bmc150-accel-core.c 44.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3 4 5 6 7 8 9 10
 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
 *  - BMC150
 *  - BMI055
 *  - BMA255
 *  - BMA250E
 *  - BMA222E
 *  - BMA280
 *
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 * Copyright (c) 2014, Intel Corporation.
 */

#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
M
Markus Pargmann 已提交
29
#include <linux/regmap.h>
30

31 32
#include "bmc150-accel.h"

33 34 35 36 37 38 39
#define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
#define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"

#define BMC150_ACCEL_REG_CHIP_ID		0x00

#define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
#define BMC150_ACCEL_ANY_MOTION_MASK		0x07
40 41 42
#define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
#define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
#define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)

#define BMC150_ACCEL_REG_PMU_LPW		0x11
#define BMC150_ACCEL_PMU_MODE_MASK		0xE0
#define BMC150_ACCEL_PMU_MODE_SHIFT		5
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1

#define BMC150_ACCEL_REG_PMU_RANGE		0x0F

#define BMC150_ACCEL_DEF_RANGE_2G		0x03
#define BMC150_ACCEL_DEF_RANGE_4G		0x05
#define BMC150_ACCEL_DEF_RANGE_8G		0x08
#define BMC150_ACCEL_DEF_RANGE_16G		0x0C

/* Default BW: 125Hz */
#define BMC150_ACCEL_REG_PMU_BW		0x10
#define BMC150_ACCEL_DEF_BW			125

62 63 64
#define BMC150_ACCEL_REG_RESET			0x14
#define BMC150_ACCEL_RESET_VAL			0xB6

65 66 67 68
#define BMC150_ACCEL_REG_INT_MAP_0		0x19
#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)

#define BMC150_ACCEL_REG_INT_MAP_1		0x1A
69 70 71
#define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
#define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
#define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
72 73 74 75 76 77 78 79 80 81 82 83

#define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
#define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
#define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00

#define BMC150_ACCEL_REG_INT_EN_0		0x16
#define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)

#define BMC150_ACCEL_REG_INT_EN_1		0x17
84 85 86
#define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
#define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
87 88 89 90 91 92 93 94 95 96 97

#define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)

#define BMC150_ACCEL_REG_INT_5			0x27
#define BMC150_ACCEL_SLOPE_DUR_MASK		0x03

#define BMC150_ACCEL_REG_INT_6			0x28
#define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF

/* Slope duration in terms of number of samples */
98
#define BMC150_ACCEL_DEF_SLOPE_DURATION		1
99
/* in terms of multiples of g's/LSB, based on range */
100
#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

#define BMC150_ACCEL_REG_XOUT_L		0x02

#define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100

/* Sleep Duration values */
#define BMC150_ACCEL_SLEEP_500_MICRO		0x05
#define BMC150_ACCEL_SLEEP_1_MS		0x06
#define BMC150_ACCEL_SLEEP_2_MS		0x07
#define BMC150_ACCEL_SLEEP_4_MS		0x08
#define BMC150_ACCEL_SLEEP_6_MS		0x09
#define BMC150_ACCEL_SLEEP_10_MS		0x0A
#define BMC150_ACCEL_SLEEP_25_MS		0x0B
#define BMC150_ACCEL_SLEEP_50_MS		0x0C
#define BMC150_ACCEL_SLEEP_100_MS		0x0D
#define BMC150_ACCEL_SLEEP_500_MS		0x0E
#define BMC150_ACCEL_SLEEP_1_SEC		0x0F

#define BMC150_ACCEL_REG_TEMP			0x08
#define BMC150_ACCEL_TEMP_CENTER_VAL		24

#define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
#define BMC150_AUTO_SUSPEND_DELAY_MS		2000

125 126 127 128 129 130
#define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
#define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
#define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
#define BMC150_ACCEL_REG_FIFO_DATA		0x3F
#define BMC150_ACCEL_FIFO_LENGTH		32

131 132 133 134
enum bmc150_accel_axis {
	AXIS_X,
	AXIS_Y,
	AXIS_Z,
135
	AXIS_MAX,
136 137 138 139 140 141 142 143 144
};

enum bmc150_power_modes {
	BMC150_ACCEL_SLEEP_MODE_NORMAL,
	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
	BMC150_ACCEL_SLEEP_MODE_LPM,
	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
};

145 146 147 148 149 150
struct bmc150_scale_info {
	int scale;
	u8 reg_range;
};

struct bmc150_accel_chip_info {
151
	const char *name;
152 153 154 155 156 157
	u8 chip_id;
	const struct iio_chan_spec *channels;
	int num_channels;
	const struct bmc150_scale_info scale_table[4];
};

158 159 160 161 162
struct bmc150_accel_interrupt {
	const struct bmc150_accel_interrupt_info *info;
	atomic_t users;
};

163 164 165 166 167 168 169 170
struct bmc150_accel_trigger {
	struct bmc150_accel_data *data;
	struct iio_trigger *indio_trig;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
	int intr;
	bool enabled;
};

171 172 173 174 175 176 177
enum bmc150_accel_interrupt_id {
	BMC150_ACCEL_INT_DATA_READY,
	BMC150_ACCEL_INT_ANY_MOTION,
	BMC150_ACCEL_INT_WATERMARK,
	BMC150_ACCEL_INTERRUPTS,
};

