sched.c 27.1 KB
Newer Older
1 2 3 4 5
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
6
 * 2006-03-31	NUMA domains added.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27 28 29 30 31 32 33 34
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
35 36
#include <linux/numa.h>
#include <linux/mutex.h>
37
#include <linux/notifier.h>
38
#include <linux/kthread.h>
39 40 41
#include <linux/pid_namespace.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
42 43 44 45 46

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
47
#include <asm/spu_priv1.h>
48 49 50
#include "spufs.h"

struct spu_prio_array {
51
	DECLARE_BITMAP(bitmap, MAX_PRIO);
52 53
	struct list_head runq[MAX_PRIO];
	spinlock_t runq_lock;
54
	int nr_waiting;
55 56
};

57
static unsigned long spu_avenrun[3];
58
static struct spu_prio_array *spu_prio;
59 60
static struct task_struct *spusched_task;
static struct timer_list spusched_timer;
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75
/*
 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
 */
#define NORMAL_PRIO		120

/*
 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
 * tick for every 10 CPU scheduler ticks.
 */
#define SPUSCHED_TICK		(10)

/*
 * These are the 'tuning knobs' of the scheduler:
 *
76 77
 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
78
 */
79 80
#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

#define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)

/*
 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
 * [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */
void spu_set_timeslice(struct spu_context *ctx)
{
	if (ctx->prio < NORMAL_PRIO)
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
	else
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
}

102 103 104 105 106
/*
 * Update scheduling information from the owning thread.
 */
void __spu_update_sched_info(struct spu_context *ctx)
{
107 108 109 110 111 112
	/*
	 * assert that the context is not on the runqueue, so it is safe
	 * to change its scheduling parameters.
	 */
	BUG_ON(!list_empty(&ctx->rq));

113
	/*
114 115 116
	 * 32-Bit assignments are atomic on powerpc, and we don't care about
	 * memory ordering here because retrieving the controlling thread is
	 * per definition racy.
117 118 119
	 */
	ctx->tid = current->pid;

120 121
	/*
	 * We do our own priority calculations, so we normally want
122
	 * ->static_prio to start with. Unfortunately this field
123 124 125 126 127 128 129 130
	 * contains junk for threads with a realtime scheduling
	 * policy so we have to look at ->prio in this case.
	 */
	if (rt_prio(current->prio))
		ctx->prio = current->prio;
	else
		ctx->prio = current->static_prio;
	ctx->policy = current->policy;
131 132

	/*
133 134 135 136 137 138
	 * TO DO: the context may be loaded, so we may need to activate
	 * it again on a different node. But it shouldn't hurt anything
	 * to update its parameters, because we know that the scheduler
	 * is not actively looking at this field, since it is not on the
	 * runqueue. The context will be rescheduled on the proper node
	 * if it is timesliced or preempted.
139 140
	 */
	ctx->cpus_allowed = current->cpus_allowed;
141 142 143 144
}

void spu_update_sched_info(struct spu_context *ctx)
{
145
	int node;
146

147 148
	if (ctx->state == SPU_STATE_RUNNABLE) {
		node = ctx->spu->node;
149 150 151 152

		/*
		 * Take list_mutex to sync with find_victim().
		 */
153 154 155 156 157 158
		mutex_lock(&cbe_spu_info[node].list_mutex);
		__spu_update_sched_info(ctx);
		mutex_unlock(&cbe_spu_info[node].list_mutex);
	} else {
		__spu_update_sched_info(ctx);
	}
159 160
}

161
static int __node_allowed(struct spu_context *ctx, int node)
162
{
163 164
	if (nr_cpus_node(node)) {
		cpumask_t mask = node_to_cpumask(node);
165

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
		if (cpus_intersects(mask, ctx->cpus_allowed))
			return 1;
	}

	return 0;
}

static int node_allowed(struct spu_context *ctx, int node)
{
	int rval;

	spin_lock(&spu_prio->runq_lock);
	rval = __node_allowed(ctx, node);
	spin_unlock(&spu_prio->runq_lock);

	return rval;
182 183
}

184 185
static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);

186
void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
187 188 189 190 191
{
	blocking_notifier_call_chain(&spu_switch_notifier,
			    ctx ? ctx->object_id : 0, spu);
}

192 193 194 195 196 197 198 199
static void notify_spus_active(void)
{
	int node;

