bmc150-accel-core.c 44.3 KB
Newer Older
1
/*
2 3 4 5 6 7 8 9
 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
 *  - BMC150
 *  - BMI055
 *  - BMA255
 *  - BMA250E
 *  - BMA222E
 *  - BMA280
 *
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 * Copyright (c) 2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
M
Markus Pargmann 已提交
37
#include <linux/regmap.h>
38

39 40
#include "bmc150-accel.h"

41 42 43 44 45 46 47
#define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
#define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"

#define BMC150_ACCEL_REG_CHIP_ID		0x00

#define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
#define BMC150_ACCEL_ANY_MOTION_MASK		0x07
48 49 50
#define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
#define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
#define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)

#define BMC150_ACCEL_REG_PMU_LPW		0x11
#define BMC150_ACCEL_PMU_MODE_MASK		0xE0
#define BMC150_ACCEL_PMU_MODE_SHIFT		5
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1

#define BMC150_ACCEL_REG_PMU_RANGE		0x0F

#define BMC150_ACCEL_DEF_RANGE_2G		0x03
#define BMC150_ACCEL_DEF_RANGE_4G		0x05
#define BMC150_ACCEL_DEF_RANGE_8G		0x08
#define BMC150_ACCEL_DEF_RANGE_16G		0x0C

/* Default BW: 125Hz */
#define BMC150_ACCEL_REG_PMU_BW		0x10
#define BMC150_ACCEL_DEF_BW			125

70 71 72
#define BMC150_ACCEL_REG_RESET			0x14
#define BMC150_ACCEL_RESET_VAL			0xB6

73 74 75 76
#define BMC150_ACCEL_REG_INT_MAP_0		0x19
#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)

#define BMC150_ACCEL_REG_INT_MAP_1		0x1A
77 78 79
#define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
#define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
#define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
80 81 82 83 84 85 86 87 88 89 90 91

#define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
#define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
#define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00

#define BMC150_ACCEL_REG_INT_EN_0		0x16
#define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)

#define BMC150_ACCEL_REG_INT_EN_1		0x17
92 93 94
#define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
#define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
95 96 97 98 99 100 101 102 103 104 105

#define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)

#define BMC150_ACCEL_REG_INT_5			0x27
#define BMC150_ACCEL_SLOPE_DUR_MASK		0x03

#define BMC150_ACCEL_REG_INT_6			0x28
#define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF

/* Slope duration in terms of number of samples */
106
#define BMC150_ACCEL_DEF_SLOPE_DURATION		1
107
/* in terms of multiples of g's/LSB, based on range */
108
#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

#define BMC150_ACCEL_REG_XOUT_L		0x02

#define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100

/* Sleep Duration values */
#define BMC150_ACCEL_SLEEP_500_MICRO		0x05
#define BMC150_ACCEL_SLEEP_1_MS		0x06
#define BMC150_ACCEL_SLEEP_2_MS		0x07
#define BMC150_ACCEL_SLEEP_4_MS		0x08
#define BMC150_ACCEL_SLEEP_6_MS		0x09
#define BMC150_ACCEL_SLEEP_10_MS		0x0A
#define BMC150_ACCEL_SLEEP_25_MS		0x0B
#define BMC150_ACCEL_SLEEP_50_MS		0x0C
#define BMC150_ACCEL_SLEEP_100_MS		0x0D
#define BMC150_ACCEL_SLEEP_500_MS		0x0E
#define BMC150_ACCEL_SLEEP_1_SEC		0x0F

#define BMC150_ACCEL_REG_TEMP			0x08
#define BMC150_ACCEL_TEMP_CENTER_VAL		24

#define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
#define BMC150_AUTO_SUSPEND_DELAY_MS		2000

133 134 135 136 137 138
#define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
#define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
#define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
#define BMC150_ACCEL_REG_FIFO_DATA		0x3F
#define BMC150_ACCEL_FIFO_LENGTH		32

139 140 141 142
enum bmc150_accel_axis {
	AXIS_X,
	AXIS_Y,
	AXIS_Z,
143
	AXIS_MAX,
144 145 146 147 148 149 150 151 152
};

enum bmc150_power_modes {
	BMC150_ACCEL_SLEEP_MODE_NORMAL,
	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
	BMC150_ACCEL_SLEEP_MODE_LPM,
	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
};

153 154 155 156 157 158
struct bmc150_scale_info {
	int scale;
	u8 reg_range;
};

struct bmc150_accel_chip_info {
159
	const char *name;
160 161 162 163 164 165
	u8 chip_id;
	const struct iio_chan_spec *channels;
	int num_channels;
	const struct bmc150_scale_info scale_table[4];
};

166 167 168 169 170
struct bmc150_accel_interrupt {
	const struct bmc150_accel_interrupt_info *info;
	atomic_t users;
};

171 172 173 174 175 176 177 178
struct bmc150_accel_trigger {
	struct bmc150_accel_data *data;
	struct iio_trigger *indio_trig;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
	int intr;
	bool enabled;
};

179 180 181 182 183 184 185
enum bmc150_accel_interrupt_id {
	BMC150_ACCEL_INT_DATA_READY,
	BMC150_ACCEL_INT_ANY_MOTION,
	BMC150_ACCEL_INT_WATERMARK,
	BMC150_ACCEL_INTERRUPTS,
};