178 179 180 181 182 183
enum bmc150_accel_trigger_id {
	BMC150_ACCEL_TRIGGER_DATA_READY,
	BMC150_ACCEL_TRIGGER_ANY_MOTION,
	BMC150_ACCEL_TRIGGERS,
};

184
struct bmc150_accel_data {
M
Markus Pargmann 已提交
185
	struct regmap *regmap;
186
	int irq;
187
	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
188
	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
189
	struct mutex mutex;
190
	u8 fifo_mode, watermark;
191 192 193 194 195 196
	s16 buffer[8];
	u8 bw_bits;
	u32 slope_dur;
	u32 slope_thres;
	u32 range;
	int ev_enable_state;
197
	int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
198
	const struct bmc150_accel_chip_info *chip_info;
199
	struct iio_mount_matrix orientation;
200 201 202 203 204 205
};

static const struct {
	int val;
	int val2;
	u8 bw_bits;
206 207 208 209 210 211 212 213
} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
				     {31, 260000, 0x09},
				     {62, 500000, 0x0A},
				     {125, 0, 0x0B},
				     {250, 0, 0x0C},
				     {500, 0, 0x0D},
				     {1000, 0, 0x0E},
				     {2000, 0, 0x0F} };
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

static const struct {
	int bw_bits;
	int msec;
} bmc150_accel_sample_upd_time[] = { {0x08, 64},
				     {0x09, 32},
				     {0x0A, 16},
				     {0x0B, 8},
				     {0x0C, 4},
				     {0x0D, 2},
				     {0x0E, 1},
				     {0x0F, 1} };

static const struct {
	int sleep_dur;
229
	u8 reg_value;
230 231 232 233 234 235 236 237 238 239 240 241 242
} bmc150_accel_sleep_value_table[] = { {0, 0},
				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
				       {1000, BMC150_ACCEL_SLEEP_1_MS},
				       {2000, BMC150_ACCEL_SLEEP_2_MS},
				       {4000, BMC150_ACCEL_SLEEP_4_MS},
				       {6000, BMC150_ACCEL_SLEEP_6_MS},
				       {10000, BMC150_ACCEL_SLEEP_10_MS},
				       {25000, BMC150_ACCEL_SLEEP_25_MS},
				       {50000, BMC150_ACCEL_SLEEP_50_MS},
				       {100000, BMC150_ACCEL_SLEEP_100_MS},
				       {500000, BMC150_ACCEL_SLEEP_500_MS},
				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };

243
const struct regmap_config bmc150_regmap_conf = {
M
Markus Pargmann 已提交
244 245 246 247
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = 0x3f,
};
248
EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
M
Markus Pargmann 已提交
249

250 251 252 253
static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
				 enum bmc150_power_modes mode,
				 int dur_us)
{
254
	struct device *dev = regmap_get_device(data->regmap);
255 256 257 258 259 260 261 262 263 264 265 266 267
	int i;
	int ret;
	u8 lpw_bits;
	int dur_val = -1;

	if (dur_us > 0) {
		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
									 ++i) {
			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
									dur_us)
				dur_val =
				bmc150_accel_sleep_value_table[i].reg_value;
		}
268
	} else {
269
		dur_val = 0;
270
	}
271 272 273 274 275 276 277

	if (dur_val < 0)
		return -EINVAL;

	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);

278
	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
279

M
Markus Pargmann 已提交
280
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
281
	if (ret < 0) {
282
		dev_err(dev, "Error writing reg_pmu_lpw\n");
283 284 285 286 287 288 289 290 291 292 293 294 295 296
		return ret;
	}

	return 0;
}

static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
			       int val2)
{
	int i;
	int ret;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].val == val &&
297
		    bmc150_accel_samp_freq_table[i].val2 == val2) {
M
Markus Pargmann 已提交
298
			ret = regmap_write(data->regmap,
299 300 301 302 303 304 305 306 307 308 309 310 311 312
				BMC150_ACCEL_REG_PMU_BW,
				bmc150_accel_samp_freq_table[i].bw_bits);
			if (ret < 0)
				return ret;

			data->bw_bits =
				bmc150_accel_samp_freq_table[i].bw_bits;
			return 0;
		}
	}

	return -EINVAL;
}

313 314
static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
{
315
	struct device *dev = regmap_get_device(data->regmap);
M
Markus Pargmann 已提交
316
	int ret;
317

M
Markus Pargmann 已提交
318
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
319 320
					data->slope_thres);
	if (ret < 0) {
321
		dev_err(dev, "Error writing reg_int_6\n");
322 323 324
		return ret;
	}

M
Markus Pargmann 已提交
325 326
	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
327
	if (ret < 0) {
328
		dev_err(dev, "Error updating reg_int_5\n");
329 330 331
		return ret;
	}

332
	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
333 334 335 336

	return ret;
}

337 338 339 340 341 342 343 344 345
static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
					 bool state)
{
	if (state)
		return bmc150_accel_update_slope(t->data);

	return 0;
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
			       int *val2)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
			*val = bmc150_accel_samp_freq_table[i].val;
			*val2 = bmc150_accel_samp_freq_table[i].val2;
			return IIO_VAL_INT_PLUS_MICRO;
		}
	}

	return -EINVAL;
}

362
#ifdef CONFIG_PM
363 364 365 366 367 368 369 370 371 372 373 374 375 376
static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
			return bmc150_accel_sample_upd_time[i].msec;
	}