	/*
	 * Wake up the active spu_contexts.
	 *
	 * When the awakened processes see their "notify_active" flag is set,
200
	 * they will call spu_switch_notify().
201 202 203
	 */
	for_each_online_node(node) {
		struct spu *spu;
204 205 206 207 208 209 210 211 212 213

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state != SPU_FREE) {
				struct spu_context *ctx = spu->ctx;
				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
					&ctx->sched_flags);
				mb();
				wake_up_all(&ctx->stop_wq);
			}
214
		}
215
		mutex_unlock(&cbe_spu_info[node].list_mutex);
216 217 218
	}
}

219 220
int spu_switch_event_register(struct notifier_block * n)
{
221 222 223 224 225
	int ret;
	ret = blocking_notifier_chain_register(&spu_switch_notifier, n);
	if (!ret)
		notify_spus_active();
	return ret;
226
}
227
EXPORT_SYMBOL_GPL(spu_switch_event_register);
228 229 230 231 232

int spu_switch_event_unregister(struct notifier_block * n)
{
	return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
}
233
EXPORT_SYMBOL_GPL(spu_switch_event_unregister);
234

235 236 237 238 239 240
/**
 * spu_bind_context - bind spu context to physical spu
 * @spu:	physical spu to bind to
 * @ctx:	context to bind
 */
static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
241
{
242 243
	pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
		 spu->number, spu->node);
244
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
245

246 247 248
	if (ctx->flags & SPU_CREATE_NOSCHED)
		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);

249 250 251
	ctx->stats.slb_flt_base = spu->stats.slb_flt;
	ctx->stats.class2_intr_base = spu->stats.class2_intr;

252 253 254 255 256
	spu->ctx = ctx;
	spu->flags = 0;
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
257
	spu->tgid = current->tgid;
258
	spu_associate_mm(spu, ctx->owner);
259 260
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
261
	spu->stop_callback = spufs_stop_callback;
262
	spu->mfc_callback = spufs_mfc_callback;
263
	mb();
264
	spu_unmap_mappings(ctx);
265
	spu_restore(&ctx->csa, spu);
266
	spu->timestamp = jiffies;
267
	spu_cpu_affinity_set(spu, raw_smp_processor_id());
268
	spu_switch_notify(spu, ctx);
269
	ctx->state = SPU_STATE_RUNNABLE;
270 271

	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
272 273
}

274
/*
275
 * Must be used with the list_mutex held.
276 277 278
 */
static inline int sched_spu(struct spu *spu)
{
279 280
	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
}

static void aff_merge_remaining_ctxs(struct spu_gang *gang)
{
	struct spu_context *ctx;

	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
		if (list_empty(&ctx->aff_list))
			list_add(&ctx->aff_list, &gang->aff_list_head);
	}
	gang->aff_flags |= AFF_MERGED;
}

static void aff_set_offsets(struct spu_gang *gang)
{
	struct spu_context *ctx;
	int offset;

	offset = -1;
	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset--;
	}

	offset = 0;
	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset++;
	}

	gang->aff_flags |= AFF_OFFSETS_SET;
}

static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
		 int group_size, int lowest_offset)
{
	struct spu *spu;
	int node, n;

	/*
	 * TODO: A better algorithm could be used to find a good spu to be
	 *       used as reference location for the ctxs chain.
	 */
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
		if (!node_allowed(ctx, node))
			continue;
333
		mutex_lock(&cbe_spu_info[node].list_mutex);
334 335
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if ((!mem_aff || spu->has_mem_affinity) &&
336 337
							sched_spu(spu)) {
				mutex_unlock(&cbe_spu_info[node].list_mutex);
338
				return spu;
339
			}
340
		}
341
		mutex_unlock(&cbe_spu_info[node].list_mutex);
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	}
	return NULL;
}

static void aff_set_ref_point_location(struct spu_gang *gang)
{
	int mem_aff, gs, lowest_offset;
	struct spu_context *ctx;
	struct spu *tmp;

	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
	lowest_offset = 0;
	gs = 0;

	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
		gs++;

	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		lowest_offset = ctx->aff_offset;
	}

366 367
	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
							lowest_offset);
368 369
}

370
static struct spu *ctx_location(struct spu *ref, int offset, int node)
371 372 373 374 375 376
{
	struct spu *spu;

	spu = NULL;
	if (offset >= 0) {
		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
377
			BUG_ON(spu->node != node);
378 379 380 381 382 383 384
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset--;
		}
	} else {
		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
385
			BUG_ON(spu->node != node);
386 387 388 389 390 391
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset++;
		}
	}
392