186 187 188 189 190 191
enum bmc150_accel_trigger_id {
	BMC150_ACCEL_TRIGGER_DATA_READY,
	BMC150_ACCEL_TRIGGER_ANY_MOTION,
	BMC150_ACCEL_TRIGGERS,
};

192
struct bmc150_accel_data {
M
Markus Pargmann 已提交
193
	struct regmap *regmap;
194
	int irq;
195
	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
196
	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
197
	struct mutex mutex;
198
	u8 fifo_mode, watermark;
199 200 201 202 203 204
	s16 buffer[8];
	u8 bw_bits;
	u32 slope_dur;
	u32 slope_thres;
	u32 range;
	int ev_enable_state;
205
	int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
206
	const struct bmc150_accel_chip_info *chip_info;
207 208 209 210 211 212
};

static const struct {
	int val;
	int val2;
	u8 bw_bits;
213 214 215 216 217 218 219 220
} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
				     {31, 260000, 0x09},
				     {62, 500000, 0x0A},
				     {125, 0, 0x0B},
				     {250, 0, 0x0C},
				     {500, 0, 0x0D},
				     {1000, 0, 0x0E},
				     {2000, 0, 0x0F} };
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

static const struct {
	int bw_bits;
	int msec;
} bmc150_accel_sample_upd_time[] = { {0x08, 64},
				     {0x09, 32},
				     {0x0A, 16},
				     {0x0B, 8},
				     {0x0C, 4},
				     {0x0D, 2},
				     {0x0E, 1},
				     {0x0F, 1} };

static const struct {
	int sleep_dur;
236
	u8 reg_value;
237 238 239 240 241 242 243 244 245 246 247 248 249
} bmc150_accel_sleep_value_table[] = { {0, 0},
				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
				       {1000, BMC150_ACCEL_SLEEP_1_MS},
				       {2000, BMC150_ACCEL_SLEEP_2_MS},
				       {4000, BMC150_ACCEL_SLEEP_4_MS},
				       {6000, BMC150_ACCEL_SLEEP_6_MS},
				       {10000, BMC150_ACCEL_SLEEP_10_MS},
				       {25000, BMC150_ACCEL_SLEEP_25_MS},
				       {50000, BMC150_ACCEL_SLEEP_50_MS},
				       {100000, BMC150_ACCEL_SLEEP_100_MS},
				       {500000, BMC150_ACCEL_SLEEP_500_MS},
				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };

250
const struct regmap_config bmc150_regmap_conf = {
M
Markus Pargmann 已提交
251 252 253 254
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = 0x3f,
};
255
EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
M
Markus Pargmann 已提交
256

257 258 259 260
static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
				 enum bmc150_power_modes mode,
				 int dur_us)
{
261
	struct device *dev = regmap_get_device(data->regmap);
262 263 264 265 266 267 268 269 270 271 272 273 274
	int i;
	int ret;
	u8 lpw_bits;
	int dur_val = -1;

	if (dur_us > 0) {
		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
									 ++i) {
			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
									dur_us)
				dur_val =
				bmc150_accel_sleep_value_table[i].reg_value;
		}
275
	} else {
276
		dur_val = 0;
277
	}
278 279 280 281 282 283 284

	if (dur_val < 0)
		return -EINVAL;

	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);

285
	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
286

M
Markus Pargmann 已提交
287
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
288
	if (ret < 0) {
289
		dev_err(dev, "Error writing reg_pmu_lpw\n");
290 291 292 293 294 295 296 297 298 299 300 301 302 303
		return ret;
	}

	return 0;
}

static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
			       int val2)
{
	int i;
	int ret;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].val == val &&
304
		    bmc150_accel_samp_freq_table[i].val2 == val2) {
M
Markus Pargmann 已提交
305
			ret = regmap_write(data->regmap,
306 307 308 309 310 311 312 313 314 315 316 317 318 319
				BMC150_ACCEL_REG_PMU_BW,
				bmc150_accel_samp_freq_table[i].bw_bits);
			if (ret < 0)
				return ret;

			data->bw_bits =
				bmc150_accel_samp_freq_table[i].bw_bits;
			return 0;
		}
	}

	return -EINVAL;
}

320 321
static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
{
322
	struct device *dev = regmap_get_device(data->regmap);
M
Markus Pargmann 已提交
323
	int ret;
324

M
Markus Pargmann 已提交
325
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
326 327
					data->slope_thres);
	if (ret < 0) {
328
		dev_err(dev, "Error writing reg_int_6\n");
329 330 331
		return ret;
	}

M
Markus Pargmann 已提交
332 333
	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
334
	if (ret < 0) {
335
		dev_err(dev, "Error updating reg_int_5\n");
336 337 338
		return ret;
	}

339
	dev_dbg(dev, "%s: %x %x\n", __func__, data->slope_thres,
340 341 342 343 344
		data->slope_dur);

	return ret;
}

345 346 347 348 349 350 351 352 353
static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
					 bool state)
{
	if (state)
		return bmc150_accel_update_slope(t->data);

	return 0;
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
			       int *val2)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
			*val = bmc150_accel_samp_freq_table[i].val;
			*val2 = bmc150_accel_samp_freq_table[i].val2;
			return IIO_VAL_INT_PLUS_MICRO;
		}
	}

	return -EINVAL;
}

370
#ifdef CONFIG_PM
371 372 373 374 375 376 377 378 379 380 381 382 383 384
static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
			return bmc150_accel_sample_upd_time[i].msec;
	}

