sched.c 27.4 KB
Newer Older
1 2 3 4 5
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
6
 * 2006-03-31	NUMA domains added.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27 28 29 30 31 32 33 34
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
35 36
#include <linux/numa.h>
#include <linux/mutex.h>
37
#include <linux/notifier.h>
38
#include <linux/kthread.h>
39 40 41
#include <linux/pid_namespace.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
42
#include <linux/marker.h>
43 44 45 46 47

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
48
#include <asm/spu_priv1.h>
49 50 51
#include "spufs.h"

struct spu_prio_array {
52
	DECLARE_BITMAP(bitmap, MAX_PRIO);
53 54
	struct list_head runq[MAX_PRIO];
	spinlock_t runq_lock;
55
	int nr_waiting;
56 57
};

58
static unsigned long spu_avenrun[3];
59
static struct spu_prio_array *spu_prio;
60 61
static struct task_struct *spusched_task;
static struct timer_list spusched_timer;
62
static struct timer_list spuloadavg_timer;
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77
/*
 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
 */
#define NORMAL_PRIO		120

/*
 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
 * tick for every 10 CPU scheduler ticks.
 */
#define SPUSCHED_TICK		(10)

/*
 * These are the 'tuning knobs' of the scheduler:
 *
78 79
 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
80
 */
81 82
#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

#define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)

/*
 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
 * [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */
void spu_set_timeslice(struct spu_context *ctx)
{
	if (ctx->prio < NORMAL_PRIO)
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
	else
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
}

104 105 106 107 108
/*
 * Update scheduling information from the owning thread.
 */
void __spu_update_sched_info(struct spu_context *ctx)
{
109 110 111 112 113 114
	/*
	 * assert that the context is not on the runqueue, so it is safe
	 * to change its scheduling parameters.
	 */
	BUG_ON(!list_empty(&ctx->rq));

115
	/*
116 117 118
	 * 32-Bit assignments are atomic on powerpc, and we don't care about
	 * memory ordering here because retrieving the controlling thread is
	 * per definition racy.
119 120 121
	 */
	ctx->tid = current->pid;

122 123
	/*
	 * We do our own priority calculations, so we normally want
124
	 * ->static_prio to start with. Unfortunately this field
125 126 127 128 129 130 131 132
	 * contains junk for threads with a realtime scheduling
	 * policy so we have to look at ->prio in this case.
	 */
	if (rt_prio(current->prio))
		ctx->prio = current->prio;
	else
		ctx->prio = current->static_prio;
	ctx->policy = current->policy;
133 134

	/*
135 136 137 138 139 140
	 * TO DO: the context may be loaded, so we may need to activate
	 * it again on a different node. But it shouldn't hurt anything
	 * to update its parameters, because we know that the scheduler
	 * is not actively looking at this field, since it is not on the
	 * runqueue. The context will be rescheduled on the proper node
	 * if it is timesliced or preempted.
141 142
	 */
	ctx->cpus_allowed = current->cpus_allowed;
143 144 145

	/* Save the current cpu id for spu interrupt routing. */
	ctx->last_ran = raw_smp_processor_id();
146 147 148 149
}

void spu_update_sched_info(struct spu_context *ctx)
{
150
	int node;
151

152 153
	if (ctx->state == SPU_STATE_RUNNABLE) {
		node = ctx->spu->node;
154 155 156 157

		/*
		 * Take list_mutex to sync with find_victim().
		 */
158 159 160 161 162 163
		mutex_lock(&cbe_spu_info[node].list_mutex);
		__spu_update_sched_info(ctx);
		mutex_unlock(&cbe_spu_info[node].list_mutex);
	} else {
		__spu_update_sched_info(ctx);
	}
164 165
}