393 394 395 396 397 398 399
	return spu;
}

/*
 * affinity_check is called each time a context is going to be scheduled.
 * It returns the spu ptr on which the context must run.
 */
400
static int has_affinity(struct spu_context *ctx)
401
{
402
	struct spu_gang *gang = ctx->gang;
403 404

	if (list_empty(&ctx->aff_list))
405 406
		return 0;

407 408 409 410 411 412 413
	if (!gang->aff_ref_spu) {
		if (!(gang->aff_flags & AFF_MERGED))
			aff_merge_remaining_ctxs(gang);
		if (!(gang->aff_flags & AFF_OFFSETS_SET))
			aff_set_offsets(gang);
		aff_set_ref_point_location(gang);
	}
414 415

	return gang->aff_ref_spu != NULL;
416 417
}

418 419 420 421 422
/**
 * spu_unbind_context - unbind spu context from physical spu
 * @spu:	physical spu to unbind from
 * @ctx:	context to unbind
 */
423
static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
424
{
425 426
	pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
		 spu->pid, spu->number, spu->node);
427
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
428

429 430
 	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
431 432 433 434 435 436 437 438 439 440

	if (ctx->gang){
		mutex_lock(&ctx->gang->aff_mutex);
		if (has_affinity(ctx)) {
			if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
				ctx->gang->aff_ref_spu = NULL;
		}
		mutex_unlock(&ctx->gang->aff_mutex);
	}

441
	spu_switch_notify(spu, NULL);
442
	spu_unmap_mappings(ctx);
443
	spu_save(&ctx->csa, spu);
444
	spu->timestamp = jiffies;
445 446 447
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
448
	spu->stop_callback = NULL;
449
	spu->mfc_callback = NULL;
450
	spu_associate_mm(spu, NULL);
451
	spu->pid = 0;
452
	spu->tgid = 0;
453
	ctx->ops = &spu_backing_ops;
454
	spu->flags = 0;
455
	spu->ctx = NULL;
456 457 458 459 460

	ctx->stats.slb_flt +=
		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
	ctx->stats.class2_intr +=
		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
461 462 463 464

	/* This maps the underlying spu state to idle */
	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
	ctx->spu = NULL;
465 466
}

467 468 469 470
/**
 * spu_add_to_rq - add a context to the runqueue
 * @ctx:       context to add
 */
471
static void __spu_add_to_rq(struct spu_context *ctx)
472
{
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	/*
	 * Unfortunately this code path can be called from multiple threads
	 * on behalf of a single context due to the way the problem state
	 * mmap support works.
	 *
	 * Fortunately we need to wake up all these threads at the same time
	 * and can simply skip the runqueue addition for every but the first
	 * thread getting into this codepath.
	 *
	 * It's still quite hacky, and long-term we should proxy all other
	 * threads through the owner thread so that spu_run is in control
	 * of all the scheduling activity for a given context.
	 */
	if (list_empty(&ctx->rq)) {
		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
		set_bit(ctx->prio, spu_prio->bitmap);
		if (!spu_prio->nr_waiting++)
			__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	}
492
}
493

494 495 496 497 498 499 500
static void spu_add_to_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_add_to_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

501
static void __spu_del_from_rq(struct spu_context *ctx)
502
{
503 504
	int prio = ctx->prio;

505
	if (!list_empty(&ctx->rq)) {
506 507
		if (!--spu_prio->nr_waiting)
			del_timer(&spusched_timer);
508
		list_del_init(&ctx->rq);
509 510 511

		if (list_empty(&spu_prio->runq[prio]))
			clear_bit(prio, spu_prio->bitmap);
512
	}
513
}
514

515 516 517 518 519 520 521
void spu_del_from_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_del_from_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

522
static void spu_prio_wait(struct spu_context *ctx)
523
{
524
	DEFINE_WAIT(wait);
525

526 527 528 529 530 531 532
	/*
	 * The caller must explicitly wait for a context to be loaded
	 * if the nosched flag is set.  If NOSCHED is not set, the caller
	 * queues the context and waits for an spu event or error.
	 */
	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));

