sched.c 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
 * SPU scheduler, based on Linux thread priority.  For now use
 * a simple "cooperative" yield model with no preemption.  SPU
 * scheduling will eventually be preemptive: When a thread with
 * a higher static priority gets ready to run, then an active SPU
 * context will be preempted and returned to the waitq.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

27 28
#undef DEBUG

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/stddef.h>
#include <linux/unistd.h>

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
45
#include <asm/spu_priv1.h>
46 47
#include "spufs.h"

48
#define SPU_MIN_TIMESLICE 	(100 * HZ / 1000)
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
#define SPU_BITMAP_SIZE (((MAX_PRIO+BITS_PER_LONG)/BITS_PER_LONG)+1)
struct spu_prio_array {
	atomic_t nr_blocked;
	unsigned long bitmap[SPU_BITMAP_SIZE];
	wait_queue_head_t waitq[MAX_PRIO];
};

/* spu_runqueue - This is the main runqueue data structure for SPUs. */
struct spu_runqueue {
	struct semaphore sem;
	unsigned long nr_active;
	unsigned long nr_idle;
	unsigned long nr_switches;
	struct list_head active_list;
	struct list_head idle_list;
	struct spu_prio_array prio;
};

static struct spu_runqueue *spu_runqueues = NULL;

static inline struct spu_runqueue *spu_rq(void)
{
	/* Future: make this a per-NODE array,
	 * and use cpu_to_node(smp_processor_id())
	 */
	return spu_runqueues;
}

static inline struct spu *del_idle(struct spu_runqueue *rq)
{
	struct spu *spu;

	BUG_ON(rq->nr_idle <= 0);
	BUG_ON(list_empty(&rq->idle_list));
	/* Future: Move SPU out of low-power SRI state. */
	spu = list_entry(rq->idle_list.next, struct spu, sched_list);
	list_del_init(&spu->sched_list);
	rq->nr_idle--;
	return spu;
}

static inline void del_active(struct spu_runqueue *rq, struct spu *spu)
{
	BUG_ON(rq->nr_active <= 0);
	BUG_ON(list_empty(&rq->active_list));
	list_del_init(&spu->sched_list);
	rq->nr_active--;
}

static inline void add_idle(struct spu_runqueue *rq, struct spu *spu)
{
	/* Future: Put SPU into low-power SRI state. */
	list_add_tail(&spu->sched_list, &rq->idle_list);
	rq->nr_idle++;
}

static inline void add_active(struct spu_runqueue *rq, struct spu *spu)
{
	rq->nr_active++;
	rq->nr_switches++;
	list_add_tail(&spu->sched_list, &rq->active_list);
}

static void prio_wakeup(struct spu_runqueue *rq)
{
	if (atomic_read(&rq->prio.nr_blocked) && rq->nr_idle) {
		int best = sched_find_first_bit(rq->prio.bitmap);
		if (best < MAX_PRIO) {
			wait_queue_head_t *wq = &rq->prio.waitq[best];
			wake_up_interruptible_nr(wq, 1);
		}
	}
}

124 125
static void prio_wait(struct spu_runqueue *rq, struct spu_context *ctx,
		      u64 flags)
126 127 128 129 130 131 132 133 134 135
{
	int prio = current->prio;
	wait_queue_head_t *wq = &rq->prio.waitq[prio];
	DEFINE_WAIT(wait);

	__set_bit(prio, rq->prio.bitmap);
	atomic_inc(&rq->prio.nr_blocked);
	prepare_to_wait_exclusive(wq, &wait, TASK_INTERRUPTIBLE);
	if (!signal_pending(current)) {
		up(&rq->sem);
136
		up_write(&ctx->state_sema);
137 138 139
		pr_debug("%s: pid=%d prio=%d\n", __FUNCTION__,
			 current->pid, current->prio);
		schedule();
140
		down_write(&ctx->state_sema);
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
		down(&rq->sem);
	}
	finish_wait(wq, &wait);
	atomic_dec(&rq->prio.nr_blocked);
	if (!waitqueue_active(wq))
		__clear_bit(prio, rq->prio.bitmap);
}

static inline int is_best_prio(struct spu_runqueue *rq)
{
	int best_prio;

	best_prio = sched_find_first_bit(rq->prio.bitmap);
	return (current->prio < best_prio) ? 1 : 0;
}

static inline void mm_needs_global_tlbie(struct mm_struct *mm)
{
	/* Global TLBIE broadcast required with SPEs. */
#if (NR_CPUS > 1)
	__cpus_setall(&mm->cpu_vm_mask, NR_CPUS);
#else
	__cpus_setall(&mm->cpu_vm_mask, NR_CPUS+1); /* is this ok? */
#endif
}

