bmc150-accel-core.c 43.6 KB
Newer Older
1
/*
2 3 4 5 6 7 8 9
 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
 *  - BMC150
 *  - BMI055
 *  - BMA255
 *  - BMA250E
 *  - BMA222E
 *  - BMA280
 *
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
 * Copyright (c) 2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/gpio/consumer.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
M
Markus Pargmann 已提交
38
#include <linux/regmap.h>
39

40 41
#include "bmc150-accel.h"

42 43 44 45 46 47 48
#define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
#define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"

#define BMC150_ACCEL_REG_CHIP_ID		0x00

#define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
#define BMC150_ACCEL_ANY_MOTION_MASK		0x07
49 50 51
#define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
#define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
#define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)

#define BMC150_ACCEL_REG_PMU_LPW		0x11
#define BMC150_ACCEL_PMU_MODE_MASK		0xE0
#define BMC150_ACCEL_PMU_MODE_SHIFT		5
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1

#define BMC150_ACCEL_REG_PMU_RANGE		0x0F

#define BMC150_ACCEL_DEF_RANGE_2G		0x03
#define BMC150_ACCEL_DEF_RANGE_4G		0x05
#define BMC150_ACCEL_DEF_RANGE_8G		0x08
#define BMC150_ACCEL_DEF_RANGE_16G		0x0C

/* Default BW: 125Hz */
#define BMC150_ACCEL_REG_PMU_BW		0x10
#define BMC150_ACCEL_DEF_BW			125

#define BMC150_ACCEL_REG_INT_MAP_0		0x19
#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)

#define BMC150_ACCEL_REG_INT_MAP_1		0x1A
75 76 77
#define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
#define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
#define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
78 79 80 81 82 83 84 85 86 87 88 89

#define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
#define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
#define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00

#define BMC150_ACCEL_REG_INT_EN_0		0x16
#define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)

#define BMC150_ACCEL_REG_INT_EN_1		0x17
90 91 92
#define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
#define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
93 94 95 96 97 98 99 100 101 102 103

#define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)

#define BMC150_ACCEL_REG_INT_5			0x27
#define BMC150_ACCEL_SLOPE_DUR_MASK		0x03

#define BMC150_ACCEL_REG_INT_6			0x28
#define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF

/* Slope duration in terms of number of samples */
104
#define BMC150_ACCEL_DEF_SLOPE_DURATION		1
105
/* in terms of multiples of g's/LSB, based on range */
106
#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

#define BMC150_ACCEL_REG_XOUT_L		0x02

#define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100

/* Sleep Duration values */
#define BMC150_ACCEL_SLEEP_500_MICRO		0x05
#define BMC150_ACCEL_SLEEP_1_MS		0x06
#define BMC150_ACCEL_SLEEP_2_MS		0x07
#define BMC150_ACCEL_SLEEP_4_MS		0x08
#define BMC150_ACCEL_SLEEP_6_MS		0x09
#define BMC150_ACCEL_SLEEP_10_MS		0x0A
#define BMC150_ACCEL_SLEEP_25_MS		0x0B
#define BMC150_ACCEL_SLEEP_50_MS		0x0C
#define BMC150_ACCEL_SLEEP_100_MS		0x0D
#define BMC150_ACCEL_SLEEP_500_MS		0x0E
#define BMC150_ACCEL_SLEEP_1_SEC		0x0F

#define BMC150_ACCEL_REG_TEMP			0x08
#define BMC150_ACCEL_TEMP_CENTER_VAL		24

#define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
#define BMC150_AUTO_SUSPEND_DELAY_MS		2000

131 132 133 134 135 136
#define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
#define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
#define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
#define BMC150_ACCEL_REG_FIFO_DATA		0x3F
#define BMC150_ACCEL_FIFO_LENGTH		32

137 138 139 140 141 142 143 144 145 146 147 148 149
enum bmc150_accel_axis {
	AXIS_X,
	AXIS_Y,
	AXIS_Z,
};

enum bmc150_power_modes {
	BMC150_ACCEL_SLEEP_MODE_NORMAL,
	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
	BMC150_ACCEL_SLEEP_MODE_LPM,
	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
};

150 151 152 153 154 155
struct bmc150_scale_info {
	int scale;
	u8 reg_range;
};

struct bmc150_accel_chip_info {
156
	const char *name;
157 158 159 160 161 162
	u8 chip_id;
	const struct iio_chan_spec *channels;
	int num_channels;
	const struct bmc150_scale_info scale_table[4];
};

163 164 165 166 167
struct bmc150_accel_interrupt {
	const struct bmc150_accel_interrupt_info *info;
	atomic_t users;
};

168 169 170 171 172 173 174 175
struct bmc150_accel_trigger {
	struct bmc150_accel_data *data;
	struct iio_trigger *indio_trig;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
	int intr;
	bool enabled;
};

176 177 178 179 180 181 182
enum bmc150_accel_interrupt_id {
	BMC150_ACCEL_INT_DATA_READY,
	BMC150_ACCEL_INT_ANY_MOTION,
	BMC150_ACCEL_INT_WATERMARK,
	BMC150_ACCEL_INTERRUPTS,
};

183 184 185 186 187 188
enum bmc150_accel_trigger_id {
	BMC150_ACCEL_TRIGGER_DATA_READY,
	BMC150_ACCEL_TRIGGER_ANY_MOTION,
	BMC150_ACCEL_TRIGGERS,
};

