sched.c 29.3 KB
Newer Older
1 2 3 4 5
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
6
 * 2006-03-31	NUMA domains added.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27 28 29 30 31 32 33 34
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
35 36
#include <linux/numa.h>
#include <linux/mutex.h>
37
#include <linux/notifier.h>
38
#include <linux/kthread.h>
39 40 41
#include <linux/pid_namespace.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
42
#include <linux/marker.h>
43 44 45 46 47

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
48
#include <asm/spu_priv1.h>
49 50 51
#include "spufs.h"

struct spu_prio_array {
52
	DECLARE_BITMAP(bitmap, MAX_PRIO);
53 54
	struct list_head runq[MAX_PRIO];
	spinlock_t runq_lock;
55
	int nr_waiting;
56 57
};

58
static unsigned long spu_avenrun[3];
59
static struct spu_prio_array *spu_prio;
60 61
static struct task_struct *spusched_task;
static struct timer_list spusched_timer;
62
static struct timer_list spuloadavg_timer;
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77
/*
 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
 */
#define NORMAL_PRIO		120

/*
 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
 * tick for every 10 CPU scheduler ticks.
 */
#define SPUSCHED_TICK		(10)

/*
 * These are the 'tuning knobs' of the scheduler:
 *
78 79
 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
80
 */
81 82
#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

#define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)

/*
 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
 * [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */
void spu_set_timeslice(struct spu_context *ctx)
{
	if (ctx->prio < NORMAL_PRIO)
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
	else
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
}

104 105 106 107 108
/*
 * Update scheduling information from the owning thread.
 */
void __spu_update_sched_info(struct spu_context *ctx)
{
109 110 111 112 113 114
	/*
	 * assert that the context is not on the runqueue, so it is safe
	 * to change its scheduling parameters.
	 */
	BUG_ON(!list_empty(&ctx->rq));

115
	/*
116 117 118
	 * 32-Bit assignments are atomic on powerpc, and we don't care about
	 * memory ordering here because retrieving the controlling thread is
	 * per definition racy.
119 120 121
	 */
	ctx->tid = current->pid;

122 123
	/*
	 * We do our own priority calculations, so we normally want
124
	 * ->static_prio to start with. Unfortunately this field
125 126 127 128 129 130 131 132
	 * contains junk for threads with a realtime scheduling
	 * policy so we have to look at ->prio in this case.
	 */
	if (rt_prio(current->prio))
		ctx->prio = current->prio;
	else
		ctx->prio = current->static_prio;
	ctx->policy = current->policy;
133 134

	/*
135 136 137 138 139 140
	 * TO DO: the context may be loaded, so we may need to activate
	 * it again on a different node. But it shouldn't hurt anything
	 * to update its parameters, because we know that the scheduler
	 * is not actively looking at this field, since it is not on the
	 * runqueue. The context will be rescheduled on the proper node
	 * if it is timesliced or preempted.
141 142
	 */
	ctx->cpus_allowed = current->cpus_allowed;
143 144 145

	/* Save the current cpu id for spu interrupt routing. */
	ctx->last_ran = raw_smp_processor_id();
146 147 148 149
}

void spu_update_sched_info(struct spu_context *ctx)
{
150
	int node;
151

152 153
	if (ctx->state == SPU_STATE_RUNNABLE) {
		node = ctx->spu->node;
154 155 156 157

		/*
		 * Take list_mutex to sync with find_victim().
		 */
158 159 160 161 162 163
		mutex_lock(&cbe_spu_info[node].list_mutex);
		__spu_update_sched_info(ctx);
		mutex_unlock(&cbe_spu_info[node].list_mutex);
	} else {
		__spu_update_sched_info(ctx);
	}
164 165
}

166
static int __node_allowed(struct spu_context *ctx, int node)
167
{
168 169
	if (nr_cpus_node(node)) {
		cpumask_t mask = node_to_cpumask(node);
170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
		if (cpus_intersects(mask, ctx->cpus_allowed))
			return 1;
	}

	return 0;
}

static int node_allowed(struct spu_context *ctx, int node)
{
	int rval;

	spin_lock(&spu_prio->runq_lock);
	rval = __node_allowed(ctx, node);
	spin_unlock(&spu_prio->runq_lock);

	return rval;
187 188
}

189
void do_notify_spus_active(void)
190 191 192 193 194 195 196
{
	int node;

