bmc150-accel-core.c 44.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3 4 5 6 7
 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
 *  - BMC150
 *  - BMI055
 *  - BMA255
 *  - BMA250E
8
 *  - BMA222
9 10 11
 *  - BMA222E
 *  - BMA280
 *
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 * Copyright (c) 2014, Intel Corporation.
 */

#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
M
Markus Pargmann 已提交
30
#include <linux/regmap.h>
31

32 33
#include "bmc150-accel.h"

34 35 36 37 38 39 40
#define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
#define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"

#define BMC150_ACCEL_REG_CHIP_ID		0x00

#define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
#define BMC150_ACCEL_ANY_MOTION_MASK		0x07
41 42 43
#define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
#define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
#define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)

#define BMC150_ACCEL_REG_PMU_LPW		0x11
#define BMC150_ACCEL_PMU_MODE_MASK		0xE0
#define BMC150_ACCEL_PMU_MODE_SHIFT		5
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1

#define BMC150_ACCEL_REG_PMU_RANGE		0x0F

#define BMC150_ACCEL_DEF_RANGE_2G		0x03
#define BMC150_ACCEL_DEF_RANGE_4G		0x05
#define BMC150_ACCEL_DEF_RANGE_8G		0x08
#define BMC150_ACCEL_DEF_RANGE_16G		0x0C

/* Default BW: 125Hz */
#define BMC150_ACCEL_REG_PMU_BW		0x10
#define BMC150_ACCEL_DEF_BW			125

63 64 65
#define BMC150_ACCEL_REG_RESET			0x14
#define BMC150_ACCEL_RESET_VAL			0xB6

66 67 68 69
#define BMC150_ACCEL_REG_INT_MAP_0		0x19
#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)

#define BMC150_ACCEL_REG_INT_MAP_1		0x1A
70 71 72
#define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
#define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
#define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
73 74 75 76 77 78 79 80 81 82 83 84

#define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
#define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
#define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00

#define BMC150_ACCEL_REG_INT_EN_0		0x16
#define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)

#define BMC150_ACCEL_REG_INT_EN_1		0x17
85 86 87
#define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
#define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
88 89 90 91 92 93 94 95 96 97 98

#define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)

#define BMC150_ACCEL_REG_INT_5			0x27
#define BMC150_ACCEL_SLOPE_DUR_MASK		0x03

#define BMC150_ACCEL_REG_INT_6			0x28
#define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF

/* Slope duration in terms of number of samples */
99
#define BMC150_ACCEL_DEF_SLOPE_DURATION		1
100
/* in terms of multiples of g's/LSB, based on range */
101
#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

#define BMC150_ACCEL_REG_XOUT_L		0x02

#define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100

/* Sleep Duration values */
#define BMC150_ACCEL_SLEEP_500_MICRO		0x05
#define BMC150_ACCEL_SLEEP_1_MS		0x06
#define BMC150_ACCEL_SLEEP_2_MS		0x07
#define BMC150_ACCEL_SLEEP_4_MS		0x08
#define BMC150_ACCEL_SLEEP_6_MS		0x09
#define BMC150_ACCEL_SLEEP_10_MS		0x0A
#define BMC150_ACCEL_SLEEP_25_MS		0x0B
#define BMC150_ACCEL_SLEEP_50_MS		0x0C
#define BMC150_ACCEL_SLEEP_100_MS		0x0D
#define BMC150_ACCEL_SLEEP_500_MS		0x0E
#define BMC150_ACCEL_SLEEP_1_SEC		0x0F

#define BMC150_ACCEL_REG_TEMP			0x08
121
#define BMC150_ACCEL_TEMP_CENTER_VAL		23
122 123 124 125

#define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
#define BMC150_AUTO_SUSPEND_DELAY_MS		2000

126 127 128 129 130 131
#define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
#define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
#define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
#define BMC150_ACCEL_REG_FIFO_DATA		0x3F
#define BMC150_ACCEL_FIFO_LENGTH		32

132 133 134 135
enum bmc150_accel_axis {
	AXIS_X,
	AXIS_Y,
	AXIS_Z,
136
	AXIS_MAX,
137 138 139 140 141 142 143 144 145
};

enum bmc150_power_modes {
	BMC150_ACCEL_SLEEP_MODE_NORMAL,
	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
	BMC150_ACCEL_SLEEP_MODE_LPM,
	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
};

146 147 148 149 150 151
struct bmc150_scale_info {
	int scale;
	u8 reg_range;
};

struct bmc150_accel_chip_info {
152
	const char *name;
153 154 155 156 157 158
	u8 chip_id;
	const struct iio_chan_spec *channels;
	int num_channels;
	const struct bmc150_scale_info scale_table[4];
};

159 160 161 162 163
struct bmc150_accel_interrupt {
	const struct bmc150_accel_interrupt_info *info;
	atomic_t users;
};

164 165 166 167 168 169 170 171
struct bmc150_accel_trigger {
	struct bmc150_accel_data *data;
	struct iio_trigger *indio_trig;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
	int intr;
	bool enabled;
};

172 173 174 175 176 177 178
enum bmc150_accel_interrupt_id {
	BMC150_ACCEL_INT_DATA_READY,
	BMC150_ACCEL_INT_ANY_MOTION,
	BMC150_ACCEL_INT_WATERMARK,
	BMC150_ACCEL_INTERRUPTS,
};