166
static int __node_allowed(struct spu_context *ctx, int node)
167
{
168 169
	if (nr_cpus_node(node)) {
		cpumask_t mask = node_to_cpumask(node);
170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
		if (cpus_intersects(mask, ctx->cpus_allowed))
			return 1;
	}

	return 0;
}

static int node_allowed(struct spu_context *ctx, int node)
{
	int rval;

	spin_lock(&spu_prio->runq_lock);
	rval = __node_allowed(ctx, node);
	spin_unlock(&spu_prio->runq_lock);

	return rval;
187 188
}

189
void do_notify_spus_active(void)
190 191 192 193 194 195 196
{
	int node;

	/*
	 * Wake up the active spu_contexts.
	 *
	 * When the awakened processes see their "notify_active" flag is set,
197
	 * they will call spu_switch_notify().
198 199 200
	 */
	for_each_online_node(node) {
		struct spu *spu;
201 202 203 204 205 206 207 208 209 210

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state != SPU_FREE) {
				struct spu_context *ctx = spu->ctx;
				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
					&ctx->sched_flags);
				mb();
				wake_up_all(&ctx->stop_wq);
			}
211
		}
212
		mutex_unlock(&cbe_spu_info[node].list_mutex);
213 214 215
	}
}

216 217 218 219 220 221
/**
 * spu_bind_context - bind spu context to physical spu
 * @spu:	physical spu to bind to
 * @ctx:	context to bind
 */
static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
222
{
223 224
	spu_context_trace(spu_bind_context__enter, ctx, spu);

225
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
226

227 228 229
	if (ctx->flags & SPU_CREATE_NOSCHED)
		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);

230 231 232
	ctx->stats.slb_flt_base = spu->stats.slb_flt;
	ctx->stats.class2_intr_base = spu->stats.class2_intr;

233 234 235 236 237
	spu->ctx = ctx;
	spu->flags = 0;
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
238
	spu->tgid = current->tgid;
239
	spu_associate_mm(spu, ctx->owner);
240 241
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
242
	spu->stop_callback = spufs_stop_callback;
243
	spu->mfc_callback = spufs_mfc_callback;
244
	mb();
245
	spu_unmap_mappings(ctx);
246
	spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
247
	spu_restore(&ctx->csa, spu);
248
	spu->timestamp = jiffies;
249
	spu_switch_notify(spu, ctx);
250
	ctx->state = SPU_STATE_RUNNABLE;
251

252
	spuctx_switch_state(ctx, SPU_UTIL_USER);
253 254
}

255
/*
256
 * Must be used with the list_mutex held.
257 258 259
 */
static inline int sched_spu(struct spu *spu)
{
260 261
	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
}

static void aff_merge_remaining_ctxs(struct spu_gang *gang)
{
	struct spu_context *ctx;

	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
		if (list_empty(&ctx->aff_list))
			list_add(&ctx->aff_list, &gang->aff_list_head);
	}
	gang->aff_flags |= AFF_MERGED;
}

static void aff_set_offsets(struct spu_gang *gang)
{
	struct spu_context *ctx;
	int offset;

	offset = -1;
	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset--;
	}

	offset = 0;
	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset++;
	}

	gang->aff_flags |= AFF_OFFSETS_SET;
}

static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
		 int group_size, int lowest_offset)
{
	struct spu *spu;
	int node, n;

	/*
	 * TODO: A better algorithm could be used to find a good spu to be
	 *       used as reference location for the ctxs chain.
	 */
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
		if (!node_allowed(ctx, node))
			continue;
314
		mutex_lock(&cbe_spu_info[node].list_mutex);
315 316
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if ((!mem_aff || spu->has_mem_affinity) &&
317 318
							sched_spu(spu)) {
				mutex_unlock(&cbe_spu_info[node].list_mutex);
319
				return spu;
320
			}
321
		}
322
		mutex_unlock(&cbe_spu_info[node].list_mutex);
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
	}
	return NULL;
}

static void aff_set_ref_point_location(struct spu_gang *gang)
{
	int mem_aff, gs, lowest_offset;
	struct spu_context *ctx;
	struct spu *tmp;