	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
}

static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
377
	struct device *dev = regmap_get_device(data->regmap);
378 379
	int ret;

380
	if (on) {
381
		ret = pm_runtime_get_sync(dev);
382
	} else {
383 384
		pm_runtime_mark_last_busy(dev);
		ret = pm_runtime_put_autosuspend(dev);
385
	}
386

387
	if (ret < 0) {
388
		dev_err(dev,
389
			"Failed: %s for %d\n", __func__, on);
390
		if (on)
391
			pm_runtime_put_noidle(dev);
392

393 394 395 396 397
		return ret;
	}

	return 0;
}
398 399 400 401 402 403
#else
static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
	return 0;
}
#endif
404

405 406 407 408 409
static const struct bmc150_accel_interrupt_info {
	u8 map_reg;
	u8 map_bitmask;
	u8 en_reg;
	u8 en_bitmask;
410
} bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
411 412 413 414 415 416 417 418 419 420 421 422 423 424
	{ /* data ready interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
	},
	{  /* motion interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
			BMC150_ACCEL_INT_EN_BIT_SLP_Z
	},
425 426 427 428 429 430
	{ /* fifo watermark interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
	},
431 432
};

433 434 435 436 437 438 439 440 441 442
static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
					  struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
		data->interrupts[i].info = &bmc150_accel_interrupts[i];
}

static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
443 444
				      bool state)
{
445
	struct device *dev = regmap_get_device(data->regmap);
446 447
	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
	const struct bmc150_accel_interrupt_info *info = intr->info;
448 449
	int ret;

450 451 452 453 454 455 456 457
	if (state) {
		if (atomic_inc_return(&intr->users) > 1)
			return 0;
	} else {
		if (atomic_dec_return(&intr->users) > 0)
			return 0;
	}

458
	/*
459 460 461 462 463 464 465
	 * We will expect the enable and disable to do operation in reverse
	 * order. This will happen here anyway, as our resume operation uses
	 * sync mode runtime pm calls. The suspend operation will be delayed
	 * by autosuspend delay.
	 * So the disable operation will still happen in reverse order of
	 * enable operation. When runtime pm is disabled the mode is always on,
	 * so sequence doesn't matter.
466 467 468 469 470 471
	 */
	ret = bmc150_accel_set_power_state(data, state);
	if (ret < 0)
		return ret;

	/* map the interrupt to the appropriate pins */
M
Markus Pargmann 已提交
472 473
	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
				 (state ? info->map_bitmask : 0));
474
	if (ret < 0) {
475
		dev_err(dev, "Error updating reg_int_map\n");
476 477 478 479
		goto out_fix_power_state;
	}

	/* enable/disable the interrupt */
M
Markus Pargmann 已提交
480 481
	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
				 (state ? info->en_bitmask : 0));
482
	if (ret < 0) {
483
		dev_err(dev, "Error updating reg_int_en\n");
484 485 486 487 488 489 490 491 492 493
		goto out_fix_power_state;
	}

	return 0;

out_fix_power_state:
	bmc150_accel_set_power_state(data, false);
	return ret;
}

494 495
static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
{
496
	struct device *dev = regmap_get_device(data->regmap);
497 498
	int ret, i;

499 500
	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
		if (data->chip_info->scale_table[i].scale == val) {
M
Markus Pargmann 已提交
501
			ret = regmap_write(data->regmap,
502 503
				     BMC150_ACCEL_REG_PMU_RANGE,
				     data->chip_info->scale_table[i].reg_range);
504
			if (ret < 0) {
505
				dev_err(dev, "Error writing pmu_range\n");
506 507 508
				return ret;
			}

509
			data->range = data->chip_info->scale_table[i].reg_range;
510 511 512 513 514 515 516 517 518
			return 0;
		}
	}

	return -EINVAL;
}

static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
{
519
	struct device *dev = regmap_get_device(data->regmap);
520
	int ret;
M
Markus Pargmann 已提交
521
	unsigned int value;
522 523 524

	mutex_lock(&data->mutex);

M
Markus Pargmann 已提交
525
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
526
	if (ret < 0) {
527
		dev_err(dev, "Error reading reg_temp\n");
528 529 530
		mutex_unlock(&data->mutex);
		return ret;
	}
M
Markus Pargmann 已提交
531
	*val = sign_extend32(value, 7);
532 533 534 535 536 537

	mutex_unlock(&data->mutex);

	return IIO_VAL_INT;
}

538 539
static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
				 struct iio_chan_spec const *chan,
540 541
				 int *val)
{
542
	struct device *dev = regmap_get_device(data->regmap);
543
	int ret;
544
	int axis = chan->scan_index;
545
	__le16 raw_val;
546 547 548 549 550 551 552 553

	mutex_lock(&data->mutex);
	ret = bmc150_accel_set_power_state(data, true);
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

