sched.c 29.5 KB
Newer Older
1 2 3 4 5
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
6
 * 2006-03-31	NUMA domains added.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26
#include <linux/errno.h>
#include <linux/sched.h>
27
#include <linux/sched/rt.h>
28 29
#include <linux/kernel.h>
#include <linux/mm.h>
30
#include <linux/slab.h>
31 32 33 34 35
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
36 37
#include <linux/numa.h>
#include <linux/mutex.h>
38
#include <linux/notifier.h>
39
#include <linux/kthread.h>
40 41 42
#include <linux/pid_namespace.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
43 44 45 46 47

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
48
#include <asm/spu_priv1.h>
49
#include "spufs.h"
50 51
#define CREATE_TRACE_POINTS
#include "sputrace.h"
52 53

struct spu_prio_array {
54
	DECLARE_BITMAP(bitmap, MAX_PRIO);
55 56
	struct list_head runq[MAX_PRIO];
	spinlock_t runq_lock;
57
	int nr_waiting;
58 59
};

60
static unsigned long spu_avenrun[3];
61
static struct spu_prio_array *spu_prio;
62 63
static struct task_struct *spusched_task;
static struct timer_list spusched_timer;
64
static struct timer_list spuloadavg_timer;
65

66 67 68 69 70 71 72 73 74 75 76 77 78 79
/*
 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
 */
#define NORMAL_PRIO		120

/*
 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
 * tick for every 10 CPU scheduler ticks.
 */
#define SPUSCHED_TICK		(10)

/*
 * These are the 'tuning knobs' of the scheduler:
 *
80 81
 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
82
 */
83 84
#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)

/*
 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
 * [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */
void spu_set_timeslice(struct spu_context *ctx)
{
	if (ctx->prio < NORMAL_PRIO)
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
	else
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
}

105 106 107 108 109
/*
 * Update scheduling information from the owning thread.
 */
void __spu_update_sched_info(struct spu_context *ctx)
{
110 111 112 113 114 115
	/*
	 * assert that the context is not on the runqueue, so it is safe
	 * to change its scheduling parameters.
	 */
	BUG_ON(!list_empty(&ctx->rq));

116
	/*
117 118 119
	 * 32-Bit assignments are atomic on powerpc, and we don't care about
	 * memory ordering here because retrieving the controlling thread is
	 * per definition racy.
120 121 122
	 */
	ctx->tid = current->pid;

123 124
	/*
	 * We do our own priority calculations, so we normally want
125
	 * ->static_prio to start with. Unfortunately this field
126 127 128 129 130 131 132 133
	 * contains junk for threads with a realtime scheduling
	 * policy so we have to look at ->prio in this case.
	 */
	if (rt_prio(current->prio))
		ctx->prio = current->prio;
	else
		ctx->prio = current->static_prio;
	ctx->policy = current->policy;
134 135

	/*
136 137 138 139 140 141
	 * TO DO: the context may be loaded, so we may need to activate
	 * it again on a different node. But it shouldn't hurt anything
	 * to update its parameters, because we know that the scheduler
	 * is not actively looking at this field, since it is not on the
	 * runqueue. The context will be rescheduled on the proper node
	 * if it is timesliced or preempted.
142
	 */
143
	cpumask_copy(&ctx->cpus_allowed, tsk_cpus_allowed(current));
144 145 146

	/* Save the current cpu id for spu interrupt routing. */
	ctx->last_ran = raw_smp_processor_id();
147 148 149 150
}

void spu_update_sched_info(struct spu_context *ctx)
{
151
	int node;
152

153 154
	if (ctx->state == SPU_STATE_RUNNABLE) {
		node = ctx->spu->node;
155 156 157 158

		/*
		 * Take list_mutex to sync with find_victim().
		 */
159 160 161 162 163 164
		mutex_lock(&cbe_spu_info[node].list_mutex);
		__spu_update_sched_info(ctx);
		mutex_unlock(&cbe_spu_info[node].list_mutex);
	} else {
		__spu_update_sched_info(ctx);
	}
165 166
}

167
static int __node_allowed(struct spu_context *ctx, int node)
168
{
169
	if (nr_cpus_node(node)) {
170
		const struct cpumask *mask = cpumask_of_node(node);
171