179 180 181 182 183 184
enum bmc150_accel_trigger_id {
	BMC150_ACCEL_TRIGGER_DATA_READY,
	BMC150_ACCEL_TRIGGER_ANY_MOTION,
	BMC150_ACCEL_TRIGGERS,
};

185
struct bmc150_accel_data {
M
Markus Pargmann 已提交
186
	struct regmap *regmap;
187
	int irq;
188
	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
189
	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
190
	struct mutex mutex;
191
	u8 fifo_mode, watermark;
192
	s16 buffer[8];
193 194 195 196 197 198 199 200
	/*
	 * Ensure there is sufficient space and correct alignment for
	 * the timestamp if enabled
	 */
	struct {
		__le16 channels[3];
		s64 ts __aligned(8);
	} scan;
201 202 203 204 205
	u8 bw_bits;
	u32 slope_dur;
	u32 slope_thres;
	u32 range;
	int ev_enable_state;
206
	int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
207
	const struct bmc150_accel_chip_info *chip_info;
208
	struct iio_mount_matrix orientation;
209 210 211 212 213 214
};

static const struct {
	int val;
	int val2;
	u8 bw_bits;
215 216 217 218 219 220 221 222
} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
				     {31, 260000, 0x09},
				     {62, 500000, 0x0A},
				     {125, 0, 0x0B},
				     {250, 0, 0x0C},
				     {500, 0, 0x0D},
				     {1000, 0, 0x0E},
				     {2000, 0, 0x0F} };
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

static const struct {
	int bw_bits;
	int msec;
} bmc150_accel_sample_upd_time[] = { {0x08, 64},
				     {0x09, 32},
				     {0x0A, 16},
				     {0x0B, 8},
				     {0x0C, 4},
				     {0x0D, 2},
				     {0x0E, 1},
				     {0x0F, 1} };

static const struct {
	int sleep_dur;
238
	u8 reg_value;
239 240 241 242 243 244 245 246 247 248 249 250 251
} bmc150_accel_sleep_value_table[] = { {0, 0},
				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
				       {1000, BMC150_ACCEL_SLEEP_1_MS},
				       {2000, BMC150_ACCEL_SLEEP_2_MS},
				       {4000, BMC150_ACCEL_SLEEP_4_MS},
				       {6000, BMC150_ACCEL_SLEEP_6_MS},
				       {10000, BMC150_ACCEL_SLEEP_10_MS},
				       {25000, BMC150_ACCEL_SLEEP_25_MS},
				       {50000, BMC150_ACCEL_SLEEP_50_MS},
				       {100000, BMC150_ACCEL_SLEEP_100_MS},
				       {500000, BMC150_ACCEL_SLEEP_500_MS},
				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };

252
const struct regmap_config bmc150_regmap_conf = {
M
Markus Pargmann 已提交
253 254 255 256
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = 0x3f,
};
257
EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
M
Markus Pargmann 已提交
258

259 260 261 262
static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
				 enum bmc150_power_modes mode,
				 int dur_us)
{
263
	struct device *dev = regmap_get_device(data->regmap);
264 265 266 267 268 269 270 271 272 273 274 275 276
	int i;
	int ret;
	u8 lpw_bits;
	int dur_val = -1;

	if (dur_us > 0) {
		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
									 ++i) {
			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
									dur_us)
				dur_val =
				bmc150_accel_sleep_value_table[i].reg_value;
		}
277
	} else {
278
		dur_val = 0;
279
	}
280 281 282 283 284 285 286

	if (dur_val < 0)
		return -EINVAL;

	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);

287
	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
288

M
Markus Pargmann 已提交
289
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
290
	if (ret < 0) {
291
		dev_err(dev, "Error writing reg_pmu_lpw\n");
292 293 294 295 296 297 298 299 300 301 302 303 304 305
		return ret;
	}

	return 0;
}

static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
			       int val2)
{
	int i;
	int ret;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].val == val &&
306
		    bmc150_accel_samp_freq_table[i].val2 == val2) {
M
Markus Pargmann 已提交
307
			ret = regmap_write(data->regmap,
308 309 310 311 312 313 314 315 316 317 318 319 320 321
				BMC150_ACCEL_REG_PMU_BW,
				bmc150_accel_samp_freq_table[i].bw_bits);
			if (ret < 0)
				return ret;

			data->bw_bits =
				bmc150_accel_samp_freq_table[i].bw_bits;
			return 0;
		}
	}

	return -EINVAL;
}

322 323
static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
{
324
	struct device *dev = regmap_get_device(data->regmap);
M
Markus Pargmann 已提交
325
	int ret;
326

M
Markus Pargmann 已提交
327
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
328 329
					data->slope_thres);
	if (ret < 0) {
330
		dev_err(dev, "Error writing reg_int_6\n");
331 332 333
		return ret;
	}

M
Markus Pargmann 已提交
334 335
	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
336
	if (ret < 0) {
337
		dev_err(dev, "Error updating reg_int_5\n");
338 339 340
		return ret;
	}

341
	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
342 343 344 345

	return ret;
}

346 347 348 349 350 351 352 353 354
static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
					 bool state)
{
	if (state)
		return bmc150_accel_update_slope(t->data);

	return 0;
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
			       int *val2)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
			*val = bmc150_accel_samp_freq_table[i].val;
			*val2 = bmc150_accel_samp_freq_table[i].val2;
			return IIO_VAL_INT_PLUS_MICRO;
		}
	}

	return -EINVAL;
}

371
#ifdef CONFIG_PM
372 373 374 375 376 377 378 379 380 381 382 383 384 385
static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
			return bmc150_accel_sample_upd_time[i].msec;
	}