	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
	lowest_offset = 0;
	gs = 0;

	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
		gs++;

	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		lowest_offset = ctx->aff_offset;
	}

347 348
	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
							lowest_offset);
349 350
}

351
static struct spu *ctx_location(struct spu *ref, int offset, int node)
352 353 354 355 356 357
{
	struct spu *spu;

	spu = NULL;
	if (offset >= 0) {
		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
358
			BUG_ON(spu->node != node);
359 360 361 362 363 364 365
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset--;
		}
	} else {
		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
366
			BUG_ON(spu->node != node);
367 368 369 370 371 372
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset++;
		}
	}
373

374 375 376 377 378 379 380
	return spu;
}

/*
 * affinity_check is called each time a context is going to be scheduled.
 * It returns the spu ptr on which the context must run.
 */
381
static int has_affinity(struct spu_context *ctx)
382
{
383
	struct spu_gang *gang = ctx->gang;
384 385

	if (list_empty(&ctx->aff_list))
386 387
		return 0;

388 389 390 391 392 393 394
	if (!gang->aff_ref_spu) {
		if (!(gang->aff_flags & AFF_MERGED))
			aff_merge_remaining_ctxs(gang);
		if (!(gang->aff_flags & AFF_OFFSETS_SET))
			aff_set_offsets(gang);
		aff_set_ref_point_location(gang);
	}
395 396

	return gang->aff_ref_spu != NULL;
397 398
}

399 400 401 402 403
/**
 * spu_unbind_context - unbind spu context from physical spu
 * @spu:	physical spu to unbind from
 * @ctx:	context to unbind
 */
404
static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
405
{
406 407
	spu_context_trace(spu_unbind_context__enter, ctx, spu);

408
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
409

410 411
 	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
412 413 414 415 416 417 418 419 420 421

	if (ctx->gang){
		mutex_lock(&ctx->gang->aff_mutex);
		if (has_affinity(ctx)) {
			if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
				ctx->gang->aff_ref_spu = NULL;
		}
		mutex_unlock(&ctx->gang->aff_mutex);
	}

422
	spu_switch_notify(spu, NULL);
423
	spu_unmap_mappings(ctx);
424
	spu_save(&ctx->csa, spu);
425
	spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
426
	spu->timestamp = jiffies;
427 428 429
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
430
	spu->stop_callback = NULL;
431
	spu->mfc_callback = NULL;
432
	spu_associate_mm(spu, NULL);
433
	spu->pid = 0;
434
	spu->tgid = 0;
435
	ctx->ops = &spu_backing_ops;
436
	spu->flags = 0;
437
	spu->ctx = NULL;
438 439 440 441 442

	ctx->stats.slb_flt +=
		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
	ctx->stats.class2_intr +=
		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
443 444 445 446

	/* This maps the underlying spu state to idle */
	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
	ctx->spu = NULL;
447 448
}

449 450 451 452
/**
 * spu_add_to_rq - add a context to the runqueue
 * @ctx:       context to add
 */
453
static void __spu_add_to_rq(struct spu_context *ctx)
454
{
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	/*
	 * Unfortunately this code path can be called from multiple threads
	 * on behalf of a single context due to the way the problem state
	 * mmap support works.
	 *
	 * Fortunately we need to wake up all these threads at the same time
	 * and can simply skip the runqueue addition for every but the first
	 * thread getting into this codepath.
	 *
	 * It's still quite hacky, and long-term we should proxy all other
	 * threads through the owner thread so that spu_run is in control
	 * of all the scheduling activity for a given context.
	 */
	if (list_empty(&ctx->rq)) {
		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
		set_bit(ctx->prio, spu_prio->bitmap);
		if (!spu_prio->nr_waiting++)
			__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	}
474
}
475

476 477 478 479 480 481 482
static void spu_add_to_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_add_to_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