189
struct bmc150_accel_data {
M
Markus Pargmann 已提交
190 191
	struct regmap *regmap;
	struct device *dev;
192
	int irq;
193 194
	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
	atomic_t active_intr;
195
	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
196
	struct mutex mutex;
197
	u8 fifo_mode, watermark;
198 199 200 201 202 203
	s16 buffer[8];
	u8 bw_bits;
	u32 slope_dur;
	u32 slope_thres;
	u32 range;
	int ev_enable_state;
204
	int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
205
	const struct bmc150_accel_chip_info *chip_info;
206 207 208 209 210 211
};

static const struct {
	int val;
	int val2;
	u8 bw_bits;
212 213 214 215 216 217 218 219
} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
				     {31, 260000, 0x09},
				     {62, 500000, 0x0A},
				     {125, 0, 0x0B},
				     {250, 0, 0x0C},
				     {500, 0, 0x0D},
				     {1000, 0, 0x0E},
				     {2000, 0, 0x0F} };
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

static const struct {
	int bw_bits;
	int msec;
} bmc150_accel_sample_upd_time[] = { {0x08, 64},
				     {0x09, 32},
				     {0x0A, 16},
				     {0x0B, 8},
				     {0x0C, 4},
				     {0x0D, 2},
				     {0x0E, 1},
				     {0x0F, 1} };

static const struct {
	int sleep_dur;
235
	u8 reg_value;
236 237 238 239 240 241 242 243 244 245 246 247 248
} bmc150_accel_sleep_value_table[] = { {0, 0},
				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
				       {1000, BMC150_ACCEL_SLEEP_1_MS},
				       {2000, BMC150_ACCEL_SLEEP_2_MS},
				       {4000, BMC150_ACCEL_SLEEP_4_MS},
				       {6000, BMC150_ACCEL_SLEEP_6_MS},
				       {10000, BMC150_ACCEL_SLEEP_10_MS},
				       {25000, BMC150_ACCEL_SLEEP_25_MS},
				       {50000, BMC150_ACCEL_SLEEP_50_MS},
				       {100000, BMC150_ACCEL_SLEEP_100_MS},
				       {500000, BMC150_ACCEL_SLEEP_500_MS},
				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };

M
Markus Pargmann 已提交
249 250 251 252 253 254
static const struct regmap_config bmc150_i2c_regmap_conf = {
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = 0x3f,
};

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
				 enum bmc150_power_modes mode,
				 int dur_us)
{
	int i;
	int ret;
	u8 lpw_bits;
	int dur_val = -1;

	if (dur_us > 0) {
		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
									 ++i) {
			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
									dur_us)
				dur_val =
				bmc150_accel_sleep_value_table[i].reg_value;
		}
272
	} else {
273
		dur_val = 0;
274
	}
275 276 277 278 279 280 281

	if (dur_val < 0)
		return -EINVAL;

	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);

282
	dev_dbg(data->dev, "Set Mode bits %x\n", lpw_bits);
283

M
Markus Pargmann 已提交
284
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
285
	if (ret < 0) {
286
		dev_err(data->dev, "Error writing reg_pmu_lpw\n");
287 288 289 290 291 292 293 294 295 296 297 298 299 300
		return ret;
	}

	return 0;
}

static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
			       int val2)
{
	int i;
	int ret;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].val == val &&
301
		    bmc150_accel_samp_freq_table[i].val2 == val2) {
M
Markus Pargmann 已提交
302
			ret = regmap_write(data->regmap,
303 304 305 306 307 308 309 310 311 312 313 314 315 316
				BMC150_ACCEL_REG_PMU_BW,
				bmc150_accel_samp_freq_table[i].bw_bits);
			if (ret < 0)
				return ret;

			data->bw_bits =
				bmc150_accel_samp_freq_table[i].bw_bits;
			return 0;
		}
	}

	return -EINVAL;
}

317 318
static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
{
M
Markus Pargmann 已提交
319
	int ret;
320

M
Markus Pargmann 已提交
321
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
322 323
					data->slope_thres);
	if (ret < 0) {
324
		dev_err(data->dev, "Error writing reg_int_6\n");
325 326 327
		return ret;
	}

M
Markus Pargmann 已提交
328 329
	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
330
	if (ret < 0) {
331
		dev_err(data->dev, "Error updating reg_int_5\n");
332 333 334
		return ret;
	}

335
	dev_dbg(data->dev, "%s: %x %x\n", __func__, data->slope_thres,
336 337 338 339 340
		data->slope_dur);

	return ret;
}

341 342 343 344 345 346 347 348 349
static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
					 bool state)
{
	if (state)
		return bmc150_accel_update_slope(t->data);

	return 0;
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
			       int *val2)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
			*val = bmc150_accel_samp_freq_table[i].val;
			*val2 = bmc150_accel_samp_freq_table[i].val2;
			return IIO_VAL_INT_PLUS_MICRO;
		}
	}

	return -EINVAL;
}

366
#ifdef CONFIG_PM
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
			return bmc150_accel_sample_upd_time[i].msec;
	}

	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
}

static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
	int ret;

383
	if (on) {
384
		ret = pm_runtime_get_sync(data->dev);
385
	} else {
386 387
		pm_runtime_mark_last_busy(data->dev);
		ret = pm_runtime_put_autosuspend(data->dev);
388
	}
389

