sched.c 28.3 KB
Newer Older
1 2 3 4 5
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
6
 * 2006-03-31	NUMA domains added.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27 28 29 30 31 32 33 34
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
35 36
#include <linux/numa.h>
#include <linux/mutex.h>
37
#include <linux/notifier.h>
38
#include <linux/kthread.h>
39 40 41
#include <linux/pid_namespace.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
42
#include <linux/marker.h>
43 44 45 46 47

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
48
#include <asm/spu_priv1.h>
49 50 51
#include "spufs.h"

struct spu_prio_array {
52
	DECLARE_BITMAP(bitmap, MAX_PRIO);
53 54
	struct list_head runq[MAX_PRIO];
	spinlock_t runq_lock;
55
	int nr_waiting;
56 57
};

58
static unsigned long spu_avenrun[3];
59
static struct spu_prio_array *spu_prio;
60 61
static struct task_struct *spusched_task;
static struct timer_list spusched_timer;
62
static struct timer_list spuloadavg_timer;
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77
/*
 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
 */
#define NORMAL_PRIO		120

/*
 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
 * tick for every 10 CPU scheduler ticks.
 */
#define SPUSCHED_TICK		(10)

/*
 * These are the 'tuning knobs' of the scheduler:
 *
78 79
 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
80
 */
81 82
#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

#define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)

/*
 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
 * [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */
void spu_set_timeslice(struct spu_context *ctx)
{
	if (ctx->prio < NORMAL_PRIO)
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
	else
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
}

104 105 106 107 108
/*
 * Update scheduling information from the owning thread.
 */
void __spu_update_sched_info(struct spu_context *ctx)
{
109 110 111 112 113 114
	/*
	 * assert that the context is not on the runqueue, so it is safe
	 * to change its scheduling parameters.
	 */
	BUG_ON(!list_empty(&ctx->rq));

115
	/*
116 117 118
	 * 32-Bit assignments are atomic on powerpc, and we don't care about
	 * memory ordering here because retrieving the controlling thread is
	 * per definition racy.
119 120 121
	 */
	ctx->tid = current->pid;

122 123
	/*
	 * We do our own priority calculations, so we normally want
124
	 * ->static_prio to start with. Unfortunately this field
125 126 127 128 129 130 131 132
	 * contains junk for threads with a realtime scheduling
	 * policy so we have to look at ->prio in this case.
	 */
	if (rt_prio(current->prio))
		ctx->prio = current->prio;
	else
		ctx->prio = current->static_prio;
	ctx->policy = current->policy;
133 134

	/*
135 136 137 138 139 140
	 * TO DO: the context may be loaded, so we may need to activate
	 * it again on a different node. But it shouldn't hurt anything
	 * to update its parameters, because we know that the scheduler
	 * is not actively looking at this field, since it is not on the
	 * runqueue. The context will be rescheduled on the proper node
	 * if it is timesliced or preempted.
141 142
	 */
	ctx->cpus_allowed = current->cpus_allowed;
143 144 145

	/* Save the current cpu id for spu interrupt routing. */
	ctx->last_ran = raw_smp_processor_id();
146 147 148 149
}

void spu_update_sched_info(struct spu_context *ctx)
{
150
	int node;
151

152 153
	if (ctx->state == SPU_STATE_RUNNABLE) {
		node = ctx->spu->node;
154 155 156 157

		/*
		 * Take list_mutex to sync with find_victim().
		 */
158 159 160 161 162 163
		mutex_lock(&cbe_spu_info[node].list_mutex);
		__spu_update_sched_info(ctx);
		mutex_unlock(&cbe_spu_info[node].list_mutex);
	} else {
		__spu_update_sched_info(ctx);
	}
164 165
}

166
static int __node_allowed(struct spu_context *ctx, int node)
167
{
168 169
	if (nr_cpus_node(node)) {
		cpumask_t mask = node_to_cpumask(node);
170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
		if (cpus_intersects(mask, ctx->cpus_allowed))
			return 1;
	}

	return 0;
}

static int node_allowed(struct spu_context *ctx, int node)
{
	int rval;

	spin_lock(&spu_prio->runq_lock);
	rval = __node_allowed(ctx, node);
	spin_unlock(&spu_prio->runq_lock);

	return rval;
187 188
}

189
void do_notify_spus_active(void)
190 191 192 193 194 195 196
{
	int node;