483
static void __spu_del_from_rq(struct spu_context *ctx)
484
{
485 486
	int prio = ctx->prio;

487
	if (!list_empty(&ctx->rq)) {
488 489
		if (!--spu_prio->nr_waiting)
			del_timer(&spusched_timer);
490
		list_del_init(&ctx->rq);
491 492 493

		if (list_empty(&spu_prio->runq[prio]))
			clear_bit(prio, spu_prio->bitmap);
494
	}
495
}
496

497 498 499 500 501 502 503
void spu_del_from_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_del_from_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

504
static void spu_prio_wait(struct spu_context *ctx)
505
{
506
	DEFINE_WAIT(wait);
507

508 509 510 511 512 513 514
	/*
	 * The caller must explicitly wait for a context to be loaded
	 * if the nosched flag is set.  If NOSCHED is not set, the caller
	 * queues the context and waits for an spu event or error.
	 */
	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));

515
	spin_lock(&spu_prio->runq_lock);
516
	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
517
	if (!signal_pending(current)) {
518 519
		__spu_add_to_rq(ctx);
		spin_unlock(&spu_prio->runq_lock);
520
		mutex_unlock(&ctx->state_mutex);
521
		schedule();
522
		mutex_lock(&ctx->state_mutex);
523 524
		spin_lock(&spu_prio->runq_lock);
		__spu_del_from_rq(ctx);
525
	}
526
	spin_unlock(&spu_prio->runq_lock);
527 528
	__set_current_state(TASK_RUNNING);
	remove_wait_queue(&ctx->stop_wq, &wait);
529 530
}

531
static struct spu *spu_get_idle(struct spu_context *ctx)
532
{
533
	struct spu *spu, *aff_ref_spu;
534 535
	int node, n;

536 537
	spu_context_nospu_trace(spu_get_idle__enter, ctx);

538 539 540 541 542 543 544 545 546 547 548 549 550
	if (ctx->gang) {
		mutex_lock(&ctx->gang->aff_mutex);
		if (has_affinity(ctx)) {
			aff_ref_spu = ctx->gang->aff_ref_spu;
			atomic_inc(&ctx->gang->aff_sched_count);
			mutex_unlock(&ctx->gang->aff_mutex);
			node = aff_ref_spu->node;

			mutex_lock(&cbe_spu_info[node].list_mutex);
			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
			if (spu && spu->alloc_state == SPU_FREE)
				goto found;
			mutex_unlock(&cbe_spu_info[node].list_mutex);
551

552 553 554 555
			mutex_lock(&ctx->gang->aff_mutex);
			if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
				ctx->gang->aff_ref_spu = NULL;
			mutex_unlock(&ctx->gang->aff_mutex);
556
			goto not_found;
557 558 559
		}
		mutex_unlock(&ctx->gang->aff_mutex);
	}
560
	node = cpu_to_node(raw_smp_processor_id());
561 562
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
563
		if (!node_allowed(ctx, node))
564
			continue;
565 566 567 568 569 570 571

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state == SPU_FREE)
				goto found;
		}
		mutex_unlock(&cbe_spu_info[node].list_mutex);
572
	}
573

574 575
 not_found:
	spu_context_nospu_trace(spu_get_idle__not_found, ctx);
576 577 578 579 580
	return NULL;

 found:
	spu->alloc_state = SPU_USED;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
581
	spu_context_trace(spu_get_idle__found, ctx, spu);
582
	spu_init_channels(spu);
583 584
	return spu;
}
585

586 587 588 589 590 591 592 593 594 595 596 597
/**
 * find_victim - find a lower priority context to preempt
 * @ctx:	canidate context for running
 *
 * Returns the freed physical spu to run the new context on.
 */
static struct spu *find_victim(struct spu_context *ctx)
{
	struct spu_context *victim = NULL;
	struct spu *spu;
	int node, n;