172
		if (cpumask_intersects(mask, &ctx->cpus_allowed))
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
			return 1;
	}

	return 0;
}

static int node_allowed(struct spu_context *ctx, int node)
{
	int rval;

	spin_lock(&spu_prio->runq_lock);
	rval = __node_allowed(ctx, node);
	spin_unlock(&spu_prio->runq_lock);

	return rval;
188 189
}

190
void do_notify_spus_active(void)
191 192 193 194 195 196 197
{
	int node;

	/*
	 * Wake up the active spu_contexts.
	 *
	 * When the awakened processes see their "notify_active" flag is set,
198
	 * they will call spu_switch_notify().
199 200 201
	 */
	for_each_online_node(node) {
		struct spu *spu;
202 203 204 205 206 207 208 209 210 211

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state != SPU_FREE) {
				struct spu_context *ctx = spu->ctx;
				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
					&ctx->sched_flags);
				mb();
				wake_up_all(&ctx->stop_wq);
			}
212
		}
213
		mutex_unlock(&cbe_spu_info[node].list_mutex);
214 215 216
	}
}

217 218 219 220 221 222
/**
 * spu_bind_context - bind spu context to physical spu
 * @spu:	physical spu to bind to
 * @ctx:	context to bind
 */
static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
223
{
224 225
	spu_context_trace(spu_bind_context__enter, ctx, spu);

226
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
227

228 229 230
	if (ctx->flags & SPU_CREATE_NOSCHED)
		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);

231 232 233
	ctx->stats.slb_flt_base = spu->stats.slb_flt;
	ctx->stats.class2_intr_base = spu->stats.class2_intr;

234 235 236
	spu_associate_mm(spu, ctx->owner);

	spin_lock_irq(&spu->register_lock);
237 238 239 240 241
	spu->ctx = ctx;
	spu->flags = 0;
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
242
	spu->tgid = current->tgid;
243 244
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
245
	spu->stop_callback = spufs_stop_callback;
246
	spu->mfc_callback = spufs_mfc_callback;
247 248
	spin_unlock_irq(&spu->register_lock);

249
	spu_unmap_mappings(ctx);
250

251
	spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
252
	spu_restore(&ctx->csa, spu);
253
	spu->timestamp = jiffies;
254
	spu_switch_notify(spu, ctx);
255
	ctx->state = SPU_STATE_RUNNABLE;
256

257
	spuctx_switch_state(ctx, SPU_UTIL_USER);
258 259
}

260
/*
261
 * Must be used with the list_mutex held.
262 263 264
 */
static inline int sched_spu(struct spu *spu)
{
265 266
	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
}

static void aff_merge_remaining_ctxs(struct spu_gang *gang)
{
	struct spu_context *ctx;

	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
		if (list_empty(&ctx->aff_list))
			list_add(&ctx->aff_list, &gang->aff_list_head);
	}
	gang->aff_flags |= AFF_MERGED;
}

static void aff_set_offsets(struct spu_gang *gang)
{
	struct spu_context *ctx;
	int offset;

	offset = -1;
	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset--;
	}

	offset = 0;
	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset++;
	}

	gang->aff_flags |= AFF_OFFSETS_SET;
}

static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
		 int group_size, int lowest_offset)
{
	struct spu *spu;
	int node, n;

	/*
	 * TODO: A better algorithm could be used to find a good spu to be
	 *       used as reference location for the ctxs chain.
	 */
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
316 317 318 319 320 321 322 323 324
		/*
		 * "available_spus" counts how many spus are not potentially
		 * going to be used by other affinity gangs whose reference
		 * context is already in place. Although this code seeks to
		 * avoid having affinity gangs with a summed amount of
		 * contexts bigger than the amount of spus in the node,
		 * this may happen sporadically. In this case, available_spus
		 * becomes negative, which is harmless.
		 */
325 326
		int available_spus;

327 328 329
		node = (node < MAX_NUMNODES) ? node : 0;
		if (!node_allowed(ctx, node))
			continue;
330 331

		available_spus = 0;
332
		mutex_lock(&cbe_spu_info[node].list_mutex);
333
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
334 335 336 337
			if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
					&& spu->ctx->gang->aff_ref_spu)
				available_spus -= spu->ctx->gang->contexts;
			available_spus++;
338 339 340 341 342 343
		}
		if (available_spus < ctx->gang->contexts) {
			mutex_unlock(&cbe_spu_info[node].list_mutex);
			continue;
		}