	/*
	 * Wake up the active spu_contexts.
	 *
	 * When the awakened processes see their "notify_active" flag is set,
197
	 * they will call spu_switch_notify().
198 199 200
	 */
	for_each_online_node(node) {
		struct spu *spu;
201 202 203 204 205 206 207 208 209 210

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state != SPU_FREE) {
				struct spu_context *ctx = spu->ctx;
				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
					&ctx->sched_flags);
				mb();
				wake_up_all(&ctx->stop_wq);
			}
211
		}
212
		mutex_unlock(&cbe_spu_info[node].list_mutex);
213 214 215
	}
}

216 217 218 219 220 221
/**
 * spu_bind_context - bind spu context to physical spu
 * @spu:	physical spu to bind to
 * @ctx:	context to bind
 */
static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
222
{
223 224
	spu_context_trace(spu_bind_context__enter, ctx, spu);

225
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
226

227 228 229
	if (ctx->flags & SPU_CREATE_NOSCHED)
		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);

230 231 232
	ctx->stats.slb_flt_base = spu->stats.slb_flt;
	ctx->stats.class2_intr_base = spu->stats.class2_intr;

233 234 235
	spu_associate_mm(spu, ctx->owner);

	spin_lock_irq(&spu->register_lock);
236 237 238 239 240
	spu->ctx = ctx;
	spu->flags = 0;
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
241
	spu->tgid = current->tgid;
242 243
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
244
	spu->stop_callback = spufs_stop_callback;
245
	spu->mfc_callback = spufs_mfc_callback;
246 247
	spin_unlock_irq(&spu->register_lock);

248
	spu_unmap_mappings(ctx);
249

250
	spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
251
	spu_restore(&ctx->csa, spu);
252
	spu->timestamp = jiffies;
253
	spu_switch_notify(spu, ctx);
254
	ctx->state = SPU_STATE_RUNNABLE;
255

256
	spuctx_switch_state(ctx, SPU_UTIL_USER);
257 258
}

259
/*
260
 * Must be used with the list_mutex held.
261 262 263
 */
static inline int sched_spu(struct spu *spu)
{
264 265
	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
}

static void aff_merge_remaining_ctxs(struct spu_gang *gang)
{
	struct spu_context *ctx;

	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
		if (list_empty(&ctx->aff_list))
			list_add(&ctx->aff_list, &gang->aff_list_head);
	}
	gang->aff_flags |= AFF_MERGED;
}

static void aff_set_offsets(struct spu_gang *gang)
{
	struct spu_context *ctx;
	int offset;

	offset = -1;
	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset--;
	}

	offset = 0;
	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset++;
	}

	gang->aff_flags |= AFF_OFFSETS_SET;
}

static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
		 int group_size, int lowest_offset)
{
	struct spu *spu;
	int node, n;

	/*
	 * TODO: A better algorithm could be used to find a good spu to be
	 *       used as reference location for the ctxs chain.
	 */
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
315 316
		int available_spus;

317 318 319
		node = (node < MAX_NUMNODES) ? node : 0;
		if (!node_allowed(ctx, node))
			continue;
320 321

		available_spus = 0;
322
		mutex_lock(&cbe_spu_info[node].list_mutex);
323 324 325 326 327 328 329 330 331 332 333 334 335
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->ctx && spu->ctx->gang
					&& spu->ctx->aff_offset == 0)
				available_spus -=
					(spu->ctx->gang->contexts - 1);
			else
				available_spus++;
		}
		if (available_spus < ctx->gang->contexts) {
			mutex_unlock(&cbe_spu_info[node].list_mutex);
			continue;
		}