	/*
	 * Wake up the active spu_contexts.
	 *
	 * When the awakened processes see their "notify_active" flag is set,
197
	 * they will call spu_switch_notify().
198 199 200
	 */
	for_each_online_node(node) {
		struct spu *spu;
201 202 203 204 205 206 207 208 209 210

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state != SPU_FREE) {
				struct spu_context *ctx = spu->ctx;
				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
					&ctx->sched_flags);
				mb();
				wake_up_all(&ctx->stop_wq);
			}
211
		}
212
		mutex_unlock(&cbe_spu_info[node].list_mutex);
213 214 215
	}
}

216 217 218 219 220 221
/**
 * spu_bind_context - bind spu context to physical spu
 * @spu:	physical spu to bind to
 * @ctx:	context to bind
 */
static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
222
{
223 224
	spu_context_trace(spu_bind_context__enter, ctx, spu);

225
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
226

227 228 229
	if (ctx->flags & SPU_CREATE_NOSCHED)
		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);

230 231 232
	ctx->stats.slb_flt_base = spu->stats.slb_flt;
	ctx->stats.class2_intr_base = spu->stats.class2_intr;

233 234 235
	spu_associate_mm(spu, ctx->owner);

	spin_lock_irq(&spu->register_lock);
236 237 238 239 240
	spu->ctx = ctx;
	spu->flags = 0;
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
241
	spu->tgid = current->tgid;
242 243
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
244
	spu->stop_callback = spufs_stop_callback;
245
	spu->mfc_callback = spufs_mfc_callback;
246 247
	spin_unlock_irq(&spu->register_lock);

248
	spu_unmap_mappings(ctx);
249

250
	spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
251
	spu_restore(&ctx->csa, spu);
252
	spu->timestamp = jiffies;
253
	spu_switch_notify(spu, ctx);
254
	ctx->state = SPU_STATE_RUNNABLE;
255

256
	spuctx_switch_state(ctx, SPU_UTIL_USER);
257 258
}

259
/*
260
 * Must be used with the list_mutex held.
261 262 263
 */
static inline int sched_spu(struct spu *spu)
{
264 265
	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
}

static void aff_merge_remaining_ctxs(struct spu_gang *gang)
{
	struct spu_context *ctx;

	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
		if (list_empty(&ctx->aff_list))
			list_add(&ctx->aff_list, &gang->aff_list_head);
	}
	gang->aff_flags |= AFF_MERGED;
}

static void aff_set_offsets(struct spu_gang *gang)
{
	struct spu_context *ctx;
	int offset;

	offset = -1;
	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset--;
	}

	offset = 0;
	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset++;
	}

	gang->aff_flags |= AFF_OFFSETS_SET;
}

static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
		 int group_size, int lowest_offset)
{
	struct spu *spu;
	int node, n;

	/*
	 * TODO: A better algorithm could be used to find a good spu to be
	 *       used as reference location for the ctxs chain.
	 */
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
315 316 317 318 319 320 321 322 323
		/*
		 * "available_spus" counts how many spus are not potentially
		 * going to be used by other affinity gangs whose reference
		 * context is already in place. Although this code seeks to
		 * avoid having affinity gangs with a summed amount of
		 * contexts bigger than the amount of spus in the node,
		 * this may happen sporadically. In this case, available_spus
		 * becomes negative, which is harmless.
		 */
324 325
		int available_spus;

326 327 328
		node = (node < MAX_NUMNODES) ? node : 0;
		if (!node_allowed(ctx, node))
			continue;
329 330

		available_spus = 0;
331
		mutex_lock(&cbe_spu_info[node].list_mutex);
332
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
333 334 335 336
			if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
					&& spu->ctx->gang->aff_ref_spu)
				available_spus -= spu->ctx->gang->contexts;
			available_spus++;
337 338 339 340 341 342
		}
		if (available_spus < ctx->gang->contexts) {
			mutex_unlock(&cbe_spu_info[node].list_mutex);
			continue;
		}