	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
}

static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
385
	struct device *dev = regmap_get_device(data->regmap);
386 387
	int ret;

388
	if (on) {
389
		ret = pm_runtime_get_sync(dev);
390
	} else {
391 392
		pm_runtime_mark_last_busy(dev);
		ret = pm_runtime_put_autosuspend(dev);
393
	}
394

395
	if (ret < 0) {
396
		dev_err(dev,
397
			"Failed: bmc150_accel_set_power_state for %d\n", on);
398
		if (on)
399
			pm_runtime_put_noidle(dev);
400

401 402 403 404 405
		return ret;
	}

	return 0;
}
406 407 408 409 410 411
#else
static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
	return 0;
}
#endif
412

413 414 415 416 417
static const struct bmc150_accel_interrupt_info {
	u8 map_reg;
	u8 map_bitmask;
	u8 en_reg;
	u8 en_bitmask;
418
} bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
419 420 421 422 423 424 425 426 427 428 429 430 431 432
	{ /* data ready interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
	},
	{  /* motion interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
			BMC150_ACCEL_INT_EN_BIT_SLP_Z
	},
433 434 435 436 437 438
	{ /* fifo watermark interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
	},
439 440
};

441 442 443 444 445 446 447 448 449 450
static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
					  struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
		data->interrupts[i].info = &bmc150_accel_interrupts[i];
}

static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
451 452
				      bool state)
{
453
	struct device *dev = regmap_get_device(data->regmap);
454 455
	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
	const struct bmc150_accel_interrupt_info *info = intr->info;
456 457
	int ret;

458 459 460 461 462 463 464 465
	if (state) {
		if (atomic_inc_return(&intr->users) > 1)
			return 0;
	} else {
		if (atomic_dec_return(&intr->users) > 0)
			return 0;
	}

466
	/*
467 468 469 470 471 472 473
	 * We will expect the enable and disable to do operation in reverse
	 * order. This will happen here anyway, as our resume operation uses
	 * sync mode runtime pm calls. The suspend operation will be delayed
	 * by autosuspend delay.
	 * So the disable operation will still happen in reverse order of
	 * enable operation. When runtime pm is disabled the mode is always on,
	 * so sequence doesn't matter.
474 475 476 477 478 479
	 */
	ret = bmc150_accel_set_power_state(data, state);
	if (ret < 0)
		return ret;

	/* map the interrupt to the appropriate pins */
M
Markus Pargmann 已提交
480 481
	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
				 (state ? info->map_bitmask : 0));
482
	if (ret < 0) {
483
		dev_err(dev, "Error updating reg_int_map\n");
484 485 486 487
		goto out_fix_power_state;
	}

	/* enable/disable the interrupt */
M
Markus Pargmann 已提交
488 489
	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
				 (state ? info->en_bitmask : 0));
490
	if (ret < 0) {
491
		dev_err(dev, "Error updating reg_int_en\n");
492 493 494 495 496 497 498 499 500 501
		goto out_fix_power_state;
	}

	return 0;

out_fix_power_state:
	bmc150_accel_set_power_state(data, false);
	return ret;
}

502 503
static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
{
504
	struct device *dev = regmap_get_device(data->regmap);
505 506
	int ret, i;

507 508
	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
		if (data->chip_info->scale_table[i].scale == val) {
M
Markus Pargmann 已提交
509
			ret = regmap_write(data->regmap,
510 511
				     BMC150_ACCEL_REG_PMU_RANGE,
				     data->chip_info->scale_table[i].reg_range);
512
			if (ret < 0) {
513
				dev_err(dev, "Error writing pmu_range\n");
514 515 516
				return ret;
			}

517
			data->range = data->chip_info->scale_table[i].reg_range;
518 519 520 521 522 523 524 525 526
			return 0;
		}
	}

	return -EINVAL;
}

static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
{
527
	struct device *dev = regmap_get_device(data->regmap);
528
	int ret;
M
Markus Pargmann 已提交
529
	unsigned int value;
530 531 532

	mutex_lock(&data->mutex);

M
Markus Pargmann 已提交
533
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
534
	if (ret < 0) {
535
		dev_err(dev, "Error reading reg_temp\n");
536 537 538
		mutex_unlock(&data->mutex);
		return ret;
	}
M
Markus Pargmann 已提交
539
	*val = sign_extend32(value, 7);
540 541 542 543 544 545

	mutex_unlock(&data->mutex);

	return IIO_VAL_INT;
}

546 547
static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
				 struct iio_chan_spec const *chan,
548 549
				 int *val)
{
550
	struct device *dev = regmap_get_device(data->regmap);
551
	int ret;
552
	int axis = chan->scan_index;
553
	__le16 raw_val;
554 555 556 557 558 559 560 561

	mutex_lock(&data->mutex);
	ret = bmc150_accel_set_power_state(data, true);
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