390
	if (ret < 0) {
391
		dev_err(data->dev,
392
			"Failed: bmc150_accel_set_power_state for %d\n", on);
393
		if (on)
394
			pm_runtime_put_noidle(data->dev);
395

396 397 398 399 400
		return ret;
	}

	return 0;
}
401 402 403 404 405 406
#else
static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
	return 0;
}
#endif
407

408 409 410 411 412
static const struct bmc150_accel_interrupt_info {
	u8 map_reg;
	u8 map_bitmask;
	u8 en_reg;
	u8 en_bitmask;
413
} bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
414 415 416 417 418 419 420 421 422 423 424 425 426 427
	{ /* data ready interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
	},
	{  /* motion interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
			BMC150_ACCEL_INT_EN_BIT_SLP_Z
	},
428 429 430 431 432 433
	{ /* fifo watermark interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
	},
434 435
};

436 437 438 439 440 441 442 443 444 445
static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
					  struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
		data->interrupts[i].info = &bmc150_accel_interrupts[i];
}

static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
446 447
				      bool state)
{
448 449
	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
	const struct bmc150_accel_interrupt_info *info = intr->info;
450 451
	int ret;

452 453 454 455 456 457 458 459
	if (state) {
		if (atomic_inc_return(&intr->users) > 1)
			return 0;
	} else {
		if (atomic_dec_return(&intr->users) > 0)
			return 0;
	}

460
	/*
461 462 463 464 465 466 467
	 * We will expect the enable and disable to do operation in reverse
	 * order. This will happen here anyway, as our resume operation uses
	 * sync mode runtime pm calls. The suspend operation will be delayed
	 * by autosuspend delay.
	 * So the disable operation will still happen in reverse order of
	 * enable operation. When runtime pm is disabled the mode is always on,
	 * so sequence doesn't matter.
468 469 470 471 472 473
	 */
	ret = bmc150_accel_set_power_state(data, state);
	if (ret < 0)
		return ret;

	/* map the interrupt to the appropriate pins */
M
Markus Pargmann 已提交
474 475
	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
				 (state ? info->map_bitmask : 0));
476
	if (ret < 0) {
477
		dev_err(data->dev, "Error updating reg_int_map\n");
478 479 480 481
		goto out_fix_power_state;
	}

	/* enable/disable the interrupt */
M
Markus Pargmann 已提交
482 483
	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
				 (state ? info->en_bitmask : 0));
484
	if (ret < 0) {
485
		dev_err(data->dev, "Error updating reg_int_en\n");
486 487 488
		goto out_fix_power_state;
	}

489 490 491 492 493
	if (state)
		atomic_inc(&data->active_intr);
	else
		atomic_dec(&data->active_intr);

494 495 496 497 498 499 500
	return 0;

out_fix_power_state:
	bmc150_accel_set_power_state(data, false);
	return ret;
}

501 502 503 504
static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
{
	int ret, i;

505 506
	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
		if (data->chip_info->scale_table[i].scale == val) {
M
Markus Pargmann 已提交
507
			ret = regmap_write(data->regmap,
508 509
				     BMC150_ACCEL_REG_PMU_RANGE,
				     data->chip_info->scale_table[i].reg_range);
510
			if (ret < 0) {
511
				dev_err(data->dev,
512 513 514 515
					"Error writing pmu_range\n");
				return ret;
			}

516
			data->range = data->chip_info->scale_table[i].reg_range;
517 518 519 520 521 522 523 524 525 526
			return 0;
		}
	}

	return -EINVAL;
}

static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
{
	int ret;
M
Markus Pargmann 已提交
527
	unsigned int value;
528 529 530

	mutex_lock(&data->mutex);

M
Markus Pargmann 已提交
531
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
532
	if (ret < 0) {
533
		dev_err(data->dev, "Error reading reg_temp\n");
534 535 536
		mutex_unlock(&data->mutex);
		return ret;
	}
M
Markus Pargmann 已提交
537
	*val = sign_extend32(value, 7);
538 539 540 541 542 543

	mutex_unlock(&data->mutex);

	return IIO_VAL_INT;
}

544 545
static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
				 struct iio_chan_spec const *chan,
546 547 548
				 int *val)
{
	int ret;
549
	int axis = chan->scan_index;
M
Markus Pargmann 已提交
550
	unsigned int raw_val;
551 552 553 554 555 556 557 558

	mutex_lock(&data->mutex);
	ret = bmc150_accel_set_power_state(data, true);
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

M
Markus Pargmann 已提交
559 560
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
			       &raw_val, 2);
561
	if (ret < 0) {
562
		dev_err(data->dev, "Error reading axis %d\n", axis);
563 564 565 566
		bmc150_accel_set_power_state(data, false);
		mutex_unlock(&data->mutex);
		return ret;
	}
M
Markus Pargmann 已提交
567
	*val = sign_extend32(raw_val >> chan->scan_type.shift,
568
			     chan->scan_type.realbits - 1);
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	ret = bmc150_accel_set_power_state(data, false);
	mutex_unlock(&data->mutex);
	if (ret < 0)
		return ret;

	return IIO_VAL_INT;
}

static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
				 struct iio_chan_spec const *chan,
				 int *val, int *val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		switch (chan->type) {
		case IIO_TEMP:
			return bmc150_accel_get_temp(data, val);
		case IIO_ACCEL:
			if (iio_buffer_enabled(indio_dev))
				return -EBUSY;
			else
593
				return bmc150_accel_get_axis(data, chan, val);
594 595 596 597 598 599 600
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_OFFSET:
		if (chan->type == IIO_TEMP) {
			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
			return IIO_VAL_INT;
601
		} else {
602
			return -EINVAL;
603
		}
604 605 606 607 608 609 610 611 612
	case IIO_CHAN_INFO_SCALE:
		*val = 0;
		switch (chan->type) {
		case IIO_TEMP:
			*val2 = 500000;
			return IIO_VAL_INT_PLUS_MICRO;
		case IIO_ACCEL:
		{
			int i;
613 614
			const struct bmc150_scale_info *si;
			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
615