344 345
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if ((!mem_aff || spu->has_mem_affinity) &&
346 347
							sched_spu(spu)) {
				mutex_unlock(&cbe_spu_info[node].list_mutex);
348
				return spu;
349
			}
350
		}
351
		mutex_unlock(&cbe_spu_info[node].list_mutex);
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
	}
	return NULL;
}

static void aff_set_ref_point_location(struct spu_gang *gang)
{
	int mem_aff, gs, lowest_offset;
	struct spu_context *ctx;
	struct spu *tmp;

	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
	lowest_offset = 0;
	gs = 0;

	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
		gs++;

	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		lowest_offset = ctx->aff_offset;
	}

376 377
	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
							lowest_offset);
378 379
}

380
static struct spu *ctx_location(struct spu *ref, int offset, int node)
381 382 383 384 385 386
{
	struct spu *spu;

	spu = NULL;
	if (offset >= 0) {
		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
387
			BUG_ON(spu->node != node);
388 389 390 391 392 393 394
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset--;
		}
	} else {
		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
395
			BUG_ON(spu->node != node);
396 397 398 399 400 401
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset++;
		}
	}
402

403 404 405 406 407 408 409
	return spu;
}

/*
 * affinity_check is called each time a context is going to be scheduled.
 * It returns the spu ptr on which the context must run.
 */
410
static int has_affinity(struct spu_context *ctx)
411
{
412
	struct spu_gang *gang = ctx->gang;
413 414

	if (list_empty(&ctx->aff_list))
415 416
		return 0;

417 418 419
	if (atomic_read(&ctx->gang->aff_sched_count) == 0)
		ctx->gang->aff_ref_spu = NULL;

420 421 422 423 424 425 426
	if (!gang->aff_ref_spu) {
		if (!(gang->aff_flags & AFF_MERGED))
			aff_merge_remaining_ctxs(gang);
		if (!(gang->aff_flags & AFF_OFFSETS_SET))
			aff_set_offsets(gang);
		aff_set_ref_point_location(gang);
	}
427 428

	return gang->aff_ref_spu != NULL;
429 430
}

431 432 433 434 435
/**
 * spu_unbind_context - unbind spu context from physical spu
 * @spu:	physical spu to unbind from
 * @ctx:	context to unbind
 */
436
static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
437
{
438 439
	u32 status;

440 441
	spu_context_trace(spu_unbind_context__enter, ctx, spu);

442
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
443

444 445
 	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
446

447
	if (ctx->gang)
448 449 450 451 452
		/*
		 * If ctx->gang->aff_sched_count is positive, SPU affinity is
		 * being considered in this gang. Using atomic_dec_if_positive
		 * allow us to skip an explicit check for affinity in this gang
		 */
453
		atomic_dec_if_positive(&ctx->gang->aff_sched_count);
454

455
	spu_switch_notify(spu, NULL);
456
	spu_unmap_mappings(ctx);
457
	spu_save(&ctx->csa, spu);
458
	spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
459 460

	spin_lock_irq(&spu->register_lock);
461
	spu->timestamp = jiffies;
462 463 464
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
465
	spu->stop_callback = NULL;
466
	spu->mfc_callback = NULL;
467
	spu->pid = 0;
468
	spu->tgid = 0;
469
	ctx->ops = &spu_backing_ops;
470
	spu->flags = 0;
471
	spu->ctx = NULL;
472 473 474
	spin_unlock_irq(&spu->register_lock);

	spu_associate_mm(spu, NULL);
475 476 477 478 479

	ctx->stats.slb_flt +=
		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
	ctx->stats.class2_intr +=
		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
480 481 482 483