598
	spu_context_nospu_trace(spu_find_victim__enter, ctx);
599

600 601 602
	/*
	 * Look for a possible preemption candidate on the local node first.
	 * If there is no candidate look at the other nodes.  This isn't
603
	 * exactly fair, but so far the whole spu scheduler tries to keep
604 605 606 607 608 609 610
	 * a strong node affinity.  We might want to fine-tune this in
	 * the future.
	 */
 restart:
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
611
		if (!node_allowed(ctx, node))
612 613
			continue;

614 615
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
616 617
			struct spu_context *tmp = spu->ctx;

618
			if (tmp && tmp->prio > ctx->prio &&
619
			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
620
			    (!victim || tmp->prio > victim->prio))
621 622
				victim = spu->ctx;
		}
623
		mutex_unlock(&cbe_spu_info[node].list_mutex);
624 625 626 627 628 629 630

		if (victim) {
			/*
			 * This nests ctx->state_mutex, but we always lock
			 * higher priority contexts before lower priority
			 * ones, so this is safe until we introduce
			 * priority inheritance schemes.
631 632 633 634
			 *
			 * XXX if the highest priority context is locked,
			 * this can loop a long time.  Might be better to
			 * look at another context or give up after X retries.
635 636 637 638 639 640 641
			 */
			if (!mutex_trylock(&victim->state_mutex)) {
				victim = NULL;
				goto restart;
			}

			spu = victim->spu;
642
			if (!spu || victim->prio <= ctx->prio) {
643 644
				/*
				 * This race can happen because we've dropped
645
				 * the active list mutex.  Not a problem, just
646 647 648 649 650 651
				 * restart the search.
				 */
				mutex_unlock(&victim->state_mutex);
				victim = NULL;
				goto restart;
			}
652

653 654
			spu_context_trace(__spu_deactivate__unload, ctx, spu);

655 656
			mutex_lock(&cbe_spu_info[node].list_mutex);
			cbe_spu_info[node].nr_active--;
657
			spu_unbind_context(spu, victim);
658 659
			mutex_unlock(&cbe_spu_info[node].list_mutex);

660
			victim->stats.invol_ctx_switch++;
661
			spu->stats.invol_ctx_switch++;
662 663
			spu_add_to_rq(victim);

664
			mutex_unlock(&victim->state_mutex);
665

666 667 668 669 670 671 672
			return spu;
		}
	}

	return NULL;
}

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
{
	int node = spu->node;
	int success = 0;

	spu_set_timeslice(ctx);

	mutex_lock(&cbe_spu_info[node].list_mutex);
	if (spu->ctx == NULL) {
		spu_bind_context(spu, ctx);
		cbe_spu_info[node].nr_active++;
		spu->alloc_state = SPU_USED;
		success = 1;
	}
	mutex_unlock(&cbe_spu_info[node].list_mutex);

	if (success)
		wake_up_all(&ctx->run_wq);
	else
		spu_add_to_rq(ctx);
}

static void spu_schedule(struct spu *spu, struct spu_context *ctx)
{
697 698 699
	/* not a candidate for interruptible because it's called either
	   from the scheduler thread or from spu_deactivate */
	mutex_lock(&ctx->state_mutex);
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	__spu_schedule(spu, ctx);
	spu_release(ctx);
}

static void spu_unschedule(struct spu *spu, struct spu_context *ctx)
{
	int node = spu->node;

	mutex_lock(&cbe_spu_info[node].list_mutex);
	cbe_spu_info[node].nr_active--;
	spu->alloc_state = SPU_FREE;
	spu_unbind_context(spu, ctx);
	ctx->stats.invol_ctx_switch++;
	spu->stats.invol_ctx_switch++;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
}

717 718 719 720 721
/**
 * spu_activate - find a free spu for a context and execute it
 * @ctx:	spu context to schedule
 * @flags:	flags (currently ignored)
 *
722
 * Tries to find a free spu to run @ctx.  If no free spu is available
723 724 725
 * add the context to the runqueue so it gets woken up once an spu
 * is available.
 */
726
int spu_activate(struct spu_context *ctx, unsigned long flags)
727
{
728
	struct spu *spu;
729

