bmc150-accel-core.c 43.9 KB
Newer Older
1
/*
2 3 4 5 6 7 8 9
 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
 *  - BMC150
 *  - BMI055
 *  - BMA255
 *  - BMA250E
 *  - BMA222E
 *  - BMA280
 *
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 * Copyright (c) 2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
M
Markus Pargmann 已提交
37
#include <linux/regmap.h>
38

39 40
#include "bmc150-accel.h"

41 42 43 44 45 46 47
#define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
#define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"

#define BMC150_ACCEL_REG_CHIP_ID		0x00

#define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
#define BMC150_ACCEL_ANY_MOTION_MASK		0x07
48 49 50
#define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
#define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
#define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)

#define BMC150_ACCEL_REG_PMU_LPW		0x11
#define BMC150_ACCEL_PMU_MODE_MASK		0xE0
#define BMC150_ACCEL_PMU_MODE_SHIFT		5
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1

#define BMC150_ACCEL_REG_PMU_RANGE		0x0F

#define BMC150_ACCEL_DEF_RANGE_2G		0x03
#define BMC150_ACCEL_DEF_RANGE_4G		0x05
#define BMC150_ACCEL_DEF_RANGE_8G		0x08
#define BMC150_ACCEL_DEF_RANGE_16G		0x0C

/* Default BW: 125Hz */
#define BMC150_ACCEL_REG_PMU_BW		0x10
#define BMC150_ACCEL_DEF_BW			125

70 71 72
#define BMC150_ACCEL_REG_RESET			0x14
#define BMC150_ACCEL_RESET_VAL			0xB6

73 74 75 76
#define BMC150_ACCEL_REG_INT_MAP_0		0x19
#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)

#define BMC150_ACCEL_REG_INT_MAP_1		0x1A
77 78 79
#define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
#define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
#define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
80 81 82 83 84 85 86 87 88 89 90 91

#define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
#define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
#define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00

#define BMC150_ACCEL_REG_INT_EN_0		0x16
#define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)

#define BMC150_ACCEL_REG_INT_EN_1		0x17
92 93 94
#define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
#define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
95 96 97 98 99 100 101 102 103 104 105

#define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)

#define BMC150_ACCEL_REG_INT_5			0x27
#define BMC150_ACCEL_SLOPE_DUR_MASK		0x03

#define BMC150_ACCEL_REG_INT_6			0x28
#define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF

/* Slope duration in terms of number of samples */
106
#define BMC150_ACCEL_DEF_SLOPE_DURATION		1
107
/* in terms of multiples of g's/LSB, based on range */
108
#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

#define BMC150_ACCEL_REG_XOUT_L		0x02

#define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100

/* Sleep Duration values */
#define BMC150_ACCEL_SLEEP_500_MICRO		0x05
#define BMC150_ACCEL_SLEEP_1_MS		0x06
#define BMC150_ACCEL_SLEEP_2_MS		0x07
#define BMC150_ACCEL_SLEEP_4_MS		0x08
#define BMC150_ACCEL_SLEEP_6_MS		0x09
#define BMC150_ACCEL_SLEEP_10_MS		0x0A
#define BMC150_ACCEL_SLEEP_25_MS		0x0B
#define BMC150_ACCEL_SLEEP_50_MS		0x0C
#define BMC150_ACCEL_SLEEP_100_MS		0x0D
#define BMC150_ACCEL_SLEEP_500_MS		0x0E
#define BMC150_ACCEL_SLEEP_1_SEC		0x0F

#define BMC150_ACCEL_REG_TEMP			0x08
#define BMC150_ACCEL_TEMP_CENTER_VAL		24

#define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
#define BMC150_AUTO_SUSPEND_DELAY_MS		2000

133 134 135 136 137 138
#define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
#define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
#define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
#define BMC150_ACCEL_REG_FIFO_DATA		0x3F
#define BMC150_ACCEL_FIFO_LENGTH		32

139 140 141 142
enum bmc150_accel_axis {
	AXIS_X,
	AXIS_Y,
	AXIS_Z,
143
	AXIS_MAX,
144 145 146 147 148 149 150 151 152
};

enum bmc150_power_modes {
	BMC150_ACCEL_SLEEP_MODE_NORMAL,
	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
	BMC150_ACCEL_SLEEP_MODE_LPM,
	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
};

153 154 155 156 157 158
struct bmc150_scale_info {
	int scale;
	u8 reg_range;
};

struct bmc150_accel_chip_info {
159
	const char *name;
160 161 162 163 164 165
	u8 chip_id;
	const struct iio_chan_spec *channels;
	int num_channels;
	const struct bmc150_scale_info scale_table[4];
};

166 167 168 169 170
struct bmc150_accel_interrupt {
	const struct bmc150_accel_interrupt_info *info;
	atomic_t users;
};

171 172 173 174 175 176 177 178
struct bmc150_accel_trigger {
	struct bmc150_accel_data *data;
	struct iio_trigger *indio_trig;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
	int intr;
	bool enabled;
};

179 180 181 182 183 184 185
enum bmc150_accel_interrupt_id {
	BMC150_ACCEL_INT_DATA_READY,
	BMC150_ACCEL_INT_ANY_MOTION,
	BMC150_ACCEL_INT_WATERMARK,
	BMC150_ACCEL_INTERRUPTS,
};