M
Markus Pargmann 已提交
554
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
555
			       &raw_val, sizeof(raw_val));
556
	if (ret < 0) {
557
		dev_err(dev, "Error reading axis %d\n", axis);
558 559 560 561
		bmc150_accel_set_power_state(data, false);
		mutex_unlock(&data->mutex);
		return ret;
	}
562
	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
563
			     chan->scan_type.realbits - 1);
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
	ret = bmc150_accel_set_power_state(data, false);
	mutex_unlock(&data->mutex);
	if (ret < 0)
		return ret;

	return IIO_VAL_INT;
}

static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
				 struct iio_chan_spec const *chan,
				 int *val, int *val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		switch (chan->type) {
		case IIO_TEMP:
			return bmc150_accel_get_temp(data, val);
		case IIO_ACCEL:
			if (iio_buffer_enabled(indio_dev))
				return -EBUSY;
			else
588
				return bmc150_accel_get_axis(data, chan, val);
589 590 591 592 593 594 595
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_OFFSET:
		if (chan->type == IIO_TEMP) {
			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
			return IIO_VAL_INT;
596
		} else {
597
			return -EINVAL;
598
		}
599 600 601 602 603 604 605 606 607
	case IIO_CHAN_INFO_SCALE:
		*val = 0;
		switch (chan->type) {
		case IIO_TEMP:
			*val2 = 500000;
			return IIO_VAL_INT_PLUS_MICRO;
		case IIO_ACCEL:
		{
			int i;
608 609
			const struct bmc150_scale_info *si;
			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
610

611 612 613 614
			for (i = 0; i < st_size; ++i) {
				si = &data->chip_info->scale_table[i];
				if (si->reg_range == data->range) {
					*val2 = si->scale;
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
					return IIO_VAL_INT_PLUS_MICRO;
				}
			}
			return -EINVAL;
		}
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_get_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		return -EINVAL;
	}
}

static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
				  struct iio_chan_spec const *chan,
				  int val, int val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		break;
	case IIO_CHAN_INFO_SCALE:
		if (val)
			return -EINVAL;

		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_scale(data, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int bmc150_accel_read_event(struct iio_dev *indio_dev,
				   const struct iio_chan_spec *chan,
				   enum iio_event_type type,
				   enum iio_event_direction dir,
				   enum iio_event_info info,
				   int *val, int *val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	*val2 = 0;
	switch (info) {
	case IIO_EV_INFO_VALUE:
		*val = data->slope_thres;
		break;
	case IIO_EV_INFO_PERIOD:
676
		*val = data->slope_dur;
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		break;
	default:
		return -EINVAL;
	}

	return IIO_VAL_INT;
}

static int bmc150_accel_write_event(struct iio_dev *indio_dev,
				    const struct iio_chan_spec *chan,
				    enum iio_event_type type,
				    enum iio_event_direction dir,
				    enum iio_event_info info,
				    int val, int val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (data->ev_enable_state)
		return -EBUSY;

	switch (info) {
	case IIO_EV_INFO_VALUE:
699
		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
700 701
		break;
	case IIO_EV_INFO_PERIOD:
702
		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
					  const struct iio_chan_spec *chan,
					  enum iio_event_type type,
					  enum iio_event_direction dir)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return data->ev_enable_state;
}

static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
					   const struct iio_chan_spec *chan,
					   enum iio_event_type type,
					   enum iio_event_direction dir,
					   int state)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

730
	if (state == data->ev_enable_state)
731 732 733 734
		return 0;

	mutex_lock(&data->mutex);

735 736
	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
					 state);
737 738 739 740 741 742 743 744 745 746 747 748
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

	data->ev_enable_state = state;
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
749
					 struct iio_trigger *trig)
750 751
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
752
	int i;
753

754 755 756 757
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].indio_trig == trig)
			return 0;
	}
758

759
	return -EINVAL;
760 761
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
					       struct device_attribute *attr,
					       char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int wm;

	mutex_lock(&data->mutex);
	wm = data->watermark;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", wm);
}

static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	bool state;

	mutex_lock(&data->mutex);
	state = data->fifo_mode;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", state);
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805
static const struct iio_mount_matrix *
bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
				const struct iio_chan_spec *chan)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return &data->orientation;
}

static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
	{ }
};

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
static IIO_CONST_ATTR(hwfifo_watermark_max,
		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
		       bmc150_accel_get_fifo_state, NULL, 0);
static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
		       bmc150_accel_get_fifo_watermark, NULL, 0);

static const struct attribute *bmc150_accel_fifo_attributes[] = {
	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
	NULL,
};

static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (val > BMC150_ACCEL_FIFO_LENGTH)
		val = BMC150_ACCEL_FIFO_LENGTH;

	mutex_lock(&data->mutex);
	data->watermark = val;
	mutex_unlock(&data->mutex);

	return 0;
}

/*
 * We must read at least one full frame in one burst, otherwise the rest of the
 * frame data is discarded.
 */
M
Markus Pargmann 已提交
840
static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
841 842
				      char *buffer, int samples)
{
843
	struct device *dev = regmap_get_device(data->regmap);
844
	int sample_length = 3 * 2;
M
Markus Pargmann 已提交
845 846
	int ret;
	int total_length = samples * sample_length;
847

848 849
	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
			      buffer, total_length);
850
	if (ret)
851
		dev_err(dev,
852
			"Error transferring data from fifo: %d\n", ret);
853 854 855 856 857 858 859 860

	return ret;
}

static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
				     unsigned samples, bool irq)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
861
	struct device *dev = regmap_get_device(data->regmap);
862 863 864 865 866
	int ret, i;
	u8 count;
	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
	int64_t tstamp;
	uint64_t sample_period;
M
Markus Pargmann 已提交
867
	unsigned int val;
868

M
Markus Pargmann 已提交
869
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
870
	if (ret < 0) {
871
		dev_err(dev, "Error reading reg_fifo_status\n");
872 873 874
		return ret;
	}