343 344
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if ((!mem_aff || spu->has_mem_affinity) &&
345 346
							sched_spu(spu)) {
				mutex_unlock(&cbe_spu_info[node].list_mutex);
347
				return spu;
348
			}
349
		}
350
		mutex_unlock(&cbe_spu_info[node].list_mutex);
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
	}
	return NULL;
}

static void aff_set_ref_point_location(struct spu_gang *gang)
{
	int mem_aff, gs, lowest_offset;
	struct spu_context *ctx;
	struct spu *tmp;

	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
	lowest_offset = 0;
	gs = 0;

	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
		gs++;

	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		lowest_offset = ctx->aff_offset;
	}

375 376
	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
							lowest_offset);
377 378
}

379
static struct spu *ctx_location(struct spu *ref, int offset, int node)
380 381 382 383 384 385
{
	struct spu *spu;

	spu = NULL;
	if (offset >= 0) {
		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
386
			BUG_ON(spu->node != node);
387 388 389 390 391 392 393
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset--;
		}
	} else {
		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
394
			BUG_ON(spu->node != node);
395 396 397 398 399 400
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset++;
		}
	}
401

402 403 404 405 406 407 408
	return spu;
}

/*
 * affinity_check is called each time a context is going to be scheduled.
 * It returns the spu ptr on which the context must run.
 */
409
static int has_affinity(struct spu_context *ctx)
410
{
411
	struct spu_gang *gang = ctx->gang;
412 413

	if (list_empty(&ctx->aff_list))
414 415
		return 0;

416 417 418
	if (atomic_read(&ctx->gang->aff_sched_count) == 0)
		ctx->gang->aff_ref_spu = NULL;

419 420 421 422 423 424 425
	if (!gang->aff_ref_spu) {
		if (!(gang->aff_flags & AFF_MERGED))
			aff_merge_remaining_ctxs(gang);
		if (!(gang->aff_flags & AFF_OFFSETS_SET))
			aff_set_offsets(gang);
		aff_set_ref_point_location(gang);
	}
426 427

	return gang->aff_ref_spu != NULL;
428 429
}

430 431 432 433 434
/**
 * spu_unbind_context - unbind spu context from physical spu
 * @spu:	physical spu to unbind from
 * @ctx:	context to unbind
 */
435
static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
436
{
437 438
	u32 status;

439 440
	spu_context_trace(spu_unbind_context__enter, ctx, spu);

441
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
442

443 444
 	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
445

446 447
	if (ctx->gang)
		atomic_dec_if_positive(&ctx->gang->aff_sched_count);
448

449
	spu_switch_notify(spu, NULL);
450
	spu_unmap_mappings(ctx);
451
	spu_save(&ctx->csa, spu);
452
	spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
453 454

	spin_lock_irq(&spu->register_lock);
455
	spu->timestamp = jiffies;
456 457 458
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
459
	spu->stop_callback = NULL;
460
	spu->mfc_callback = NULL;
461
	spu->pid = 0;
462
	spu->tgid = 0;
463
	ctx->ops = &spu_backing_ops;
464
	spu->flags = 0;
465
	spu->ctx = NULL;
466 467 468
	spin_unlock_irq(&spu->register_lock);

	spu_associate_mm(spu, NULL);
469 470 471 472 473

	ctx->stats.slb_flt +=
		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
	ctx->stats.class2_intr +=
		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
474 475 476 477

	/* This maps the underlying spu state to idle */
	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
	ctx->spu = NULL;
478 479 480

	if (spu_stopped(ctx, &status))
		wake_up_all(&ctx->stop_wq);
481 482
}

483 484 485 486
/**
 * spu_add_to_rq - add a context to the runqueue
 * @ctx:       context to add
 */
487
static void __spu_add_to_rq(struct spu_context *ctx)
488
{
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	/*
	 * Unfortunately this code path can be called from multiple threads
	 * on behalf of a single context due to the way the problem state
	 * mmap support works.
	 *
	 * Fortunately we need to wake up all these threads at the same time
	 * and can simply skip the runqueue addition for every but the first
	 * thread getting into this codepath.
	 *
	 * It's still quite hacky, and long-term we should proxy all other
	 * threads through the owner thread so that spu_run is in control
	 * of all the scheduling activity for a given context.
	 */
	if (list_empty(&ctx->rq)) {
		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
		set_bit(ctx->prio, spu_prio->bitmap);
		if (!spu_prio->nr_waiting++)
			__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	}
508
}
509