	/* This maps the underlying spu state to idle */
	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
	ctx->spu = NULL;
484 485 486

	if (spu_stopped(ctx, &status))
		wake_up_all(&ctx->stop_wq);
487 488
}

489 490 491 492
/**
 * spu_add_to_rq - add a context to the runqueue
 * @ctx:       context to add
 */
493
static void __spu_add_to_rq(struct spu_context *ctx)
494
{
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	/*
	 * Unfortunately this code path can be called from multiple threads
	 * on behalf of a single context due to the way the problem state
	 * mmap support works.
	 *
	 * Fortunately we need to wake up all these threads at the same time
	 * and can simply skip the runqueue addition for every but the first
	 * thread getting into this codepath.
	 *
	 * It's still quite hacky, and long-term we should proxy all other
	 * threads through the owner thread so that spu_run is in control
	 * of all the scheduling activity for a given context.
	 */
	if (list_empty(&ctx->rq)) {
		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
		set_bit(ctx->prio, spu_prio->bitmap);
		if (!spu_prio->nr_waiting++)
I
Ingo Molnar 已提交
512
			mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
513
	}
514
}
515

516 517 518 519 520 521 522
static void spu_add_to_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_add_to_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

523
static void __spu_del_from_rq(struct spu_context *ctx)
524
{
525 526
	int prio = ctx->prio;

527
	if (!list_empty(&ctx->rq)) {
528 529
		if (!--spu_prio->nr_waiting)
			del_timer(&spusched_timer);
530
		list_del_init(&ctx->rq);
531 532 533

		if (list_empty(&spu_prio->runq[prio]))
			clear_bit(prio, spu_prio->bitmap);
534
	}
535
}
536

537 538 539 540 541 542 543
void spu_del_from_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_del_from_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

544
static void spu_prio_wait(struct spu_context *ctx)
545
{
546
	DEFINE_WAIT(wait);
547

548 549 550 551 552 553 554
	/*
	 * The caller must explicitly wait for a context to be loaded
	 * if the nosched flag is set.  If NOSCHED is not set, the caller
	 * queues the context and waits for an spu event or error.
	 */
	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));

555
	spin_lock(&spu_prio->runq_lock);
556
	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
557
	if (!signal_pending(current)) {
558 559
		__spu_add_to_rq(ctx);
		spin_unlock(&spu_prio->runq_lock);
560
		mutex_unlock(&ctx->state_mutex);
561
		schedule();
562
		mutex_lock(&ctx->state_mutex);
563 564
		spin_lock(&spu_prio->runq_lock);
		__spu_del_from_rq(ctx);
565
	}
566
	spin_unlock(&spu_prio->runq_lock);
567 568
	__set_current_state(TASK_RUNNING);
	remove_wait_queue(&ctx->stop_wq, &wait);
569 570
}

571
static struct spu *spu_get_idle(struct spu_context *ctx)
572
{
573
	struct spu *spu, *aff_ref_spu;
574 575
	int node, n;

576 577
	spu_context_nospu_trace(spu_get_idle__enter, ctx);

578 579 580 581 582 583 584 585 586 587 588 589 590
	if (ctx->gang) {
		mutex_lock(&ctx->gang->aff_mutex);
		if (has_affinity(ctx)) {
			aff_ref_spu = ctx->gang->aff_ref_spu;
			atomic_inc(&ctx->gang->aff_sched_count);
			mutex_unlock(&ctx->gang->aff_mutex);
			node = aff_ref_spu->node;

			mutex_lock(&cbe_spu_info[node].list_mutex);
			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
			if (spu && spu->alloc_state == SPU_FREE)
				goto found;
			mutex_unlock(&cbe_spu_info[node].list_mutex);
591

592
			atomic_dec(&ctx->gang->aff_sched_count);
593
			goto not_found;
594 595 596
		}
		mutex_unlock(&ctx->gang->aff_mutex);
	}
597
	node = cpu_to_node(raw_smp_processor_id());
598 599
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
600
		if (!node_allowed(ctx, node))
601
			continue;
602 603 604 605 606 607 608

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state == SPU_FREE)
				goto found;
		}
		mutex_unlock(&cbe_spu_info[node].list_mutex);
609
	}
610

611 612
 not_found:
	spu_context_nospu_trace(spu_get_idle__not_found, ctx);
613 614 615 616 617
	return NULL;

 found:
	spu->alloc_state = SPU_USED;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
618
	spu_context_trace(spu_get_idle__found, ctx, spu);
619
	spu_init_channels(spu);
620 621
	return spu;
}
622

623 624 625 626 627 628 629 630 631 632 633 634
/**
 * find_victim - find a lower priority context to preempt
 * @ctx:	canidate context for running
 *
 * Returns the freed physical spu to run the new context on.
 */
static struct spu *find_victim(struct spu_context *ctx)
{
	struct spu_context *victim = NULL;
	struct spu *spu;
	int node, n;