616 617 618 619
			for (i = 0; i < st_size; ++i) {
				si = &data->chip_info->scale_table[i];
				if (si->reg_range == data->range) {
					*val2 = si->scale;
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
					return IIO_VAL_INT_PLUS_MICRO;
				}
			}
			return -EINVAL;
		}
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_get_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		return -EINVAL;
	}
}

static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
				  struct iio_chan_spec const *chan,
				  int val, int val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		break;
	case IIO_CHAN_INFO_SCALE:
		if (val)
			return -EINVAL;

		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_scale(data, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int bmc150_accel_read_event(struct iio_dev *indio_dev,
				   const struct iio_chan_spec *chan,
				   enum iio_event_type type,
				   enum iio_event_direction dir,
				   enum iio_event_info info,
				   int *val, int *val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	*val2 = 0;
	switch (info) {
	case IIO_EV_INFO_VALUE:
		*val = data->slope_thres;
		break;
	case IIO_EV_INFO_PERIOD:
681
		*val = data->slope_dur;
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
		break;
	default:
		return -EINVAL;
	}

	return IIO_VAL_INT;
}

static int bmc150_accel_write_event(struct iio_dev *indio_dev,
				    const struct iio_chan_spec *chan,
				    enum iio_event_type type,
				    enum iio_event_direction dir,
				    enum iio_event_info info,
				    int val, int val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (data->ev_enable_state)
		return -EBUSY;

	switch (info) {
	case IIO_EV_INFO_VALUE:
704
		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
705 706
		break;
	case IIO_EV_INFO_PERIOD:
707
		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
					  const struct iio_chan_spec *chan,
					  enum iio_event_type type,
					  enum iio_event_direction dir)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return data->ev_enable_state;
}

static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
					   const struct iio_chan_spec *chan,
					   enum iio_event_type type,
					   enum iio_event_direction dir,
					   int state)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

735
	if (state == data->ev_enable_state)
736 737 738 739
		return 0;

	mutex_lock(&data->mutex);

740 741
	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
					 state);
742 743 744 745 746 747 748 749 750 751 752 753
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

	data->ev_enable_state = state;
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
754
					 struct iio_trigger *trig)
755 756
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
757
	int i;
758

759 760 761 762
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].indio_trig == trig)
			return 0;
	}
763

764
	return -EINVAL;
765 766
}

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
					       struct device_attribute *attr,
					       char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int wm;

	mutex_lock(&data->mutex);
	wm = data->watermark;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", wm);
}

static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	bool state;

	mutex_lock(&data->mutex);
	state = data->fifo_mode;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", state);
}

static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
static IIO_CONST_ATTR(hwfifo_watermark_max,
		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
		       bmc150_accel_get_fifo_state, NULL, 0);
static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
		       bmc150_accel_get_fifo_watermark, NULL, 0);

static const struct attribute *bmc150_accel_fifo_attributes[] = {
	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
	NULL,
};

static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (val > BMC150_ACCEL_FIFO_LENGTH)
		val = BMC150_ACCEL_FIFO_LENGTH;

	mutex_lock(&data->mutex);
	data->watermark = val;
	mutex_unlock(&data->mutex);

	return 0;
}

/*
 * We must read at least one full frame in one burst, otherwise the rest of the
 * frame data is discarded.
 */
M
Markus Pargmann 已提交
831
static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
832 833 834
				      char *buffer, int samples)
{
	int sample_length = 3 * 2;
M
Markus Pargmann 已提交
835 836 837 838
	int ret;
	int total_length = samples * sample_length;
	int i;
	size_t step = regmap_get_raw_read_max(data->regmap);
839

M
Markus Pargmann 已提交
840 841 842 843
	if (!step || step > total_length)
		step = total_length;
	else if (step < total_length)
		step = sample_length;
844

M
Markus Pargmann 已提交
845 846 847 848 849 850 851 852 853
	/*
	 * Seems we have a bus with size limitation so we have to execute
	 * multiple reads
	 */
	for (i = 0; i < total_length; i += step) {
		ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
				      &buffer[i], step);
		if (ret)
			break;
854 855 856
	}

	if (ret)
M
Markus Pargmann 已提交
857 858
		dev_err(data->dev, "Error transferring data from fifo in single steps of %zu\n",
			step);
859 860 861 862 863 864 865 866 867 868 869 870 871

	return ret;
}

static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
				     unsigned samples, bool irq)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret, i;
	u8 count;
	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
	int64_t tstamp;
	uint64_t sample_period;
M
Markus Pargmann 已提交
872
	unsigned int val;
873

M
Markus Pargmann 已提交
874
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
875
	if (ret < 0) {
876
		dev_err(data->dev, "Error reading reg_fifo_status\n");
877 878 879
		return ret;
	}