510 511 512 513 514 515 516
static void spu_add_to_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_add_to_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

517
static void __spu_del_from_rq(struct spu_context *ctx)
518
{
519 520
	int prio = ctx->prio;

521
	if (!list_empty(&ctx->rq)) {
522 523
		if (!--spu_prio->nr_waiting)
			del_timer(&spusched_timer);
524
		list_del_init(&ctx->rq);
525 526 527

		if (list_empty(&spu_prio->runq[prio]))
			clear_bit(prio, spu_prio->bitmap);
528
	}
529
}
530

531 532 533 534 535 536 537
void spu_del_from_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_del_from_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

538
static void spu_prio_wait(struct spu_context *ctx)
539
{
540
	DEFINE_WAIT(wait);
541

542 543 544 545 546 547 548
	/*
	 * The caller must explicitly wait for a context to be loaded
	 * if the nosched flag is set.  If NOSCHED is not set, the caller
	 * queues the context and waits for an spu event or error.
	 */
	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));

549
	spin_lock(&spu_prio->runq_lock);
550
	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
551
	if (!signal_pending(current)) {
552 553
		__spu_add_to_rq(ctx);
		spin_unlock(&spu_prio->runq_lock);
554
		mutex_unlock(&ctx->state_mutex);
555
		schedule();
556
		mutex_lock(&ctx->state_mutex);
557 558
		spin_lock(&spu_prio->runq_lock);
		__spu_del_from_rq(ctx);
559
	}
560
	spin_unlock(&spu_prio->runq_lock);
561 562
	__set_current_state(TASK_RUNNING);
	remove_wait_queue(&ctx->stop_wq, &wait);
563 564
}

565
static struct spu *spu_get_idle(struct spu_context *ctx)
566
{
567
	struct spu *spu, *aff_ref_spu;
568 569
	int node, n;

570 571
	spu_context_nospu_trace(spu_get_idle__enter, ctx);

572 573 574 575 576 577 578 579 580 581 582 583 584
	if (ctx->gang) {
		mutex_lock(&ctx->gang->aff_mutex);
		if (has_affinity(ctx)) {
			aff_ref_spu = ctx->gang->aff_ref_spu;
			atomic_inc(&ctx->gang->aff_sched_count);
			mutex_unlock(&ctx->gang->aff_mutex);
			node = aff_ref_spu->node;

			mutex_lock(&cbe_spu_info[node].list_mutex);
			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
			if (spu && spu->alloc_state == SPU_FREE)
				goto found;
			mutex_unlock(&cbe_spu_info[node].list_mutex);
585

586
			atomic_dec(&ctx->gang->aff_sched_count);
587
			goto not_found;
588 589 590
		}
		mutex_unlock(&ctx->gang->aff_mutex);
	}
591
	node = cpu_to_node(raw_smp_processor_id());
592 593
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
594
		if (!node_allowed(ctx, node))
595
			continue;
596 597 598 599 600 601 602

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state == SPU_FREE)
				goto found;
		}
		mutex_unlock(&cbe_spu_info[node].list_mutex);
603
	}
604

605 606
 not_found:
	spu_context_nospu_trace(spu_get_idle__not_found, ctx);
607 608 609 610 611
	return NULL;

 found:
	spu->alloc_state = SPU_USED;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
612
	spu_context_trace(spu_get_idle__found, ctx, spu);
613
	spu_init_channels(spu);
614 615
	return spu;
}
616

617 618 619 620 621 622 623 624 625 626 627 628
/**
 * find_victim - find a lower priority context to preempt
 * @ctx:	canidate context for running
 *
 * Returns the freed physical spu to run the new context on.
 */
static struct spu *find_victim(struct spu_context *ctx)
{
	struct spu_context *victim = NULL;
	struct spu *spu;
	int node, n;