	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
}

static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
386
	struct device *dev = regmap_get_device(data->regmap);
387 388
	int ret;

389
	if (on) {
390
		ret = pm_runtime_get_sync(dev);
391
	} else {
392 393
		pm_runtime_mark_last_busy(dev);
		ret = pm_runtime_put_autosuspend(dev);
394
	}
395

396
	if (ret < 0) {
397
		dev_err(dev,
398
			"Failed: %s for %d\n", __func__, on);
399
		if (on)
400
			pm_runtime_put_noidle(dev);
401

402 403 404 405 406
		return ret;
	}

	return 0;
}
407 408 409 410 411 412
#else
static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
	return 0;
}
#endif
413

414 415 416 417 418
static const struct bmc150_accel_interrupt_info {
	u8 map_reg;
	u8 map_bitmask;
	u8 en_reg;
	u8 en_bitmask;
419
} bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
420 421 422 423 424 425 426 427 428 429 430 431 432 433
	{ /* data ready interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
	},
	{  /* motion interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
			BMC150_ACCEL_INT_EN_BIT_SLP_Z
	},
434 435 436 437 438 439
	{ /* fifo watermark interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
	},
440 441
};

442 443 444 445 446 447 448 449 450 451
static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
					  struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
		data->interrupts[i].info = &bmc150_accel_interrupts[i];
}

static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
452 453
				      bool state)
{
454
	struct device *dev = regmap_get_device(data->regmap);
455 456
	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
	const struct bmc150_accel_interrupt_info *info = intr->info;
457 458
	int ret;

459 460 461 462 463 464 465 466
	if (state) {
		if (atomic_inc_return(&intr->users) > 1)
			return 0;
	} else {
		if (atomic_dec_return(&intr->users) > 0)
			return 0;
	}

467
	/*
468 469 470 471 472 473 474
	 * We will expect the enable and disable to do operation in reverse
	 * order. This will happen here anyway, as our resume operation uses
	 * sync mode runtime pm calls. The suspend operation will be delayed
	 * by autosuspend delay.
	 * So the disable operation will still happen in reverse order of
	 * enable operation. When runtime pm is disabled the mode is always on,
	 * so sequence doesn't matter.
475 476 477 478 479 480
	 */
	ret = bmc150_accel_set_power_state(data, state);
	if (ret < 0)
		return ret;

	/* map the interrupt to the appropriate pins */
M
Markus Pargmann 已提交
481 482
	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
				 (state ? info->map_bitmask : 0));
483
	if (ret < 0) {
484
		dev_err(dev, "Error updating reg_int_map\n");
485 486 487 488
		goto out_fix_power_state;
	}

	/* enable/disable the interrupt */
M
Markus Pargmann 已提交
489 490
	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
				 (state ? info->en_bitmask : 0));
491
	if (ret < 0) {
492
		dev_err(dev, "Error updating reg_int_en\n");
493 494 495 496 497 498 499 500 501 502
		goto out_fix_power_state;
	}

	return 0;

out_fix_power_state:
	bmc150_accel_set_power_state(data, false);
	return ret;
}

503 504
static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
{
505
	struct device *dev = regmap_get_device(data->regmap);
506 507
	int ret, i;

508 509
	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
		if (data->chip_info->scale_table[i].scale == val) {
M
Markus Pargmann 已提交
510
			ret = regmap_write(data->regmap,
511 512
				     BMC150_ACCEL_REG_PMU_RANGE,
				     data->chip_info->scale_table[i].reg_range);
513
			if (ret < 0) {
514
				dev_err(dev, "Error writing pmu_range\n");
515 516 517
				return ret;
			}

518
			data->range = data->chip_info->scale_table[i].reg_range;
519 520 521 522 523 524 525 526 527
			return 0;
		}
	}

	return -EINVAL;
}

static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
{
528
	struct device *dev = regmap_get_device(data->regmap);
529
	int ret;
M
Markus Pargmann 已提交
530
	unsigned int value;
531 532 533

	mutex_lock(&data->mutex);

M
Markus Pargmann 已提交
534
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
535
	if (ret < 0) {
536
		dev_err(dev, "Error reading reg_temp\n");
537 538 539
		mutex_unlock(&data->mutex);
		return ret;
	}
M
Markus Pargmann 已提交
540
	*val = sign_extend32(value, 7);
541 542 543 544 545 546

	mutex_unlock(&data->mutex);

	return IIO_VAL_INT;
}

547 548
static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
				 struct iio_chan_spec const *chan,
549 550
				 int *val)
{
551
	struct device *dev = regmap_get_device(data->regmap);
552
	int ret;
553
	int axis = chan->scan_index;
554
	__le16 raw_val;
555 556 557 558 559 560 561 562

	mutex_lock(&data->mutex);
	ret = bmc150_accel_set_power_state(data, true);
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