M
Markus Pargmann 已提交
880
	count = val & 0x7F;
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918

	if (!count)
		return 0;

	/*
	 * If we getting called from IRQ handler we know the stored timestamp is
	 * fairly accurate for the last stored sample. Otherwise, if we are
	 * called as a result of a read operation from userspace and hence
	 * before the watermark interrupt was triggered, take a timestamp
	 * now. We can fall anywhere in between two samples so the error in this
	 * case is at most one sample period.
	 */
	if (!irq) {
		data->old_timestamp = data->timestamp;
		data->timestamp = iio_get_time_ns();
	}

	/*
	 * Approximate timestamps for each of the sample based on the sampling
	 * frequency, timestamp for last sample and number of samples.
	 *
	 * Note that we can't use the current bandwidth settings to compute the
	 * sample period because the sample rate varies with the device
	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
	 * small variation adds when we store a large number of samples and
	 * creates significant jitter between the last and first samples in
	 * different batches (e.g. 32ms vs 21ms).
	 *
	 * To avoid this issue we compute the actual sample period ourselves
	 * based on the timestamp delta between the last two flush operations.
	 */
	sample_period = (data->timestamp - data->old_timestamp);
	do_div(sample_period, count);
	tstamp = data->timestamp - (count - 1) * sample_period;

	if (samples && count > samples)
		count = samples;

M
Markus Pargmann 已提交
919
	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
	if (ret)
		return ret;

	/*
	 * Ideally we want the IIO core to handle the demux when running in fifo
	 * mode but not when running in triggered buffer mode. Unfortunately
	 * this does not seem to be possible, so stick with driver demux for
	 * now.
	 */
	for (i = 0; i < count; i++) {
		u16 sample[8];
		int j, bit;

		j = 0;
		for_each_set_bit(bit, indio_dev->active_scan_mask,
				 indio_dev->masklength)
			memcpy(&sample[j++], &buffer[i * 3 + bit], 2);

		iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);

		tstamp += sample_period;
	}

	return count;
}

static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	mutex_lock(&data->mutex);
	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
	mutex_unlock(&data->mutex);

	return ret;
}

958
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
959
		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
960 961 962 963 964 965 966 967 968 969 970 971

static struct attribute *bmc150_accel_attributes[] = {
	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group bmc150_accel_attrs_group = {
	.attrs = bmc150_accel_attributes,
};

static const struct iio_event_spec bmc150_accel_event = {
		.type = IIO_EV_TYPE_ROC,
972
		.dir = IIO_EV_DIR_EITHER,
973 974 975 976 977
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
				 BIT(IIO_EV_INFO_ENABLE) |
				 BIT(IIO_EV_INFO_PERIOD)
};

978
#define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
979 980 981 982 983 984 985 986 987
	.type = IIO_ACCEL,						\
	.modified = 1,							\
	.channel2 = IIO_MOD_##_axis,					\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
	.scan_index = AXIS_##_axis,					\
	.scan_type = {							\
		.sign = 's',						\
988
		.realbits = (bits),					\
989
		.storagebits = 16,					\
990
		.shift = 16 - (bits),					\
991 992 993 994 995
	},								\
	.event_spec = &bmc150_accel_event,				\
	.num_event_specs = 1						\
}

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
#define BMC150_ACCEL_CHANNELS(bits) {					\
	{								\
		.type = IIO_TEMP,					\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
				      BIT(IIO_CHAN_INFO_SCALE) |	\
				      BIT(IIO_CHAN_INFO_OFFSET),	\
		.scan_index = -1,					\
	},								\
	BMC150_ACCEL_CHANNEL(X, bits),					\
	BMC150_ACCEL_CHANNEL(Y, bits),					\
	BMC150_ACCEL_CHANNEL(Z, bits),					\
	IIO_CHAN_SOFT_TIMESTAMP(3),					\
}

static const struct iio_chan_spec bma222e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(8);
static const struct iio_chan_spec bma250e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(10);
static const struct iio_chan_spec bmc150_accel_channels[] =
	BMC150_ACCEL_CHANNELS(12);
static const struct iio_chan_spec bma280_accel_channels[] =
	BMC150_ACCEL_CHANNELS(14);

static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
	[bmc150] = {
1021
		.name = "BMC150A",
1022 1023 1024 1025 1026 1027 1028 1029 1030
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bmi055] = {
1031
		.name = "BMI055A",
1032 1033 1034 1035 1036 1037 1038 1039 1040
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma255] = {
1041
		.name = "BMA0255",
1042 1043 1044 1045 1046 1047 1048 1049 1050
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma250e] = {
1051
		.name = "BMA250E",
1052 1053 1054 1055 1056 1057 1058 1059 1060
		.chip_id = 0xF9,
		.channels = bma250e_accel_channels,
		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma222e] = {
1061
		.name = "BMA222E",
1062 1063 1064 1065 1066 1067 1068 1069 1070
		.chip_id = 0xF8,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma280] = {
1071
		.name = "BMA0280",
1072 1073 1074 1075 1076 1077 1078
		.chip_id = 0xFB,
		.channels = bma280_accel_channels,
		.num_channels = ARRAY_SIZE(bma280_accel_channels),
		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	},
};

static const struct iio_info bmc150_accel_info = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
	.driver_module		= THIS_MODULE,
};

