sched.c 18.8 KB
Newer Older
1 2 3 4 5
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
6
 * 2006-03-31	NUMA domains added.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27 28 29 30 31 32 33 34
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
35 36
#include <linux/numa.h>
#include <linux/mutex.h>
37
#include <linux/notifier.h>
38
#include <linux/kthread.h>
39 40 41
#include <linux/pid_namespace.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
42 43 44 45 46

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
47
#include <asm/spu_priv1.h>
48 49 50
#include "spufs.h"

struct spu_prio_array {
51
	DECLARE_BITMAP(bitmap, MAX_PRIO);
52 53
	struct list_head runq[MAX_PRIO];
	spinlock_t runq_lock;
54 55
	struct list_head active_list[MAX_NUMNODES];
	struct mutex active_mutex[MAX_NUMNODES];
56 57
	int nr_active[MAX_NUMNODES];
	int nr_waiting;
58 59
};

60
static unsigned long spu_avenrun[3];
61
static struct spu_prio_array *spu_prio;
62 63
static struct task_struct *spusched_task;
static struct timer_list spusched_timer;
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
 */
#define NORMAL_PRIO		120

/*
 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
 * tick for every 10 CPU scheduler ticks.
 */
#define SPUSCHED_TICK		(10)

/*
 * These are the 'tuning knobs' of the scheduler:
 *
79 80
 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
81
 */
82 83
#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

#define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)

/*
 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
 * [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */
void spu_set_timeslice(struct spu_context *ctx)
{
	if (ctx->prio < NORMAL_PRIO)
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
	else
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
}

105 106 107 108 109
/*
 * Update scheduling information from the owning thread.
 */
void __spu_update_sched_info(struct spu_context *ctx)
{
110 111 112 113 114 115 116
	/*
	 * 32-Bit assignment are atomic on powerpc, and we don't care about
	 * memory ordering here because retriving the controlling thread is
	 * per defintion racy.
	 */
	ctx->tid = current->pid;

117 118 119 120 121 122 123 124 125 126 127
	/*
	 * We do our own priority calculations, so we normally want
	 * ->static_prio to start with. Unfortunately thies field
	 * contains junk for threads with a realtime scheduling
	 * policy so we have to look at ->prio in this case.
	 */
	if (rt_prio(current->prio))
		ctx->prio = current->prio;
	else
		ctx->prio = current->static_prio;
	ctx->policy = current->policy;
128 129 130 131 132 133 134 135 136 137

	/*
	 * A lot of places that don't hold active_mutex poke into
	 * cpus_allowed, including grab_runnable_context which
	 * already holds the runq_lock.  So abuse runq_lock
	 * to protect this field aswell.
	 */
	spin_lock(&spu_prio->runq_lock);
	ctx->cpus_allowed = current->cpus_allowed;
	spin_unlock(&spu_prio->runq_lock);
138 139 140 141 142 143 144 145 146 147 148
}

void spu_update_sched_info(struct spu_context *ctx)
{
	int node = ctx->spu->node;

	mutex_lock(&spu_prio->active_mutex[node]);
	__spu_update_sched_info(ctx);
	mutex_unlock(&spu_prio->active_mutex[node]);
}

149
static int __node_allowed(struct spu_context *ctx, int node)
150
{
151 152
	if (nr_cpus_node(node)) {
		cpumask_t mask = node_to_cpumask(node);
153

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
		if (cpus_intersects(mask, ctx->cpus_allowed))
			return 1;
	}

	return 0;
}

static int node_allowed(struct spu_context *ctx, int node)
{
	int rval;

	spin_lock(&spu_prio->runq_lock);
	rval = __node_allowed(ctx, node);
	spin_unlock(&spu_prio->runq_lock);

	return rval;
170 171
}

172 173 174 175 176 177
/**
 * spu_add_to_active_list - add spu to active list
 * @spu:	spu to add to the active list
 */
static void spu_add_to_active_list(struct spu *spu)
{
178 179 180 181 182 183
	int node = spu->node;

	mutex_lock(&spu_prio->active_mutex[node]);
	spu_prio->nr_active[node]++;
	list_add_tail(&spu->list, &spu_prio->active_list[node]);
	mutex_unlock(&spu_prio->active_mutex[node]);
184 185
}