533
	spin_lock(&spu_prio->runq_lock);
534
	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
535
	if (!signal_pending(current)) {
536 537
		__spu_add_to_rq(ctx);
		spin_unlock(&spu_prio->runq_lock);
538
		mutex_unlock(&ctx->state_mutex);
539
		schedule();
540
		mutex_lock(&ctx->state_mutex);
541 542
		spin_lock(&spu_prio->runq_lock);
		__spu_del_from_rq(ctx);
543
	}
544
	spin_unlock(&spu_prio->runq_lock);
545 546
	__set_current_state(TASK_RUNNING);
	remove_wait_queue(&ctx->stop_wq, &wait);
547 548
}

549
static struct spu *spu_get_idle(struct spu_context *ctx)
550
{
551
	struct spu *spu, *aff_ref_spu;
552 553
	int node, n;

554 555 556 557 558 559 560 561 562 563 564 565 566
	if (ctx->gang) {
		mutex_lock(&ctx->gang->aff_mutex);
		if (has_affinity(ctx)) {
			aff_ref_spu = ctx->gang->aff_ref_spu;
			atomic_inc(&ctx->gang->aff_sched_count);
			mutex_unlock(&ctx->gang->aff_mutex);
			node = aff_ref_spu->node;

			mutex_lock(&cbe_spu_info[node].list_mutex);
			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
			if (spu && spu->alloc_state == SPU_FREE)
				goto found;
			mutex_unlock(&cbe_spu_info[node].list_mutex);
567

568 569 570 571
			mutex_lock(&ctx->gang->aff_mutex);
			if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
				ctx->gang->aff_ref_spu = NULL;
			mutex_unlock(&ctx->gang->aff_mutex);
572

573 574 575 576
			return NULL;
		}
		mutex_unlock(&ctx->gang->aff_mutex);
	}
577
	node = cpu_to_node(raw_smp_processor_id());
578 579
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
580
		if (!node_allowed(ctx, node))
581
			continue;
582 583 584 585 586 587 588

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state == SPU_FREE)
				goto found;
		}
		mutex_unlock(&cbe_spu_info[node].list_mutex);
589
	}
590 591 592 593 594 595 596 597

	return NULL;

 found:
	spu->alloc_state = SPU_USED;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
	pr_debug("Got SPU %d %d\n", spu->number, spu->node);
	spu_init_channels(spu);
598 599
	return spu;
}
600

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
/**
 * find_victim - find a lower priority context to preempt
 * @ctx:	canidate context for running
 *
 * Returns the freed physical spu to run the new context on.
 */
static struct spu *find_victim(struct spu_context *ctx)
{
	struct spu_context *victim = NULL;
	struct spu *spu;
	int node, n;

	/*
	 * Look for a possible preemption candidate on the local node first.
	 * If there is no candidate look at the other nodes.  This isn't
616
	 * exactly fair, but so far the whole spu scheduler tries to keep
617 618 619 620 621 622 623
	 * a strong node affinity.  We might want to fine-tune this in
	 * the future.
	 */
 restart:
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
624
		if (!node_allowed(ctx, node))
625 626
			continue;

627 628
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
629 630
			struct spu_context *tmp = spu->ctx;

631
			if (tmp && tmp->prio > ctx->prio &&
632
			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
633
			    (!victim || tmp->prio > victim->prio))
634 635
				victim = spu->ctx;
		}
636
		mutex_unlock(&cbe_spu_info[node].list_mutex);
637 638 639 640 641 642 643

		if (victim) {
			/*
			 * This nests ctx->state_mutex, but we always lock
			 * higher priority contexts before lower priority
			 * ones, so this is safe until we introduce
			 * priority inheritance schemes.
644 645 646 647
			 *
			 * XXX if the highest priority context is locked,
			 * this can loop a long time.  Might be better to
			 * look at another context or give up after X retries.
648 649 650 651 652 653 654
			 */
			if (!mutex_trylock(&victim->state_mutex)) {
				victim = NULL;
				goto restart;
			}

			spu = victim->spu;
655
			if (!spu || victim->prio <= ctx->prio) {
656 657
				/*
				 * This race can happen because we've dropped
658
				 * the active list mutex.  Not a problem, just
659 660 661 662 663 664
				 * restart the search.
				 */
				mutex_unlock(&victim->state_mutex);
				victim = NULL;
				goto restart;
			}
665 666 667

			mutex_lock(&cbe_spu_info[node].list_mutex);
			cbe_spu_info[node].nr_active--;
668
			spu_unbind_context(spu, victim);
669 670
			mutex_unlock(&cbe_spu_info[node].list_mutex);