629
	spu_context_nospu_trace(spu_find_victim__enter, ctx);
630

631 632 633
	/*
	 * Look for a possible preemption candidate on the local node first.
	 * If there is no candidate look at the other nodes.  This isn't
634
	 * exactly fair, but so far the whole spu scheduler tries to keep
635 636 637 638 639 640 641
	 * a strong node affinity.  We might want to fine-tune this in
	 * the future.
	 */
 restart:
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
642
		if (!node_allowed(ctx, node))
643 644
			continue;

645 646
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
647 648
			struct spu_context *tmp = spu->ctx;

649
			if (tmp && tmp->prio > ctx->prio &&
650
			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
651
			    (!victim || tmp->prio > victim->prio)) {
652
				victim = spu->ctx;
653
			}
654
		}
655 656
		if (victim)
			get_spu_context(victim);
657
		mutex_unlock(&cbe_spu_info[node].list_mutex);
658 659 660 661 662 663 664

		if (victim) {
			/*
			 * This nests ctx->state_mutex, but we always lock
			 * higher priority contexts before lower priority
			 * ones, so this is safe until we introduce
			 * priority inheritance schemes.
665 666 667 668
			 *
			 * XXX if the highest priority context is locked,
			 * this can loop a long time.  Might be better to
			 * look at another context or give up after X retries.
669 670
			 */
			if (!mutex_trylock(&victim->state_mutex)) {
671
				put_spu_context(victim);
672 673 674 675 676
				victim = NULL;
				goto restart;
			}

			spu = victim->spu;
677
			if (!spu || victim->prio <= ctx->prio) {
678 679
				/*
				 * This race can happen because we've dropped
680
				 * the active list mutex.  Not a problem, just
681 682 683
				 * restart the search.
				 */
				mutex_unlock(&victim->state_mutex);
684
				put_spu_context(victim);
685 686 687
				victim = NULL;
				goto restart;
			}
688

689 690
			spu_context_trace(__spu_deactivate__unload, ctx, spu);

691 692
			mutex_lock(&cbe_spu_info[node].list_mutex);
			cbe_spu_info[node].nr_active--;
693
			spu_unbind_context(spu, victim);
694 695
			mutex_unlock(&cbe_spu_info[node].list_mutex);

696
			victim->stats.invol_ctx_switch++;
697
			spu->stats.invol_ctx_switch++;
698
			if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
699
				spu_add_to_rq(victim);
700

701
			mutex_unlock(&victim->state_mutex);
702
			put_spu_context(victim);
703

704 705 706 707 708 709 710
			return spu;
		}
	}

	return NULL;
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
{
	int node = spu->node;
	int success = 0;

	spu_set_timeslice(ctx);

	mutex_lock(&cbe_spu_info[node].list_mutex);
	if (spu->ctx == NULL) {
		spu_bind_context(spu, ctx);
		cbe_spu_info[node].nr_active++;
		spu->alloc_state = SPU_USED;
		success = 1;
	}
	mutex_unlock(&cbe_spu_info[node].list_mutex);

	if (success)
		wake_up_all(&ctx->run_wq);
	else
		spu_add_to_rq(ctx);
}

static void spu_schedule(struct spu *spu, struct spu_context *ctx)
{
735 736 737
	/* not a candidate for interruptible because it's called either
	   from the scheduler thread or from spu_deactivate */
	mutex_lock(&ctx->state_mutex);
738 739
	if (ctx->state == SPU_STATE_SAVED)
		__spu_schedule(spu, ctx);
740 741 742
	spu_release(ctx);
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
/**
 * spu_unschedule - remove a context from a spu, and possibly release it.
 * @spu:	The SPU to unschedule from
 * @ctx:	The context currently scheduled on the SPU
 * @free_spu	Whether to free the SPU for other contexts
 *
 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
 * SPU is made available for other contexts (ie, may be returned by
 * spu_get_idle). If this is zero, the caller is expected to schedule another
 * context to this spu.
 *
 * Should be called with ctx->state_mutex held.
 */
static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
		int free_spu)
758 759 760 761 762
{
	int node = spu->node;

	mutex_lock(&cbe_spu_info[node].list_mutex);
	cbe_spu_info[node].nr_active--;
763 764
	if (free_spu)
		spu->alloc_state = SPU_FREE;
765 766 767 768 769 770
	spu_unbind_context(spu, ctx);
	ctx->stats.invol_ctx_switch++;
	spu->stats.invol_ctx_switch++;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
}