M
Markus Pargmann 已提交
562
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
563
			       &raw_val, sizeof(raw_val));
564
	if (ret < 0) {
565
		dev_err(dev, "Error reading axis %d\n", axis);
566 567 568 569
		bmc150_accel_set_power_state(data, false);
		mutex_unlock(&data->mutex);
		return ret;
	}
570
	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
571
			     chan->scan_type.realbits - 1);
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	ret = bmc150_accel_set_power_state(data, false);
	mutex_unlock(&data->mutex);
	if (ret < 0)
		return ret;

	return IIO_VAL_INT;
}

static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
				 struct iio_chan_spec const *chan,
				 int *val, int *val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		switch (chan->type) {
		case IIO_TEMP:
			return bmc150_accel_get_temp(data, val);
		case IIO_ACCEL:
			if (iio_buffer_enabled(indio_dev))
				return -EBUSY;
			else
596
				return bmc150_accel_get_axis(data, chan, val);
597 598 599 600 601 602 603
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_OFFSET:
		if (chan->type == IIO_TEMP) {
			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
			return IIO_VAL_INT;
604
		} else {
605
			return -EINVAL;
606
		}
607 608 609 610 611 612 613 614 615
	case IIO_CHAN_INFO_SCALE:
		*val = 0;
		switch (chan->type) {
		case IIO_TEMP:
			*val2 = 500000;
			return IIO_VAL_INT_PLUS_MICRO;
		case IIO_ACCEL:
		{
			int i;
616 617
			const struct bmc150_scale_info *si;
			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
618

619 620 621 622
			for (i = 0; i < st_size; ++i) {
				si = &data->chip_info->scale_table[i];
				if (si->reg_range == data->range) {
					*val2 = si->scale;
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
					return IIO_VAL_INT_PLUS_MICRO;
				}
			}
			return -EINVAL;
		}
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_get_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		return -EINVAL;
	}
}

static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
				  struct iio_chan_spec const *chan,
				  int val, int val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		break;
	case IIO_CHAN_INFO_SCALE:
		if (val)
			return -EINVAL;

		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_scale(data, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int bmc150_accel_read_event(struct iio_dev *indio_dev,
				   const struct iio_chan_spec *chan,
				   enum iio_event_type type,
				   enum iio_event_direction dir,
				   enum iio_event_info info,
				   int *val, int *val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	*val2 = 0;
	switch (info) {
	case IIO_EV_INFO_VALUE:
		*val = data->slope_thres;
		break;
	case IIO_EV_INFO_PERIOD:
684
		*val = data->slope_dur;
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
		break;
	default:
		return -EINVAL;
	}

	return IIO_VAL_INT;
}

static int bmc150_accel_write_event(struct iio_dev *indio_dev,
				    const struct iio_chan_spec *chan,
				    enum iio_event_type type,
				    enum iio_event_direction dir,
				    enum iio_event_info info,
				    int val, int val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (data->ev_enable_state)
		return -EBUSY;

	switch (info) {
	case IIO_EV_INFO_VALUE:
707
		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
708 709
		break;
	case IIO_EV_INFO_PERIOD:
710
		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
					  const struct iio_chan_spec *chan,
					  enum iio_event_type type,
					  enum iio_event_direction dir)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return data->ev_enable_state;
}

static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
					   const struct iio_chan_spec *chan,
					   enum iio_event_type type,
					   enum iio_event_direction dir,
					   int state)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

738
	if (state == data->ev_enable_state)
739 740 741 742
		return 0;

	mutex_lock(&data->mutex);

743 744
	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
					 state);
745 746 747 748 749 750 751 752 753 754 755 756
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

	data->ev_enable_state = state;
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
757
					 struct iio_trigger *trig)
758 759
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
760
	int i;
761

762 763 764 765
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].indio_trig == trig)
			return 0;
	}
766

767
	return -EINVAL;
768 769
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
					       struct device_attribute *attr,
					       char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int wm;

	mutex_lock(&data->mutex);
	wm = data->watermark;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", wm);
}

static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	bool state;

	mutex_lock(&data->mutex);
	state = data->fifo_mode;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", state);
}

static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
static IIO_CONST_ATTR(hwfifo_watermark_max,
		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
		       bmc150_accel_get_fifo_state, NULL, 0);
static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
		       bmc150_accel_get_fifo_watermark, NULL, 0);

static const struct attribute *bmc150_accel_fifo_attributes[] = {
	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
	NULL,
};

static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (val > BMC150_ACCEL_FIFO_LENGTH)
		val = BMC150_ACCEL_FIFO_LENGTH;

	mutex_lock(&data->mutex);
	data->watermark = val;
	mutex_unlock(&data->mutex);

	return 0;
}

/*
 * We must read at least one full frame in one burst, otherwise the rest of the
 * frame data is discarded.
 */
M
Markus Pargmann 已提交
834
static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
835 836
				      char *buffer, int samples)
{
837
	struct device *dev = regmap_get_device(data->regmap);
838
	int sample_length = 3 * 2;
M
Markus Pargmann 已提交
839 840 841 842
	int ret;
	int total_length = samples * sample_length;
	int i;
	size_t step = regmap_get_raw_read_max(data->regmap);
843

M
Markus Pargmann 已提交
844 845 846 847
	if (!step || step > total_length)
		step = total_length;
	else if (step < total_length)
		step = sample_length;
848

M
Markus Pargmann 已提交
849 850 851 852 853 854 855 856 857
	/*
	 * Seems we have a bus with size limitation so we have to execute
	 * multiple reads
	 */
	for (i = 0; i < total_length; i += step) {
		ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
				      &buffer[i], step);
		if (ret)
			break;
858 859 860
	}

	if (ret)
861 862
		dev_err(dev,
			"Error transferring data from fifo in single steps of %zu\n",
M
Markus Pargmann 已提交
863
			step);
864 865 866 867 868 869 870 871

	return ret;
}

static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
				     unsigned samples, bool irq)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
872
	struct device *dev = regmap_get_device(data->regmap);
873 874 875 876 877
	int ret, i;
	u8 count;
	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
	int64_t tstamp;
	uint64_t sample_period;
M
Markus Pargmann 已提交
878
	unsigned int val;
879