186 187 188 189 190 191
enum bmc150_accel_trigger_id {
	BMC150_ACCEL_TRIGGER_DATA_READY,
	BMC150_ACCEL_TRIGGER_ANY_MOTION,
	BMC150_ACCEL_TRIGGERS,
};

192
struct bmc150_accel_data {
M
Markus Pargmann 已提交
193
	struct regmap *regmap;
194
	int irq;
195
	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
196
	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
197
	struct mutex mutex;
198
	u8 fifo_mode, watermark;
199 200 201 202 203 204
	s16 buffer[8];
	u8 bw_bits;
	u32 slope_dur;
	u32 slope_thres;
	u32 range;
	int ev_enable_state;
205
	int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
206
	const struct bmc150_accel_chip_info *chip_info;
207 208 209 210 211 212
};

static const struct {
	int val;
	int val2;
	u8 bw_bits;
213 214 215 216 217 218 219 220
} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
				     {31, 260000, 0x09},
				     {62, 500000, 0x0A},
				     {125, 0, 0x0B},
				     {250, 0, 0x0C},
				     {500, 0, 0x0D},
				     {1000, 0, 0x0E},
				     {2000, 0, 0x0F} };
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

static const struct {
	int bw_bits;
	int msec;
} bmc150_accel_sample_upd_time[] = { {0x08, 64},
				     {0x09, 32},
				     {0x0A, 16},
				     {0x0B, 8},
				     {0x0C, 4},
				     {0x0D, 2},
				     {0x0E, 1},
				     {0x0F, 1} };

static const struct {
	int sleep_dur;
236
	u8 reg_value;
237 238 239 240 241 242 243 244 245 246 247 248 249
} bmc150_accel_sleep_value_table[] = { {0, 0},
				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
				       {1000, BMC150_ACCEL_SLEEP_1_MS},
				       {2000, BMC150_ACCEL_SLEEP_2_MS},
				       {4000, BMC150_ACCEL_SLEEP_4_MS},
				       {6000, BMC150_ACCEL_SLEEP_6_MS},
				       {10000, BMC150_ACCEL_SLEEP_10_MS},
				       {25000, BMC150_ACCEL_SLEEP_25_MS},
				       {50000, BMC150_ACCEL_SLEEP_50_MS},
				       {100000, BMC150_ACCEL_SLEEP_100_MS},
				       {500000, BMC150_ACCEL_SLEEP_500_MS},
				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };

250
const struct regmap_config bmc150_regmap_conf = {
M
Markus Pargmann 已提交
251 252 253 254
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = 0x3f,
};
255
EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
M
Markus Pargmann 已提交
256

257 258 259 260
static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
				 enum bmc150_power_modes mode,
				 int dur_us)
{
261
	struct device *dev = regmap_get_device(data->regmap);
262 263 264 265 266 267 268 269 270 271 272 273 274
	int i;
	int ret;
	u8 lpw_bits;
	int dur_val = -1;

	if (dur_us > 0) {
		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
									 ++i) {
			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
									dur_us)
				dur_val =
				bmc150_accel_sleep_value_table[i].reg_value;
		}
275
	} else {
276
		dur_val = 0;
277
	}
278 279 280 281 282 283 284

	if (dur_val < 0)
		return -EINVAL;

	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);

285
	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
286

M
Markus Pargmann 已提交
287
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
288
	if (ret < 0) {
289
		dev_err(dev, "Error writing reg_pmu_lpw\n");
290 291 292 293 294 295 296 297 298 299 300 301 302 303
		return ret;
	}

	return 0;
}

static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
			       int val2)
{
	int i;
	int ret;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].val == val &&
304
		    bmc150_accel_samp_freq_table[i].val2 == val2) {
M
Markus Pargmann 已提交
305
			ret = regmap_write(data->regmap,
306 307 308 309 310 311 312 313 314 315 316 317 318 319
				BMC150_ACCEL_REG_PMU_BW,
				bmc150_accel_samp_freq_table[i].bw_bits);
			if (ret < 0)
				return ret;

			data->bw_bits =
				bmc150_accel_samp_freq_table[i].bw_bits;
			return 0;
		}
	}

	return -EINVAL;
}

320 321
static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
{
322
	struct device *dev = regmap_get_device(data->regmap);
M
Markus Pargmann 已提交
323
	int ret;
324

M
Markus Pargmann 已提交
325
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
326 327
					data->slope_thres);
	if (ret < 0) {
328
		dev_err(dev, "Error writing reg_int_6\n");
329 330 331
		return ret;
	}

M
Markus Pargmann 已提交
332 333
	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
334
	if (ret < 0) {
335
		dev_err(dev, "Error updating reg_int_5\n");
336 337 338
		return ret;
	}

339
	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
340 341 342 343

	return ret;
}

344 345 346 347 348 349 350 351 352
static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
					 bool state)
{
	if (state)
		return bmc150_accel_update_slope(t->data);

	return 0;
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
			       int *val2)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
			*val = bmc150_accel_samp_freq_table[i].val;
			*val2 = bmc150_accel_samp_freq_table[i].val2;
			return IIO_VAL_INT_PLUS_MICRO;
		}
	}

	return -EINVAL;
}

369
#ifdef CONFIG_PM
370 371 372 373 374 375 376 377 378 379 380 381 382 383
static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
			return bmc150_accel_sample_upd_time[i].msec;
	}