635
	spu_context_nospu_trace(spu_find_victim__enter, ctx);
636

637 638 639
	/*
	 * Look for a possible preemption candidate on the local node first.
	 * If there is no candidate look at the other nodes.  This isn't
640
	 * exactly fair, but so far the whole spu scheduler tries to keep
641 642 643 644 645 646 647
	 * a strong node affinity.  We might want to fine-tune this in
	 * the future.
	 */
 restart:
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
648
		if (!node_allowed(ctx, node))
649 650
			continue;

651 652
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
653 654
			struct spu_context *tmp = spu->ctx;

655
			if (tmp && tmp->prio > ctx->prio &&
656
			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
657
			    (!victim || tmp->prio > victim->prio)) {
658
				victim = spu->ctx;
659
			}
660
		}
661 662
		if (victim)
			get_spu_context(victim);
663
		mutex_unlock(&cbe_spu_info[node].list_mutex);
664 665 666 667 668 669 670

		if (victim) {
			/*
			 * This nests ctx->state_mutex, but we always lock
			 * higher priority contexts before lower priority
			 * ones, so this is safe until we introduce
			 * priority inheritance schemes.
671 672 673 674
			 *
			 * XXX if the highest priority context is locked,
			 * this can loop a long time.  Might be better to
			 * look at another context or give up after X retries.
675 676
			 */
			if (!mutex_trylock(&victim->state_mutex)) {
677
				put_spu_context(victim);
678 679 680 681 682
				victim = NULL;
				goto restart;
			}

			spu = victim->spu;
683
			if (!spu || victim->prio <= ctx->prio) {
684 685
				/*
				 * This race can happen because we've dropped
686
				 * the active list mutex.  Not a problem, just
687 688 689
				 * restart the search.
				 */
				mutex_unlock(&victim->state_mutex);
690
				put_spu_context(victim);
691 692 693
				victim = NULL;
				goto restart;
			}
694

695 696
			spu_context_trace(__spu_deactivate__unload, ctx, spu);

697 698
			mutex_lock(&cbe_spu_info[node].list_mutex);
			cbe_spu_info[node].nr_active--;
699
			spu_unbind_context(spu, victim);
700 701
			mutex_unlock(&cbe_spu_info[node].list_mutex);

702
			victim->stats.invol_ctx_switch++;
703
			spu->stats.invol_ctx_switch++;
704
			if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
705
				spu_add_to_rq(victim);
706

707
			mutex_unlock(&victim->state_mutex);
708
			put_spu_context(victim);
709

710 711 712 713 714 715 716
			return spu;
		}
	}

	return NULL;
}

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
{
	int node = spu->node;
	int success = 0;

	spu_set_timeslice(ctx);

	mutex_lock(&cbe_spu_info[node].list_mutex);
	if (spu->ctx == NULL) {
		spu_bind_context(spu, ctx);
		cbe_spu_info[node].nr_active++;
		spu->alloc_state = SPU_USED;
		success = 1;
	}
	mutex_unlock(&cbe_spu_info[node].list_mutex);

	if (success)
		wake_up_all(&ctx->run_wq);
	else
		spu_add_to_rq(ctx);
}

static void spu_schedule(struct spu *spu, struct spu_context *ctx)
{
741 742 743
	/* not a candidate for interruptible because it's called either
	   from the scheduler thread or from spu_deactivate */
	mutex_lock(&ctx->state_mutex);
744 745
	if (ctx->state == SPU_STATE_SAVED)
		__spu_schedule(spu, ctx);
746 747 748
	spu_release(ctx);
}

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
/**
 * spu_unschedule - remove a context from a spu, and possibly release it.
 * @spu:	The SPU to unschedule from
 * @ctx:	The context currently scheduled on the SPU
 * @free_spu	Whether to free the SPU for other contexts
 *
 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
 * SPU is made available for other contexts (ie, may be returned by
 * spu_get_idle). If this is zero, the caller is expected to schedule another
 * context to this spu.
 *
 * Should be called with ctx->state_mutex held.
 */
static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
		int free_spu)
764 765 766 767 768
{
	int node = spu->node;

	mutex_lock(&cbe_spu_info[node].list_mutex);
	cbe_spu_info[node].nr_active--;
769 770
	if (free_spu)
		spu->alloc_state = SPU_FREE;
771 772 773 774 775 776
	spu_unbind_context(spu, ctx);
	ctx->stats.invol_ctx_switch++;
	spu->stats.invol_ctx_switch++;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
}

