287 1288 1289
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_X,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1290
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1291 1292 1293 1294 1295 1296 1297 1298
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Y,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1299
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1300 1301 1302 1303 1304 1305 1306 1307
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Z,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

1308 1309 1310 1311 1312 1313 1314
	return ret;
}

static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1315
	struct device *dev = regmap_get_device(data->regmap);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	bool ack = false;
	int ret;

	mutex_lock(&data->mutex);

	if (data->fifo_mode) {
		ret = __bmc150_accel_fifo_flush(indio_dev,
						BMC150_ACCEL_FIFO_LENGTH, true);
		if (ret > 0)
			ack = true;
	}

	if (data->ev_enable_state) {
		ret = bmc150_accel_handle_roc_event(indio_dev);
		if (ret > 0)
			ack = true;
	}

	if (ack) {
M
Markus Pargmann 已提交
1335 1336 1337
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_INT |
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1338
		if (ret)
1339
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1340

1341 1342 1343 1344
		ret = IRQ_HANDLED;
	} else {
		ret = IRQ_NONE;
	}
1345

1346 1347 1348
	mutex_unlock(&data->mutex);

	return ret;
1349 1350
}

1351
static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1352 1353 1354
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1355
	bool ack = false;
1356
	int i;
1357

1358
	data->old_timestamp = data->timestamp;
1359
	data->timestamp = iio_get_time_ns(indio_dev);
1360

1361 1362 1363
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].enabled) {
			iio_trigger_poll(data->triggers[i].indio_trig);
1364
			ack = true;
1365 1366 1367
			break;
		}
	}
1368

1369
	if (data->ev_enable_state || data->fifo_mode)
1370
		return IRQ_WAKE_THREAD;
1371 1372

	if (ack)
1373
		return IRQ_HANDLED;
1374 1375

	return IRQ_NONE;
1376 1377
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
static const struct {
	int intr;
	const char *name;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
	{
		.intr = 0,
		.name = "%s-dev%d",
	},
	{
		.intr = 1,
		.name = "%s-any-motion-dev%d",
		.setup = bmc150_accel_any_motion_setup,
	},
};

static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
					     int from)
{
	int i;

1399
	for (i = from; i >= 0; i--) {
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
		if (data->triggers[i].indio_trig) {
			iio_trigger_unregister(data->triggers[i].indio_trig);
			data->triggers[i].indio_trig = NULL;
		}
	}
}

static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
				       struct bmc150_accel_data *data)
{
1410
	struct device *dev = regmap_get_device(data->regmap);
1411 1412 1413 1414 1415
	int i, ret;

	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		struct bmc150_accel_trigger *t = &data->triggers[i];

1416
		t->indio_trig = devm_iio_trigger_alloc(dev,
1417
						       bmc150_accel_triggers[i].name,
1418
						       indio_dev->name,
1419
						       iio_device_id(indio_dev));
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
		if (!t->indio_trig) {
			ret = -ENOMEM;
			break;
		}

		t->indio_trig->ops = &bmc150_accel_trigger_ops;
		t->intr = bmc150_accel_triggers[i].intr;
		t->data = data;
		t->setup = bmc150_accel_triggers[i].setup;
		iio_trigger_set_drvdata(t->indio_trig, t);

		ret = iio_trigger_register(t->indio_trig);
		if (ret)
			break;
	}

	if (ret)
		bmc150_accel_unregister_triggers(data, i - 1);

	return ret;
}

1442 1443 1444 1445 1446 1447
#define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
#define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
#define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00

static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
{
1448
	struct device *dev = regmap_get_device(data->regmap);
1449 1450 1451
	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
	int ret;

M
Markus Pargmann 已提交
1452
	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1453
	if (ret < 0) {
1454
		dev_err(dev, "Error writing reg_fifo_config1\n");
1455 1456 1457 1458 1459 1460
		return ret;
	}

	if (!data->fifo_mode)
		return 0;

M
Markus Pargmann 已提交
1461 1462
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
			   data->watermark);
1463
	if (ret < 0)
1464
		dev_err(dev, "Error writing reg_fifo_config0\n");
1465 1466 1467 1468

	return ret;
}

1469 1470 1471 1472 1473 1474 1475
static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, true);
}

1476 1477 1478 1479 1480 1481
static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret = 0;

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1482
		return 0;
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

	mutex_lock(&data->mutex);

	if (!data->watermark)
		goto out;

	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					 true);
	if (ret)
		goto out;

	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;

	ret = bmc150_accel_fifo_set_mode(data);
	if (ret) {
		data->fifo_mode = 0;
		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					   false);
	}

out:
	mutex_unlock(&data->mutex);

	return ret;
}

static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1514
		return 0;
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

	mutex_lock(&data->mutex);

	if (!data->fifo_mode)
		goto out;