	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
}

static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
384
	struct device *dev = regmap_get_device(data->regmap);
385 386
	int ret;

387
	if (on) {
388
		ret = pm_runtime_get_sync(dev);
389
	} else {
390 391
		pm_runtime_mark_last_busy(dev);
		ret = pm_runtime_put_autosuspend(dev);
392
	}
393

394
	if (ret < 0) {
395
		dev_err(dev,
396
			"Failed: bmc150_accel_set_power_state for %d\n", on);
397
		if (on)
398
			pm_runtime_put_noidle(dev);
399

400 401 402 403 404
		return ret;
	}

	return 0;
}
405 406 407 408 409 410
#else
static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
	return 0;
}
#endif
411

412 413 414 415 416
static const struct bmc150_accel_interrupt_info {
	u8 map_reg;
	u8 map_bitmask;
	u8 en_reg;
	u8 en_bitmask;
417
} bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
418 419 420 421 422 423 424 425 426 427 428 429 430 431
	{ /* data ready interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
	},
	{  /* motion interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
			BMC150_ACCEL_INT_EN_BIT_SLP_Z
	},
432 433 434 435 436 437
	{ /* fifo watermark interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
	},
438 439
};

440 441 442 443 444 445 446 447 448 449
static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
					  struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
		data->interrupts[i].info = &bmc150_accel_interrupts[i];
}

static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
450 451
				      bool state)
{
452
	struct device *dev = regmap_get_device(data->regmap);
453 454
	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
	const struct bmc150_accel_interrupt_info *info = intr->info;
455 456
	int ret;

457 458 459 460 461 462 463 464
	if (state) {
		if (atomic_inc_return(&intr->users) > 1)
			return 0;
	} else {
		if (atomic_dec_return(&intr->users) > 0)
			return 0;
	}

465
	/*
466 467 468 469 470 471 472
	 * We will expect the enable and disable to do operation in reverse
	 * order. This will happen here anyway, as our resume operation uses
	 * sync mode runtime pm calls. The suspend operation will be delayed
	 * by autosuspend delay.
	 * So the disable operation will still happen in reverse order of
	 * enable operation. When runtime pm is disabled the mode is always on,
	 * so sequence doesn't matter.
473 474 475 476 477 478
	 */
	ret = bmc150_accel_set_power_state(data, state);
	if (ret < 0)
		return ret;

	/* map the interrupt to the appropriate pins */
M
Markus Pargmann 已提交
479 480
	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
				 (state ? info->map_bitmask : 0));
481
	if (ret < 0) {
482
		dev_err(dev, "Error updating reg_int_map\n");
483 484 485 486
		goto out_fix_power_state;
	}

	/* enable/disable the interrupt */
M
Markus Pargmann 已提交
487 488
	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
				 (state ? info->en_bitmask : 0));
489
	if (ret < 0) {
490
		dev_err(dev, "Error updating reg_int_en\n");
491 492 493 494 495 496 497 498 499 500
		goto out_fix_power_state;
	}

	return 0;

out_fix_power_state:
	bmc150_accel_set_power_state(data, false);
	return ret;
}

501 502
static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
{
503
	struct device *dev = regmap_get_device(data->regmap);
504 505
	int ret, i;

506 507
	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
		if (data->chip_info->scale_table[i].scale == val) {
M
Markus Pargmann 已提交
508
			ret = regmap_write(data->regmap,
509 510
				     BMC150_ACCEL_REG_PMU_RANGE,
				     data->chip_info->scale_table[i].reg_range);
511
			if (ret < 0) {
512
				dev_err(dev, "Error writing pmu_range\n");
513 514 515
				return ret;
			}

516
			data->range = data->chip_info->scale_table[i].reg_range;
517 518 519 520 521 522 523 524 525
			return 0;
		}
	}

	return -EINVAL;
}

static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
{
526
	struct device *dev = regmap_get_device(data->regmap);
527
	int ret;
M
Markus Pargmann 已提交
528
	unsigned int value;
529 530 531

	mutex_lock(&data->mutex);

M
Markus Pargmann 已提交
532
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
533
	if (ret < 0) {
534
		dev_err(dev, "Error reading reg_temp\n");
535 536 537
		mutex_unlock(&data->mutex);
		return ret;
	}
M
Markus Pargmann 已提交
538
	*val = sign_extend32(value, 7);
539 540 541 542 543 544

	mutex_unlock(&data->mutex);

	return IIO_VAL_INT;
}

545 546
static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
				 struct iio_chan_spec const *chan,
547 548
				 int *val)
{
549
	struct device *dev = regmap_get_device(data->regmap);
550
	int ret;
551
	int axis = chan->scan_index;
552
	__le16 raw_val;
553 554 555 556 557 558 559 560

	mutex_lock(&data->mutex);
	ret = bmc150_accel_set_power_state(data, true);
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