336 337
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if ((!mem_aff || spu->has_mem_affinity) &&
338 339
							sched_spu(spu)) {
				mutex_unlock(&cbe_spu_info[node].list_mutex);
340
				return spu;
341
			}
342
		}
343
		mutex_unlock(&cbe_spu_info[node].list_mutex);
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	}
	return NULL;
}

static void aff_set_ref_point_location(struct spu_gang *gang)
{
	int mem_aff, gs, lowest_offset;
	struct spu_context *ctx;
	struct spu *tmp;

	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
	lowest_offset = 0;
	gs = 0;

	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
		gs++;

	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		lowest_offset = ctx->aff_offset;
	}

368 369
	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
							lowest_offset);
370 371
}

372
static struct spu *ctx_location(struct spu *ref, int offset, int node)
373 374 375 376 377 378
{
	struct spu *spu;

	spu = NULL;
	if (offset >= 0) {
		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
379
			BUG_ON(spu->node != node);
380 381 382 383 384 385 386
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset--;
		}
	} else {
		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
387
			BUG_ON(spu->node != node);
388 389 390 391 392 393
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset++;
		}
	}
394

395 396 397 398 399 400 401
	return spu;
}

/*
 * affinity_check is called each time a context is going to be scheduled.
 * It returns the spu ptr on which the context must run.
 */
402
static int has_affinity(struct spu_context *ctx)
403
{
404
	struct spu_gang *gang = ctx->gang;
405 406

	if (list_empty(&ctx->aff_list))
407 408
		return 0;

409 410 411
	if (atomic_read(&ctx->gang->aff_sched_count) == 0)
		ctx->gang->aff_ref_spu = NULL;

412 413 414 415 416 417 418
	if (!gang->aff_ref_spu) {
		if (!(gang->aff_flags & AFF_MERGED))
			aff_merge_remaining_ctxs(gang);
		if (!(gang->aff_flags & AFF_OFFSETS_SET))
			aff_set_offsets(gang);
		aff_set_ref_point_location(gang);
	}
419 420

	return gang->aff_ref_spu != NULL;
421 422
}

423 424 425 426 427
/**
 * spu_unbind_context - unbind spu context from physical spu
 * @spu:	physical spu to unbind from
 * @ctx:	context to unbind
 */
428
static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
429
{
430 431
	u32 status;

432 433
	spu_context_trace(spu_unbind_context__enter, ctx, spu);

434
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
435

436 437
 	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
438

439 440
	if (ctx->gang)
		atomic_dec_if_positive(&ctx->gang->aff_sched_count);
441

442
	spu_switch_notify(spu, NULL);
443
	spu_unmap_mappings(ctx);
444
	spu_save(&ctx->csa, spu);
445
	spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
446 447

	spin_lock_irq(&spu->register_lock);
448
	spu->timestamp = jiffies;
449 450 451
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
452
	spu->stop_callback = NULL;
453
	spu->mfc_callback = NULL;
454
	spu->pid = 0;
455
	spu->tgid = 0;
456
	ctx->ops = &spu_backing_ops;
457
	spu->flags = 0;
458
	spu->ctx = NULL;
459 460 461
	spin_unlock_irq(&spu->register_lock);

	spu_associate_mm(spu, NULL);
462 463 464 465 466

	ctx->stats.slb_flt +=
		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
	ctx->stats.class2_intr +=
		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
467 468 469 470

	/* This maps the underlying spu state to idle */
	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
	ctx->spu = NULL;
471 472 473

	if (spu_stopped(ctx, &status))
		wake_up_all(&ctx->stop_wq);
474 475
}

476 477 478 479
/**
 * spu_add_to_rq - add a context to the runqueue
 * @ctx:       context to add
 */
480
static void __spu_add_to_rq(struct spu_context *ctx)
481
{
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
	/*
	 * Unfortunately this code path can be called from multiple threads
	 * on behalf of a single context due to the way the problem state
	 * mmap support works.
	 *
	 * Fortunately we need to wake up all these threads at the same time
	 * and can simply skip the runqueue addition for every but the first
	 * thread getting into this codepath.
	 *
	 * It's still quite hacky, and long-term we should proxy all other
	 * threads through the owner thread so that spu_run is in control
	 * of all the scheduling activity for a given context.
	 */
	if (list_empty(&ctx->rq)) {
		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
		set_bit(ctx->prio, spu_prio->bitmap);
		if (!spu_prio->nr_waiting++)
			__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	}
501
}
502