M
Markus Pargmann 已提交
875
	count = val & 0x7F;
876 877 878 879 880 881 882 883 884 885 886 887 888 889

	if (!count)
		return 0;

	/*
	 * If we getting called from IRQ handler we know the stored timestamp is
	 * fairly accurate for the last stored sample. Otherwise, if we are
	 * called as a result of a read operation from userspace and hence
	 * before the watermark interrupt was triggered, take a timestamp
	 * now. We can fall anywhere in between two samples so the error in this
	 * case is at most one sample period.
	 */
	if (!irq) {
		data->old_timestamp = data->timestamp;
890
		data->timestamp = iio_get_time_ns(indio_dev);
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	}

	/*
	 * Approximate timestamps for each of the sample based on the sampling
	 * frequency, timestamp for last sample and number of samples.
	 *
	 * Note that we can't use the current bandwidth settings to compute the
	 * sample period because the sample rate varies with the device
	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
	 * small variation adds when we store a large number of samples and
	 * creates significant jitter between the last and first samples in
	 * different batches (e.g. 32ms vs 21ms).
	 *
	 * To avoid this issue we compute the actual sample period ourselves
	 * based on the timestamp delta between the last two flush operations.
	 */
	sample_period = (data->timestamp - data->old_timestamp);
	do_div(sample_period, count);
	tstamp = data->timestamp - (count - 1) * sample_period;

	if (samples && count > samples)
		count = samples;

M
Markus Pargmann 已提交
914
	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	if (ret)
		return ret;

	/*
	 * Ideally we want the IIO core to handle the demux when running in fifo
	 * mode but not when running in triggered buffer mode. Unfortunately
	 * this does not seem to be possible, so stick with driver demux for
	 * now.
	 */
	for (i = 0; i < count; i++) {
		u16 sample[8];
		int j, bit;

		j = 0;
		for_each_set_bit(bit, indio_dev->active_scan_mask,
				 indio_dev->masklength)
			memcpy(&sample[j++], &buffer[i * 3 + bit], 2);

		iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);

		tstamp += sample_period;
	}

	return count;
}

static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	mutex_lock(&data->mutex);
	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
	mutex_unlock(&data->mutex);

	return ret;
}

953
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
954
		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
955 956 957 958 959 960 961 962 963 964 965 966

static struct attribute *bmc150_accel_attributes[] = {
	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group bmc150_accel_attrs_group = {
	.attrs = bmc150_accel_attributes,
};

static const struct iio_event_spec bmc150_accel_event = {
		.type = IIO_EV_TYPE_ROC,
967
		.dir = IIO_EV_DIR_EITHER,
968 969 970 971 972
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
				 BIT(IIO_EV_INFO_ENABLE) |
				 BIT(IIO_EV_INFO_PERIOD)
};

973
#define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
974 975 976 977 978 979 980 981 982
	.type = IIO_ACCEL,						\
	.modified = 1,							\
	.channel2 = IIO_MOD_##_axis,					\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
	.scan_index = AXIS_##_axis,					\
	.scan_type = {							\
		.sign = 's',						\
983
		.realbits = (bits),					\
984
		.storagebits = 16,					\
985
		.shift = 16 - (bits),					\
986
		.endianness = IIO_LE,					\
987
	},								\
988
	.ext_info = bmc150_accel_ext_info,				\
989 990 991 992
	.event_spec = &bmc150_accel_event,				\
	.num_event_specs = 1						\
}

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
#define BMC150_ACCEL_CHANNELS(bits) {					\
	{								\
		.type = IIO_TEMP,					\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
				      BIT(IIO_CHAN_INFO_SCALE) |	\
				      BIT(IIO_CHAN_INFO_OFFSET),	\
		.scan_index = -1,					\
	},								\
	BMC150_ACCEL_CHANNEL(X, bits),					\
	BMC150_ACCEL_CHANNEL(Y, bits),					\
	BMC150_ACCEL_CHANNEL(Z, bits),					\
	IIO_CHAN_SOFT_TIMESTAMP(3),					\
}

static const struct iio_chan_spec bma222e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(8);
static const struct iio_chan_spec bma250e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(10);
static const struct iio_chan_spec bmc150_accel_channels[] =
	BMC150_ACCEL_CHANNELS(12);
static const struct iio_chan_spec bma280_accel_channels[] =
	BMC150_ACCEL_CHANNELS(14);

static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
	[bmc150] = {
1018
		.name = "BMC150A",
1019 1020 1021 1022 1023 1024 1025 1026 1027
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bmi055] = {
1028
		.name = "BMI055A",
1029 1030 1031 1032 1033 1034 1035 1036 1037
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma255] = {
1038
		.name = "BMA0255",
1039 1040 1041 1042 1043 1044 1045 1046 1047
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma250e] = {
1048
		.name = "BMA250E",
1049 1050 1051 1052 1053 1054 1055 1056 1057
		.chip_id = 0xF9,
		.channels = bma250e_accel_channels,
		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma222e] = {
1058
		.name = "BMA222E",
1059 1060 1061 1062 1063 1064 1065 1066 1067
		.chip_id = 0xF8,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma280] = {
1068
		.name = "BMA0280",
1069 1070 1071 1072 1073 1074 1075
		.chip_id = 0xFB,
		.channels = bma280_accel_channels,
		.num_channels = ARRAY_SIZE(bma280_accel_channels),
		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	},
};

static const struct iio_info bmc150_accel_info = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
};