M
Markus Pargmann 已提交
561
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
562
			       &raw_val, sizeof(raw_val));
563
	if (ret < 0) {
564
		dev_err(dev, "Error reading axis %d\n", axis);
565 566 567 568
		bmc150_accel_set_power_state(data, false);
		mutex_unlock(&data->mutex);
		return ret;
	}
569
	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
570
			     chan->scan_type.realbits - 1);
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
	ret = bmc150_accel_set_power_state(data, false);
	mutex_unlock(&data->mutex);
	if (ret < 0)
		return ret;

	return IIO_VAL_INT;
}

static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
				 struct iio_chan_spec const *chan,
				 int *val, int *val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		switch (chan->type) {
		case IIO_TEMP:
			return bmc150_accel_get_temp(data, val);
		case IIO_ACCEL:
			if (iio_buffer_enabled(indio_dev))
				return -EBUSY;
			else
595
				return bmc150_accel_get_axis(data, chan, val);
596 597 598 599 600 601 602
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_OFFSET:
		if (chan->type == IIO_TEMP) {
			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
			return IIO_VAL_INT;
603
		} else {
604
			return -EINVAL;
605
		}
606 607 608 609 610 611 612 613 614
	case IIO_CHAN_INFO_SCALE:
		*val = 0;
		switch (chan->type) {
		case IIO_TEMP:
			*val2 = 500000;
			return IIO_VAL_INT_PLUS_MICRO;
		case IIO_ACCEL:
		{
			int i;
615 616
			const struct bmc150_scale_info *si;
			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
617

618 619 620 621
			for (i = 0; i < st_size; ++i) {
				si = &data->chip_info->scale_table[i];
				if (si->reg_range == data->range) {
					*val2 = si->scale;
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
					return IIO_VAL_INT_PLUS_MICRO;
				}
			}
			return -EINVAL;
		}
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_get_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		return -EINVAL;
	}
}

static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
				  struct iio_chan_spec const *chan,
				  int val, int val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		break;
	case IIO_CHAN_INFO_SCALE:
		if (val)
			return -EINVAL;

		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_scale(data, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int bmc150_accel_read_event(struct iio_dev *indio_dev,
				   const struct iio_chan_spec *chan,
				   enum iio_event_type type,
				   enum iio_event_direction dir,
				   enum iio_event_info info,
				   int *val, int *val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	*val2 = 0;
	switch (info) {
	case IIO_EV_INFO_VALUE:
		*val = data->slope_thres;
		break;
	case IIO_EV_INFO_PERIOD:
683
		*val = data->slope_dur;
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
		break;
	default:
		return -EINVAL;
	}

	return IIO_VAL_INT;
}

static int bmc150_accel_write_event(struct iio_dev *indio_dev,
				    const struct iio_chan_spec *chan,
				    enum iio_event_type type,
				    enum iio_event_direction dir,
				    enum iio_event_info info,
				    int val, int val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (data->ev_enable_state)
		return -EBUSY;

	switch (info) {
	case IIO_EV_INFO_VALUE:
706
		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
707 708
		break;
	case IIO_EV_INFO_PERIOD:
709
		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
					  const struct iio_chan_spec *chan,
					  enum iio_event_type type,
					  enum iio_event_direction dir)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return data->ev_enable_state;
}

static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
					   const struct iio_chan_spec *chan,
					   enum iio_event_type type,
					   enum iio_event_direction dir,
					   int state)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

737
	if (state == data->ev_enable_state)
738 739 740 741
		return 0;

	mutex_lock(&data->mutex);

742 743
	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
					 state);
744 745 746 747 748 749 750 751 752 753 754 755
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

	data->ev_enable_state = state;
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
756
					 struct iio_trigger *trig)
757 758
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
759
	int i;
760

761 762 763 764
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].indio_trig == trig)
			return 0;
	}
765

766
	return -EINVAL;
767 768
}

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
					       struct device_attribute *attr,
					       char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int wm;

	mutex_lock(&data->mutex);
	wm = data->watermark;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", wm);
}

static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	bool state;

	mutex_lock(&data->mutex);
	state = data->fifo_mode;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", state);
}

static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
static IIO_CONST_ATTR(hwfifo_watermark_max,
		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
		       bmc150_accel_get_fifo_state, NULL, 0);
static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
		       bmc150_accel_get_fifo_watermark, NULL, 0);

static const struct attribute *bmc150_accel_fifo_attributes[] = {
	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
	NULL,
};

static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (val > BMC150_ACCEL_FIFO_LENGTH)
		val = BMC150_ACCEL_FIFO_LENGTH;

	mutex_lock(&data->mutex);
	data->watermark = val;
	mutex_unlock(&data->mutex);

	return 0;
}

/*
 * We must read at least one full frame in one burst, otherwise the rest of the
 * frame data is discarded.
 */
M
Markus Pargmann 已提交
833
static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
834 835
				      char *buffer, int samples)
{
836
	struct device *dev = regmap_get_device(data->regmap);
837
	int sample_length = 3 * 2;
M
Markus Pargmann 已提交
838 839
	int ret;
	int total_length = samples * sample_length;
840

841 842
	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
			      buffer, total_length);
843
	if (ret)
844
		dev_err(dev,
845
			"Error transferring data from fifo: %d\n", ret);
846 847 848 849 850 851 852 853

	return ret;
}

static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
				     unsigned samples, bool irq)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
854
	struct device *dev = regmap_get_device(data->regmap);
855 856 857 858 859
	int ret, i;
	u8 count;
	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
	int64_t tstamp;
	uint64_t sample_period;
M
Markus Pargmann 已提交
860
	unsigned int val;
861

M
Markus Pargmann 已提交
862
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
863
	if (ret < 0) {
864
		dev_err(dev, "Error reading reg_fifo_status\n");
865 866 867
		return ret;
	}