730 731 732 733 734 735 736 737
	/*
	 * If there are multiple threads waiting for a single context
	 * only one actually binds the context while the others will
	 * only be able to acquire the state_mutex once the context
	 * already is in runnable state.
	 */
	if (ctx->spu)
		return 0;
738

739 740 741
spu_activate_top:
	if (signal_pending(current))
		return -ERESTARTSYS;
742

743 744 745 746 747 748 749 750 751 752 753 754 755 756
	spu = spu_get_idle(ctx);
	/*
	 * If this is a realtime thread we try to get it running by
	 * preempting a lower priority thread.
	 */
	if (!spu && rt_prio(ctx->prio))
		spu = find_victim(ctx);
	if (spu) {
		unsigned long runcntl;

		runcntl = ctx->ops->runcntl_read(ctx);
		__spu_schedule(spu, ctx);
		if (runcntl & SPU_RUNCNTL_RUNNABLE)
			spuctx_switch_state(ctx, SPU_UTIL_USER);
757

758 759 760 761
		return 0;
	}

	if (ctx->flags & SPU_CREATE_NOSCHED) {
762
		spu_prio_wait(ctx);
763 764 765 766
		goto spu_activate_top;
	}

	spu_add_to_rq(ctx);
767

768
	return 0;
769 770
}

771 772 773 774 775 776
/**
 * grab_runnable_context - try to find a runnable context
 *
 * Remove the highest priority context on the runqueue and return it
 * to the caller.  Returns %NULL if no runnable context was found.
 */
777
static struct spu_context *grab_runnable_context(int prio, int node)
778
{
779
	struct spu_context *ctx;
780 781 782
	int best;

	spin_lock(&spu_prio->runq_lock);
783
	best = find_first_bit(spu_prio->bitmap, prio);
784
	while (best < prio) {
785 786
		struct list_head *rq = &spu_prio->runq[best];

787 788 789 790 791 792 793 794
		list_for_each_entry(ctx, rq, rq) {
			/* XXX(hch): check for affinity here aswell */
			if (__node_allowed(ctx, node)) {
				__spu_del_from_rq(ctx);
				goto found;
			}
		}
		best++;
795
	}
796 797
	ctx = NULL;
 found:
798 799 800 801 802 803 804 805 806 807
	spin_unlock(&spu_prio->runq_lock);
	return ctx;
}

static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
{
	struct spu *spu = ctx->spu;
	struct spu_context *new = NULL;

	if (spu) {
808
		new = grab_runnable_context(max_prio, spu->node);
809
		if (new || force) {
810 811 812 813 814 815 816
			spu_unschedule(spu, ctx);
			if (new) {
				if (new->flags & SPU_CREATE_NOSCHED)
					wake_up(&new->stop_wq);
				else {
					spu_release(ctx);
					spu_schedule(spu, new);
817 818 819
					/* this one can't easily be made
					   interruptible */
					mutex_lock(&ctx->state_mutex);
820 821
				}
			}
822 823 824 825 826 827
		}
	}

	return new != NULL;
}

828 829 830 831 832 833 834
/**
 * spu_deactivate - unbind a context from it's physical spu
 * @ctx:	spu context to unbind
 *
 * Unbind @ctx from the physical spu it is running on and schedule
 * the highest priority context to run on the freed physical spu.
 */
835 836
void spu_deactivate(struct spu_context *ctx)
{
837
	spu_context_nospu_trace(spu_deactivate__enter, ctx);
838
	__spu_deactivate(ctx, 1, MAX_PRIO);
839 840
}