503 504 505 506 507 508 509
static void spu_add_to_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_add_to_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

510
static void __spu_del_from_rq(struct spu_context *ctx)
511
{
512 513
	int prio = ctx->prio;

514
	if (!list_empty(&ctx->rq)) {
515 516
		if (!--spu_prio->nr_waiting)
			del_timer(&spusched_timer);
517
		list_del_init(&ctx->rq);
518 519 520

		if (list_empty(&spu_prio->runq[prio]))
			clear_bit(prio, spu_prio->bitmap);
521
	}
522
}
523

524 525 526 527 528 529 530
void spu_del_from_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_del_from_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

531
static void spu_prio_wait(struct spu_context *ctx)
532
{
533
	DEFINE_WAIT(wait);
534

535 536 537 538 539 540 541
	/*
	 * The caller must explicitly wait for a context to be loaded
	 * if the nosched flag is set.  If NOSCHED is not set, the caller
	 * queues the context and waits for an spu event or error.
	 */
	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));

542
	spin_lock(&spu_prio->runq_lock);
543
	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
544
	if (!signal_pending(current)) {
545 546
		__spu_add_to_rq(ctx);
		spin_unlock(&spu_prio->runq_lock);
547
		mutex_unlock(&ctx->state_mutex);
548
		schedule();
549
		mutex_lock(&ctx->state_mutex);
550 551
		spin_lock(&spu_prio->runq_lock);
		__spu_del_from_rq(ctx);
552
	}
553
	spin_unlock(&spu_prio->runq_lock);
554 555
	__set_current_state(TASK_RUNNING);
	remove_wait_queue(&ctx->stop_wq, &wait);
556 557
}

558
static struct spu *spu_get_idle(struct spu_context *ctx)
559
{
560
	struct spu *spu, *aff_ref_spu;
561 562
	int node, n;

563 564
	spu_context_nospu_trace(spu_get_idle__enter, ctx);

565 566 567 568 569 570 571 572 573 574 575 576 577
	if (ctx->gang) {
		mutex_lock(&ctx->gang->aff_mutex);
		if (has_affinity(ctx)) {
			aff_ref_spu = ctx->gang->aff_ref_spu;
			atomic_inc(&ctx->gang->aff_sched_count);
			mutex_unlock(&ctx->gang->aff_mutex);
			node = aff_ref_spu->node;

			mutex_lock(&cbe_spu_info[node].list_mutex);
			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
			if (spu && spu->alloc_state == SPU_FREE)
				goto found;
			mutex_unlock(&cbe_spu_info[node].list_mutex);
578

579
			atomic_dec(&ctx->gang->aff_sched_count);
580
			goto not_found;
581 582 583
		}
		mutex_unlock(&ctx->gang->aff_mutex);
	}
584
	node = cpu_to_node(raw_smp_processor_id());
585 586
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
587
		if (!node_allowed(ctx, node))
588
			continue;
589 590 591 592 593 594 595

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state == SPU_FREE)
				goto found;
		}
		mutex_unlock(&cbe_spu_info[node].list_mutex);
596
	}
597

598 599
 not_found:
	spu_context_nospu_trace(spu_get_idle__not_found, ctx);
600 601 602 603 604
	return NULL;

 found:
	spu->alloc_state = SPU_USED;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
605
	spu_context_trace(spu_get_idle__found, ctx, spu);
606
	spu_init_channels(spu);
607 608
	return spu;
}
609

610 611 612 613 614 615 616 617 618 619 620 621
/**
 * find_victim - find a lower priority context to preempt
 * @ctx:	canidate context for running
 *
 * Returns the freed physical spu to run the new context on.
 */
static struct spu *find_victim(struct spu_context *ctx)
{
	struct spu_context *victim = NULL;
	struct spu *spu;
	int node, n;