M
Markus Pargmann 已提交
563
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
564
			       &raw_val, sizeof(raw_val));
565
	if (ret < 0) {
566
		dev_err(dev, "Error reading axis %d\n", axis);
567 568 569 570
		bmc150_accel_set_power_state(data, false);
		mutex_unlock(&data->mutex);
		return ret;
	}
571
	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
572
			     chan->scan_type.realbits - 1);
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	ret = bmc150_accel_set_power_state(data, false);
	mutex_unlock(&data->mutex);
	if (ret < 0)
		return ret;

	return IIO_VAL_INT;
}

static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
				 struct iio_chan_spec const *chan,
				 int *val, int *val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		switch (chan->type) {
		case IIO_TEMP:
			return bmc150_accel_get_temp(data, val);
		case IIO_ACCEL:
			if (iio_buffer_enabled(indio_dev))
				return -EBUSY;
			else
597
				return bmc150_accel_get_axis(data, chan, val);
598 599 600 601 602 603 604
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_OFFSET:
		if (chan->type == IIO_TEMP) {
			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
			return IIO_VAL_INT;
605
		} else {
606
			return -EINVAL;
607
		}
608 609 610 611 612 613 614 615 616
	case IIO_CHAN_INFO_SCALE:
		*val = 0;
		switch (chan->type) {
		case IIO_TEMP:
			*val2 = 500000;
			return IIO_VAL_INT_PLUS_MICRO;
		case IIO_ACCEL:
		{
			int i;
617 618
			const struct bmc150_scale_info *si;
			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
619

620 621 622 623
			for (i = 0; i < st_size; ++i) {
				si = &data->chip_info->scale_table[i];
				if (si->reg_range == data->range) {
					*val2 = si->scale;
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
					return IIO_VAL_INT_PLUS_MICRO;
				}
			}
			return -EINVAL;
		}
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_get_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		return -EINVAL;
	}
}

static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
				  struct iio_chan_spec const *chan,
				  int val, int val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		break;
	case IIO_CHAN_INFO_SCALE:
		if (val)
			return -EINVAL;

		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_scale(data, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int bmc150_accel_read_event(struct iio_dev *indio_dev,
				   const struct iio_chan_spec *chan,
				   enum iio_event_type type,
				   enum iio_event_direction dir,
				   enum iio_event_info info,
				   int *val, int *val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	*val2 = 0;
	switch (info) {
	case IIO_EV_INFO_VALUE:
		*val = data->slope_thres;
		break;
	case IIO_EV_INFO_PERIOD:
685
		*val = data->slope_dur;
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
		break;
	default:
		return -EINVAL;
	}

	return IIO_VAL_INT;
}

static int bmc150_accel_write_event(struct iio_dev *indio_dev,
				    const struct iio_chan_spec *chan,
				    enum iio_event_type type,
				    enum iio_event_direction dir,
				    enum iio_event_info info,
				    int val, int val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (data->ev_enable_state)
		return -EBUSY;

	switch (info) {
	case IIO_EV_INFO_VALUE:
708
		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
709 710
		break;
	case IIO_EV_INFO_PERIOD:
711
		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
					  const struct iio_chan_spec *chan,
					  enum iio_event_type type,
					  enum iio_event_direction dir)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return data->ev_enable_state;
}

static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
					   const struct iio_chan_spec *chan,
					   enum iio_event_type type,
					   enum iio_event_direction dir,
					   int state)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

739
	if (state == data->ev_enable_state)
740 741 742 743
		return 0;

	mutex_lock(&data->mutex);

744 745
	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
					 state);
746 747 748 749 750 751 752 753 754 755 756 757
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

	data->ev_enable_state = state;
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
758
					 struct iio_trigger *trig)
759 760
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
761
	int i;
762

763 764 765 766
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].indio_trig == trig)
			return 0;
	}
767

768
	return -EINVAL;
769 770
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
					       struct device_attribute *attr,
					       char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int wm;

	mutex_lock(&data->mutex);
	wm = data->watermark;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", wm);
}

static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	bool state;

	mutex_lock(&data->mutex);
	state = data->fifo_mode;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", state);
}

801 802 803 804 805 806 807 808 809 810 811 812 813 814
static const struct iio_mount_matrix *
bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
				const struct iio_chan_spec *chan)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return &data->orientation;
}

static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
	{ }
};

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
static IIO_CONST_ATTR(hwfifo_watermark_max,
		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
		       bmc150_accel_get_fifo_state, NULL, 0);
static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
		       bmc150_accel_get_fifo_watermark, NULL, 0);

static const struct attribute *bmc150_accel_fifo_attributes[] = {
	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
	NULL,
};

static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (val > BMC150_ACCEL_FIFO_LENGTH)
		val = BMC150_ACCEL_FIFO_LENGTH;

	mutex_lock(&data->mutex);
	data->watermark = val;
	mutex_unlock(&data->mutex);

	return 0;
}

/*
 * We must read at least one full frame in one burst, otherwise the rest of the
 * frame data is discarded.
 */
M
Markus Pargmann 已提交
849
static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
850 851
				      char *buffer, int samples)
{
852
	struct device *dev = regmap_get_device(data->regmap);
853
	int sample_length = 3 * 2;
M
Markus Pargmann 已提交
854 855
	int ret;
	int total_length = samples * sample_length;
856

857 858
	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
			      buffer, total_length);
859
	if (ret)
860
		dev_err(dev,
861
			"Error transferring data from fifo: %d\n", ret);
862 863 864 865 866 867 868 869

	return ret;
}

static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
				     unsigned samples, bool irq)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
870
	struct device *dev = regmap_get_device(data->regmap);
871 872 873 874 875
	int ret, i;
	u8 count;
	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
	int64_t tstamp;
	uint64_t sample_period;
M
Markus Pargmann 已提交
876
	unsigned int val;
877

M
Markus Pargmann 已提交
878
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
879
	if (ret < 0) {
880
		dev_err(dev, "Error reading reg_fifo_status\n");
881 882 883
		return ret;
	}