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
static const struct iio_info bmc150_accel_info_fifo = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
	.validate_trigger	= bmc150_accel_validate_trigger,
	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
};

1102 1103 1104 1105
static const unsigned long bmc150_accel_scan_masks[] = {
					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
					0};

1106 1107 1108 1109 1110
static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1111
	int ret;
1112 1113

	mutex_lock(&data->mutex);
1114 1115
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
			       data->buffer, AXIS_MAX * 2);
1116
	mutex_unlock(&data->mutex);
1117 1118
	if (ret < 0)
		goto err_read;
1119 1120

	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1121
					   pf->timestamp);
1122 1123 1124 1125 1126 1127 1128 1129
err_read:
	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
{
1130 1131
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1132
	struct device *dev = regmap_get_device(data->regmap);
1133 1134 1135
	int ret;

	/* new data interrupts don't need ack */
1136
	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1137 1138 1139 1140
		return 0;

	mutex_lock(&data->mutex);
	/* clear any latched interrupt */
M
Markus Pargmann 已提交
1141 1142 1143
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1144 1145
	mutex_unlock(&data->mutex);
	if (ret < 0) {
1146
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1147 1148 1149 1150 1151 1152
		return ret;
	}

	return 0;
}

1153
static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1154
					  bool state)
1155
{
1156 1157
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1158 1159 1160 1161
	int ret;

	mutex_lock(&data->mutex);

1162 1163 1164 1165 1166 1167 1168 1169
	if (t->enabled == state) {
		mutex_unlock(&data->mutex);
		return 0;
	}

	if (t->setup) {
		ret = t->setup(t, state);
		if (ret < 0) {
1170
			mutex_unlock(&data->mutex);
1171
			return ret;
1172 1173 1174
		}
	}

1175
	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1176 1177 1178 1179
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}
1180 1181

	t->enabled = state;
1182 1183 1184 1185 1186 1187 1188

	mutex_unlock(&data->mutex);

	return ret;
}

static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1189
	.set_trigger_state = bmc150_accel_trigger_set_state,
1190 1191 1192
	.try_reenable = bmc150_accel_trig_try_reen,
};

1193
static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1194 1195
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1196
	struct device *dev = regmap_get_device(data->regmap);
1197
	int dir;
1198
	int ret;
M
Markus Pargmann 已提交
1199
	unsigned int val;
1200

M
Markus Pargmann 已提交
1201
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1202
	if (ret < 0) {
1203
		dev_err(dev, "Error reading reg_int_status_2\n");
1204
		return ret;
1205 1206
	}

M
Markus Pargmann 已提交
1207
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1208 1209 1210 1211
		dir = IIO_EV_DIR_FALLING;
	else
		dir = IIO_EV_DIR_RISING;

M
Markus Pargmann 已提交
1212
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1213 1214 1215 1216 1217 1218 1219 1220
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_X,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1221
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1222 1223 1224 1225 1226 1227 1228 1229
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Y,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1230
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1231 1232 1233 1234 1235 1236 1237 1238
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Z,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

1239 1240 1241 1242 1243 1244 1245
	return ret;
}

static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1246
	struct device *dev = regmap_get_device(data->regmap);
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	bool ack = false;
	int ret;

	mutex_lock(&data->mutex);

	if (data->fifo_mode) {
		ret = __bmc150_accel_fifo_flush(indio_dev,
						BMC150_ACCEL_FIFO_LENGTH, true);
		if (ret > 0)
			ack = true;
	}

	if (data->ev_enable_state) {
		ret = bmc150_accel_handle_roc_event(indio_dev);
		if (ret > 0)
			ack = true;
	}

	if (ack) {
M
Markus Pargmann 已提交
1266 1267 1268
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_INT |
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1269
		if (ret)
1270
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1271

1272 1273 1274 1275
		ret = IRQ_HANDLED;
	} else {
		ret = IRQ_NONE;
	}
1276

1277 1278 1279
	mutex_unlock(&data->mutex);

	return ret;
1280 1281
}

1282
static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1283 1284 1285
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1286
	bool ack = false;
1287
	int i;
1288

1289
	data->old_timestamp = data->timestamp;
1290
	data->timestamp = iio_get_time_ns(indio_dev);
1291

1292 1293 1294
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].enabled) {
			iio_trigger_poll(data->triggers[i].indio_trig);
1295
			ack = true;
1296 1297 1298
			break;
		}
	}
1299

1300
	if (data->ev_enable_state || data->fifo_mode)
1301
		return IRQ_WAKE_THREAD;
1302 1303

	if (ack)
1304
		return IRQ_HANDLED;
1305 1306

	return IRQ_NONE;
1307 1308
}

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
static const struct {
	int intr;
	const char *name;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
	{
		.intr = 0,
		.name = "%s-dev%d",
	},
	{
		.intr = 1,
		.name = "%s-any-motion-dev%d",
		.setup = bmc150_accel_any_motion_setup,
	},
};

static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
					     int from)
{
	int i;

1330
	for (i = from; i >= 0; i--) {
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		if (data->triggers[i].indio_trig) {
			iio_trigger_unregister(data->triggers[i].indio_trig);
			data->triggers[i].indio_trig = NULL;
		}
	}
}

static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
				       struct bmc150_accel_data *data)
{
1341
	struct device *dev = regmap_get_device(data->regmap);
1342 1343 1344 1345 1346
	int i, ret;