M
Markus Pargmann 已提交
880
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
881
	if (ret < 0) {
882
		dev_err(dev, "Error reading reg_fifo_status\n");
883 884 885
		return ret;
	}

M
Markus Pargmann 已提交
886
	count = val & 0x7F;
887 888 889 890 891 892 893 894 895 896 897 898 899 900

	if (!count)
		return 0;

	/*
	 * If we getting called from IRQ handler we know the stored timestamp is
	 * fairly accurate for the last stored sample. Otherwise, if we are
	 * called as a result of a read operation from userspace and hence
	 * before the watermark interrupt was triggered, take a timestamp
	 * now. We can fall anywhere in between two samples so the error in this
	 * case is at most one sample period.
	 */
	if (!irq) {
		data->old_timestamp = data->timestamp;
901
		data->timestamp = iio_get_time_ns(indio_dev);
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	}

	/*
	 * Approximate timestamps for each of the sample based on the sampling
	 * frequency, timestamp for last sample and number of samples.
	 *
	 * Note that we can't use the current bandwidth settings to compute the
	 * sample period because the sample rate varies with the device
	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
	 * small variation adds when we store a large number of samples and
	 * creates significant jitter between the last and first samples in
	 * different batches (e.g. 32ms vs 21ms).
	 *
	 * To avoid this issue we compute the actual sample period ourselves
	 * based on the timestamp delta between the last two flush operations.
	 */
	sample_period = (data->timestamp - data->old_timestamp);
	do_div(sample_period, count);
	tstamp = data->timestamp - (count - 1) * sample_period;

	if (samples && count > samples)
		count = samples;

M
Markus Pargmann 已提交
925
	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	if (ret)
		return ret;

	/*
	 * Ideally we want the IIO core to handle the demux when running in fifo
	 * mode but not when running in triggered buffer mode. Unfortunately
	 * this does not seem to be possible, so stick with driver demux for
	 * now.
	 */
	for (i = 0; i < count; i++) {
		u16 sample[8];
		int j, bit;

		j = 0;
		for_each_set_bit(bit, indio_dev->active_scan_mask,
				 indio_dev->masklength)
			memcpy(&sample[j++], &buffer[i * 3 + bit], 2);

		iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);

		tstamp += sample_period;
	}

	return count;
}

static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	mutex_lock(&data->mutex);
	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
	mutex_unlock(&data->mutex);

	return ret;
}

964
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
965
		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
966 967 968 969 970 971 972 973 974 975 976 977

static struct attribute *bmc150_accel_attributes[] = {
	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group bmc150_accel_attrs_group = {
	.attrs = bmc150_accel_attributes,
};

static const struct iio_event_spec bmc150_accel_event = {
		.type = IIO_EV_TYPE_ROC,
978
		.dir = IIO_EV_DIR_EITHER,
979 980 981 982 983
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
				 BIT(IIO_EV_INFO_ENABLE) |
				 BIT(IIO_EV_INFO_PERIOD)
};

984
#define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
985 986 987 988 989 990 991 992 993
	.type = IIO_ACCEL,						\
	.modified = 1,							\
	.channel2 = IIO_MOD_##_axis,					\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
	.scan_index = AXIS_##_axis,					\
	.scan_type = {							\
		.sign = 's',						\
994
		.realbits = (bits),					\
995
		.storagebits = 16,					\
996
		.shift = 16 - (bits),					\
997
		.endianness = IIO_LE,					\
998 999 1000 1001 1002
	},								\
	.event_spec = &bmc150_accel_event,				\
	.num_event_specs = 1						\
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
#define BMC150_ACCEL_CHANNELS(bits) {					\
	{								\
		.type = IIO_TEMP,					\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
				      BIT(IIO_CHAN_INFO_SCALE) |	\
				      BIT(IIO_CHAN_INFO_OFFSET),	\
		.scan_index = -1,					\
	},								\
	BMC150_ACCEL_CHANNEL(X, bits),					\
	BMC150_ACCEL_CHANNEL(Y, bits),					\
	BMC150_ACCEL_CHANNEL(Z, bits),					\
	IIO_CHAN_SOFT_TIMESTAMP(3),					\
}

static const struct iio_chan_spec bma222e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(8);
static const struct iio_chan_spec bma250e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(10);
static const struct iio_chan_spec bmc150_accel_channels[] =
	BMC150_ACCEL_CHANNELS(12);
static const struct iio_chan_spec bma280_accel_channels[] =
	BMC150_ACCEL_CHANNELS(14);

static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
	[bmc150] = {
1028
		.name = "BMC150A",
1029 1030 1031 1032 1033 1034 1035 1036 1037
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bmi055] = {
1038
		.name = "BMI055A",
1039 1040 1041 1042 1043 1044 1045 1046 1047
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma255] = {
1048
		.name = "BMA0255",
1049 1050 1051 1052 1053 1054 1055 1056 1057
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma250e] = {
1058
		.name = "BMA250E",
1059 1060 1061 1062 1063 1064 1065 1066 1067
		.chip_id = 0xF9,
		.channels = bma250e_accel_channels,
		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma222e] = {
1068
		.name = "BMA222E",
1069 1070 1071 1072 1073 1074 1075 1076 1077
		.chip_id = 0xF8,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma280] = {
1078
		.name = "BMA0280",
1079 1080 1081 1082 1083 1084 1085
		.chip_id = 0xFB,
		.channels = bma280_accel_channels,
		.num_channels = ARRAY_SIZE(bma280_accel_channels),
		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	},
};

static const struct iio_info bmc150_accel_info = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
};