M
Markus Pargmann 已提交
884
	count = val & 0x7F;
885 886 887 888 889 890 891 892 893 894 895 896 897 898

	if (!count)
		return 0;

	/*
	 * If we getting called from IRQ handler we know the stored timestamp is
	 * fairly accurate for the last stored sample. Otherwise, if we are
	 * called as a result of a read operation from userspace and hence
	 * before the watermark interrupt was triggered, take a timestamp
	 * now. We can fall anywhere in between two samples so the error in this
	 * case is at most one sample period.
	 */
	if (!irq) {
		data->old_timestamp = data->timestamp;
899
		data->timestamp = iio_get_time_ns(indio_dev);
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	}

	/*
	 * Approximate timestamps for each of the sample based on the sampling
	 * frequency, timestamp for last sample and number of samples.
	 *
	 * Note that we can't use the current bandwidth settings to compute the
	 * sample period because the sample rate varies with the device
	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
	 * small variation adds when we store a large number of samples and
	 * creates significant jitter between the last and first samples in
	 * different batches (e.g. 32ms vs 21ms).
	 *
	 * To avoid this issue we compute the actual sample period ourselves
	 * based on the timestamp delta between the last two flush operations.
	 */
	sample_period = (data->timestamp - data->old_timestamp);
	do_div(sample_period, count);
	tstamp = data->timestamp - (count - 1) * sample_period;

	if (samples && count > samples)
		count = samples;

M
Markus Pargmann 已提交
923
	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
	if (ret)
		return ret;

	/*
	 * Ideally we want the IIO core to handle the demux when running in fifo
	 * mode but not when running in triggered buffer mode. Unfortunately
	 * this does not seem to be possible, so stick with driver demux for
	 * now.
	 */
	for (i = 0; i < count; i++) {
		int j, bit;

		j = 0;
		for_each_set_bit(bit, indio_dev->active_scan_mask,
				 indio_dev->masklength)
939 940
			memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
			       sizeof(data->scan.channels[0]));
941

942 943
		iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
						   tstamp);
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962

		tstamp += sample_period;
	}

	return count;
}

static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	mutex_lock(&data->mutex);
	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
	mutex_unlock(&data->mutex);

	return ret;
}

963
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
964
		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
965 966 967 968 969 970 971 972 973 974 975 976

static struct attribute *bmc150_accel_attributes[] = {
	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group bmc150_accel_attrs_group = {
	.attrs = bmc150_accel_attributes,
};

static const struct iio_event_spec bmc150_accel_event = {
		.type = IIO_EV_TYPE_ROC,
977
		.dir = IIO_EV_DIR_EITHER,
978 979 980 981 982
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
				 BIT(IIO_EV_INFO_ENABLE) |
				 BIT(IIO_EV_INFO_PERIOD)
};

983
#define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
984 985 986 987 988 989 990 991 992
	.type = IIO_ACCEL,						\
	.modified = 1,							\
	.channel2 = IIO_MOD_##_axis,					\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
	.scan_index = AXIS_##_axis,					\
	.scan_type = {							\
		.sign = 's',						\
993
		.realbits = (bits),					\
994
		.storagebits = 16,					\
995
		.shift = 16 - (bits),					\
996
		.endianness = IIO_LE,					\
997
	},								\
998
	.ext_info = bmc150_accel_ext_info,				\
999 1000 1001 1002
	.event_spec = &bmc150_accel_event,				\
	.num_event_specs = 1						\
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
#define BMC150_ACCEL_CHANNELS(bits) {					\
	{								\
		.type = IIO_TEMP,					\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
				      BIT(IIO_CHAN_INFO_SCALE) |	\
				      BIT(IIO_CHAN_INFO_OFFSET),	\
		.scan_index = -1,					\
	},								\
	BMC150_ACCEL_CHANNEL(X, bits),					\
	BMC150_ACCEL_CHANNEL(Y, bits),					\
	BMC150_ACCEL_CHANNEL(Z, bits),					\
	IIO_CHAN_SOFT_TIMESTAMP(3),					\
}

static const struct iio_chan_spec bma222e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(8);
static const struct iio_chan_spec bma250e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(10);
static const struct iio_chan_spec bmc150_accel_channels[] =
	BMC150_ACCEL_CHANNELS(12);
static const struct iio_chan_spec bma280_accel_channels[] =
	BMC150_ACCEL_CHANNELS(14);

static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
	[bmc150] = {
1028
		.name = "BMC150A",
1029 1030 1031 1032 1033 1034 1035 1036 1037
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bmi055] = {
1038
		.name = "BMI055A",
1039 1040 1041 1042 1043 1044 1045 1046 1047
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma255] = {
1048
		.name = "BMA0255",
1049 1050 1051 1052 1053 1054 1055 1056 1057
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma250e] = {
1058
		.name = "BMA250E",
1059 1060 1061 1062 1063 1064 1065 1066
		.chip_id = 0xF9,
		.channels = bma250e_accel_channels,
		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
	},
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	[bma222] = {
		.name = "BMA222",
		.chip_id = 0x03,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
		/*
		 * The datasheet page 17 says:
		 * 15.6, 31.3, 62.5 and 125 mg per LSB.
		 */
		.scale_table = { {156000, BMC150_ACCEL_DEF_RANGE_2G},
				 {313000, BMC150_ACCEL_DEF_RANGE_4G},
				 {625000, BMC150_ACCEL_DEF_RANGE_8G},
				 {1250000, BMC150_ACCEL_DEF_RANGE_16G} },
	},
1081
	[bma222e] = {
1082
		.name = "BMA222E",
1083 1084 1085 1086 1087 1088 1089 1090 1091
		.chip_id = 0xF8,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma280] = {
1092
		.name = "BMA0280",
1093 1094 1095 1096 1097 1098 1099
		.chip_id = 0xFB,
		.channels = bma280_accel_channels,
		.num_channels = ARRAY_SIZE(bma280_accel_channels),
		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	},
};

static const struct iio_info bmc150_accel_info = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
};