671
			victim->stats.invol_ctx_switch++;
672
			spu->stats.invol_ctx_switch++;
673 674
			spu_add_to_rq(victim);

675
			mutex_unlock(&victim->state_mutex);
676

677 678 679 680 681 682 683
			return spu;
		}
	}

	return NULL;
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
{
	int node = spu->node;
	int success = 0;

	spu_set_timeslice(ctx);

	mutex_lock(&cbe_spu_info[node].list_mutex);
	if (spu->ctx == NULL) {
		spu_bind_context(spu, ctx);
		cbe_spu_info[node].nr_active++;
		spu->alloc_state = SPU_USED;
		success = 1;
	}
	mutex_unlock(&cbe_spu_info[node].list_mutex);

	if (success)
		wake_up_all(&ctx->run_wq);
	else
		spu_add_to_rq(ctx);
}

static void spu_schedule(struct spu *spu, struct spu_context *ctx)
{
	spu_acquire(ctx);
	__spu_schedule(spu, ctx);
	spu_release(ctx);
}

static void spu_unschedule(struct spu *spu, struct spu_context *ctx)
{
	int node = spu->node;

	mutex_lock(&cbe_spu_info[node].list_mutex);
	cbe_spu_info[node].nr_active--;
	spu->alloc_state = SPU_FREE;
	spu_unbind_context(spu, ctx);
	ctx->stats.invol_ctx_switch++;
	spu->stats.invol_ctx_switch++;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
}

726 727 728 729 730
/**
 * spu_activate - find a free spu for a context and execute it
 * @ctx:	spu context to schedule
 * @flags:	flags (currently ignored)
 *
731
 * Tries to find a free spu to run @ctx.  If no free spu is available
732 733 734
 * add the context to the runqueue so it gets woken up once an spu
 * is available.
 */
735
int spu_activate(struct spu_context *ctx, unsigned long flags)
736
{
737
	struct spu *spu;
738

739 740 741 742 743 744 745 746
	/*
	 * If there are multiple threads waiting for a single context
	 * only one actually binds the context while the others will
	 * only be able to acquire the state_mutex once the context
	 * already is in runnable state.
	 */
	if (ctx->spu)
		return 0;
747

748 749 750
spu_activate_top:
	if (signal_pending(current))
		return -ERESTARTSYS;
751

752 753 754 755 756 757 758 759 760 761 762 763 764 765
	spu = spu_get_idle(ctx);
	/*
	 * If this is a realtime thread we try to get it running by
	 * preempting a lower priority thread.
	 */
	if (!spu && rt_prio(ctx->prio))
		spu = find_victim(ctx);
	if (spu) {
		unsigned long runcntl;

		runcntl = ctx->ops->runcntl_read(ctx);
		__spu_schedule(spu, ctx);
		if (runcntl & SPU_RUNCNTL_RUNNABLE)
			spuctx_switch_state(ctx, SPU_UTIL_USER);
766

767 768 769 770
		return 0;
	}

	if (ctx->flags & SPU_CREATE_NOSCHED) {
771
		spu_prio_wait(ctx);
772 773 774 775
		goto spu_activate_top;
	}

	spu_add_to_rq(ctx);
776

777
	return 0;
778 779
}

780 781 782 783 784 785
/**
 * grab_runnable_context - try to find a runnable context
 *
 * Remove the highest priority context on the runqueue and return it
 * to the caller.  Returns %NULL if no runnable context was found.
 */
786
static struct spu_context *grab_runnable_context(int prio, int node)
787
{
788
	struct spu_context *ctx;
789 790 791
	int best;

	spin_lock(&spu_prio->runq_lock);
792
	best = find_first_bit(spu_prio->bitmap, prio);
793
	while (best < prio) {
794 795
		struct list_head *rq = &spu_prio->runq[best];