M
Markus Pargmann 已提交
868
	count = val & 0x7F;
869 870 871 872 873 874 875 876 877 878 879 880 881 882

	if (!count)
		return 0;

	/*
	 * If we getting called from IRQ handler we know the stored timestamp is
	 * fairly accurate for the last stored sample. Otherwise, if we are
	 * called as a result of a read operation from userspace and hence
	 * before the watermark interrupt was triggered, take a timestamp
	 * now. We can fall anywhere in between two samples so the error in this
	 * case is at most one sample period.
	 */
	if (!irq) {
		data->old_timestamp = data->timestamp;
883
		data->timestamp = iio_get_time_ns(indio_dev);
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
	}

	/*
	 * Approximate timestamps for each of the sample based on the sampling
	 * frequency, timestamp for last sample and number of samples.
	 *
	 * Note that we can't use the current bandwidth settings to compute the
	 * sample period because the sample rate varies with the device
	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
	 * small variation adds when we store a large number of samples and
	 * creates significant jitter between the last and first samples in
	 * different batches (e.g. 32ms vs 21ms).
	 *
	 * To avoid this issue we compute the actual sample period ourselves
	 * based on the timestamp delta between the last two flush operations.
	 */
	sample_period = (data->timestamp - data->old_timestamp);
	do_div(sample_period, count);
	tstamp = data->timestamp - (count - 1) * sample_period;

	if (samples && count > samples)
		count = samples;

M
Markus Pargmann 已提交
907
	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	if (ret)
		return ret;

	/*
	 * Ideally we want the IIO core to handle the demux when running in fifo
	 * mode but not when running in triggered buffer mode. Unfortunately
	 * this does not seem to be possible, so stick with driver demux for
	 * now.
	 */
	for (i = 0; i < count; i++) {
		u16 sample[8];
		int j, bit;

		j = 0;
		for_each_set_bit(bit, indio_dev->active_scan_mask,
				 indio_dev->masklength)
			memcpy(&sample[j++], &buffer[i * 3 + bit], 2);

		iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);

		tstamp += sample_period;
	}

	return count;
}

static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	mutex_lock(&data->mutex);
	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
	mutex_unlock(&data->mutex);

	return ret;
}

946
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
947
		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
948 949 950 951 952 953 954 955 956 957 958 959

static struct attribute *bmc150_accel_attributes[] = {
	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group bmc150_accel_attrs_group = {
	.attrs = bmc150_accel_attributes,
};

static const struct iio_event_spec bmc150_accel_event = {
		.type = IIO_EV_TYPE_ROC,
960
		.dir = IIO_EV_DIR_EITHER,
961 962 963 964 965
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
				 BIT(IIO_EV_INFO_ENABLE) |
				 BIT(IIO_EV_INFO_PERIOD)
};

966
#define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
967 968 969 970 971 972 973 974 975
	.type = IIO_ACCEL,						\
	.modified = 1,							\
	.channel2 = IIO_MOD_##_axis,					\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
	.scan_index = AXIS_##_axis,					\
	.scan_type = {							\
		.sign = 's',						\
976
		.realbits = (bits),					\
977
		.storagebits = 16,					\
978
		.shift = 16 - (bits),					\
979
		.endianness = IIO_LE,					\
980 981 982 983 984
	},								\
	.event_spec = &bmc150_accel_event,				\
	.num_event_specs = 1						\
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
#define BMC150_ACCEL_CHANNELS(bits) {					\
	{								\
		.type = IIO_TEMP,					\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
				      BIT(IIO_CHAN_INFO_SCALE) |	\
				      BIT(IIO_CHAN_INFO_OFFSET),	\
		.scan_index = -1,					\
	},								\
	BMC150_ACCEL_CHANNEL(X, bits),					\
	BMC150_ACCEL_CHANNEL(Y, bits),					\
	BMC150_ACCEL_CHANNEL(Z, bits),					\
	IIO_CHAN_SOFT_TIMESTAMP(3),					\
}

static const struct iio_chan_spec bma222e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(8);
static const struct iio_chan_spec bma250e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(10);
static const struct iio_chan_spec bmc150_accel_channels[] =
	BMC150_ACCEL_CHANNELS(12);
static const struct iio_chan_spec bma280_accel_channels[] =
	BMC150_ACCEL_CHANNELS(14);

static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
	[bmc150] = {
1010
		.name = "BMC150A",
1011 1012 1013 1014 1015 1016 1017 1018 1019
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bmi055] = {
1020
		.name = "BMI055A",
1021 1022 1023 1024 1025 1026 1027 1028 1029
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma255] = {
1030
		.name = "BMA0255",
1031 1032 1033 1034 1035 1036 1037 1038 1039
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma250e] = {
1040
		.name = "BMA250E",
1041 1042 1043 1044 1045 1046 1047 1048 1049
		.chip_id = 0xF9,
		.channels = bma250e_accel_channels,
		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma222e] = {
1050
		.name = "BMA222E",
1051 1052 1053 1054 1055 1056 1057 1058 1059
		.chip_id = 0xF8,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma280] = {
1060
		.name = "BMA0280",
1061 1062 1063 1064 1065 1066 1067
		.chip_id = 0xFB,
		.channels = bma280_accel_channels,
		.num_channels = ARRAY_SIZE(bma280_accel_channels),
		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	},
};

static const struct iio_info bmc150_accel_info = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
};