622
	spu_context_nospu_trace(spu_find_victim__enter, ctx);
623

624 625 626
	/*
	 * Look for a possible preemption candidate on the local node first.
	 * If there is no candidate look at the other nodes.  This isn't
627
	 * exactly fair, but so far the whole spu scheduler tries to keep
628 629 630 631 632 633 634
	 * a strong node affinity.  We might want to fine-tune this in
	 * the future.
	 */
 restart:
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
635
		if (!node_allowed(ctx, node))
636 637
			continue;

638 639
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
640 641
			struct spu_context *tmp = spu->ctx;

642
			if (tmp && tmp->prio > ctx->prio &&
643
			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
644
			    (!victim || tmp->prio > victim->prio)) {
645
				victim = spu->ctx;
646 647
				get_spu_context(victim);
			}
648
		}
649
		mutex_unlock(&cbe_spu_info[node].list_mutex);
650 651 652 653 654 655 656

		if (victim) {
			/*
			 * This nests ctx->state_mutex, but we always lock
			 * higher priority contexts before lower priority
			 * ones, so this is safe until we introduce
			 * priority inheritance schemes.
657 658 659 660
			 *
			 * XXX if the highest priority context is locked,
			 * this can loop a long time.  Might be better to
			 * look at another context or give up after X retries.
661 662
			 */
			if (!mutex_trylock(&victim->state_mutex)) {
663
				put_spu_context(victim);
664 665 666 667 668
				victim = NULL;
				goto restart;
			}

			spu = victim->spu;
669
			if (!spu || victim->prio <= ctx->prio) {
670 671
				/*
				 * This race can happen because we've dropped
672
				 * the active list mutex.  Not a problem, just
673 674 675
				 * restart the search.
				 */
				mutex_unlock(&victim->state_mutex);
676
				put_spu_context(victim);
677 678 679
				victim = NULL;
				goto restart;
			}
680

681 682
			spu_context_trace(__spu_deactivate__unload, ctx, spu);

683 684
			mutex_lock(&cbe_spu_info[node].list_mutex);
			cbe_spu_info[node].nr_active--;
685
			spu_unbind_context(spu, victim);
686 687
			mutex_unlock(&cbe_spu_info[node].list_mutex);

688
			victim->stats.invol_ctx_switch++;
689
			spu->stats.invol_ctx_switch++;
690
			if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
691
				spu_add_to_rq(victim);
692

693
			mutex_unlock(&victim->state_mutex);
694
			put_spu_context(victim);
695

696 697 698 699 700 701 702
			return spu;
		}
	}

	return NULL;
}

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
{
	int node = spu->node;
	int success = 0;

	spu_set_timeslice(ctx);

	mutex_lock(&cbe_spu_info[node].list_mutex);
	if (spu->ctx == NULL) {
		spu_bind_context(spu, ctx);
		cbe_spu_info[node].nr_active++;
		spu->alloc_state = SPU_USED;
		success = 1;
	}
	mutex_unlock(&cbe_spu_info[node].list_mutex);

	if (success)
		wake_up_all(&ctx->run_wq);
	else
		spu_add_to_rq(ctx);
}

static void spu_schedule(struct spu *spu, struct spu_context *ctx)
{
727 728 729
	/* not a candidate for interruptible because it's called either
	   from the scheduler thread or from spu_deactivate */
	mutex_lock(&ctx->state_mutex);
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
	__spu_schedule(spu, ctx);
	spu_release(ctx);
}

static void spu_unschedule(struct spu *spu, struct spu_context *ctx)
{
	int node = spu->node;

	mutex_lock(&cbe_spu_info[node].list_mutex);
	cbe_spu_info[node].nr_active--;
	spu->alloc_state = SPU_FREE;
	spu_unbind_context(spu, ctx);
	ctx->stats.invol_ctx_switch++;
	spu->stats.invol_ctx_switch++;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
}