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
static const struct iio_info bmc150_accel_info_fifo = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
	.validate_trigger	= bmc150_accel_validate_trigger,
	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
	.driver_module		= THIS_MODULE,
};

1107 1108 1109 1110 1111 1112
static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int bit, ret, i = 0;
M
Markus Pargmann 已提交
1113
	unsigned int raw_val;
1114 1115

	mutex_lock(&data->mutex);
1116
	for_each_set_bit(bit, indio_dev->active_scan_mask,
1117
			 indio_dev->masklength) {
M
Markus Pargmann 已提交
1118 1119 1120
		ret = regmap_bulk_read(data->regmap,
				       BMC150_ACCEL_AXIS_TO_REG(bit), &raw_val,
				       2);
1121 1122 1123 1124
		if (ret < 0) {
			mutex_unlock(&data->mutex);
			goto err_read;
		}
M
Markus Pargmann 已提交
1125
		data->buffer[i++] = raw_val;
1126 1127 1128 1129
	}
	mutex_unlock(&data->mutex);

	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1130
					   pf->timestamp);
1131 1132 1133 1134 1135 1136 1137 1138
err_read:
	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
{
1139 1140
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1141 1142 1143
	int ret;

	/* new data interrupts don't need ack */
1144
	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1145 1146 1147 1148
		return 0;

	mutex_lock(&data->mutex);
	/* clear any latched interrupt */
M
Markus Pargmann 已提交
1149 1150 1151
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1152 1153
	mutex_unlock(&data->mutex);
	if (ret < 0) {
1154
		dev_err(data->dev,
1155 1156 1157 1158 1159 1160 1161
			"Error writing reg_int_rst_latch\n");
		return ret;
	}

	return 0;
}

1162
static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1163
					  bool state)
1164
{
1165 1166
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1167 1168 1169 1170
	int ret;

	mutex_lock(&data->mutex);

1171 1172 1173 1174 1175 1176 1177 1178
	if (t->enabled == state) {
		mutex_unlock(&data->mutex);
		return 0;
	}

	if (t->setup) {
		ret = t->setup(t, state);
		if (ret < 0) {
1179
			mutex_unlock(&data->mutex);
1180
			return ret;
1181 1182 1183
		}
	}

1184
	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1185 1186 1187 1188
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}
1189 1190

	t->enabled = state;
1191 1192 1193 1194 1195 1196 1197

	mutex_unlock(&data->mutex);

	return ret;
}

static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1198
	.set_trigger_state = bmc150_accel_trigger_set_state,
1199 1200 1201 1202
	.try_reenable = bmc150_accel_trig_try_reen,
	.owner = THIS_MODULE,
};

1203
static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1204 1205 1206
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int dir;
1207
	int ret;
M
Markus Pargmann 已提交
1208
	unsigned int val;
1209

M
Markus Pargmann 已提交
1210
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1211
	if (ret < 0) {
1212
		dev_err(data->dev, "Error reading reg_int_status_2\n");
1213
		return ret;
1214 1215
	}

M
Markus Pargmann 已提交
1216
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1217 1218 1219 1220
		dir = IIO_EV_DIR_FALLING;
	else
		dir = IIO_EV_DIR_RISING;

M
Markus Pargmann 已提交
1221
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1222 1223 1224 1225 1226 1227 1228 1229
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_X,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1230
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1231 1232 1233 1234 1235 1236 1237 1238
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Y,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1239
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1240 1241 1242 1243 1244 1245 1246 1247
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Z,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	return ret;
}

static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	bool ack = false;
	int ret;

	mutex_lock(&data->mutex);

	if (data->fifo_mode) {
		ret = __bmc150_accel_fifo_flush(indio_dev,
						BMC150_ACCEL_FIFO_LENGTH, true);
		if (ret > 0)
			ack = true;
	}

	if (data->ev_enable_state) {
		ret = bmc150_accel_handle_roc_event(indio_dev);
		if (ret > 0)
			ack = true;
	}

	if (ack) {
M
Markus Pargmann 已提交
1274 1275 1276
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_INT |
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1277
		if (ret)
1278
			dev_err(data->dev, "Error writing reg_int_rst_latch\n");
1279

1280 1281 1282 1283
		ret = IRQ_HANDLED;
	} else {
		ret = IRQ_NONE;
	}
1284

1285 1286 1287
	mutex_unlock(&data->mutex);

	return ret;
1288 1289
}

1290
static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1291 1292 1293
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1294
	bool ack = false;
1295
	int i;
1296

1297
	data->old_timestamp = data->timestamp;
1298 1299
	data->timestamp = iio_get_time_ns();

1300 1301 1302
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].enabled) {
			iio_trigger_poll(data->triggers[i].indio_trig);
1303
			ack = true;
1304 1305 1306
			break;
		}
	}
1307

1308
	if (data->ev_enable_state || data->fifo_mode)
1309
		return IRQ_WAKE_THREAD;
1310 1311

	if (ack)
1312
		return IRQ_HANDLED;
1313 1314

	return IRQ_NONE;
1315 1316
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
static const struct {
	int intr;
	const char *name;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
	{
		.intr = 0,
		.name = "%s-dev%d",
	},
	{
		.intr = 1,
		.name = "%s-any-motion-dev%d",
		.setup = bmc150_accel_any_motion_setup,
	},
};

static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
					     int from)
{
	int i;