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
static const struct iio_info bmc150_accel_info_fifo = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
	.validate_trigger	= bmc150_accel_validate_trigger,
	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
};

1112 1113 1114 1115
static const unsigned long bmc150_accel_scan_masks[] = {
					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
					0};

1116 1117 1118 1119 1120
static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1121
	int ret;
1122 1123

	mutex_lock(&data->mutex);
1124 1125
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
			       data->buffer, AXIS_MAX * 2);
1126
	mutex_unlock(&data->mutex);
1127 1128
	if (ret < 0)
		goto err_read;
1129 1130

	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1131
					   pf->timestamp);
1132 1133 1134 1135 1136 1137 1138 1139
err_read:
	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
{
1140 1141
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1142
	struct device *dev = regmap_get_device(data->regmap);
1143 1144 1145
	int ret;

	/* new data interrupts don't need ack */
1146
	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1147 1148 1149 1150
		return 0;

	mutex_lock(&data->mutex);
	/* clear any latched interrupt */
M
Markus Pargmann 已提交
1151 1152 1153
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1154 1155
	mutex_unlock(&data->mutex);
	if (ret < 0) {
1156
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1157 1158 1159 1160 1161 1162
		return ret;
	}

	return 0;
}

1163
static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1164
					  bool state)
1165
{
1166 1167
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1168 1169 1170 1171
	int ret;

	mutex_lock(&data->mutex);

1172 1173 1174 1175 1176 1177 1178 1179
	if (t->enabled == state) {
		mutex_unlock(&data->mutex);
		return 0;
	}

	if (t->setup) {
		ret = t->setup(t, state);
		if (ret < 0) {
1180
			mutex_unlock(&data->mutex);
1181
			return ret;
1182 1183 1184
		}
	}

1185
	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1186 1187 1188 1189
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}
1190 1191

	t->enabled = state;
1192 1193 1194 1195 1196 1197 1198

	mutex_unlock(&data->mutex);

	return ret;
}

static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1199
	.set_trigger_state = bmc150_accel_trigger_set_state,
1200 1201 1202
	.try_reenable = bmc150_accel_trig_try_reen,
};

1203
static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1204 1205
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1206
	struct device *dev = regmap_get_device(data->regmap);
1207
	int dir;
1208
	int ret;
M
Markus Pargmann 已提交
1209
	unsigned int val;
1210

M
Markus Pargmann 已提交
1211
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1212
	if (ret < 0) {
1213
		dev_err(dev, "Error reading reg_int_status_2\n");
1214
		return ret;
1215 1216
	}

M
Markus Pargmann 已提交
1217
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1218 1219 1220 1221
		dir = IIO_EV_DIR_FALLING;
	else
		dir = IIO_EV_DIR_RISING;

M
Markus Pargmann 已提交
1222
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1223 1224 1225 1226 1227 1228 1229 1230
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_X,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1231
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1232 1233 1234 1235 1236 1237 1238 1239
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Y,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1240
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1241 1242 1243 1244 1245 1246 1247 1248
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Z,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

1249 1250 1251 1252 1253 1254 1255
	return ret;
}

static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1256
	struct device *dev = regmap_get_device(data->regmap);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	bool ack = false;
	int ret;

	mutex_lock(&data->mutex);

	if (data->fifo_mode) {
		ret = __bmc150_accel_fifo_flush(indio_dev,
						BMC150_ACCEL_FIFO_LENGTH, true);
		if (ret > 0)
			ack = true;
	}

	if (data->ev_enable_state) {
		ret = bmc150_accel_handle_roc_event(indio_dev);
		if (ret > 0)
			ack = true;
	}

	if (ack) {
M
Markus Pargmann 已提交
1276 1277 1278
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_INT |
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1279
		if (ret)
1280
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1281

1282 1283 1284 1285
		ret = IRQ_HANDLED;
	} else {
		ret = IRQ_NONE;
	}
1286

1287 1288 1289
	mutex_unlock(&data->mutex);

	return ret;
1290 1291
}

1292
static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1293 1294 1295
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1296
	bool ack = false;
1297
	int i;
1298

1299
	data->old_timestamp = data->timestamp;
1300
	data->timestamp = iio_get_time_ns(indio_dev);
1301

1302 1303 1304
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].enabled) {
			iio_trigger_poll(data->triggers[i].indio_trig);
1305
			ack = true;
1306 1307 1308
			break;
		}
	}
1309

1310
	if (data->ev_enable_state || data->fifo_mode)
1311
		return IRQ_WAKE_THREAD;
1312 1313

	if (ack)
1314
		return IRQ_HANDLED;
1315 1316

	return IRQ_NONE;
1317 1318
}

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
static const struct {
	int intr;
	const char *name;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
	{
		.intr = 0,
		.name = "%s-dev%d",
	},
	{
		.intr = 1,
		.name = "%s-any-motion-dev%d",
		.setup = bmc150_accel_any_motion_setup,
	},
};

static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
					     int from)
{
	int i;