747 748 749 750 751
/**
 * spu_activate - find a free spu for a context and execute it
 * @ctx:	spu context to schedule
 * @flags:	flags (currently ignored)
 *
752
 * Tries to find a free spu to run @ctx.  If no free spu is available
753 754 755
 * add the context to the runqueue so it gets woken up once an spu
 * is available.
 */
756
int spu_activate(struct spu_context *ctx, unsigned long flags)
757
{
758
	struct spu *spu;
759

760 761 762 763 764 765 766 767
	/*
	 * If there are multiple threads waiting for a single context
	 * only one actually binds the context while the others will
	 * only be able to acquire the state_mutex once the context
	 * already is in runnable state.
	 */
	if (ctx->spu)
		return 0;
768

769 770 771
spu_activate_top:
	if (signal_pending(current))
		return -ERESTARTSYS;
772

773 774 775 776 777 778 779 780 781 782 783 784 785 786
	spu = spu_get_idle(ctx);
	/*
	 * If this is a realtime thread we try to get it running by
	 * preempting a lower priority thread.
	 */
	if (!spu && rt_prio(ctx->prio))
		spu = find_victim(ctx);
	if (spu) {
		unsigned long runcntl;

		runcntl = ctx->ops->runcntl_read(ctx);
		__spu_schedule(spu, ctx);
		if (runcntl & SPU_RUNCNTL_RUNNABLE)
			spuctx_switch_state(ctx, SPU_UTIL_USER);
787

788 789 790 791
		return 0;
	}

	if (ctx->flags & SPU_CREATE_NOSCHED) {
792
		spu_prio_wait(ctx);
793 794 795 796
		goto spu_activate_top;
	}

	spu_add_to_rq(ctx);
797

798
	return 0;
799 800
}

801 802 803 804 805 806
/**
 * grab_runnable_context - try to find a runnable context
 *
 * Remove the highest priority context on the runqueue and return it
 * to the caller.  Returns %NULL if no runnable context was found.
 */
807
static struct spu_context *grab_runnable_context(int prio, int node)
808
{
809
	struct spu_context *ctx;
810 811 812
	int best;

	spin_lock(&spu_prio->runq_lock);
813
	best = find_first_bit(spu_prio->bitmap, prio);
814
	while (best < prio) {
815 816
		struct list_head *rq = &spu_prio->runq[best];

817 818 819 820 821 822 823 824
		list_for_each_entry(ctx, rq, rq) {
			/* XXX(hch): check for affinity here aswell */
			if (__node_allowed(ctx, node)) {
				__spu_del_from_rq(ctx);
				goto found;
			}
		}
		best++;
825
	}
826 827
	ctx = NULL;
 found:
828 829 830 831 832 833 834 835 836 837
	spin_unlock(&spu_prio->runq_lock);
	return ctx;
}

static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
{
	struct spu *spu = ctx->spu;
	struct spu_context *new = NULL;

	if (spu) {
838
		new = grab_runnable_context(max_prio, spu->node);
839
		if (new || force) {
840 841 842 843 844 845 846
			spu_unschedule(spu, ctx);
			if (new) {
				if (new->flags & SPU_CREATE_NOSCHED)
					wake_up(&new->stop_wq);
				else {
					spu_release(ctx);
					spu_schedule(spu, new);
847 848 849
					/* this one can't easily be made
					   interruptible */
					mutex_lock(&ctx->state_mutex);
850 851
				}
			}
852 853 854 855 856 857
		}
	}

	return new != NULL;
}

858 859 860 861 862 863 864
/**
 * spu_deactivate - unbind a context from it's physical spu
 * @ctx:	spu context to unbind
 *
 * Unbind @ctx from the physical spu it is running on and schedule
 * the highest priority context to run on the freed physical spu.
 */
865 866
void spu_deactivate(struct spu_context *ctx)
{
867
	spu_context_nospu_trace(spu_deactivate__enter, ctx);
868
	__spu_deactivate(ctx, 1, MAX_PRIO);
869 870
}