	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		struct bmc150_accel_trigger *t = &data->triggers[i];

1347 1348
		t->indio_trig = devm_iio_trigger_alloc(dev,
					bmc150_accel_triggers[i].name,
1349 1350 1351 1352 1353 1354 1355
						       indio_dev->name,
						       indio_dev->id);
		if (!t->indio_trig) {
			ret = -ENOMEM;
			break;
		}

1356
		t->indio_trig->dev.parent = dev;
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
		t->indio_trig->ops = &bmc150_accel_trigger_ops;
		t->intr = bmc150_accel_triggers[i].intr;
		t->data = data;
		t->setup = bmc150_accel_triggers[i].setup;
		iio_trigger_set_drvdata(t->indio_trig, t);

		ret = iio_trigger_register(t->indio_trig);
		if (ret)
			break;
	}

	if (ret)
		bmc150_accel_unregister_triggers(data, i - 1);

	return ret;
}

1374 1375 1376 1377 1378 1379
#define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
#define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
#define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00

static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
{
1380
	struct device *dev = regmap_get_device(data->regmap);
1381 1382 1383
	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
	int ret;

M
Markus Pargmann 已提交
1384
	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1385
	if (ret < 0) {
1386
		dev_err(dev, "Error writing reg_fifo_config1\n");
1387 1388 1389 1390 1391 1392
		return ret;
	}

	if (!data->fifo_mode)
		return 0;

M
Markus Pargmann 已提交
1393 1394
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
			   data->watermark);
1395
	if (ret < 0)
1396
		dev_err(dev, "Error writing reg_fifo_config0\n");
1397 1398 1399 1400

	return ret;
}

1401 1402 1403 1404 1405 1406 1407
static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, true);
}

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret = 0;

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
		return iio_triggered_buffer_postenable(indio_dev);

	mutex_lock(&data->mutex);

	if (!data->watermark)
		goto out;

	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					 true);
	if (ret)
		goto out;

	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;

	ret = bmc150_accel_fifo_set_mode(data);
	if (ret) {
		data->fifo_mode = 0;
		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					   false);
	}

out:
	mutex_unlock(&data->mutex);

	return ret;
}

static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
		return iio_triggered_buffer_predisable(indio_dev);

	mutex_lock(&data->mutex);

	if (!data->fifo_mode)
		goto out;

	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
	data->fifo_mode = 0;
	bmc150_accel_fifo_set_mode(data);

out:
	mutex_unlock(&data->mutex);

	return 0;
}

1464 1465 1466 1467 1468 1469 1470
static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, false);
}

1471
static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1472
	.preenable = bmc150_accel_buffer_preenable,
1473 1474
	.postenable = bmc150_accel_buffer_postenable,
	.predisable = bmc150_accel_buffer_predisable,
1475
	.postdisable = bmc150_accel_buffer_postdisable,
1476 1477
};

1478 1479
static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
{
1480
	struct device *dev = regmap_get_device(data->regmap);
1481
	int ret, i;
M
Markus Pargmann 已提交
1482
	unsigned int val;
1483

1484 1485 1486 1487 1488 1489 1490 1491
	/*
	 * Reset chip to get it in a known good state. A delay of 1.8ms after
	 * reset is required according to the data sheets of supported chips.
	 */
	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
		     BMC150_ACCEL_RESET_VAL);
	usleep_range(1800, 2500);

M
Markus Pargmann 已提交
1492
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1493
	if (ret < 0) {
1494
		dev_err(dev, "Error: Reading chip id\n");
1495 1496 1497
		return ret;
	}

1498
	dev_dbg(dev, "Chip Id %x\n", val);
1499
	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
M
Markus Pargmann 已提交
1500
		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1501 1502 1503 1504 1505 1506
			data->chip_info = &bmc150_accel_chip_info_tbl[i];
			break;
		}
	}

	if (!data->chip_info) {
1507
		dev_err(dev, "Invalid chip %x\n", val);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
		return -ENODEV;
	}

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
	if (ret < 0)
		return ret;

	/* Set Bandwidth */
	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
	if (ret < 0)
		return ret;

	/* Set Default Range */
M
Markus Pargmann 已提交
1521 1522
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
			   BMC150_ACCEL_DEF_RANGE_4G);
1523
	if (ret < 0) {
1524
		dev_err(dev, "Error writing reg_pmu_range\n");
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
		return ret;
	}

	data->range = BMC150_ACCEL_DEF_RANGE_4G;

	/* Set default slope duration and thresholds */
	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
	ret = bmc150_accel_update_slope(data);
	if (ret < 0)
		return ret;

	/* Set default as latched interrupts */
M
Markus Pargmann 已提交
1538 1539 1540
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1541
	if (ret < 0) {
1542
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1543 1544 1545 1546 1547 1548
		return ret;
	}

	return 0;
}

1549 1550
int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
			    const char *name, bool block_supported)
1551 1552 1553 1554 1555
{
	struct bmc150_accel_data *data;
	struct iio_dev *indio_dev;
	int ret;

1556
	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1557 1558 1559 1560
	if (!indio_dev)
		return -ENOMEM;

	data = iio_priv(indio_dev);
1561 1562
	dev_set_drvdata(dev, indio_dev);
	data->irq = irq;
1563