1340
	for (i = from; i >= 0; i--) {
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		if (data->triggers[i].indio_trig) {
			iio_trigger_unregister(data->triggers[i].indio_trig);
			data->triggers[i].indio_trig = NULL;
		}
	}
}

static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
				       struct bmc150_accel_data *data)
{
1351
	struct device *dev = regmap_get_device(data->regmap);
1352 1353 1354 1355 1356
	int i, ret;

	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		struct bmc150_accel_trigger *t = &data->triggers[i];

1357 1358
		t->indio_trig = devm_iio_trigger_alloc(dev,
					bmc150_accel_triggers[i].name,
1359 1360 1361 1362 1363 1364 1365
						       indio_dev->name,
						       indio_dev->id);
		if (!t->indio_trig) {
			ret = -ENOMEM;
			break;
		}

1366
		t->indio_trig->dev.parent = dev;
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
		t->indio_trig->ops = &bmc150_accel_trigger_ops;
		t->intr = bmc150_accel_triggers[i].intr;
		t->data = data;
		t->setup = bmc150_accel_triggers[i].setup;
		iio_trigger_set_drvdata(t->indio_trig, t);

		ret = iio_trigger_register(t->indio_trig);
		if (ret)
			break;
	}

	if (ret)
		bmc150_accel_unregister_triggers(data, i - 1);

	return ret;
}

1384 1385 1386 1387 1388 1389
#define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
#define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
#define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00

static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
{
1390
	struct device *dev = regmap_get_device(data->regmap);
1391 1392 1393
	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
	int ret;

M
Markus Pargmann 已提交
1394
	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1395
	if (ret < 0) {
1396
		dev_err(dev, "Error writing reg_fifo_config1\n");
1397 1398 1399 1400 1401 1402
		return ret;
	}

	if (!data->fifo_mode)
		return 0;

M
Markus Pargmann 已提交
1403 1404
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
			   data->watermark);
1405
	if (ret < 0)
1406
		dev_err(dev, "Error writing reg_fifo_config0\n");
1407 1408 1409 1410

	return ret;
}

1411 1412 1413 1414 1415 1416 1417
static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, true);
}

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret = 0;

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
		return iio_triggered_buffer_postenable(indio_dev);

	mutex_lock(&data->mutex);

	if (!data->watermark)
		goto out;

	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					 true);
	if (ret)
		goto out;

	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;

	ret = bmc150_accel_fifo_set_mode(data);
	if (ret) {
		data->fifo_mode = 0;
		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					   false);
	}

out:
	mutex_unlock(&data->mutex);

	return ret;
}

static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
		return iio_triggered_buffer_predisable(indio_dev);

	mutex_lock(&data->mutex);

	if (!data->fifo_mode)
		goto out;

	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
	data->fifo_mode = 0;
	bmc150_accel_fifo_set_mode(data);

out:
	mutex_unlock(&data->mutex);

	return 0;
}

1474 1475 1476 1477 1478 1479 1480
static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, false);
}

1481
static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1482
	.preenable = bmc150_accel_buffer_preenable,
1483 1484
	.postenable = bmc150_accel_buffer_postenable,
	.predisable = bmc150_accel_buffer_predisable,
1485
	.postdisable = bmc150_accel_buffer_postdisable,
1486 1487
};

1488 1489
static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
{
1490
	struct device *dev = regmap_get_device(data->regmap);
1491
	int ret, i;
M
Markus Pargmann 已提交
1492
	unsigned int val;
1493

1494 1495 1496 1497 1498 1499 1500 1501
	/*
	 * Reset chip to get it in a known good state. A delay of 1.8ms after
	 * reset is required according to the data sheets of supported chips.
	 */
	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
		     BMC150_ACCEL_RESET_VAL);
	usleep_range(1800, 2500);

M
Markus Pargmann 已提交
1502
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1503
	if (ret < 0) {
1504
		dev_err(dev, "Error: Reading chip id\n");
1505 1506 1507
		return ret;
	}

1508
	dev_dbg(dev, "Chip Id %x\n", val);
1509
	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
M
Markus Pargmann 已提交
1510
		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1511 1512 1513 1514 1515 1516
			data->chip_info = &bmc150_accel_chip_info_tbl[i];
			break;
		}
	}

	if (!data->chip_info) {
1517
		dev_err(dev, "Invalid chip %x\n", val);
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
		return -ENODEV;
	}

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
	if (ret < 0)
		return ret;

	/* Set Bandwidth */
	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
	if (ret < 0)
		return ret;

	/* Set Default Range */
M
Markus Pargmann 已提交
1531 1532
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
			   BMC150_ACCEL_DEF_RANGE_4G);
1533
	if (ret < 0) {
1534
		dev_err(dev, "Error writing reg_pmu_range\n");
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
		return ret;
	}

	data->range = BMC150_ACCEL_DEF_RANGE_4G;

	/* Set default slope duration and thresholds */
	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
	ret = bmc150_accel_update_slope(data);
	if (ret < 0)
		return ret;

	/* Set default as latched interrupts */
M
Markus Pargmann 已提交
1548 1549 1550
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1551
	if (ret < 0) {
1552
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1553 1554 1555 1556 1557 1558
		return ret;
	}

	return 0;
}

1559 1560
int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
			    const char *name, bool block_supported)
1561 1562 1563 1564 1565
{
	struct bmc150_accel_data *data;
	struct iio_dev *indio_dev;
	int ret;