871
/**
872
 * spu_yield -	yield a physical spu if others are waiting
873 874 875 876 877 878
 * @ctx:	spu context to yield
 *
 * Check if there is a higher priority context waiting and if yes
 * unbind @ctx from the physical spu and schedule the highest
 * priority context to run on the freed physical spu instead.
 */
879 880
void spu_yield(struct spu_context *ctx)
{
881
	spu_context_nospu_trace(spu_yield__enter, ctx);
882 883
	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
		mutex_lock(&ctx->state_mutex);
884
		__spu_deactivate(ctx, 0, MAX_PRIO);
885 886
		mutex_unlock(&ctx->state_mutex);
	}
887
}
888

889
static noinline void spusched_tick(struct spu_context *ctx)
890
{
891 892 893
	struct spu_context *new = NULL;
	struct spu *spu = NULL;

894 895
	if (spu_acquire(ctx))
		BUG();	/* a kernel thread never has signals pending */
896 897 898

	if (ctx->state != SPU_STATE_RUNNABLE)
		goto out;
899
	if (ctx->flags & SPU_CREATE_NOSCHED)
900
		goto out;
901
	if (ctx->policy == SCHED_FIFO)
902
		goto out;
903

904
	if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
905
		goto out;
906

907
	spu = ctx->spu;
908 909 910

	spu_context_trace(spusched_tick__preempt, ctx, spu);

911 912 913
	new = grab_runnable_context(ctx->prio + 1, spu->node);
	if (new) {
		spu_unschedule(spu, ctx);
914
		if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
915
			spu_add_to_rq(ctx);
916
	} else {
917
		spu_context_nospu_trace(spusched_tick__newslice, ctx);
918 919
		if (!ctx->time_slice)
			ctx->time_slice++;
920
	}
921 922 923 924 925
out:
	spu_release(ctx);

	if (new)
		spu_schedule(spu, new);
926 927
}

928 929 930 931 932
/**
 * count_active_contexts - count nr of active tasks
 *
 * Return the number of tasks currently running or waiting to run.
 *
933
 * Note that we don't take runq_lock / list_mutex here.  Reading
934 935 936 937 938 939 940 941
 * a single 32bit value is atomic on powerpc, and we don't care
 * about memory ordering issues here.
 */
static unsigned long count_active_contexts(void)
{
	int nr_active = 0, node;

	for (node = 0; node < MAX_NUMNODES; node++)
942
		nr_active += cbe_spu_info[node].nr_active;
943 944 945 946 947 948
	nr_active += spu_prio->nr_waiting;

	return nr_active;
}

/**
949
 * spu_calc_load - update the avenrun load estimates.
950 951 952 953
 *
 * No locking against reading these values from userspace, as for
 * the CPU loadavg code.
 */
954
static void spu_calc_load(void)
955 956
{
	unsigned long active_tasks; /* fixed-point */
957 958 959 960 961

	active_tasks = count_active_contexts() * FIXED_1;
	CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
	CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
	CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
962 963
}

964 965 966 967
static void spusched_wake(unsigned long data)
{
	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	wake_up_process(spusched_task);
968 969 970 971 972 973
}

static void spuloadavg_wake(unsigned long data)
{
	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
	spu_calc_load();
974 975 976 977
}

static int spusched_thread(void *unused)
{
978
	struct spu *spu;
979 980 981 982 983 984
	int node;

	while (!kthread_should_stop()) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
		for (node = 0; node < MAX_NUMNODES; node++) {
985 986 987 988 989 990 991 992
			struct mutex *mtx = &cbe_spu_info[node].list_mutex;

			mutex_lock(mtx);
			list_for_each_entry(spu, &cbe_spu_info[node].spus,
					cbe_list) {
				struct spu_context *ctx = spu->ctx;

				if (ctx) {
993
					get_spu_context(ctx);
994 995 996
					mutex_unlock(mtx);
					spusched_tick(ctx);
					mutex_lock(mtx);
997
					put_spu_context(ctx);
998 999 1000
				}
			}
			mutex_unlock(mtx);
1001 1002 1003 1004 1005 1006
		}
	}

	return 0;
}

1007 1008 1009 1010 1011 1012 1013 1014
void spuctx_switch_state(struct spu_context *ctx,
		enum spu_utilization_state new_state)
{
	unsigned long long curtime;
	signed long long delta;
	struct timespec ts;
	struct spu *spu;
	enum spu_utilization_state old_state;
1015
	int node;
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

	ktime_get_ts(&ts);
	curtime = timespec_to_ns(&ts);
	delta = curtime - ctx->stats.tstamp;