1564
	data->regmap = regmap;
1565

1566 1567 1568 1569 1570
	ret = iio_read_mount_matrix(dev, "mount-matrix",
				     &data->orientation);
	if (ret)
		return ret;

1571 1572 1573 1574 1575 1576
	ret = bmc150_accel_chip_init(data);
	if (ret < 0)
		return ret;

	mutex_init(&data->mutex);

1577
	indio_dev->dev.parent = dev;
1578 1579
	indio_dev->channels = data->chip_info->channels;
	indio_dev->num_channels = data->chip_info->num_channels;
1580
	indio_dev->name = name ? name : data->chip_info->name;
1581
	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1582 1583 1584
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &bmc150_accel_info;

1585 1586 1587 1588 1589
	ret = iio_triggered_buffer_setup(indio_dev,
					 &iio_pollfunc_store_time,
					 bmc150_accel_trigger_handler,
					 &bmc150_accel_buffer_ops);
	if (ret < 0) {
1590
		dev_err(dev, "Failed: iio triggered buffer setup\n");
1591 1592 1593
		return ret;
	}

1594
	if (data->irq > 0) {
1595
		ret = devm_request_threaded_irq(
1596
						dev, data->irq,
1597 1598
						bmc150_accel_irq_handler,
						bmc150_accel_irq_thread_handler,
1599 1600 1601 1602
						IRQF_TRIGGER_RISING,
						BMC150_ACCEL_IRQ_NAME,
						indio_dev);
		if (ret)
1603
			goto err_buffer_cleanup;
1604

1605 1606 1607 1608 1609 1610
		/*
		 * Set latched mode interrupt. While certain interrupts are
		 * non-latched regardless of this settings (e.g. new data) we
		 * want to use latch mode when we can to prevent interrupt
		 * flooding.
		 */
M
Markus Pargmann 已提交
1611 1612
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1613
		if (ret < 0) {
1614
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1615
			goto err_buffer_cleanup;
1616 1617
		}

1618 1619
		bmc150_accel_interrupts_setup(indio_dev, data);

1620
		ret = bmc150_accel_triggers_setup(indio_dev, data);
1621
		if (ret)
1622
			goto err_buffer_cleanup;
1623

1624
		if (block_supported) {
1625 1626
			indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
			indio_dev->info = &bmc150_accel_info_fifo;
1627 1628
			iio_buffer_set_attrs(indio_dev->buffer,
					     bmc150_accel_fifo_attributes);
1629
		}
1630 1631
	}

1632
	ret = pm_runtime_set_active(dev);
1633
	if (ret)
1634
		goto err_trigger_unregister;
1635

1636 1637 1638
	pm_runtime_enable(dev);
	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
	pm_runtime_use_autosuspend(dev);
1639

1640 1641 1642 1643 1644 1645
	ret = iio_device_register(indio_dev);
	if (ret < 0) {
		dev_err(dev, "Unable to register iio device\n");
		goto err_trigger_unregister;
	}

1646 1647 1648
	return 0;

err_trigger_unregister:
1649
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1650 1651
err_buffer_cleanup:
	iio_triggered_buffer_cleanup(indio_dev);
1652 1653 1654

	return ret;
}
1655
EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1656

1657
int bmc150_accel_core_remove(struct device *dev)
1658
{
1659
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1660 1661
	struct bmc150_accel_data *data = iio_priv(indio_dev);

1662 1663
	iio_device_unregister(indio_dev);

1664 1665 1666
	pm_runtime_disable(dev);
	pm_runtime_set_suspended(dev);
	pm_runtime_put_noidle(dev);
1667

1668
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1669

1670 1671
	iio_triggered_buffer_cleanup(indio_dev);

1672 1673 1674 1675 1676 1677
	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
	mutex_unlock(&data->mutex);

	return 0;
}
1678
EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1679 1680 1681 1682

#ifdef CONFIG_PM_SLEEP
static int bmc150_accel_suspend(struct device *dev)
{
1683
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_resume(struct device *dev)
{
1695
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1696 1697 1698
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
1699
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1700
	bmc150_accel_fifo_set_mode(data);
1701 1702 1703 1704 1705 1706
	mutex_unlock(&data->mutex);

	return 0;
}
#endif

1707
#ifdef CONFIG_PM
1708 1709
static int bmc150_accel_runtime_suspend(struct device *dev)
{
1710
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1711
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1712
	int ret;
1713

1714 1715 1716
	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	if (ret < 0)
		return -EAGAIN;
1717

1718
	return 0;
1719 1720 1721 1722
}

static int bmc150_accel_runtime_resume(struct device *dev)
{
1723
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1724 1725 1726 1727 1728
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;
	int sleep_val;

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1729 1730 1731
	if (ret < 0)
		return ret;
	ret = bmc150_accel_fifo_set_mode(data);
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	if (ret < 0)
		return ret;

	sleep_val = bmc150_accel_get_startup_times(data);
	if (sleep_val < 20)
		usleep_range(sleep_val * 1000, 20000);
	else
		msleep_interruptible(sleep_val);

	return 0;
}
#endif

1745
const struct dev_pm_ops bmc150_accel_pm_ops = {
1746 1747 1748 1749
	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
			   bmc150_accel_runtime_resume, NULL)
};
1750
EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1751 1752 1753 1754

MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMC150 accelerometer driver");