186 187 188
static void __spu_remove_from_active_list(struct spu *spu)
{
	list_del_init(&spu->list);
189
	spu_prio->nr_active[spu->node]--;
190 191
}

192 193 194 195
/**
 * spu_remove_from_active_list - remove spu from active list
 * @spu:       spu to remove from the active list
 */
196
static void spu_remove_from_active_list(struct spu *spu)
197 198 199 200
{
	int node = spu->node;

	mutex_lock(&spu_prio->active_mutex[node]);
201
	__spu_remove_from_active_list(spu);
202 203 204
	mutex_unlock(&spu_prio->active_mutex[node]);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);

static void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
{
	blocking_notifier_call_chain(&spu_switch_notifier,
			    ctx ? ctx->object_id : 0, spu);
}

int spu_switch_event_register(struct notifier_block * n)
{
	return blocking_notifier_chain_register(&spu_switch_notifier, n);
}

int spu_switch_event_unregister(struct notifier_block * n)
{
	return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
}

223 224 225 226 227 228
/**
 * spu_bind_context - bind spu context to physical spu
 * @spu:	physical spu to bind to
 * @ctx:	context to bind
 */
static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
229
{
230 231
	pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
		 spu->number, spu->node);
232 233 234 235 236
	spu->ctx = ctx;
	spu->flags = 0;
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
237
	spu_associate_mm(spu, ctx->owner);
238 239
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
240
	spu->stop_callback = spufs_stop_callback;
241
	spu->mfc_callback = spufs_mfc_callback;
242
	spu->dma_callback = spufs_dma_callback;
243
	mb();
244
	spu_unmap_mappings(ctx);
245
	spu_restore(&ctx->csa, spu);
246
	spu->timestamp = jiffies;
247
	spu_cpu_affinity_set(spu, raw_smp_processor_id());
248
	spu_switch_notify(spu, ctx);
249
	ctx->state = SPU_STATE_RUNNABLE;
250 251
}

252 253 254 255 256
/**
 * spu_unbind_context - unbind spu context from physical spu
 * @spu:	physical spu to unbind from
 * @ctx:	context to unbind
 */
257
static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
258
{
259 260
	pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
		 spu->pid, spu->number, spu->node);
261

262
	spu_switch_notify(spu, NULL);
263
	spu_unmap_mappings(ctx);
264
	spu_save(&ctx->csa, spu);
265
	spu->timestamp = jiffies;
266 267 268
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
269
	spu->stop_callback = NULL;
270
	spu->mfc_callback = NULL;
271
	spu->dma_callback = NULL;
272
	spu_associate_mm(spu, NULL);
273 274 275
	spu->pid = 0;
	ctx->ops = &spu_backing_ops;
	ctx->spu = NULL;
276
	spu->flags = 0;
277 278 279
	spu->ctx = NULL;
}

280 281 282 283
/**
 * spu_add_to_rq - add a context to the runqueue
 * @ctx:       context to add
 */
284
static void __spu_add_to_rq(struct spu_context *ctx)
285
{
286 287
	int prio = ctx->prio;

288
	spu_prio->nr_waiting++;
289 290
	list_add_tail(&ctx->rq, &spu_prio->runq[prio]);
	set_bit(prio, spu_prio->bitmap);
291
}
292

293
static void __spu_del_from_rq(struct spu_context *ctx)
294
{
295 296
	int prio = ctx->prio;

297
	if (!list_empty(&ctx->rq)) {
298
		list_del_init(&ctx->rq);
299 300
		spu_prio->nr_waiting--;
	}
301
	if (list_empty(&spu_prio->runq[prio]))
302
		clear_bit(prio, spu_prio->bitmap);
303
}
304

305
static void spu_prio_wait(struct spu_context *ctx)
306
{
307
	DEFINE_WAIT(wait);
308

309
	spin_lock(&spu_prio->runq_lock);
310
	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
311
	if (!signal_pending(current)) {
312 313
		__spu_add_to_rq(ctx);
		spin_unlock(&spu_prio->runq_lock);
314
		mutex_unlock(&ctx->state_mutex);
315
		schedule();
316
		mutex_lock(&ctx->state_mutex);
317 318
		spin_lock(&spu_prio->runq_lock);
		__spu_del_from_rq(ctx);
319
	}
320
	spin_unlock(&spu_prio->runq_lock);
321 322
	__set_current_state(TASK_RUNNING);
	remove_wait_queue(&ctx->stop_wq, &wait);
323 324
}