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
static const struct iio_info bmc150_accel_info_fifo = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
	.validate_trigger	= bmc150_accel_validate_trigger,
	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
};

1094 1095 1096 1097
static const unsigned long bmc150_accel_scan_masks[] = {
					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
					0};

1098 1099 1100 1101 1102
static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1103
	int ret;
1104 1105

	mutex_lock(&data->mutex);
1106 1107
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
			       data->buffer, AXIS_MAX * 2);
1108
	mutex_unlock(&data->mutex);
1109 1110
	if (ret < 0)
		goto err_read;
1111 1112

	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1113
					   pf->timestamp);
1114 1115 1116 1117 1118 1119 1120 1121
err_read:
	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
{
1122 1123
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1124
	struct device *dev = regmap_get_device(data->regmap);
1125 1126 1127
	int ret;

	/* new data interrupts don't need ack */
1128
	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1129 1130 1131 1132
		return 0;

	mutex_lock(&data->mutex);
	/* clear any latched interrupt */
M
Markus Pargmann 已提交
1133 1134 1135
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1136 1137
	mutex_unlock(&data->mutex);
	if (ret < 0) {
1138
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1139 1140 1141 1142 1143 1144
		return ret;
	}

	return 0;
}

1145
static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1146
					  bool state)
1147
{
1148 1149
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1150 1151 1152 1153
	int ret;

	mutex_lock(&data->mutex);

1154 1155 1156 1157 1158 1159 1160 1161
	if (t->enabled == state) {
		mutex_unlock(&data->mutex);
		return 0;
	}

	if (t->setup) {
		ret = t->setup(t, state);
		if (ret < 0) {
1162
			mutex_unlock(&data->mutex);
1163
			return ret;
1164 1165 1166
		}
	}

1167
	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1168 1169 1170 1171
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}
1172 1173

	t->enabled = state;
1174 1175 1176 1177 1178 1179 1180

	mutex_unlock(&data->mutex);

	return ret;
}

static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1181
	.set_trigger_state = bmc150_accel_trigger_set_state,
1182 1183 1184
	.try_reenable = bmc150_accel_trig_try_reen,
};

1185
static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1186 1187
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1188
	struct device *dev = regmap_get_device(data->regmap);
1189
	int dir;
1190
	int ret;
M
Markus Pargmann 已提交
1191
	unsigned int val;
1192

M
Markus Pargmann 已提交
1193
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1194
	if (ret < 0) {
1195
		dev_err(dev, "Error reading reg_int_status_2\n");
1196
		return ret;
1197 1198
	}

M
Markus Pargmann 已提交
1199
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1200 1201 1202 1203
		dir = IIO_EV_DIR_FALLING;
	else
		dir = IIO_EV_DIR_RISING;

M
Markus Pargmann 已提交
1204
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1205 1206 1207 1208 1209 1210 1211 1212
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_X,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1213
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1214 1215 1216 1217 1218 1219 1220 1221
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Y,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1222
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1223 1224 1225 1226 1227 1228 1229 1230
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Z,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

1231 1232 1233 1234 1235 1236 1237
	return ret;
}

static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1238
	struct device *dev = regmap_get_device(data->regmap);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	bool ack = false;
	int ret;

	mutex_lock(&data->mutex);

	if (data->fifo_mode) {
		ret = __bmc150_accel_fifo_flush(indio_dev,
						BMC150_ACCEL_FIFO_LENGTH, true);
		if (ret > 0)
			ack = true;
	}

	if (data->ev_enable_state) {
		ret = bmc150_accel_handle_roc_event(indio_dev);
		if (ret > 0)
			ack = true;
	}

	if (ack) {
M
Markus Pargmann 已提交
1258 1259 1260
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_INT |
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1261
		if (ret)
1262
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1263

1264 1265 1266 1267
		ret = IRQ_HANDLED;
	} else {
		ret = IRQ_NONE;
	}
1268

1269 1270 1271
	mutex_unlock(&data->mutex);

	return ret;
1272 1273
}

1274
static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1275 1276 1277
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1278
	bool ack = false;
1279
	int i;
1280

1281
	data->old_timestamp = data->timestamp;
1282
	data->timestamp = iio_get_time_ns(indio_dev);
1283

1284 1285 1286
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].enabled) {
			iio_trigger_poll(data->triggers[i].indio_trig);
1287
			ack = true;
1288 1289 1290
			break;
		}
	}
1291

1292
	if (data->ev_enable_state || data->fifo_mode)
1293
		return IRQ_WAKE_THREAD;
1294 1295

	if (ack)
1296
		return IRQ_HANDLED;
1297 1298

	return IRQ_NONE;
1299 1300
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
static const struct {
	int intr;
	const char *name;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
	{
		.intr = 0,
		.name = "%s-dev%d",
	},
	{
		.intr = 1,
		.name = "%s-any-motion-dev%d",
		.setup = bmc150_accel_any_motion_setup,
	},
};

static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
					     int from)
{
	int i;