841
/**
842
 * spu_yield -	yield a physical spu if others are waiting
843 844 845 846 847 848
 * @ctx:	spu context to yield
 *
 * Check if there is a higher priority context waiting and if yes
 * unbind @ctx from the physical spu and schedule the highest
 * priority context to run on the freed physical spu instead.
 */
849 850
void spu_yield(struct spu_context *ctx)
{
851
	spu_context_nospu_trace(spu_yield__enter, ctx);
852 853
	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
		mutex_lock(&ctx->state_mutex);
854
		__spu_deactivate(ctx, 0, MAX_PRIO);
855 856
		mutex_unlock(&ctx->state_mutex);
	}
857
}
858

859
static noinline void spusched_tick(struct spu_context *ctx)
860
{
861 862 863
	struct spu_context *new = NULL;
	struct spu *spu = NULL;

864 865
	if (spu_acquire(ctx))
		BUG();	/* a kernel thread never has signals pending */
866 867 868

	if (ctx->state != SPU_STATE_RUNNABLE)
		goto out;
869
	if (ctx->flags & SPU_CREATE_NOSCHED)
870
		goto out;
871
	if (ctx->policy == SCHED_FIFO)
872
		goto out;
873

874
	if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
875
		goto out;
876

877
	spu = ctx->spu;
878 879 880

	spu_context_trace(spusched_tick__preempt, ctx, spu);

881 882 883
	new = grab_runnable_context(ctx->prio + 1, spu->node);
	if (new) {
		spu_unschedule(spu, ctx);
884
		if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
885
			spu_add_to_rq(ctx);
886
	} else {
887
		spu_context_nospu_trace(spusched_tick__newslice, ctx);
888
		ctx->time_slice++;
889
	}
890 891 892 893 894
out:
	spu_release(ctx);

	if (new)
		spu_schedule(spu, new);
895 896
}

897 898 899 900 901
/**
 * count_active_contexts - count nr of active tasks
 *
 * Return the number of tasks currently running or waiting to run.
 *
902
 * Note that we don't take runq_lock / list_mutex here.  Reading
903 904 905 906 907 908 909 910
 * a single 32bit value is atomic on powerpc, and we don't care
 * about memory ordering issues here.
 */
static unsigned long count_active_contexts(void)
{
	int nr_active = 0, node;

	for (node = 0; node < MAX_NUMNODES; node++)
911
		nr_active += cbe_spu_info[node].nr_active;
912 913 914 915 916 917
	nr_active += spu_prio->nr_waiting;

	return nr_active;
}

/**
918
 * spu_calc_load - update the avenrun load estimates.
919 920 921 922
 *
 * No locking against reading these values from userspace, as for
 * the CPU loadavg code.
 */
923
static void spu_calc_load(void)
924 925
{
	unsigned long active_tasks; /* fixed-point */
926 927 928 929 930

	active_tasks = count_active_contexts() * FIXED_1;
	CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
	CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
	CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
931 932
}

933 934 935 936
static void spusched_wake(unsigned long data)
{
	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	wake_up_process(spusched_task);
937 938 939 940 941 942
}

static void spuloadavg_wake(unsigned long data)
{
	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
	spu_calc_load();
943 944 945 946
}

static int spusched_thread(void *unused)
{
947
	struct spu *spu;
948 949 950 951 952 953
	int node;

	while (!kthread_should_stop()) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
		for (node = 0; node < MAX_NUMNODES; node++) {
954 955 956 957 958 959 960 961 962 963 964 965 966 967
			struct mutex *mtx = &cbe_spu_info[node].list_mutex;

			mutex_lock(mtx);
			list_for_each_entry(spu, &cbe_spu_info[node].spus,
					cbe_list) {
				struct spu_context *ctx = spu->ctx;

				if (ctx) {
					mutex_unlock(mtx);
					spusched_tick(ctx);
					mutex_lock(mtx);
				}
			}
			mutex_unlock(mtx);
968 969 970 971 972 973
		}
	}

	return 0;
}

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
void spuctx_switch_state(struct spu_context *ctx,
		enum spu_utilization_state new_state)
{
	unsigned long long curtime;
	signed long long delta;
	struct timespec ts;
	struct spu *spu;
	enum spu_utilization_state old_state;

	ktime_get_ts(&ts);
	curtime = timespec_to_ns(&ts);
	delta = curtime - ctx->stats.tstamp;