static inline void bind_context(struct spu *spu, struct spu_context *ctx)
{
	pr_debug("%s: pid=%d SPU=%d\n", __FUNCTION__, current->pid,
		 spu->number);
	spu->ctx = ctx;
	spu->flags = 0;
173
	ctx->flags = 0;
174 175 176 177 178 179 180 181
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
	spu->prio = current->prio;
	spu->mm = ctx->owner;
	mm_needs_global_tlbie(spu->mm);
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
182
	spu->stop_callback = spufs_stop_callback;
183
	spu->mfc_callback = spufs_mfc_callback;
184
	mb();
185
	spu_unmap_mappings(ctx);
186
	spu_restore(&ctx->csa, spu);
187
	spu->timestamp = jiffies;
188 189 190 191 192 193
}

static inline void unbind_context(struct spu *spu, struct spu_context *ctx)
{
	pr_debug("%s: unbind pid=%d SPU=%d\n", __FUNCTION__,
		 spu->pid, spu->number);
194
	spu_unmap_mappings(ctx);
195
	spu_save(&ctx->csa, spu);
196
	spu->timestamp = jiffies;
197 198 199
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
200
	spu->stop_callback = NULL;
201
	spu->mfc_callback = NULL;
202 203 204 205 206
	spu->mm = NULL;
	spu->pid = 0;
	spu->prio = MAX_PRIO;
	ctx->ops = &spu_backing_ops;
	ctx->spu = NULL;
207 208
	ctx->flags = 0;
	spu->flags = 0;
209 210 211
	spu->ctx = NULL;
}

212
static void spu_reaper(void *data)
213
{
214 215
	struct spu_context *ctx = data;
	struct spu *spu;
216

217 218
	down_write(&ctx->state_sema);
	spu = ctx->spu;
219
	if (spu && test_bit(SPU_CONTEXT_PREEMPT, &ctx->flags)) {
220 221 222 223 224 225
		if (atomic_read(&spu->rq->prio.nr_blocked)) {
			pr_debug("%s: spu=%d\n", __func__, spu->number);
			ctx->ops->runcntl_stop(ctx);
			spu_deactivate(ctx);
			wake_up_all(&ctx->stop_wq);
		} else {
226
			clear_bit(SPU_CONTEXT_PREEMPT, &ctx->flags);
227 228
		}
	}
229 230 231
	up_write(&ctx->state_sema);
	put_spu_context(ctx);
}
232

233 234 235 236 237 238
static void schedule_spu_reaper(struct spu_runqueue *rq, struct spu *spu)
{
	struct spu_context *ctx = get_spu_context(spu->ctx);
	unsigned long now = jiffies;
	unsigned long expire = spu->timestamp + SPU_MIN_TIMESLICE;

239
	set_bit(SPU_CONTEXT_PREEMPT, &ctx->flags);
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
	INIT_WORK(&ctx->reap_work, spu_reaper, ctx);
	if (time_after(now, expire))
		schedule_work(&ctx->reap_work);
	else
		schedule_delayed_work(&ctx->reap_work, expire - now);
}

static void check_preempt_active(struct spu_runqueue *rq)
{
	struct list_head *p;
	struct spu *worst = NULL;

	list_for_each(p, &rq->active_list) {
		struct spu *spu = list_entry(p, struct spu, sched_list);
		struct spu_context *ctx = spu->ctx;
255
		if (!test_bit(SPU_CONTEXT_PREEMPT, &ctx->flags)) {
256 257 258
			if (!worst || (spu->prio > worst->prio)) {
				worst = spu;
			}
259 260
		}
	}
261 262
	if (worst && (current->prio < worst->prio))
		schedule_spu_reaper(rq, worst);
263 264
}

265
static struct spu *get_idle_spu(struct spu_context *ctx, u64 flags)
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
{
	struct spu_runqueue *rq;
	struct spu *spu = NULL;

	rq = spu_rq();
	down(&rq->sem);
	for (;;) {
		if (rq->nr_idle > 0) {
			if (is_best_prio(rq)) {
				/* Fall through. */
				spu = del_idle(rq);
				break;
			} else {
				prio_wakeup(rq);
				up(&rq->sem);
				yield();
				if (signal_pending(current)) {
					return NULL;
				}
				rq = spu_rq();
				down(&rq->sem);
				continue;
			}
		} else {
290
			check_preempt_active(rq);
291
			prio_wait(rq, ctx, flags);
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
			if (signal_pending(current)) {
				prio_wakeup(rq);
				spu = NULL;
				break;
			}
			continue;
		}
	}
	up(&rq->sem);
	return spu;
}

static void put_idle_spu(struct spu *spu)
{
	struct spu_runqueue *rq = spu->rq;