771 772 773 774 775
/**
 * spu_activate - find a free spu for a context and execute it
 * @ctx:	spu context to schedule
 * @flags:	flags (currently ignored)
 *
776
 * Tries to find a free spu to run @ctx.  If no free spu is available
777 778 779
 * add the context to the runqueue so it gets woken up once an spu
 * is available.
 */
780
int spu_activate(struct spu_context *ctx, unsigned long flags)
781
{
782
	struct spu *spu;
783

784 785 786 787 788 789 790 791
	/*
	 * If there are multiple threads waiting for a single context
	 * only one actually binds the context while the others will
	 * only be able to acquire the state_mutex once the context
	 * already is in runnable state.
	 */
	if (ctx->spu)
		return 0;
792

793 794 795
spu_activate_top:
	if (signal_pending(current))
		return -ERESTARTSYS;
796

797 798 799 800 801 802 803 804 805 806 807 808 809 810
	spu = spu_get_idle(ctx);
	/*
	 * If this is a realtime thread we try to get it running by
	 * preempting a lower priority thread.
	 */
	if (!spu && rt_prio(ctx->prio))
		spu = find_victim(ctx);
	if (spu) {
		unsigned long runcntl;

		runcntl = ctx->ops->runcntl_read(ctx);
		__spu_schedule(spu, ctx);
		if (runcntl & SPU_RUNCNTL_RUNNABLE)
			spuctx_switch_state(ctx, SPU_UTIL_USER);
811

812 813 814 815
		return 0;
	}

	if (ctx->flags & SPU_CREATE_NOSCHED) {
816
		spu_prio_wait(ctx);
817 818 819 820
		goto spu_activate_top;
	}

	spu_add_to_rq(ctx);
821

822
	return 0;
823 824
}

825 826 827 828 829 830
/**
 * grab_runnable_context - try to find a runnable context
 *
 * Remove the highest priority context on the runqueue and return it
 * to the caller.  Returns %NULL if no runnable context was found.
 */
831
static struct spu_context *grab_runnable_context(int prio, int node)
832
{
833
	struct spu_context *ctx;
834 835 836
	int best;

	spin_lock(&spu_prio->runq_lock);
837
	best = find_first_bit(spu_prio->bitmap, prio);
838
	while (best < prio) {
839 840
		struct list_head *rq = &spu_prio->runq[best];

841 842 843 844 845 846 847 848
		list_for_each_entry(ctx, rq, rq) {
			/* XXX(hch): check for affinity here aswell */
			if (__node_allowed(ctx, node)) {
				__spu_del_from_rq(ctx);
				goto found;
			}
		}
		best++;
849
	}
850 851
	ctx = NULL;
 found:
852 853 854 855 856 857 858 859 860 861
	spin_unlock(&spu_prio->runq_lock);
	return ctx;
}

static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
{
	struct spu *spu = ctx->spu;
	struct spu_context *new = NULL;

	if (spu) {
862
		new = grab_runnable_context(max_prio, spu->node);
863
		if (new || force) {
864
			spu_unschedule(spu, ctx, new == NULL);
865 866 867 868 869 870
			if (new) {
				if (new->flags & SPU_CREATE_NOSCHED)
					wake_up(&new->stop_wq);
				else {
					spu_release(ctx);
					spu_schedule(spu, new);
871 872 873
					/* this one can't easily be made
					   interruptible */
					mutex_lock(&ctx->state_mutex);
874 875
				}
			}
876 877 878 879 880 881
		}
	}

	return new != NULL;
}

882 883 884 885 886 887 888
/**
 * spu_deactivate - unbind a context from it's physical spu
 * @ctx:	spu context to unbind
 *
 * Unbind @ctx from the physical spu it is running on and schedule
 * the highest priority context to run on the freed physical spu.
 */
889 890
void spu_deactivate(struct spu_context *ctx)
{
891
	spu_context_nospu_trace(spu_deactivate__enter, ctx);
892
	__spu_deactivate(ctx, 1, MAX_PRIO);
893 894
}