1322
	for (i = from; i >= 0; i--) {
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
		if (data->triggers[i].indio_trig) {
			iio_trigger_unregister(data->triggers[i].indio_trig);
			data->triggers[i].indio_trig = NULL;
		}
	}
}

static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
				       struct bmc150_accel_data *data)
{
1333
	struct device *dev = regmap_get_device(data->regmap);
1334 1335 1336 1337 1338
	int i, ret;

	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		struct bmc150_accel_trigger *t = &data->triggers[i];

1339 1340
		t->indio_trig = devm_iio_trigger_alloc(dev,
					bmc150_accel_triggers[i].name,
1341 1342 1343 1344 1345 1346 1347
						       indio_dev->name,
						       indio_dev->id);
		if (!t->indio_trig) {
			ret = -ENOMEM;
			break;
		}

1348
		t->indio_trig->dev.parent = dev;
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
		t->indio_trig->ops = &bmc150_accel_trigger_ops;
		t->intr = bmc150_accel_triggers[i].intr;
		t->data = data;
		t->setup = bmc150_accel_triggers[i].setup;
		iio_trigger_set_drvdata(t->indio_trig, t);

		ret = iio_trigger_register(t->indio_trig);
		if (ret)
			break;
	}

	if (ret)
		bmc150_accel_unregister_triggers(data, i - 1);

	return ret;
}

1366 1367 1368 1369 1370 1371
#define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
#define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
#define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00

static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
{
1372
	struct device *dev = regmap_get_device(data->regmap);
1373 1374 1375
	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
	int ret;

M
Markus Pargmann 已提交
1376
	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1377
	if (ret < 0) {
1378
		dev_err(dev, "Error writing reg_fifo_config1\n");
1379 1380 1381 1382 1383 1384
		return ret;
	}

	if (!data->fifo_mode)
		return 0;

M
Markus Pargmann 已提交
1385 1386
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
			   data->watermark);
1387
	if (ret < 0)
1388
		dev_err(dev, "Error writing reg_fifo_config0\n");
1389 1390 1391 1392

	return ret;
}

1393 1394 1395 1396 1397 1398 1399
static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, true);
}

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret = 0;

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
		return iio_triggered_buffer_postenable(indio_dev);

	mutex_lock(&data->mutex);

	if (!data->watermark)
		goto out;

	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					 true);
	if (ret)
		goto out;

	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;

	ret = bmc150_accel_fifo_set_mode(data);
	if (ret) {
		data->fifo_mode = 0;
		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					   false);
	}

out:
	mutex_unlock(&data->mutex);

	return ret;
}

static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
		return iio_triggered_buffer_predisable(indio_dev);

	mutex_lock(&data->mutex);

	if (!data->fifo_mode)
		goto out;

	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
	data->fifo_mode = 0;
	bmc150_accel_fifo_set_mode(data);

out:
	mutex_unlock(&data->mutex);

	return 0;
}

1456 1457 1458 1459 1460 1461 1462
static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, false);
}

1463
static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1464
	.preenable = bmc150_accel_buffer_preenable,
1465 1466
	.postenable = bmc150_accel_buffer_postenable,
	.predisable = bmc150_accel_buffer_predisable,
1467
	.postdisable = bmc150_accel_buffer_postdisable,
1468 1469
};

1470 1471
static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
{
1472
	struct device *dev = regmap_get_device(data->regmap);
1473
	int ret, i;
M
Markus Pargmann 已提交
1474
	unsigned int val;
1475

1476 1477 1478 1479 1480 1481 1482 1483
	/*
	 * Reset chip to get it in a known good state. A delay of 1.8ms after
	 * reset is required according to the data sheets of supported chips.
	 */
	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
		     BMC150_ACCEL_RESET_VAL);
	usleep_range(1800, 2500);

M
Markus Pargmann 已提交
1484
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1485
	if (ret < 0) {
1486
		dev_err(dev, "Error: Reading chip id\n");
1487 1488 1489
		return ret;
	}

1490
	dev_dbg(dev, "Chip Id %x\n", val);
1491
	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
M
Markus Pargmann 已提交
1492
		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1493 1494 1495 1496 1497 1498
			data->chip_info = &bmc150_accel_chip_info_tbl[i];
			break;
		}
	}

	if (!data->chip_info) {
1499
		dev_err(dev, "Invalid chip %x\n", val);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
		return -ENODEV;
	}

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
	if (ret < 0)
		return ret;

	/* Set Bandwidth */
	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
	if (ret < 0)
		return ret;

	/* Set Default Range */
M
Markus Pargmann 已提交
1513 1514
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
			   BMC150_ACCEL_DEF_RANGE_4G);
1515
	if (ret < 0) {
1516
		dev_err(dev, "Error writing reg_pmu_range\n");
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
		return ret;
	}

	data->range = BMC150_ACCEL_DEF_RANGE_4G;

	/* Set default slope duration and thresholds */
	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
	ret = bmc150_accel_update_slope(data);
	if (ret < 0)
		return ret;

	/* Set default as latched interrupts */
M
Markus Pargmann 已提交
1530 1531 1532
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1533
	if (ret < 0) {
1534
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1535 1536 1537 1538 1539 1540
		return ret;
	}

	return 0;
}

1541 1542
int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
			    const char *name, bool block_supported)
1543 1544 1545 1546 1547
{
	struct bmc150_accel_data *data;
	struct iio_dev *indio_dev;
	int ret;