796 797 798 799 800 801 802 803
		list_for_each_entry(ctx, rq, rq) {
			/* XXX(hch): check for affinity here aswell */
			if (__node_allowed(ctx, node)) {
				__spu_del_from_rq(ctx);
				goto found;
			}
		}
		best++;
804
	}
805 806
	ctx = NULL;
 found:
807 808 809 810 811 812 813 814 815 816
	spin_unlock(&spu_prio->runq_lock);
	return ctx;
}

static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
{
	struct spu *spu = ctx->spu;
	struct spu_context *new = NULL;

	if (spu) {
817
		new = grab_runnable_context(max_prio, spu->node);
818
		if (new || force) {
819 820 821 822 823 824 825 826 827 828
			spu_unschedule(spu, ctx);
			if (new) {
				if (new->flags & SPU_CREATE_NOSCHED)
					wake_up(&new->stop_wq);
				else {
					spu_release(ctx);
					spu_schedule(spu, new);
					spu_acquire(ctx);
				}
			}
829 830 831 832 833 834
		}
	}

	return new != NULL;
}

835 836 837 838 839 840 841
/**
 * spu_deactivate - unbind a context from it's physical spu
 * @ctx:	spu context to unbind
 *
 * Unbind @ctx from the physical spu it is running on and schedule
 * the highest priority context to run on the freed physical spu.
 */
842 843
void spu_deactivate(struct spu_context *ctx)
{
844
	__spu_deactivate(ctx, 1, MAX_PRIO);
845 846
}

847
/**
848
 * spu_yield -	yield a physical spu if others are waiting
849 850 851 852 853 854
 * @ctx:	spu context to yield
 *
 * Check if there is a higher priority context waiting and if yes
 * unbind @ctx from the physical spu and schedule the highest
 * priority context to run on the freed physical spu instead.
 */
855 856
void spu_yield(struct spu_context *ctx)
{
857 858
	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
		mutex_lock(&ctx->state_mutex);
859
		__spu_deactivate(ctx, 0, MAX_PRIO);
860 861
		mutex_unlock(&ctx->state_mutex);
	}
862
}
863

864
static noinline void spusched_tick(struct spu_context *ctx)
865
{
866 867 868 869 870 871 872 873 874 875
	struct spu_context *new = NULL;
	struct spu *spu = NULL;
	u32 status;

	spu_acquire(ctx);

	if (ctx->state != SPU_STATE_RUNNABLE)
		goto out;
	if (spu_stopped(ctx, &status))
		goto out;
876
	if (ctx->flags & SPU_CREATE_NOSCHED)
877
		goto out;
878
	if (ctx->policy == SCHED_FIFO)
879
		goto out;
880 881

	if (--ctx->time_slice)
882
		goto out;
883

884 885 886 887 888
	spu = ctx->spu;
	new = grab_runnable_context(ctx->prio + 1, spu->node);
	if (new) {
		spu_unschedule(spu, ctx);
		spu_add_to_rq(ctx);
889
	} else {
890
		ctx->time_slice++;
891
	}
892 893 894 895 896
out:
	spu_release(ctx);

	if (new)
		spu_schedule(spu, new);
897 898
}

899 900 901 902 903
/**
 * count_active_contexts - count nr of active tasks
 *
 * Return the number of tasks currently running or waiting to run.
 *
904
 * Note that we don't take runq_lock / list_mutex here.  Reading
905 906 907 908 909 910 911 912
 * a single 32bit value is atomic on powerpc, and we don't care
 * about memory ordering issues here.
 */
static unsigned long count_active_contexts(void)
{
	int nr_active = 0, node;

	for (node = 0; node < MAX_NUMNODES; node++)
913
		nr_active += cbe_spu_info[node].nr_active;
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	nr_active += spu_prio->nr_waiting;

	return nr_active;
}

/**
 * spu_calc_load - given tick count, update the avenrun load estimates.
 * @tick:	tick count
 *
 * No locking against reading these values from userspace, as for
 * the CPU loadavg code.
 */
static void spu_calc_load(unsigned long ticks)
{
	unsigned long active_tasks; /* fixed-point */
	static int count = LOAD_FREQ;

	count -= ticks;

	if (unlikely(count < 0)) {
		active_tasks = count_active_contexts() * FIXED_1;
		do {
			CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
			CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
			CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
			count += LOAD_FREQ;
		} while (count < 0);
	}
}