1566
	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1567 1568 1569 1570
	if (!indio_dev)
		return -ENOMEM;

	data = iio_priv(indio_dev);
1571 1572
	dev_set_drvdata(dev, indio_dev);
	data->irq = irq;
1573

1574
	data->regmap = regmap;
1575

1576 1577 1578 1579 1580 1581
	ret = bmc150_accel_chip_init(data);
	if (ret < 0)
		return ret;

	mutex_init(&data->mutex);

1582
	indio_dev->dev.parent = dev;
1583 1584
	indio_dev->channels = data->chip_info->channels;
	indio_dev->num_channels = data->chip_info->num_channels;
1585
	indio_dev->name = name ? name : data->chip_info->name;
1586
	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1587 1588 1589
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &bmc150_accel_info;

1590 1591 1592 1593 1594
	ret = iio_triggered_buffer_setup(indio_dev,
					 &iio_pollfunc_store_time,
					 bmc150_accel_trigger_handler,
					 &bmc150_accel_buffer_ops);
	if (ret < 0) {
1595
		dev_err(dev, "Failed: iio triggered buffer setup\n");
1596 1597 1598
		return ret;
	}

1599
	if (data->irq > 0) {
1600
		ret = devm_request_threaded_irq(
1601
						dev, data->irq,
1602 1603
						bmc150_accel_irq_handler,
						bmc150_accel_irq_thread_handler,
1604 1605 1606 1607
						IRQF_TRIGGER_RISING,
						BMC150_ACCEL_IRQ_NAME,
						indio_dev);
		if (ret)
1608
			goto err_buffer_cleanup;
1609

1610 1611 1612 1613 1614 1615
		/*
		 * Set latched mode interrupt. While certain interrupts are
		 * non-latched regardless of this settings (e.g. new data) we
		 * want to use latch mode when we can to prevent interrupt
		 * flooding.
		 */
M
Markus Pargmann 已提交
1616 1617
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1618
		if (ret < 0) {
1619
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1620
			goto err_buffer_cleanup;
1621 1622
		}

1623 1624
		bmc150_accel_interrupts_setup(indio_dev, data);

1625
		ret = bmc150_accel_triggers_setup(indio_dev, data);
1626
		if (ret)
1627
			goto err_buffer_cleanup;
1628

1629
		if (block_supported) {
1630 1631
			indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
			indio_dev->info = &bmc150_accel_info_fifo;
1632 1633
			iio_buffer_set_attrs(indio_dev->buffer,
					     bmc150_accel_fifo_attributes);
1634
		}
1635 1636
	}

1637
	ret = pm_runtime_set_active(dev);
1638
	if (ret)
1639
		goto err_trigger_unregister;
1640

1641 1642 1643
	pm_runtime_enable(dev);
	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
	pm_runtime_use_autosuspend(dev);
1644

1645 1646 1647 1648 1649 1650
	ret = iio_device_register(indio_dev);
	if (ret < 0) {
		dev_err(dev, "Unable to register iio device\n");
		goto err_trigger_unregister;
	}

1651 1652 1653
	return 0;

err_trigger_unregister:
1654
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1655 1656
err_buffer_cleanup:
	iio_triggered_buffer_cleanup(indio_dev);
1657 1658 1659

	return ret;
}
1660
EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1661

1662
int bmc150_accel_core_remove(struct device *dev)
1663
{
1664
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1665 1666
	struct bmc150_accel_data *data = iio_priv(indio_dev);

1667 1668
	iio_device_unregister(indio_dev);

1669 1670 1671
	pm_runtime_disable(dev);
	pm_runtime_set_suspended(dev);
	pm_runtime_put_noidle(dev);
1672

1673
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1674

1675 1676
	iio_triggered_buffer_cleanup(indio_dev);

1677 1678 1679 1680 1681 1682
	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
	mutex_unlock(&data->mutex);

	return 0;
}
1683
EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1684 1685 1686 1687

#ifdef CONFIG_PM_SLEEP
static int bmc150_accel_suspend(struct device *dev)
{
1688
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_resume(struct device *dev)
{
1700
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1701 1702 1703
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
1704
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1705
	bmc150_accel_fifo_set_mode(data);
1706 1707 1708 1709 1710 1711
	mutex_unlock(&data->mutex);

	return 0;
}
#endif

1712
#ifdef CONFIG_PM
1713 1714
static int bmc150_accel_runtime_suspend(struct device *dev)
{
1715
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1716
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1717
	int ret;
1718

1719
	dev_dbg(dev,  __func__);
1720 1721 1722
	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	if (ret < 0)
		return -EAGAIN;
1723

1724
	return 0;
1725 1726 1727 1728
}

static int bmc150_accel_runtime_resume(struct device *dev)
{
1729
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1730 1731 1732 1733
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;
	int sleep_val;

1734
	dev_dbg(dev,  __func__);
1735 1736

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1737 1738 1739
	if (ret < 0)
		return ret;
	ret = bmc150_accel_fifo_set_mode(data);
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	if (ret < 0)
		return ret;

	sleep_val = bmc150_accel_get_startup_times(data);
	if (sleep_val < 20)
		usleep_range(sleep_val * 1000, 20000);
	else
		msleep_interruptible(sleep_val);

	return 0;
}
#endif

1753
const struct dev_pm_ops bmc150_accel_pm_ops = {
1754 1755 1756 1757
	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
			   bmc150_accel_runtime_resume, NULL)
};
1758
EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1759 1760 1761 1762

MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMC150 accelerometer driver");