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
static const struct iio_info bmc150_accel_info_fifo = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
	.validate_trigger	= bmc150_accel_validate_trigger,
	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
};

1126 1127 1128 1129
static const unsigned long bmc150_accel_scan_masks[] = {
					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
					0};

1130 1131 1132 1133 1134
static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1135
	int ret;
1136 1137

	mutex_lock(&data->mutex);
1138 1139
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
			       data->buffer, AXIS_MAX * 2);
1140
	mutex_unlock(&data->mutex);
1141 1142
	if (ret < 0)
		goto err_read;
1143 1144

	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1145
					   pf->timestamp);
1146 1147 1148 1149 1150 1151 1152 1153
err_read:
	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
{
1154 1155
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1156
	struct device *dev = regmap_get_device(data->regmap);
1157 1158 1159
	int ret;

	/* new data interrupts don't need ack */
1160
	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1161 1162 1163 1164
		return 0;

	mutex_lock(&data->mutex);
	/* clear any latched interrupt */
M
Markus Pargmann 已提交
1165 1166 1167
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1168 1169
	mutex_unlock(&data->mutex);
	if (ret < 0) {
1170
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1171 1172 1173 1174 1175 1176
		return ret;
	}

	return 0;
}

1177
static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1178
					  bool state)
1179
{
1180 1181
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1182 1183 1184 1185
	int ret;

	mutex_lock(&data->mutex);

1186 1187 1188 1189 1190 1191 1192 1193
	if (t->enabled == state) {
		mutex_unlock(&data->mutex);
		return 0;
	}

	if (t->setup) {
		ret = t->setup(t, state);
		if (ret < 0) {
1194
			mutex_unlock(&data->mutex);
1195
			return ret;
1196 1197 1198
		}
	}

1199
	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1200 1201 1202 1203
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}
1204 1205

	t->enabled = state;
1206 1207 1208 1209 1210 1211 1212

	mutex_unlock(&data->mutex);

	return ret;
}

static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1213
	.set_trigger_state = bmc150_accel_trigger_set_state,
1214 1215 1216
	.try_reenable = bmc150_accel_trig_try_reen,
};

1217
static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1218 1219
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1220
	struct device *dev = regmap_get_device(data->regmap);
1221
	int dir;
1222
	int ret;
M
Markus Pargmann 已提交
1223
	unsigned int val;
1224

M
Markus Pargmann 已提交
1225
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1226
	if (ret < 0) {
1227
		dev_err(dev, "Error reading reg_int_status_2\n");
1228
		return ret;
1229 1230
	}

M
Markus Pargmann 已提交
1231
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1232 1233 1234 1235
		dir = IIO_EV_DIR_FALLING;
	else
		dir = IIO_EV_DIR_RISING;

M
Markus Pargmann 已提交
1236
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1237 1238 1239 1240 1241 1242 1243 1244
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_X,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1245
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1246 1247 1248 1249 1250 1251 1252 1253
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Y,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1254
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1255 1256 1257 1258 1259 1260 1261 1262
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Z,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

1263 1264 1265 1266 1267 1268 1269
	return ret;
}

static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1270
	struct device *dev = regmap_get_device(data->regmap);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	bool ack = false;
	int ret;

	mutex_lock(&data->mutex);

	if (data->fifo_mode) {
		ret = __bmc150_accel_fifo_flush(indio_dev,
						BMC150_ACCEL_FIFO_LENGTH, true);
		if (ret > 0)
			ack = true;
	}

	if (data->ev_enable_state) {
		ret = bmc150_accel_handle_roc_event(indio_dev);
		if (ret > 0)
			ack = true;
	}

	if (ack) {
M
Markus Pargmann 已提交
1290 1291 1292
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_INT |
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1293
		if (ret)
1294
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1295

1296 1297 1298 1299
		ret = IRQ_HANDLED;
	} else {
		ret = IRQ_NONE;
	}
1300

1301 1302 1303
	mutex_unlock(&data->mutex);

	return ret;
1304 1305
}

1306
static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1307 1308 1309
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1310
	bool ack = false;
1311
	int i;
1312

1313
	data->old_timestamp = data->timestamp;
1314
	data->timestamp = iio_get_time_ns(indio_dev);
1315

1316 1317 1318
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].enabled) {
			iio_trigger_poll(data->triggers[i].indio_trig);
1319
			ack = true;
1320 1321 1322
			break;
		}
	}
1323

1324
	if (data->ev_enable_state || data->fifo_mode)
1325
		return IRQ_WAKE_THREAD;
1326 1327

	if (ack)
1328
		return IRQ_HANDLED;
1329 1330

	return IRQ_NONE;
1331 1332
}

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
static const struct {
	int intr;
	const char *name;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
	{
		.intr = 0,
		.name = "%s-dev%d",
	},
	{
		.intr = 1,
		.name = "%s-any-motion-dev%d",
		.setup = bmc150_accel_any_motion_setup,
	},
};

static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
					     int from)
{
	int i;