944 945 946 947
static void spusched_wake(unsigned long data)
{
	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	wake_up_process(spusched_task);
948
	spu_calc_load(SPUSCHED_TICK);
949 950 951 952
}

static int spusched_thread(void *unused)
{
953
	struct spu *spu;
954 955 956 957 958 959
	int node;

	while (!kthread_should_stop()) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
		for (node = 0; node < MAX_NUMNODES; node++) {
960 961 962 963 964 965 966 967 968 969 970 971 972 973
			struct mutex *mtx = &cbe_spu_info[node].list_mutex;

			mutex_lock(mtx);
			list_for_each_entry(spu, &cbe_spu_info[node].spus,
					cbe_list) {
				struct spu_context *ctx = spu->ctx;

				if (ctx) {
					mutex_unlock(mtx);
					spusched_tick(ctx);
					mutex_lock(mtx);
				}
			}
			mutex_unlock(mtx);
974 975 976 977 978 979
		}
	}

	return 0;
}

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
void spuctx_switch_state(struct spu_context *ctx,
		enum spu_utilization_state new_state)
{
	unsigned long long curtime;
	signed long long delta;
	struct timespec ts;
	struct spu *spu;
	enum spu_utilization_state old_state;

	ktime_get_ts(&ts);
	curtime = timespec_to_ns(&ts);
	delta = curtime - ctx->stats.tstamp;

	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
	WARN_ON(delta < 0);

	spu = ctx->spu;
	old_state = ctx->stats.util_state;
	ctx->stats.util_state = new_state;
	ctx->stats.tstamp = curtime;

	/*
	 * Update the physical SPU utilization statistics.
	 */
	if (spu) {
		ctx->stats.times[old_state] += delta;
		spu->stats.times[old_state] += delta;
		spu->stats.util_state = new_state;
		spu->stats.tstamp = curtime;
	}
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)

static int show_spu_loadavg(struct seq_file *s, void *private)
{
	int a, b, c;

	a = spu_avenrun[0] + (FIXED_1/200);
	b = spu_avenrun[1] + (FIXED_1/200);
	c = spu_avenrun[2] + (FIXED_1/200);

	/*
	 * Note that last_pid doesn't really make much sense for the
1025
	 * SPU loadavg (it even seems very odd on the CPU side...),
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	 * but we include it here to have a 100% compatible interface.
	 */
	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
		LOAD_INT(a), LOAD_FRAC(a),
		LOAD_INT(b), LOAD_FRAC(b),
		LOAD_INT(c), LOAD_FRAC(c),
		count_active_contexts(),
		atomic_read(&nr_spu_contexts),
		current->nsproxy->pid_ns->last_pid);
	return 0;
}

static int spu_loadavg_open(struct inode *inode, struct file *file)
{
	return single_open(file, show_spu_loadavg, NULL);
}

static const struct file_operations spu_loadavg_fops = {
	.open		= spu_loadavg_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1050 1051
int __init spu_sched_init(void)
{
1052 1053
	struct proc_dir_entry *entry;
	int err = -ENOMEM, i;
1054

1055
	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1056
	if (!spu_prio)
1057
		goto out;
1058

1059
	for (i = 0; i < MAX_PRIO; i++) {
1060
		INIT_LIST_HEAD(&spu_prio->runq[i]);
1061
		__clear_bit(i, spu_prio->bitmap);
1062
	}
1063
	spin_lock_init(&spu_prio->runq_lock);
1064

1065 1066
	setup_timer(&spusched_timer, spusched_wake, 0);

1067 1068
	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
	if (IS_ERR(spusched_task)) {
1069 1070
		err = PTR_ERR(spusched_task);
		goto out_free_spu_prio;
1071
	}
1072

1073 1074 1075 1076 1077
	entry = create_proc_entry("spu_loadavg", 0, NULL);
	if (!entry)
		goto out_stop_kthread;
	entry->proc_fops = &spu_loadavg_fops;

1078 1079
	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1080
	return 0;
1081

1082 1083 1084 1085 1086 1087
 out_stop_kthread:
	kthread_stop(spusched_task);
 out_free_spu_prio:
	kfree(spu_prio);
 out:
	return err;
1088 1089
}

1090
void spu_sched_exit(void)
1091
{
1092
	struct spu *spu;
1093 1094
	int node;

1095 1096
	remove_proc_entry("spu_loadavg", NULL);

1097
	del_timer_sync(&spusched_timer);
1098 1099
	kthread_stop(spusched_task);

1100
	for (node = 0; node < MAX_NUMNODES; node++) {
1101 1102 1103 1104 1105
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
			if (spu->alloc_state != SPU_FREE)
				spu->alloc_state = SPU_FREE;
		mutex_unlock(&cbe_spu_info[node].list_mutex);
1106
	}
1107
	kfree(spu_prio);
1108
}