895
/**
896
 * spu_yield -	yield a physical spu if others are waiting
897 898 899 900 901 902
 * @ctx:	spu context to yield
 *
 * Check if there is a higher priority context waiting and if yes
 * unbind @ctx from the physical spu and schedule the highest
 * priority context to run on the freed physical spu instead.
 */
903 904
void spu_yield(struct spu_context *ctx)
{
905
	spu_context_nospu_trace(spu_yield__enter, ctx);
906 907
	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
		mutex_lock(&ctx->state_mutex);
908
		__spu_deactivate(ctx, 0, MAX_PRIO);
909 910
		mutex_unlock(&ctx->state_mutex);
	}
911
}
912

913
static noinline void spusched_tick(struct spu_context *ctx)
914
{
915 916 917
	struct spu_context *new = NULL;
	struct spu *spu = NULL;

918 919
	if (spu_acquire(ctx))
		BUG();	/* a kernel thread never has signals pending */
920 921 922

	if (ctx->state != SPU_STATE_RUNNABLE)
		goto out;
923
	if (ctx->flags & SPU_CREATE_NOSCHED)
924
		goto out;
925
	if (ctx->policy == SCHED_FIFO)
926
		goto out;
927

928
	if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
929
		goto out;
930

931
	spu = ctx->spu;
932 933 934

	spu_context_trace(spusched_tick__preempt, ctx, spu);

935 936
	new = grab_runnable_context(ctx->prio + 1, spu->node);
	if (new) {
937
		spu_unschedule(spu, ctx, 0);
938
		if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
939
			spu_add_to_rq(ctx);
940
	} else {
941
		spu_context_nospu_trace(spusched_tick__newslice, ctx);
942 943
		if (!ctx->time_slice)
			ctx->time_slice++;
944
	}
945 946 947 948 949
out:
	spu_release(ctx);

	if (new)
		spu_schedule(spu, new);
950 951
}

952 953 954 955 956
/**
 * count_active_contexts - count nr of active tasks
 *
 * Return the number of tasks currently running or waiting to run.
 *
957
 * Note that we don't take runq_lock / list_mutex here.  Reading
958 959 960 961 962 963 964 965
 * a single 32bit value is atomic on powerpc, and we don't care
 * about memory ordering issues here.
 */
static unsigned long count_active_contexts(void)
{
	int nr_active = 0, node;

	for (node = 0; node < MAX_NUMNODES; node++)
966
		nr_active += cbe_spu_info[node].nr_active;
967 968 969 970 971 972
	nr_active += spu_prio->nr_waiting;

	return nr_active;
}

/**
973
 * spu_calc_load - update the avenrun load estimates.
974 975 976 977
 *
 * No locking against reading these values from userspace, as for
 * the CPU loadavg code.
 */
978
static void spu_calc_load(void)
979 980
{
	unsigned long active_tasks; /* fixed-point */
981 982 983 984 985

	active_tasks = count_active_contexts() * FIXED_1;
	CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
	CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
	CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
986 987
}

988 989 990 991
static void spusched_wake(unsigned long data)
{
	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	wake_up_process(spusched_task);
992 993 994 995 996 997
}

static void spuloadavg_wake(unsigned long data)
{
	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
	spu_calc_load();
998 999 1000 1001
}

static int spusched_thread(void *unused)
{
1002
	struct spu *spu;
1003 1004 1005 1006 1007 1008
	int node;

	while (!kthread_should_stop()) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
		for (node = 0; node < MAX_NUMNODES; node++) {
1009 1010 1011 1012 1013 1014 1015 1016
			struct mutex *mtx = &cbe_spu_info[node].list_mutex;

			mutex_lock(mtx);
			list_for_each_entry(spu, &cbe_spu_info[node].spus,
					cbe_list) {
				struct spu_context *ctx = spu->ctx;

				if (ctx) {
1017
					get_spu_context(ctx);
1018 1019 1020
					mutex_unlock(mtx);
					spusched_tick(ctx);
					mutex_lock(mtx);
1021
					put_spu_context(ctx);
1022 1023 1024
				}
			}
			mutex_unlock(mtx);
1025 1026 1027 1028 1029 1030
		}
	}

	return 0;
}

1031 1032 1033 1034 1035 1036 1037 1038
void spuctx_switch_state(struct spu_context *ctx,
		enum spu_utilization_state new_state)
{
	unsigned long long curtime;
	signed long long delta;
	struct timespec ts;
	struct spu *spu;
	enum spu_utilization_state old_state;
1039
	int node;
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

	ktime_get_ts(&ts);
	curtime = timespec_to_ns(&ts);
	delta = curtime - ctx->stats.tstamp;