	down(&rq->sem);
	add_idle(rq, spu);
	prio_wakeup(rq);
	up(&rq->sem);
}

static int get_active_spu(struct spu *spu)
{
	struct spu_runqueue *rq = spu->rq;
	struct list_head *p;
	struct spu *tmp;
	int rc = 0;

	down(&rq->sem);
	list_for_each(p, &rq->active_list) {
		tmp = list_entry(p, struct spu, sched_list);
		if (tmp == spu) {
			del_active(rq, spu);
			rc = 1;
			break;
		}
	}
	up(&rq->sem);
	return rc;
}

static void put_active_spu(struct spu *spu)
{
	struct spu_runqueue *rq = spu->rq;

	down(&rq->sem);
	add_active(rq, spu);
	up(&rq->sem);
}

/* Lock order:
 *	spu_activate() & spu_deactivate() require the
 *	caller to have down_write(&ctx->state_sema).
 *
 *	The rq->sem is breifly held (inside or outside a
 *	given ctx lock) for list management, but is never
 *	held during save/restore.
 */

int spu_activate(struct spu_context *ctx, u64 flags)
{
	struct spu *spu;

	if (ctx->spu)
		return 0;
358
	spu = get_idle_spu(ctx, flags);
359 360 361
	if (!spu)
		return (signal_pending(current)) ? -ERESTARTSYS : -EAGAIN;
	bind_context(spu, ctx);
362 363 364 365
	/*
	 * We're likely to wait for interrupts on the same
	 * CPU that we are now on, so send them here.
	 */
366
	spu_cpu_affinity_set(spu, raw_smp_processor_id());
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	put_active_spu(spu);
	return 0;
}

void spu_deactivate(struct spu_context *ctx)
{
	struct spu *spu;
	int needs_idle;

	spu = ctx->spu;
	if (!spu)
		return;
	needs_idle = get_active_spu(spu);
	unbind_context(spu, ctx);
	if (needs_idle)
		put_idle_spu(spu);
}

void spu_yield(struct spu_context *ctx)
{
	struct spu *spu;
388
	int need_yield = 0;
389

390
	down_write(&ctx->state_sema);
391
	spu = ctx->spu;
392
	if (spu && (sched_find_first_bit(spu->rq->prio.bitmap) < MAX_PRIO)) {
393 394 395
		pr_debug("%s: yielding SPU %d\n", __FUNCTION__, spu->number);
		spu_deactivate(ctx);
		ctx->state = SPU_STATE_SAVED;
396
		need_yield = 1;
397 398
	} else if (spu) {
		spu->prio = MAX_PRIO;
399 400
	}
	up_write(&ctx->state_sema);
401 402
	if (unlikely(need_yield))
		yield();
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
}

int __init spu_sched_init(void)
{
	struct spu_runqueue *rq;
	struct spu *spu;
	int i;

	rq = spu_runqueues = kmalloc(sizeof(struct spu_runqueue), GFP_KERNEL);
	if (!rq) {
		printk(KERN_WARNING "%s: Unable to allocate runqueues.\n",
		       __FUNCTION__);
		return 1;
	}
	memset(rq, 0, sizeof(struct spu_runqueue));
	init_MUTEX(&rq->sem);
	INIT_LIST_HEAD(&rq->active_list);
	INIT_LIST_HEAD(&rq->idle_list);
	rq->nr_active = 0;
	rq->nr_idle = 0;
	rq->nr_switches = 0;
	atomic_set(&rq->prio.nr_blocked, 0);
	for (i = 0; i < MAX_PRIO; i++) {
		init_waitqueue_head(&rq->prio.waitq[i]);
		__clear_bit(i, rq->prio.bitmap);
	}
	__set_bit(MAX_PRIO, rq->prio.bitmap);
	for (;;) {
		spu = spu_alloc();
		if (!spu)
			break;
		pr_debug("%s: adding SPU[%d]\n", __FUNCTION__, spu->number);
		add_idle(rq, spu);
		spu->rq = rq;
437
		spu->timestamp = jiffies;
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	}
	if (!rq->nr_idle) {
		printk(KERN_WARNING "%s: No available SPUs.\n", __FUNCTION__);
		kfree(rq);
		return 1;
	}
	return 0;
}

void __exit spu_sched_exit(void)
{
	struct spu_runqueue *rq = spu_rq();
	struct spu *spu;

	if (!rq) {
		printk(KERN_WARNING "%s: no runqueues!\n", __FUNCTION__);
		return;
	}
	while (rq->nr_idle > 0) {
		spu = del_idle(rq);
		if (!spu)
			break;
		spu_free(spu);
	}
	kfree(rq);
}