	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
	WARN_ON(delta < 0);

	spu = ctx->spu;
	old_state = ctx->stats.util_state;
	ctx->stats.util_state = new_state;
	ctx->stats.tstamp = curtime;

	/*
	 * Update the physical SPU utilization statistics.
	 */
	if (spu) {
		ctx->stats.times[old_state] += delta;
		spu->stats.times[old_state] += delta;
		spu->stats.util_state = new_state;
		spu->stats.tstamp = curtime;
	}
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)

static int show_spu_loadavg(struct seq_file *s, void *private)
{
	int a, b, c;

	a = spu_avenrun[0] + (FIXED_1/200);
	b = spu_avenrun[1] + (FIXED_1/200);
	c = spu_avenrun[2] + (FIXED_1/200);

	/*
	 * Note that last_pid doesn't really make much sense for the
1019
	 * SPU loadavg (it even seems very odd on the CPU side...),
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	 * but we include it here to have a 100% compatible interface.
	 */
	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
		LOAD_INT(a), LOAD_FRAC(a),
		LOAD_INT(b), LOAD_FRAC(b),
		LOAD_INT(c), LOAD_FRAC(c),
		count_active_contexts(),
		atomic_read(&nr_spu_contexts),
		current->nsproxy->pid_ns->last_pid);
	return 0;
}

static int spu_loadavg_open(struct inode *inode, struct file *file)
{
	return single_open(file, show_spu_loadavg, NULL);
}

static const struct file_operations spu_loadavg_fops = {
	.open		= spu_loadavg_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1044 1045
int __init spu_sched_init(void)
{
1046 1047
	struct proc_dir_entry *entry;
	int err = -ENOMEM, i;
1048

1049
	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1050
	if (!spu_prio)
1051
		goto out;
1052

1053
	for (i = 0; i < MAX_PRIO; i++) {
1054
		INIT_LIST_HEAD(&spu_prio->runq[i]);
1055
		__clear_bit(i, spu_prio->bitmap);
1056
	}
1057
	spin_lock_init(&spu_prio->runq_lock);
1058

1059
	setup_timer(&spusched_timer, spusched_wake, 0);
1060
	setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1061

1062 1063
	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
	if (IS_ERR(spusched_task)) {
1064 1065
		err = PTR_ERR(spusched_task);
		goto out_free_spu_prio;
1066
	}
1067

1068 1069
	mod_timer(&spuloadavg_timer, 0);

1070 1071 1072 1073 1074
	entry = create_proc_entry("spu_loadavg", 0, NULL);
	if (!entry)
		goto out_stop_kthread;
	entry->proc_fops = &spu_loadavg_fops;

1075 1076
	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1077
	return 0;
1078

1079 1080 1081 1082 1083 1084
 out_stop_kthread:
	kthread_stop(spusched_task);
 out_free_spu_prio:
	kfree(spu_prio);
 out:
	return err;
1085 1086
}

1087
void spu_sched_exit(void)
1088
{
1089
	struct spu *spu;
1090 1091
	int node;

1092 1093
	remove_proc_entry("spu_loadavg", NULL);

1094
	del_timer_sync(&spusched_timer);
1095
	del_timer_sync(&spuloadavg_timer);
1096 1097
	kthread_stop(spusched_task);

1098
	for (node = 0; node < MAX_NUMNODES; node++) {
1099 1100 1101 1102 1103
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
			if (spu->alloc_state != SPU_FREE)
				spu->alloc_state = SPU_FREE;
		mutex_unlock(&cbe_spu_info[node].list_mutex);
1104
	}
1105
	kfree(spu_prio);
1106
}