	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
	WARN_ON(delta < 0);

	spu = ctx->spu;
	old_state = ctx->stats.util_state;
	ctx->stats.util_state = new_state;
	ctx->stats.tstamp = curtime;

	/*
	 * Update the physical SPU utilization statistics.
	 */
	if (spu) {
		ctx->stats.times[old_state] += delta;
		spu->stats.times[old_state] += delta;
		spu->stats.util_state = new_state;
		spu->stats.tstamp = curtime;
1061 1062 1063
		node = spu->node;
		if (old_state == SPU_UTIL_USER)
			atomic_dec(&cbe_spu_info[node].busy_spus);
1064
		if (new_state == SPU_UTIL_USER)
1065
			atomic_inc(&cbe_spu_info[node].busy_spus);
1066 1067 1068
	}
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)

static int show_spu_loadavg(struct seq_file *s, void *private)
{
	int a, b, c;

	a = spu_avenrun[0] + (FIXED_1/200);
	b = spu_avenrun[1] + (FIXED_1/200);
	c = spu_avenrun[2] + (FIXED_1/200);

	/*
	 * Note that last_pid doesn't really make much sense for the
1082
	 * SPU loadavg (it even seems very odd on the CPU side...),
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	 * but we include it here to have a 100% compatible interface.
	 */
	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
		LOAD_INT(a), LOAD_FRAC(a),
		LOAD_INT(b), LOAD_FRAC(b),
		LOAD_INT(c), LOAD_FRAC(c),
		count_active_contexts(),
		atomic_read(&nr_spu_contexts),
		current->nsproxy->pid_ns->last_pid);
	return 0;
}

static int spu_loadavg_open(struct inode *inode, struct file *file)
{
	return single_open(file, show_spu_loadavg, NULL);
}

static const struct file_operations spu_loadavg_fops = {
	.open		= spu_loadavg_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1107 1108
int __init spu_sched_init(void)
{
1109 1110
	struct proc_dir_entry *entry;
	int err = -ENOMEM, i;
1111

1112
	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1113
	if (!spu_prio)
1114
		goto out;
1115

1116
	for (i = 0; i < MAX_PRIO; i++) {
1117
		INIT_LIST_HEAD(&spu_prio->runq[i]);
1118
		__clear_bit(i, spu_prio->bitmap);
1119
	}
1120
	spin_lock_init(&spu_prio->runq_lock);
1121

1122
	setup_timer(&spusched_timer, spusched_wake, 0);
1123
	setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1124

1125 1126
	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
	if (IS_ERR(spusched_task)) {
1127 1128
		err = PTR_ERR(spusched_task);
		goto out_free_spu_prio;
1129
	}
1130

1131 1132
	mod_timer(&spuloadavg_timer, 0);

1133
	entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
1134 1135 1136
	if (!entry)
		goto out_stop_kthread;

1137 1138
	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1139
	return 0;
1140

1141 1142 1143 1144 1145 1146
 out_stop_kthread:
	kthread_stop(spusched_task);
 out_free_spu_prio:
	kfree(spu_prio);
 out:
	return err;
1147 1148
}

1149
void spu_sched_exit(void)
1150
{
1151
	struct spu *spu;
1152 1153
	int node;

1154 1155
	remove_proc_entry("spu_loadavg", NULL);

1156
	del_timer_sync(&spusched_timer);
1157
	del_timer_sync(&spuloadavg_timer);
1158 1159
	kthread_stop(spusched_task);

1160
	for (node = 0; node < MAX_NUMNODES; node++) {
1161 1162 1163 1164 1165
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
			if (spu->alloc_state != SPU_FREE)
				spu->alloc_state = SPU_FREE;
		mutex_unlock(&cbe_spu_info[node].list_mutex);
1166
	}
1167
	kfree(spu_prio);
1168
}