1354
	for (i = from; i >= 0; i--) {
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		if (data->triggers[i].indio_trig) {
			iio_trigger_unregister(data->triggers[i].indio_trig);
			data->triggers[i].indio_trig = NULL;
		}
	}
}

static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
				       struct bmc150_accel_data *data)
{
1365
	struct device *dev = regmap_get_device(data->regmap);
1366 1367 1368 1369 1370
	int i, ret;

	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		struct bmc150_accel_trigger *t = &data->triggers[i];

1371 1372
		t->indio_trig = devm_iio_trigger_alloc(dev,
					bmc150_accel_triggers[i].name,
1373 1374 1375 1376 1377 1378 1379
						       indio_dev->name,
						       indio_dev->id);
		if (!t->indio_trig) {
			ret = -ENOMEM;
			break;
		}

1380
		t->indio_trig->dev.parent = dev;
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		t->indio_trig->ops = &bmc150_accel_trigger_ops;
		t->intr = bmc150_accel_triggers[i].intr;
		t->data = data;
		t->setup = bmc150_accel_triggers[i].setup;
		iio_trigger_set_drvdata(t->indio_trig, t);

		ret = iio_trigger_register(t->indio_trig);
		if (ret)
			break;
	}

	if (ret)
		bmc150_accel_unregister_triggers(data, i - 1);

	return ret;
}

1398 1399 1400 1401 1402 1403
#define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
#define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
#define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00

static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
{
1404
	struct device *dev = regmap_get_device(data->regmap);
1405 1406 1407
	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
	int ret;

M
Markus Pargmann 已提交
1408
	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1409
	if (ret < 0) {
1410
		dev_err(dev, "Error writing reg_fifo_config1\n");
1411 1412 1413 1414 1415 1416
		return ret;
	}

	if (!data->fifo_mode)
		return 0;

M
Markus Pargmann 已提交
1417 1418
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
			   data->watermark);
1419
	if (ret < 0)
1420
		dev_err(dev, "Error writing reg_fifo_config0\n");
1421 1422 1423 1424

	return ret;
}

1425 1426 1427 1428 1429 1430 1431
static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, true);
}

1432 1433 1434 1435 1436 1437
static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret = 0;

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1438
		return 0;
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469

	mutex_lock(&data->mutex);

	if (!data->watermark)
		goto out;

	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					 true);
	if (ret)
		goto out;

	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;

	ret = bmc150_accel_fifo_set_mode(data);
	if (ret) {
		data->fifo_mode = 0;
		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					   false);
	}

out:
	mutex_unlock(&data->mutex);

	return ret;
}

static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1470
		return 0;
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

	mutex_lock(&data->mutex);

	if (!data->fifo_mode)
		goto out;

	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
	data->fifo_mode = 0;
	bmc150_accel_fifo_set_mode(data);

out:
	mutex_unlock(&data->mutex);

	return 0;
}

1488 1489 1490 1491 1492 1493 1494
static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, false);
}

1495
static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1496
	.preenable = bmc150_accel_buffer_preenable,
1497 1498
	.postenable = bmc150_accel_buffer_postenable,
	.predisable = bmc150_accel_buffer_predisable,
1499
	.postdisable = bmc150_accel_buffer_postdisable,
1500 1501
};

1502 1503
static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
{
1504
	struct device *dev = regmap_get_device(data->regmap);
1505
	int ret, i;
M
Markus Pargmann 已提交
1506
	unsigned int val;
1507

1508 1509 1510 1511 1512 1513 1514 1515
	/*
	 * Reset chip to get it in a known good state. A delay of 1.8ms after
	 * reset is required according to the data sheets of supported chips.
	 */
	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
		     BMC150_ACCEL_RESET_VAL);
	usleep_range(1800, 2500);

M
Markus Pargmann 已提交
1516
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1517
	if (ret < 0) {
1518
		dev_err(dev, "Error: Reading chip id\n");
1519 1520 1521
		return ret;
	}

1522
	dev_dbg(dev, "Chip Id %x\n", val);
1523
	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
M
Markus Pargmann 已提交
1524
		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1525 1526 1527 1528 1529 1530
			data->chip_info = &bmc150_accel_chip_info_tbl[i];
			break;
		}
	}

	if (!data->chip_info) {
1531
		dev_err(dev, "Invalid chip %x\n", val);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
		return -ENODEV;
	}

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
	if (ret < 0)
		return ret;

	/* Set Bandwidth */
	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
	if (ret < 0)
		return ret;

	/* Set Default Range */
M
Markus Pargmann 已提交
1545 1546
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
			   BMC150_ACCEL_DEF_RANGE_4G);
1547
	if (ret < 0) {
1548
		dev_err(dev, "Error writing reg_pmu_range\n");
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
		return ret;
	}

	data->range = BMC150_ACCEL_DEF_RANGE_4G;

	/* Set default slope duration and thresholds */
	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
	ret = bmc150_accel_update_slope(data);
	if (ret < 0)
		return ret;

	/* Set default as latched interrupts */
M
Markus Pargmann 已提交
1562 1563 1564
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1565
	if (ret < 0) {
1566
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1567 1568 1569 1570 1571 1572
		return ret;
	}

	return 0;
}

1573 1574
int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
			    const char *name, bool block_supported)
1575
{
1576
	const struct attribute **fifo_attrs;
1577 1578 1579 1580
	struct bmc150_accel_data *data;
	struct iio_dev *indio_dev;
	int ret;