325
static struct spu *spu_get_idle(struct spu_context *ctx)
326 327 328 329 330 331 332
{
	struct spu *spu = NULL;
	int node = cpu_to_node(raw_smp_processor_id());
	int n;

	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
333
		if (!node_allowed(ctx, node))
334 335 336 337 338 339 340
			continue;
		spu = spu_alloc_node(node);
		if (spu)
			break;
	}
	return spu;
}
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
/**
 * find_victim - find a lower priority context to preempt
 * @ctx:	canidate context for running
 *
 * Returns the freed physical spu to run the new context on.
 */
static struct spu *find_victim(struct spu_context *ctx)
{
	struct spu_context *victim = NULL;
	struct spu *spu;
	int node, n;

	/*
	 * Look for a possible preemption candidate on the local node first.
	 * If there is no candidate look at the other nodes.  This isn't
	 * exactly fair, but so far the whole spu schedule tries to keep
	 * a strong node affinity.  We might want to fine-tune this in
	 * the future.
	 */
 restart:
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
365
		if (!node_allowed(ctx, node))
366 367 368 369 370 371
			continue;

		mutex_lock(&spu_prio->active_mutex[node]);
		list_for_each_entry(spu, &spu_prio->active_list[node], list) {
			struct spu_context *tmp = spu->ctx;

372 373
			if (tmp->prio > ctx->prio &&
			    (!victim || tmp->prio > victim->prio))
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
				victim = spu->ctx;
		}
		mutex_unlock(&spu_prio->active_mutex[node]);

		if (victim) {
			/*
			 * This nests ctx->state_mutex, but we always lock
			 * higher priority contexts before lower priority
			 * ones, so this is safe until we introduce
			 * priority inheritance schemes.
			 */
			if (!mutex_trylock(&victim->state_mutex)) {
				victim = NULL;
				goto restart;
			}

			spu = victim->spu;
			if (!spu) {
				/*
				 * This race can happen because we've dropped
				 * the active list mutex.  No a problem, just
				 * restart the search.
				 */
				mutex_unlock(&victim->state_mutex);
				victim = NULL;
				goto restart;
			}
401
			spu_remove_from_active_list(spu);
402 403
			spu_unbind_context(spu, victim);
			mutex_unlock(&victim->state_mutex);
404 405 406 407 408 409
			/*
			 * We need to break out of the wait loop in spu_run
			 * manually to ensure this context gets put on the
			 * runqueue again ASAP.
			 */
			wake_up(&victim->stop_wq);
410 411 412 413 414 415 416
			return spu;
		}
	}

	return NULL;
}

417 418 419 420 421
/**
 * spu_activate - find a free spu for a context and execute it
 * @ctx:	spu context to schedule
 * @flags:	flags (currently ignored)
 *
422
 * Tries to find a free spu to run @ctx.  If no free spu is available
423 424 425
 * add the context to the runqueue so it gets woken up once an spu
 * is available.
 */
426
int spu_activate(struct spu_context *ctx, unsigned long flags)
427 428
{

429 430 431 432 433 434 435
	if (ctx->spu)
		return 0;

	do {
		struct spu *spu;

		spu = spu_get_idle(ctx);
436 437 438 439
		/*
		 * If this is a realtime thread we try to get it running by
		 * preempting a lower priority thread.
		 */
440
		if (!spu && rt_prio(ctx->prio))
441
			spu = find_victim(ctx);
442
		if (spu) {
443
			spu_bind_context(spu, ctx);
444
			spu_add_to_active_list(spu);
445
			return 0;
446
		}
447

448
		spu_prio_wait(ctx);
449 450 451
	} while (!signal_pending(current));

	return -ERESTARTSYS;
452 453
}

454 455 456 457 458 459
/**
 * grab_runnable_context - try to find a runnable context
 *
 * Remove the highest priority context on the runqueue and return it
 * to the caller.  Returns %NULL if no runnable context was found.
 */
460
static struct spu_context *grab_runnable_context(int prio, int node)
461
{
462
	struct spu_context *ctx;
463 464 465 466
	int best;

	spin_lock(&spu_prio->runq_lock);
	best = sched_find_first_bit(spu_prio->bitmap);
467
	while (best < prio) {
468 469
		struct list_head *rq = &spu_prio->runq[best];