777 778 779 780 781
/**
 * spu_activate - find a free spu for a context and execute it
 * @ctx:	spu context to schedule
 * @flags:	flags (currently ignored)
 *
782
 * Tries to find a free spu to run @ctx.  If no free spu is available
783 784 785
 * add the context to the runqueue so it gets woken up once an spu
 * is available.
 */
786
int spu_activate(struct spu_context *ctx, unsigned long flags)
787
{
788
	struct spu *spu;
789

790 791 792 793 794 795 796 797
	/*
	 * If there are multiple threads waiting for a single context
	 * only one actually binds the context while the others will
	 * only be able to acquire the state_mutex once the context
	 * already is in runnable state.
	 */
	if (ctx->spu)
		return 0;
798

799 800 801
spu_activate_top:
	if (signal_pending(current))
		return -ERESTARTSYS;
802

803 804 805 806 807 808 809 810 811 812 813 814 815 816
	spu = spu_get_idle(ctx);
	/*
	 * If this is a realtime thread we try to get it running by
	 * preempting a lower priority thread.
	 */
	if (!spu && rt_prio(ctx->prio))
		spu = find_victim(ctx);
	if (spu) {
		unsigned long runcntl;

		runcntl = ctx->ops->runcntl_read(ctx);
		__spu_schedule(spu, ctx);
		if (runcntl & SPU_RUNCNTL_RUNNABLE)
			spuctx_switch_state(ctx, SPU_UTIL_USER);
817

818 819 820 821
		return 0;
	}

	if (ctx->flags & SPU_CREATE_NOSCHED) {
822
		spu_prio_wait(ctx);
823 824 825 826
		goto spu_activate_top;
	}

	spu_add_to_rq(ctx);
827

828
	return 0;
829 830
}

831 832 833 834 835 836
/**
 * grab_runnable_context - try to find a runnable context
 *
 * Remove the highest priority context on the runqueue and return it
 * to the caller.  Returns %NULL if no runnable context was found.
 */
837
static struct spu_context *grab_runnable_context(int prio, int node)
838
{
839
	struct spu_context *ctx;
840 841 842
	int best;

	spin_lock(&spu_prio->runq_lock);
843
	best = find_first_bit(spu_prio->bitmap, prio);
844
	while (best < prio) {
845 846
		struct list_head *rq = &spu_prio->runq[best];

847
		list_for_each_entry(ctx, rq, rq) {
L
Lucas De Marchi 已提交
848
			/* XXX(hch): check for affinity here as well */
849 850 851 852 853 854
			if (__node_allowed(ctx, node)) {
				__spu_del_from_rq(ctx);
				goto found;
			}
		}
		best++;
855
	}
856 857
	ctx = NULL;
 found:
858 859 860 861 862 863 864 865 866 867
	spin_unlock(&spu_prio->runq_lock);
	return ctx;
}

static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
{
	struct spu *spu = ctx->spu;
	struct spu_context *new = NULL;

	if (spu) {
868
		new = grab_runnable_context(max_prio, spu->node);
869
		if (new || force) {
870
			spu_unschedule(spu, ctx, new == NULL);
871 872 873 874 875 876
			if (new) {
				if (new->flags & SPU_CREATE_NOSCHED)
					wake_up(&new->stop_wq);
				else {
					spu_release(ctx);
					spu_schedule(spu, new);
877 878 879
					/* this one can't easily be made
					   interruptible */
					mutex_lock(&ctx->state_mutex);
880 881
				}
			}
882 883 884 885 886 887
		}
	}

	return new != NULL;
}

888 889 890 891 892 893 894
/**
 * spu_deactivate - unbind a context from it's physical spu
 * @ctx:	spu context to unbind
 *
 * Unbind @ctx from the physical spu it is running on and schedule
 * the highest priority context to run on the freed physical spu.
 */
895 896
void spu_deactivate(struct spu_context *ctx)
{
897
	spu_context_nospu_trace(spu_deactivate__enter, ctx);
898
	__spu_deactivate(ctx, 1, MAX_PRIO);
899 900
}