	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
	data->fifo_mode = 0;
	bmc150_accel_fifo_set_mode(data);

out:
	mutex_unlock(&data->mutex);

	return 0;
}

1532 1533 1534 1535 1536 1537 1538
static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, false);
}

1539
static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1540
	.preenable = bmc150_accel_buffer_preenable,
1541 1542
	.postenable = bmc150_accel_buffer_postenable,
	.predisable = bmc150_accel_buffer_predisable,
1543
	.postdisable = bmc150_accel_buffer_postdisable,
1544 1545
};

1546 1547
static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
{
1548
	struct device *dev = regmap_get_device(data->regmap);
1549
	int ret, i;
M
Markus Pargmann 已提交
1550
	unsigned int val;
1551

1552 1553 1554 1555 1556 1557 1558 1559
	/*
	 * Reset chip to get it in a known good state. A delay of 1.8ms after
	 * reset is required according to the data sheets of supported chips.
	 */
	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
		     BMC150_ACCEL_RESET_VAL);
	usleep_range(1800, 2500);

M
Markus Pargmann 已提交
1560
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1561
	if (ret < 0) {
1562
		dev_err(dev, "Error: Reading chip id\n");
1563 1564 1565
		return ret;
	}

1566
	dev_dbg(dev, "Chip Id %x\n", val);
1567
	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
M
Markus Pargmann 已提交
1568
		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1569 1570 1571 1572 1573 1574
			data->chip_info = &bmc150_accel_chip_info_tbl[i];
			break;
		}
	}

	if (!data->chip_info) {
1575
		dev_err(dev, "Invalid chip %x\n", val);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
		return -ENODEV;
	}

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
	if (ret < 0)
		return ret;

	/* Set Bandwidth */
	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
	if (ret < 0)
		return ret;

	/* Set Default Range */
M
Markus Pargmann 已提交
1589 1590
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
			   BMC150_ACCEL_DEF_RANGE_4G);
1591
	if (ret < 0) {
1592
		dev_err(dev, "Error writing reg_pmu_range\n");
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
		return ret;
	}

	data->range = BMC150_ACCEL_DEF_RANGE_4G;

	/* Set default slope duration and thresholds */
	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
	ret = bmc150_accel_update_slope(data);
	if (ret < 0)
		return ret;

	/* Set default as latched interrupts */
M
Markus Pargmann 已提交
1606 1607 1608
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1609
	if (ret < 0) {
1610
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1611 1612 1613 1614 1615 1616
		return ret;
	}

	return 0;
}

1617 1618
int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
			    const char *name, bool block_supported)
1619
{
1620
	const struct attribute **fifo_attrs;
1621 1622 1623 1624
	struct bmc150_accel_data *data;
	struct iio_dev *indio_dev;
	int ret;

1625
	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1626 1627 1628 1629
	if (!indio_dev)
		return -ENOMEM;

	data = iio_priv(indio_dev);
1630
	dev_set_drvdata(dev, indio_dev);
1631

1632
	data->regmap = regmap;
1633

1634
	if (!bmc150_apply_acpi_orientation(dev, &data->orientation)) {
1635
		ret = iio_read_mount_matrix(dev, &data->orientation);
1636 1637 1638 1639
		if (ret)
			return ret;
	}

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	/*
	 * VDD   is the analog and digital domain voltage supply
	 * VDDIO is the digital I/O voltage supply
	 */
	data->regulators[0].supply = "vdd";
	data->regulators[1].supply = "vddio";
	ret = devm_regulator_bulk_get(dev,
				      ARRAY_SIZE(data->regulators),
				      data->regulators);
	if (ret)
		return dev_err_probe(dev, ret, "failed to get regulators\n");

	ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
				    data->regulators);
	if (ret) {
		dev_err(dev, "failed to enable regulators: %d\n", ret);
		return ret;
	}
	/*
	 * 2ms or 3ms power-on time according to datasheets, let's better
	 * be safe than sorry and set this delay to 5ms.
	 */
	msleep(5);
1663

1664 1665
	ret = bmc150_accel_chip_init(data);
	if (ret < 0)
1666
		goto err_disable_regulators;
1667 1668 1669

	mutex_init(&data->mutex);

1670 1671
	indio_dev->channels = data->chip_info->channels;
	indio_dev->num_channels = data->chip_info->num_channels;
1672
	indio_dev->name = name ? name : data->chip_info->name;
1673
	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1674 1675 1676
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &bmc150_accel_info;