470 471 472 473 474 475 476 477
		list_for_each_entry(ctx, rq, rq) {
			/* XXX(hch): check for affinity here aswell */
			if (__node_allowed(ctx, node)) {
				__spu_del_from_rq(ctx);
				goto found;
			}
		}
		best++;
478
	}
479 480
	ctx = NULL;
 found:
481 482 483 484 485 486 487 488 489 490
	spin_unlock(&spu_prio->runq_lock);
	return ctx;
}

static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
{
	struct spu *spu = ctx->spu;
	struct spu_context *new = NULL;

	if (spu) {
491
		new = grab_runnable_context(max_prio, spu->node);
492
		if (new || force) {
493
			spu_remove_from_active_list(spu);
494 495 496 497 498 499 500 501 502 503 504
			spu_unbind_context(spu, ctx);
			spu_free(spu);
			if (new)
				wake_up(&new->stop_wq);
		}

	}

	return new != NULL;
}

505 506 507 508 509 510 511
/**
 * spu_deactivate - unbind a context from it's physical spu
 * @ctx:	spu context to unbind
 *
 * Unbind @ctx from the physical spu it is running on and schedule
 * the highest priority context to run on the freed physical spu.
 */
512 513
void spu_deactivate(struct spu_context *ctx)
{
514 515 516 517 518 519 520 521 522
	/*
	 * We must never reach this for a nosched context,
	 * but handle the case gracefull instead of panicing.
	 */
	if (ctx->flags & SPU_CREATE_NOSCHED) {
		WARN_ON(1);
		return;
	}

523
	__spu_deactivate(ctx, 1, MAX_PRIO);
524 525
}

526 527 528 529 530 531 532 533
/**
 * spu_yield -  yield a physical spu if others are waiting
 * @ctx:	spu context to yield
 *
 * Check if there is a higher priority context waiting and if yes
 * unbind @ctx from the physical spu and schedule the highest
 * priority context to run on the freed physical spu instead.
 */
534 535
void spu_yield(struct spu_context *ctx)
{
536 537 538 539 540
	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
		mutex_lock(&ctx->state_mutex);
		__spu_deactivate(ctx, 0, MAX_PRIO);
		mutex_unlock(&ctx->state_mutex);
	}
541
}
542

543
static void spusched_tick(struct spu_context *ctx)
544
{
545 546 547 548 549 550
	if (ctx->flags & SPU_CREATE_NOSCHED)
		return;
	if (ctx->policy == SCHED_FIFO)
		return;

	if (--ctx->time_slice)
551
		return;
552 553

	/*
554 555 556
	 * Unfortunately active_mutex ranks outside of state_mutex, so
	 * we have to trylock here.  If we fail give the context another
	 * tick and try again.
557
	 */
558
	if (mutex_trylock(&ctx->state_mutex)) {
559
		struct spu *spu = ctx->spu;
560 561 562
		struct spu_context *new;

		new = grab_runnable_context(ctx->prio + 1, spu->node);
563
		if (new) {
564

565 566 567 568 569 570 571 572 573 574 575
			__spu_remove_from_active_list(spu);
			spu_unbind_context(spu, ctx);
			spu_free(spu);
			wake_up(&new->stop_wq);
			/*
			 * We need to break out of the wait loop in
			 * spu_run manually to ensure this context
			 * gets put on the runqueue again ASAP.
			 */
			wake_up(&ctx->stop_wq);
		}
576
		spu_set_timeslice(ctx);
577
		mutex_unlock(&ctx->state_mutex);
578
	} else {
579
		ctx->time_slice++;
580 581 582
	}
}

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
/**
 * count_active_contexts - count nr of active tasks
 *
 * Return the number of tasks currently running or waiting to run.
 *
 * Note that we don't take runq_lock / active_mutex here.  Reading
 * a single 32bit value is atomic on powerpc, and we don't care
 * about memory ordering issues here.
 */
static unsigned long count_active_contexts(void)
{
	int nr_active = 0, node;

	for (node = 0; node < MAX_NUMNODES; node++)
		nr_active += spu_prio->nr_active[node];
	nr_active += spu_prio->nr_waiting;

	return nr_active;
}

/**
 * spu_calc_load - given tick count, update the avenrun load estimates.
 * @tick:	tick count
 *
 * No locking against reading these values from userspace, as for
 * the CPU loadavg code.
 */
static void spu_calc_load(unsigned long ticks)
{
	unsigned long active_tasks; /* fixed-point */
	static int count = LOAD_FREQ;

	count -= ticks;

	if (unlikely(count < 0)) {
		active_tasks = count_active_contexts() * FIXED_1;
		do {
			CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
			CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
			CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
			count += LOAD_FREQ;
		} while (count < 0);
	}
}