901
/**
902
 * spu_yield -	yield a physical spu if others are waiting
903 904 905 906 907 908
 * @ctx:	spu context to yield
 *
 * Check if there is a higher priority context waiting and if yes
 * unbind @ctx from the physical spu and schedule the highest
 * priority context to run on the freed physical spu instead.
 */
909 910
void spu_yield(struct spu_context *ctx)
{
911
	spu_context_nospu_trace(spu_yield__enter, ctx);
912 913
	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
		mutex_lock(&ctx->state_mutex);
914
		__spu_deactivate(ctx, 0, MAX_PRIO);
915 916
		mutex_unlock(&ctx->state_mutex);
	}
917
}
918

919
static noinline void spusched_tick(struct spu_context *ctx)
920
{
921 922 923
	struct spu_context *new = NULL;
	struct spu *spu = NULL;

924 925
	if (spu_acquire(ctx))
		BUG();	/* a kernel thread never has signals pending */
926 927 928

	if (ctx->state != SPU_STATE_RUNNABLE)
		goto out;
929
	if (ctx->flags & SPU_CREATE_NOSCHED)
930
		goto out;
931
	if (ctx->policy == SCHED_FIFO)
932
		goto out;
933

934
	if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
935
		goto out;
936

937
	spu = ctx->spu;
938 939 940

	spu_context_trace(spusched_tick__preempt, ctx, spu);

941 942
	new = grab_runnable_context(ctx->prio + 1, spu->node);
	if (new) {
943
		spu_unschedule(spu, ctx, 0);
944
		if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
945
			spu_add_to_rq(ctx);
946
	} else {
947
		spu_context_nospu_trace(spusched_tick__newslice, ctx);
948 949
		if (!ctx->time_slice)
			ctx->time_slice++;
950
	}
951 952 953 954 955
out:
	spu_release(ctx);

	if (new)
		spu_schedule(spu, new);
956 957
}

958 959 960 961 962
/**
 * count_active_contexts - count nr of active tasks
 *
 * Return the number of tasks currently running or waiting to run.
 *
963
 * Note that we don't take runq_lock / list_mutex here.  Reading
964 965 966 967 968 969 970 971
 * a single 32bit value is atomic on powerpc, and we don't care
 * about memory ordering issues here.
 */
static unsigned long count_active_contexts(void)
{
	int nr_active = 0, node;

	for (node = 0; node < MAX_NUMNODES; node++)
972
		nr_active += cbe_spu_info[node].nr_active;
973 974 975 976 977 978
	nr_active += spu_prio->nr_waiting;

	return nr_active;
}

/**
979
 * spu_calc_load - update the avenrun load estimates.
980 981 982 983
 *
 * No locking against reading these values from userspace, as for
 * the CPU loadavg code.
 */
984
static void spu_calc_load(void)
985 986
{
	unsigned long active_tasks; /* fixed-point */
987 988 989 990 991

	active_tasks = count_active_contexts() * FIXED_1;
	CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
	CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
	CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
992 993
}

994 995 996 997
static void spusched_wake(unsigned long data)
{
	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	wake_up_process(spusched_task);
998 999 1000 1001 1002 1003
}

static void spuloadavg_wake(unsigned long data)
{
	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
	spu_calc_load();
1004 1005 1006 1007
}

static int spusched_thread(void *unused)
{
1008
	struct spu *spu;
1009 1010 1011 1012 1013 1014
	int node;

	while (!kthread_should_stop()) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
		for (node = 0; node < MAX_NUMNODES; node++) {
1015 1016 1017 1018 1019 1020 1021 1022
			struct mutex *mtx = &cbe_spu_info[node].list_mutex;

			mutex_lock(mtx);
			list_for_each_entry(spu, &cbe_spu_info[node].spus,
					cbe_list) {
				struct spu_context *ctx = spu->ctx;

				if (ctx) {
1023
					get_spu_context(ctx);
1024 1025 1026
					mutex_unlock(mtx);
					spusched_tick(ctx);
					mutex_lock(mtx);
1027
					put_spu_context(ctx);
1028 1029 1030
				}
			}
			mutex_unlock(mtx);
1031 1032 1033 1034 1035 1036
		}
	}

	return 0;
}

1037 1038 1039 1040 1041 1042 1043
void spuctx_switch_state(struct spu_context *ctx,
		enum spu_utilization_state new_state)
{
	unsigned long long curtime;
	signed long long delta;
	struct spu *spu;
	enum spu_utilization_state old_state;
1044
	int node;
1045