1338
	for (i = from; i >= 0; i--) {
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
		if (data->triggers[i].indio_trig) {
			iio_trigger_unregister(data->triggers[i].indio_trig);
			data->triggers[i].indio_trig = NULL;
		}
	}
}

static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
				       struct bmc150_accel_data *data)
{
	int i, ret;

	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		struct bmc150_accel_trigger *t = &data->triggers[i];

1354
		t->indio_trig = devm_iio_trigger_alloc(data->dev,
1355 1356 1357 1358 1359 1360 1361 1362
					       bmc150_accel_triggers[i].name,
						       indio_dev->name,
						       indio_dev->id);
		if (!t->indio_trig) {
			ret = -ENOMEM;
			break;
		}

1363
		t->indio_trig->dev.parent = data->dev;
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
		t->indio_trig->ops = &bmc150_accel_trigger_ops;
		t->intr = bmc150_accel_triggers[i].intr;
		t->data = data;
		t->setup = bmc150_accel_triggers[i].setup;
		iio_trigger_set_drvdata(t->indio_trig, t);

		ret = iio_trigger_register(t->indio_trig);
		if (ret)
			break;
	}

	if (ret)
		bmc150_accel_unregister_triggers(data, i - 1);

	return ret;
}

1381 1382 1383 1384 1385 1386 1387 1388 1389
#define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
#define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
#define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00

static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
{
	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
	int ret;

M
Markus Pargmann 已提交
1390
	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1391
	if (ret < 0) {
1392
		dev_err(data->dev, "Error writing reg_fifo_config1\n");
1393 1394 1395 1396 1397 1398
		return ret;
	}

	if (!data->fifo_mode)
		return 0;

M
Markus Pargmann 已提交
1399 1400
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
			   data->watermark);
1401
	if (ret < 0)
1402
		dev_err(data->dev, "Error writing reg_fifo_config0\n");
1403 1404 1405 1406

	return ret;
}

1407 1408 1409 1410 1411 1412 1413
static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, true);
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret = 0;

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
		return iio_triggered_buffer_postenable(indio_dev);

	mutex_lock(&data->mutex);

	if (!data->watermark)
		goto out;

	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					 true);
	if (ret)
		goto out;

	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;

	ret = bmc150_accel_fifo_set_mode(data);
	if (ret) {
		data->fifo_mode = 0;
		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					   false);
	}

out:
	mutex_unlock(&data->mutex);

	return ret;
}

static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
		return iio_triggered_buffer_predisable(indio_dev);

	mutex_lock(&data->mutex);

	if (!data->fifo_mode)
		goto out;

	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
	data->fifo_mode = 0;
	bmc150_accel_fifo_set_mode(data);

out:
	mutex_unlock(&data->mutex);

	return 0;
}

1470 1471 1472 1473 1474 1475 1476
static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, false);
}

1477
static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1478
	.preenable = bmc150_accel_buffer_preenable,
1479 1480
	.postenable = bmc150_accel_buffer_postenable,
	.predisable = bmc150_accel_buffer_predisable,
1481
	.postdisable = bmc150_accel_buffer_postdisable,
1482 1483
};

1484 1485
static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
{
1486
	int ret, i;
M
Markus Pargmann 已提交
1487
	unsigned int val;
1488

M
Markus Pargmann 已提交
1489
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1490
	if (ret < 0) {
1491
		dev_err(data->dev,
M
Markus Pargmann 已提交
1492
			"Error: Reading chip id\n");
1493 1494 1495
		return ret;
	}

1496
	dev_dbg(data->dev, "Chip Id %x\n", val);
1497
	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
M
Markus Pargmann 已提交
1498
		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1499 1500 1501 1502 1503 1504
			data->chip_info = &bmc150_accel_chip_info_tbl[i];
			break;
		}
	}

	if (!data->chip_info) {
1505
		dev_err(data->dev, "Invalid chip %x\n", val);
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
		return -ENODEV;
	}

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
	if (ret < 0)
		return ret;

	/* Set Bandwidth */
	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
	if (ret < 0)
		return ret;

	/* Set Default Range */
M
Markus Pargmann 已提交
1519 1520
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
			   BMC150_ACCEL_DEF_RANGE_4G);
1521
	if (ret < 0) {
1522
		dev_err(data->dev,
M
Markus Pargmann 已提交
1523
					"Error writing reg_pmu_range\n");
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
		return ret;
	}

	data->range = BMC150_ACCEL_DEF_RANGE_4G;

	/* Set default slope duration and thresholds */
	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
	ret = bmc150_accel_update_slope(data);
	if (ret < 0)
		return ret;

	/* Set default as latched interrupts */
M
Markus Pargmann 已提交
1537 1538 1539
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1540
	if (ret < 0) {
1541
		dev_err(data->dev,
1542 1543 1544 1545 1546 1547 1548
			"Error writing reg_int_rst_latch\n");
		return ret;
	}

	return 0;
}

1549 1550
int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
			    const char *name, bool block_supported)
1551 1552 1553 1554 1555
{
	struct bmc150_accel_data *data;
	struct iio_dev *indio_dev;
	int ret;

1556
	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1557 1558 1559 1560
	if (!indio_dev)
		return -ENOMEM;

	data = iio_priv(indio_dev);
1561 1562 1563
	dev_set_drvdata(dev, indio_dev);
	data->dev = dev;
	data->irq = irq;
1564