628 629 630 631
static void spusched_wake(unsigned long data)
{
	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	wake_up_process(spusched_task);
632
	spu_calc_load(SPUSCHED_TICK);
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
}

static int spusched_thread(void *unused)
{
	struct spu *spu, *next;
	int node;

	setup_timer(&spusched_timer, spusched_wake, 0);
	__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);

	while (!kthread_should_stop()) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
		for (node = 0; node < MAX_NUMNODES; node++) {
			mutex_lock(&spu_prio->active_mutex[node]);
			list_for_each_entry_safe(spu, next,
						 &spu_prio->active_list[node],
						 list)
				spusched_tick(spu->ctx);
			mutex_unlock(&spu_prio->active_mutex[node]);
		}
	}

	del_timer_sync(&spusched_timer);
	return 0;
}

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)

static int show_spu_loadavg(struct seq_file *s, void *private)
{
	int a, b, c;

	a = spu_avenrun[0] + (FIXED_1/200);
	b = spu_avenrun[1] + (FIXED_1/200);
	c = spu_avenrun[2] + (FIXED_1/200);

	/*
	 * Note that last_pid doesn't really make much sense for the
	 * SPU loadavg (it even seems very odd on the CPU side..),
	 * but we include it here to have a 100% compatible interface.
	 */
	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
		LOAD_INT(a), LOAD_FRAC(a),
		LOAD_INT(b), LOAD_FRAC(b),
		LOAD_INT(c), LOAD_FRAC(c),
		count_active_contexts(),
		atomic_read(&nr_spu_contexts),
		current->nsproxy->pid_ns->last_pid);
	return 0;
}

static int spu_loadavg_open(struct inode *inode, struct file *file)
{
	return single_open(file, show_spu_loadavg, NULL);
}

static const struct file_operations spu_loadavg_fops = {
	.open		= spu_loadavg_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

698 699
int __init spu_sched_init(void)
{
700 701
	struct proc_dir_entry *entry;
	int err = -ENOMEM, i;
702

703
	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
704
	if (!spu_prio)
705
		goto out;
706

707
	for (i = 0; i < MAX_PRIO; i++) {
708
		INIT_LIST_HEAD(&spu_prio->runq[i]);
709
		__clear_bit(i, spu_prio->bitmap);
710
	}
711 712 713 714
	__set_bit(MAX_PRIO, spu_prio->bitmap);
	for (i = 0; i < MAX_NUMNODES; i++) {
		mutex_init(&spu_prio->active_mutex[i]);
		INIT_LIST_HEAD(&spu_prio->active_list[i]);
715
	}
716
	spin_lock_init(&spu_prio->runq_lock);
717 718 719

	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
	if (IS_ERR(spusched_task)) {
720 721
		err = PTR_ERR(spusched_task);
		goto out_free_spu_prio;
722
	}
723

724 725 726 727 728
	entry = create_proc_entry("spu_loadavg", 0, NULL);
	if (!entry)
		goto out_stop_kthread;
	entry->proc_fops = &spu_loadavg_fops;

729 730
	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
731
	return 0;
732

733 734 735 736 737 738
 out_stop_kthread:
	kthread_stop(spusched_task);
 out_free_spu_prio:
	kfree(spu_prio);
 out:
	return err;
739 740 741 742
}

void __exit spu_sched_exit(void)
{
743 744 745
	struct spu *spu, *tmp;
	int node;

746 747
	remove_proc_entry("spu_loadavg", NULL);

748 749
	kthread_stop(spusched_task);

750 751 752 753 754 755 756 757
	for (node = 0; node < MAX_NUMNODES; node++) {
		mutex_lock(&spu_prio->active_mutex[node]);
		list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node],
					 list) {
			list_del_init(&spu->list);
			spu_free(spu);
		}
		mutex_unlock(&spu_prio->active_mutex[node]);
758
	}
759
	kfree(spu_prio);
760
}