1046
	curtime = ktime_get_ns();
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	delta = curtime - ctx->stats.tstamp;

	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
	WARN_ON(delta < 0);

	spu = ctx->spu;
	old_state = ctx->stats.util_state;
	ctx->stats.util_state = new_state;
	ctx->stats.tstamp = curtime;

	/*
	 * Update the physical SPU utilization statistics.
	 */
	if (spu) {
		ctx->stats.times[old_state] += delta;
		spu->stats.times[old_state] += delta;
		spu->stats.util_state = new_state;
		spu->stats.tstamp = curtime;
1065 1066 1067
		node = spu->node;
		if (old_state == SPU_UTIL_USER)
			atomic_dec(&cbe_spu_info[node].busy_spus);
1068
		if (new_state == SPU_UTIL_USER)
1069
			atomic_inc(&cbe_spu_info[node].busy_spus);
1070 1071 1072
	}
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)

static int show_spu_loadavg(struct seq_file *s, void *private)
{
	int a, b, c;

	a = spu_avenrun[0] + (FIXED_1/200);
	b = spu_avenrun[1] + (FIXED_1/200);
	c = spu_avenrun[2] + (FIXED_1/200);

	/*
	 * Note that last_pid doesn't really make much sense for the
1086
	 * SPU loadavg (it even seems very odd on the CPU side...),
1087 1088 1089 1090 1091 1092 1093 1094
	 * but we include it here to have a 100% compatible interface.
	 */
	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
		LOAD_INT(a), LOAD_FRAC(a),
		LOAD_INT(b), LOAD_FRAC(b),
		LOAD_INT(c), LOAD_FRAC(c),
		count_active_contexts(),
		atomic_read(&nr_spu_contexts),
1095
		task_active_pid_ns(current)->last_pid);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	return 0;
}

static int spu_loadavg_open(struct inode *inode, struct file *file)
{
	return single_open(file, show_spu_loadavg, NULL);
}

static const struct file_operations spu_loadavg_fops = {
	.open		= spu_loadavg_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1111 1112
int __init spu_sched_init(void)
{
1113 1114
	struct proc_dir_entry *entry;
	int err = -ENOMEM, i;
1115

1116
	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1117
	if (!spu_prio)
1118
		goto out;
1119

1120
	for (i = 0; i < MAX_PRIO; i++) {
1121
		INIT_LIST_HEAD(&spu_prio->runq[i]);
1122
		__clear_bit(i, spu_prio->bitmap);
1123
	}
1124
	spin_lock_init(&spu_prio->runq_lock);
1125

1126
	setup_timer(&spusched_timer, spusched_wake, 0);
1127
	setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1128

1129 1130
	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
	if (IS_ERR(spusched_task)) {
1131 1132
		err = PTR_ERR(spusched_task);
		goto out_free_spu_prio;
1133
	}
1134

1135 1136
	mod_timer(&spuloadavg_timer, 0);

1137
	entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
1138 1139 1140
	if (!entry)
		goto out_stop_kthread;

1141 1142
	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1143
	return 0;
1144

1145 1146 1147 1148 1149 1150
 out_stop_kthread:
	kthread_stop(spusched_task);
 out_free_spu_prio:
	kfree(spu_prio);
 out:
	return err;
1151 1152
}

1153
void spu_sched_exit(void)
1154
{
1155
	struct spu *spu;
1156 1157
	int node;

1158 1159
	remove_proc_entry("spu_loadavg", NULL);

1160
	del_timer_sync(&spusched_timer);
1161
	del_timer_sync(&spuloadavg_timer);
1162 1163
	kthread_stop(spusched_task);

1164
	for (node = 0; node < MAX_NUMNODES; node++) {
1165 1166 1167 1168 1169
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
			if (spu->alloc_state != SPU_FREE)
				spu->alloc_state = SPU_FREE;
		mutex_unlock(&cbe_spu_info[node].list_mutex);
1170
	}
1171
	kfree(spu_prio);
1172
}