	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
	WARN_ON(delta < 0);

	spu = ctx->spu;
	old_state = ctx->stats.util_state;
	ctx->stats.util_state = new_state;
	ctx->stats.tstamp = curtime;

	/*
	 * Update the physical SPU utilization statistics.
	 */
	if (spu) {
		ctx->stats.times[old_state] += delta;
		spu->stats.times[old_state] += delta;
		spu->stats.util_state = new_state;
		spu->stats.tstamp = curtime;
1037 1038 1039
		node = spu->node;
		if (old_state == SPU_UTIL_USER)
			atomic_dec(&cbe_spu_info[node].busy_spus);
1040
		if (new_state == SPU_UTIL_USER)
1041
			atomic_inc(&cbe_spu_info[node].busy_spus);
1042 1043 1044
	}
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)

static int show_spu_loadavg(struct seq_file *s, void *private)
{
	int a, b, c;

	a = spu_avenrun[0] + (FIXED_1/200);
	b = spu_avenrun[1] + (FIXED_1/200);
	c = spu_avenrun[2] + (FIXED_1/200);

	/*
	 * Note that last_pid doesn't really make much sense for the
1058
	 * SPU loadavg (it even seems very odd on the CPU side...),
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	 * but we include it here to have a 100% compatible interface.
	 */
	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
		LOAD_INT(a), LOAD_FRAC(a),
		LOAD_INT(b), LOAD_FRAC(b),
		LOAD_INT(c), LOAD_FRAC(c),
		count_active_contexts(),
		atomic_read(&nr_spu_contexts),
		current->nsproxy->pid_ns->last_pid);
	return 0;
}

static int spu_loadavg_open(struct inode *inode, struct file *file)
{
	return single_open(file, show_spu_loadavg, NULL);
}

static const struct file_operations spu_loadavg_fops = {
	.open		= spu_loadavg_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1083 1084
int __init spu_sched_init(void)
{
1085 1086
	struct proc_dir_entry *entry;
	int err = -ENOMEM, i;
1087

1088
	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1089
	if (!spu_prio)
1090
		goto out;
1091

1092
	for (i = 0; i < MAX_PRIO; i++) {
1093
		INIT_LIST_HEAD(&spu_prio->runq[i]);
1094
		__clear_bit(i, spu_prio->bitmap);
1095
	}
1096
	spin_lock_init(&spu_prio->runq_lock);
1097

1098
	setup_timer(&spusched_timer, spusched_wake, 0);
1099
	setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1100

1101 1102
	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
	if (IS_ERR(spusched_task)) {
1103 1104
		err = PTR_ERR(spusched_task);
		goto out_free_spu_prio;
1105
	}
1106

1107 1108
	mod_timer(&spuloadavg_timer, 0);

1109
	entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
1110 1111 1112
	if (!entry)
		goto out_stop_kthread;

1113 1114
	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1115
	return 0;
1116

1117 1118 1119 1120 1121 1122
 out_stop_kthread:
	kthread_stop(spusched_task);
 out_free_spu_prio:
	kfree(spu_prio);
 out:
	return err;
1123 1124
}

1125
void spu_sched_exit(void)
1126
{
1127
	struct spu *spu;
1128 1129
	int node;

1130 1131
	remove_proc_entry("spu_loadavg", NULL);

1132
	del_timer_sync(&spusched_timer);
1133
	del_timer_sync(&spuloadavg_timer);
1134 1135
	kthread_stop(spusched_task);

1136
	for (node = 0; node < MAX_NUMNODES; node++) {
1137 1138 1139 1140 1141
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
			if (spu->alloc_state != SPU_FREE)
				spu->alloc_state = SPU_FREE;
		mutex_unlock(&cbe_spu_info[node].list_mutex);
1142
	}
1143
	kfree(spu_prio);
1144
}