1581
	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1582 1583 1584 1585
	if (!indio_dev)
		return -ENOMEM;

	data = iio_priv(indio_dev);
1586 1587
	dev_set_drvdata(dev, indio_dev);
	data->irq = irq;
1588

1589
	data->regmap = regmap;
1590

1591 1592 1593 1594 1595
	ret = iio_read_mount_matrix(dev, "mount-matrix",
				     &data->orientation);
	if (ret)
		return ret;

1596 1597 1598 1599 1600 1601
	ret = bmc150_accel_chip_init(data);
	if (ret < 0)
		return ret;

	mutex_init(&data->mutex);

1602 1603
	indio_dev->channels = data->chip_info->channels;
	indio_dev->num_channels = data->chip_info->num_channels;
1604
	indio_dev->name = name ? name : data->chip_info->name;
1605
	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1606 1607 1608
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &bmc150_accel_info;

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	if (block_supported) {
		indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
		indio_dev->info = &bmc150_accel_info_fifo;
		fifo_attrs = bmc150_accel_fifo_attributes;
	} else {
		fifo_attrs = NULL;
	}

	ret = iio_triggered_buffer_setup_ext(indio_dev,
					     &iio_pollfunc_store_time,
					     bmc150_accel_trigger_handler,
					     &bmc150_accel_buffer_ops,
					     fifo_attrs);
1622
	if (ret < 0) {
1623
		dev_err(dev, "Failed: iio triggered buffer setup\n");
1624 1625 1626
		return ret;
	}

1627
	if (data->irq > 0) {
1628
		ret = devm_request_threaded_irq(
1629
						dev, data->irq,
1630 1631
						bmc150_accel_irq_handler,
						bmc150_accel_irq_thread_handler,
1632 1633 1634 1635
						IRQF_TRIGGER_RISING,
						BMC150_ACCEL_IRQ_NAME,
						indio_dev);
		if (ret)
1636
			goto err_buffer_cleanup;
1637

1638 1639 1640 1641 1642 1643
		/*
		 * Set latched mode interrupt. While certain interrupts are
		 * non-latched regardless of this settings (e.g. new data) we
		 * want to use latch mode when we can to prevent interrupt
		 * flooding.
		 */
M
Markus Pargmann 已提交
1644 1645
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1646
		if (ret < 0) {
1647
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1648
			goto err_buffer_cleanup;
1649 1650
		}

1651 1652
		bmc150_accel_interrupts_setup(indio_dev, data);

1653
		ret = bmc150_accel_triggers_setup(indio_dev, data);
1654
		if (ret)
1655
			goto err_buffer_cleanup;
1656 1657
	}

1658
	ret = pm_runtime_set_active(dev);
1659
	if (ret)
1660
		goto err_trigger_unregister;
1661

1662 1663 1664
	pm_runtime_enable(dev);
	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
	pm_runtime_use_autosuspend(dev);
1665

1666 1667 1668 1669 1670 1671
	ret = iio_device_register(indio_dev);
	if (ret < 0) {
		dev_err(dev, "Unable to register iio device\n");
		goto err_trigger_unregister;
	}

1672 1673 1674
	return 0;

err_trigger_unregister:
1675
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1676 1677
err_buffer_cleanup:
	iio_triggered_buffer_cleanup(indio_dev);
1678 1679 1680

	return ret;
}
1681
EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1682

1683
int bmc150_accel_core_remove(struct device *dev)
1684
{
1685
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1686 1687
	struct bmc150_accel_data *data = iio_priv(indio_dev);

1688 1689
	iio_device_unregister(indio_dev);

1690 1691 1692
	pm_runtime_disable(dev);
	pm_runtime_set_suspended(dev);
	pm_runtime_put_noidle(dev);
1693

1694
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1695

1696 1697
	iio_triggered_buffer_cleanup(indio_dev);

1698 1699 1700 1701 1702 1703
	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
	mutex_unlock(&data->mutex);

	return 0;
}
1704
EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1705 1706 1707 1708

#ifdef CONFIG_PM_SLEEP
static int bmc150_accel_suspend(struct device *dev)
{
1709
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_resume(struct device *dev)
{
1721
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1722 1723 1724
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
1725
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1726
	bmc150_accel_fifo_set_mode(data);
1727 1728 1729 1730 1731 1732
	mutex_unlock(&data->mutex);

	return 0;
}
#endif

1733
#ifdef CONFIG_PM
1734 1735
static int bmc150_accel_runtime_suspend(struct device *dev)
{
1736
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1737
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1738
	int ret;
1739

1740 1741 1742
	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	if (ret < 0)
		return -EAGAIN;
1743

1744
	return 0;
1745 1746 1747 1748
}

static int bmc150_accel_runtime_resume(struct device *dev)
{
1749
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1750 1751 1752 1753 1754
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;
	int sleep_val;

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1755 1756 1757
	if (ret < 0)
		return ret;
	ret = bmc150_accel_fifo_set_mode(data);
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	if (ret < 0)
		return ret;

	sleep_val = bmc150_accel_get_startup_times(data);
	if (sleep_val < 20)
		usleep_range(sleep_val * 1000, 20000);
	else
		msleep_interruptible(sleep_val);

	return 0;
}
#endif

1771
const struct dev_pm_ops bmc150_accel_pm_ops = {
1772 1773 1774 1775
	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
			   bmc150_accel_runtime_resume, NULL)
};
1776
EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1777 1778 1779 1780

MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMC150 accelerometer driver");