1548
	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1549 1550 1551 1552
	if (!indio_dev)
		return -ENOMEM;

	data = iio_priv(indio_dev);
1553 1554
	dev_set_drvdata(dev, indio_dev);
	data->irq = irq;
1555

1556
	data->regmap = regmap;
1557

1558 1559 1560 1561 1562 1563
	ret = bmc150_accel_chip_init(data);
	if (ret < 0)
		return ret;

	mutex_init(&data->mutex);

1564
	indio_dev->dev.parent = dev;
1565 1566
	indio_dev->channels = data->chip_info->channels;
	indio_dev->num_channels = data->chip_info->num_channels;
1567
	indio_dev->name = name ? name : data->chip_info->name;
1568
	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1569 1570 1571
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &bmc150_accel_info;

1572 1573 1574 1575 1576
	ret = iio_triggered_buffer_setup(indio_dev,
					 &iio_pollfunc_store_time,
					 bmc150_accel_trigger_handler,
					 &bmc150_accel_buffer_ops);
	if (ret < 0) {
1577
		dev_err(dev, "Failed: iio triggered buffer setup\n");
1578 1579 1580
		return ret;
	}

1581
	if (data->irq > 0) {
1582
		ret = devm_request_threaded_irq(
1583
						dev, data->irq,
1584 1585
						bmc150_accel_irq_handler,
						bmc150_accel_irq_thread_handler,
1586 1587 1588 1589
						IRQF_TRIGGER_RISING,
						BMC150_ACCEL_IRQ_NAME,
						indio_dev);
		if (ret)
1590
			goto err_buffer_cleanup;
1591

1592 1593 1594 1595 1596 1597
		/*
		 * Set latched mode interrupt. While certain interrupts are
		 * non-latched regardless of this settings (e.g. new data) we
		 * want to use latch mode when we can to prevent interrupt
		 * flooding.
		 */
M
Markus Pargmann 已提交
1598 1599
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1600
		if (ret < 0) {
1601
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1602
			goto err_buffer_cleanup;
1603 1604
		}

1605 1606
		bmc150_accel_interrupts_setup(indio_dev, data);

1607
		ret = bmc150_accel_triggers_setup(indio_dev, data);
1608
		if (ret)
1609
			goto err_buffer_cleanup;
1610

1611
		if (block_supported) {
1612 1613
			indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
			indio_dev->info = &bmc150_accel_info_fifo;
1614 1615
			iio_buffer_set_attrs(indio_dev->buffer,
					     bmc150_accel_fifo_attributes);
1616
		}
1617 1618
	}

1619
	ret = pm_runtime_set_active(dev);
1620
	if (ret)
1621
		goto err_trigger_unregister;
1622

1623 1624 1625
	pm_runtime_enable(dev);
	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
	pm_runtime_use_autosuspend(dev);
1626

1627 1628 1629 1630 1631 1632
	ret = iio_device_register(indio_dev);
	if (ret < 0) {
		dev_err(dev, "Unable to register iio device\n");
		goto err_trigger_unregister;
	}

1633 1634 1635
	return 0;

err_trigger_unregister:
1636
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1637 1638
err_buffer_cleanup:
	iio_triggered_buffer_cleanup(indio_dev);
1639 1640 1641

	return ret;
}
1642
EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1643

1644
int bmc150_accel_core_remove(struct device *dev)
1645
{
1646
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1647 1648
	struct bmc150_accel_data *data = iio_priv(indio_dev);

1649 1650
	iio_device_unregister(indio_dev);

1651 1652 1653
	pm_runtime_disable(dev);
	pm_runtime_set_suspended(dev);
	pm_runtime_put_noidle(dev);
1654

1655
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1656

1657 1658
	iio_triggered_buffer_cleanup(indio_dev);

1659 1660 1661 1662 1663 1664
	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
	mutex_unlock(&data->mutex);

	return 0;
}
1665
EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1666 1667 1668 1669

#ifdef CONFIG_PM_SLEEP
static int bmc150_accel_suspend(struct device *dev)
{
1670
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_resume(struct device *dev)
{
1682
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1683 1684 1685
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
1686
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1687
	bmc150_accel_fifo_set_mode(data);
1688 1689 1690 1691 1692 1693
	mutex_unlock(&data->mutex);

	return 0;
}
#endif

1694
#ifdef CONFIG_PM
1695 1696
static int bmc150_accel_runtime_suspend(struct device *dev)
{
1697
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1698
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1699
	int ret;
1700

1701 1702 1703
	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	if (ret < 0)
		return -EAGAIN;
1704

1705
	return 0;
1706 1707 1708 1709
}

static int bmc150_accel_runtime_resume(struct device *dev)
{
1710
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1711 1712 1713 1714 1715
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;
	int sleep_val;

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1716 1717 1718
	if (ret < 0)
		return ret;
	ret = bmc150_accel_fifo_set_mode(data);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	if (ret < 0)
		return ret;

	sleep_val = bmc150_accel_get_startup_times(data);
	if (sleep_val < 20)
		usleep_range(sleep_val * 1000, 20000);
	else
		msleep_interruptible(sleep_val);

	return 0;
}
#endif

1732
const struct dev_pm_ops bmc150_accel_pm_ops = {
1733 1734 1735 1736
	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
			   bmc150_accel_runtime_resume, NULL)
};
1737
EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1738 1739 1740 1741

MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMC150 accelerometer driver");