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	if (block_supported) {
		indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
		indio_dev->info = &bmc150_accel_info_fifo;
		fifo_attrs = bmc150_accel_fifo_attributes;
	} else {
		fifo_attrs = NULL;
	}

	ret = iio_triggered_buffer_setup_ext(indio_dev,
					     &iio_pollfunc_store_time,
					     bmc150_accel_trigger_handler,
					     &bmc150_accel_buffer_ops,
					     fifo_attrs);
1690
	if (ret < 0) {
1691
		dev_err(dev, "Failed: iio triggered buffer setup\n");
1692
		goto err_disable_regulators;
1693 1694
	}

1695 1696
	if (irq > 0) {
		ret = devm_request_threaded_irq(dev, irq,
1697 1698
						bmc150_accel_irq_handler,
						bmc150_accel_irq_thread_handler,
1699 1700 1701 1702
						IRQF_TRIGGER_RISING,
						BMC150_ACCEL_IRQ_NAME,
						indio_dev);
		if (ret)
1703
			goto err_buffer_cleanup;
1704

1705 1706 1707 1708 1709 1710
		/*
		 * Set latched mode interrupt. While certain interrupts are
		 * non-latched regardless of this settings (e.g. new data) we
		 * want to use latch mode when we can to prevent interrupt
		 * flooding.
		 */
M
Markus Pargmann 已提交
1711 1712
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1713
		if (ret < 0) {
1714
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1715
			goto err_buffer_cleanup;
1716 1717
		}

1718 1719
		bmc150_accel_interrupts_setup(indio_dev, data);

1720
		ret = bmc150_accel_triggers_setup(indio_dev, data);
1721
		if (ret)
1722
			goto err_buffer_cleanup;
1723 1724
	}

1725
	ret = pm_runtime_set_active(dev);
1726
	if (ret)
1727
		goto err_trigger_unregister;
1728

1729 1730 1731
	pm_runtime_enable(dev);
	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
	pm_runtime_use_autosuspend(dev);
1732

1733 1734 1735 1736 1737 1738
	ret = iio_device_register(indio_dev);
	if (ret < 0) {
		dev_err(dev, "Unable to register iio device\n");
		goto err_trigger_unregister;
	}

1739 1740 1741
	return 0;

err_trigger_unregister:
1742
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1743 1744
err_buffer_cleanup:
	iio_triggered_buffer_cleanup(indio_dev);
1745 1746 1747
err_disable_regulators:
	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
			       data->regulators);
1748 1749 1750

	return ret;
}
1751
EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1752

1753
int bmc150_accel_core_remove(struct device *dev)
1754
{
1755
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1756 1757
	struct bmc150_accel_data *data = iio_priv(indio_dev);

1758 1759
	iio_device_unregister(indio_dev);

1760 1761
	pm_runtime_disable(dev);
	pm_runtime_set_suspended(dev);
1762

1763
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1764

1765 1766
	iio_triggered_buffer_cleanup(indio_dev);

1767 1768 1769 1770
	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
	mutex_unlock(&data->mutex);

1771 1772 1773
	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
			       data->regulators);

1774 1775
	return 0;
}
1776
EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1777 1778 1779 1780

#ifdef CONFIG_PM_SLEEP
static int bmc150_accel_suspend(struct device *dev)
{
1781
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_resume(struct device *dev)
{
1793
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1794 1795 1796
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
1797
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1798
	bmc150_accel_fifo_set_mode(data);
1799 1800 1801 1802 1803 1804
	mutex_unlock(&data->mutex);

	return 0;
}
#endif

1805
#ifdef CONFIG_PM
1806 1807
static int bmc150_accel_runtime_suspend(struct device *dev)
{
1808
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1809
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1810
	int ret;
1811

1812 1813 1814
	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	if (ret < 0)
		return -EAGAIN;
1815

1816
	return 0;
1817 1818 1819 1820
}

static int bmc150_accel_runtime_resume(struct device *dev)
{
1821
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1822 1823 1824 1825 1826
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;
	int sleep_val;

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1827 1828 1829
	if (ret < 0)
		return ret;
	ret = bmc150_accel_fifo_set_mode(data);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	if (ret < 0)
		return ret;

	sleep_val = bmc150_accel_get_startup_times(data);
	if (sleep_val < 20)
		usleep_range(sleep_val * 1000, 20000);
	else
		msleep_interruptible(sleep_val);

	return 0;
}
#endif

1843
const struct dev_pm_ops bmc150_accel_pm_ops = {
1844 1845 1846 1847
	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
			   bmc150_accel_runtime_resume, NULL)
};
1848
EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1849 1850 1851 1852

MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMC150 accelerometer driver");