1565
	data->regmap = regmap;
1566

1567 1568 1569 1570 1571 1572
	ret = bmc150_accel_chip_init(data);
	if (ret < 0)
		return ret;

	mutex_init(&data->mutex);

1573
	indio_dev->dev.parent = dev;
1574 1575
	indio_dev->channels = data->chip_info->channels;
	indio_dev->num_channels = data->chip_info->num_channels;
1576
	indio_dev->name = name ? name : data->chip_info->name;
1577 1578 1579
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &bmc150_accel_info;

1580 1581 1582 1583 1584
	ret = iio_triggered_buffer_setup(indio_dev,
					 &iio_pollfunc_store_time,
					 bmc150_accel_trigger_handler,
					 &bmc150_accel_buffer_ops);
	if (ret < 0) {
1585
		dev_err(data->dev, "Failed: iio triggered buffer setup\n");
1586 1587 1588
		return ret;
	}

1589
	if (data->irq > 0) {
1590
		ret = devm_request_threaded_irq(
1591
						data->dev, data->irq,
1592 1593
						bmc150_accel_irq_handler,
						bmc150_accel_irq_thread_handler,
1594 1595 1596 1597
						IRQF_TRIGGER_RISING,
						BMC150_ACCEL_IRQ_NAME,
						indio_dev);
		if (ret)
1598
			goto err_buffer_cleanup;
1599

1600 1601 1602 1603 1604 1605
		/*
		 * Set latched mode interrupt. While certain interrupts are
		 * non-latched regardless of this settings (e.g. new data) we
		 * want to use latch mode when we can to prevent interrupt
		 * flooding.
		 */
M
Markus Pargmann 已提交
1606 1607
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1608
		if (ret < 0) {
1609
			dev_err(data->dev, "Error writing reg_int_rst_latch\n");
1610
			goto err_buffer_cleanup;
1611 1612
		}

1613 1614
		bmc150_accel_interrupts_setup(indio_dev, data);

1615
		ret = bmc150_accel_triggers_setup(indio_dev, data);
1616
		if (ret)
1617
			goto err_buffer_cleanup;
1618

1619
		if (block_supported) {
1620 1621 1622 1623
			indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
			indio_dev->info = &bmc150_accel_info_fifo;
			indio_dev->buffer->attrs = bmc150_accel_fifo_attributes;
		}
1624 1625 1626 1627
	}

	ret = iio_device_register(indio_dev);
	if (ret < 0) {
1628
		dev_err(dev, "Unable to register iio device\n");
1629
		goto err_trigger_unregister;
1630 1631
	}

1632
	ret = pm_runtime_set_active(dev);
1633 1634 1635
	if (ret)
		goto err_iio_unregister;

1636 1637 1638
	pm_runtime_enable(dev);
	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
	pm_runtime_use_autosuspend(dev);
1639 1640 1641 1642 1643 1644

	return 0;

err_iio_unregister:
	iio_device_unregister(indio_dev);
err_trigger_unregister:
1645
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1646 1647
err_buffer_cleanup:
	iio_triggered_buffer_cleanup(indio_dev);
1648 1649 1650

	return ret;
}
1651
EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1652

1653
int bmc150_accel_core_remove(struct device *dev)
1654
{
1655
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1656 1657
	struct bmc150_accel_data *data = iio_priv(indio_dev);

1658 1659 1660
	pm_runtime_disable(data->dev);
	pm_runtime_set_suspended(data->dev);
	pm_runtime_put_noidle(data->dev);
1661 1662 1663

	iio_device_unregister(indio_dev);

1664
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1665

1666 1667
	iio_triggered_buffer_cleanup(indio_dev);

1668 1669 1670 1671 1672 1673
	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
	mutex_unlock(&data->mutex);

	return 0;
}
1674
EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1675 1676 1677 1678

#ifdef CONFIG_PM_SLEEP
static int bmc150_accel_suspend(struct device *dev)
{
1679
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_resume(struct device *dev)
{
1691
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1692 1693 1694
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
1695
	if (atomic_read(&data->active_intr))
1696
		bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1697
	bmc150_accel_fifo_set_mode(data);
1698 1699 1700 1701 1702 1703
	mutex_unlock(&data->mutex);

	return 0;
}
#endif

1704
#ifdef CONFIG_PM
1705 1706
static int bmc150_accel_runtime_suspend(struct device *dev)
{
1707
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1708
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1709
	int ret;
1710

1711
	dev_dbg(data->dev,  __func__);
1712 1713 1714
	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	if (ret < 0)
		return -EAGAIN;
1715

1716
	return 0;
1717 1718 1719 1720
}

static int bmc150_accel_runtime_resume(struct device *dev)
{
1721
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1722 1723 1724 1725
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;
	int sleep_val;

1726
	dev_dbg(data->dev,  __func__);
1727 1728

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1729 1730 1731
	if (ret < 0)
		return ret;
	ret = bmc150_accel_fifo_set_mode(data);
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	if (ret < 0)
		return ret;

	sleep_val = bmc150_accel_get_startup_times(data);
	if (sleep_val < 20)
		usleep_range(sleep_val * 1000, 20000);
	else
		msleep_interruptible(sleep_val);

	return 0;
}
#endif

1745
const struct dev_pm_ops bmc150_accel_pm_ops = {
1746 1747 1748 1749
	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
			   bmc150_accel_runtime_resume, NULL)
};
1750
EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1751 1752 1753 1754

MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMC150 accelerometer driver");