sched.c 26.8 KB
Newer Older
1 2 3 4 5
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
6
 * 2006-03-31	NUMA domains added.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27 28 29 30 31 32 33 34
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
35 36
#include <linux/numa.h>
#include <linux/mutex.h>
37
#include <linux/notifier.h>
38
#include <linux/kthread.h>
39 40 41
#include <linux/pid_namespace.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
42 43 44 45 46

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
47
#include <asm/spu_priv1.h>
48 49 50
#include "spufs.h"

struct spu_prio_array {
51
	DECLARE_BITMAP(bitmap, MAX_PRIO);
52 53
	struct list_head runq[MAX_PRIO];
	spinlock_t runq_lock;
54
	int nr_waiting;
55 56
};

57
static unsigned long spu_avenrun[3];
58
static struct spu_prio_array *spu_prio;
59 60
static struct task_struct *spusched_task;
static struct timer_list spusched_timer;
61
static struct timer_list spuloadavg_timer;
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76
/*
 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
 */
#define NORMAL_PRIO		120

/*
 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
 * tick for every 10 CPU scheduler ticks.
 */
#define SPUSCHED_TICK		(10)

/*
 * These are the 'tuning knobs' of the scheduler:
 *
77 78
 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
79
 */
80 81
#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

#define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)

/*
 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
 * [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */
void spu_set_timeslice(struct spu_context *ctx)
{
	if (ctx->prio < NORMAL_PRIO)
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
	else
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
}

103 104 105 106 107
/*
 * Update scheduling information from the owning thread.
 */
void __spu_update_sched_info(struct spu_context *ctx)
{
108 109 110 111 112 113
	/*
	 * assert that the context is not on the runqueue, so it is safe
	 * to change its scheduling parameters.
	 */
	BUG_ON(!list_empty(&ctx->rq));

114
	/*
115 116 117
	 * 32-Bit assignments are atomic on powerpc, and we don't care about
	 * memory ordering here because retrieving the controlling thread is
	 * per definition racy.
118 119 120
	 */
	ctx->tid = current->pid;

121 122
	/*
	 * We do our own priority calculations, so we normally want
123
	 * ->static_prio to start with. Unfortunately this field
124 125 126 127 128 129 130 131
	 * contains junk for threads with a realtime scheduling
	 * policy so we have to look at ->prio in this case.
	 */
	if (rt_prio(current->prio))
		ctx->prio = current->prio;
	else
		ctx->prio = current->static_prio;
	ctx->policy = current->policy;
132 133

	/*
134 135 136 137 138 139
	 * TO DO: the context may be loaded, so we may need to activate
	 * it again on a different node. But it shouldn't hurt anything
	 * to update its parameters, because we know that the scheduler
	 * is not actively looking at this field, since it is not on the
	 * runqueue. The context will be rescheduled on the proper node
	 * if it is timesliced or preempted.
140 141
	 */
	ctx->cpus_allowed = current->cpus_allowed;
142 143 144 145
}

void spu_update_sched_info(struct spu_context *ctx)
{
146
	int node;
147

148 149
	if (ctx->state == SPU_STATE_RUNNABLE) {
		node = ctx->spu->node;
150 151 152 153

		/*
		 * Take list_mutex to sync with find_victim().
		 */
154 155 156 157 158 159
		mutex_lock(&cbe_spu_info[node].list_mutex);
		__spu_update_sched_info(ctx);
		mutex_unlock(&cbe_spu_info[node].list_mutex);
	} else {
		__spu_update_sched_info(ctx);
	}
160 161
}

162
static int __node_allowed(struct spu_context *ctx, int node)
163
{
164 165
	if (nr_cpus_node(node)) {
		cpumask_t mask = node_to_cpumask(node);
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
		if (cpus_intersects(mask, ctx->cpus_allowed))
			return 1;
	}

	return 0;
}

static int node_allowed(struct spu_context *ctx, int node)
{
	int rval;

	spin_lock(&spu_prio->runq_lock);
	rval = __node_allowed(ctx, node);
	spin_unlock(&spu_prio->runq_lock);

	return rval;
183 184
}

185
void do_notify_spus_active(void)
186 187 188 189 190 191 192
{
	int node;

	/*
	 * Wake up the active spu_contexts.
	 *
	 * When the awakened processes see their "notify_active" flag is set,
193
	 * they will call spu_switch_notify().
194 195 196
	 */
	for_each_online_node(node) {
		struct spu *spu;
197 198 199 200 201 202 203 204 205 206

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state != SPU_FREE) {
				struct spu_context *ctx = spu->ctx;
				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
					&ctx->sched_flags);
				mb();
				wake_up_all(&ctx->stop_wq);
			}
207
		}
208
		mutex_unlock(&cbe_spu_info[node].list_mutex);
209 210 211
	}
}

212 213 214 215 216 217
/**
 * spu_bind_context - bind spu context to physical spu
 * @spu:	physical spu to bind to
 * @ctx:	context to bind
 */
static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
218
{
219 220
	pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
		 spu->number, spu->node);
221
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
222

223 224 225
	if (ctx->flags & SPU_CREATE_NOSCHED)
		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);

226 227 228
	ctx->stats.slb_flt_base = spu->stats.slb_flt;
	ctx->stats.class2_intr_base = spu->stats.class2_intr;

229 230 231 232 233
	spu->ctx = ctx;
	spu->flags = 0;
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
234
	spu->tgid = current->tgid;
235
	spu_associate_mm(spu, ctx->owner);
236 237
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
238
	spu->stop_callback = spufs_stop_callback;
239
	spu->mfc_callback = spufs_mfc_callback;
240
	mb();
241
	spu_unmap_mappings(ctx);
242
	spu_restore(&ctx->csa, spu);
243
	spu->timestamp = jiffies;
244
	spu_cpu_affinity_set(spu, raw_smp_processor_id());
245
	spu_switch_notify(spu, ctx);
246
	ctx->state = SPU_STATE_RUNNABLE;
247 248

	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
249 250
}

251
/*
252
 * Must be used with the list_mutex held.
253 254 255
 */
static inline int sched_spu(struct spu *spu)
{
256 257
	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
}

static void aff_merge_remaining_ctxs(struct spu_gang *gang)
{
	struct spu_context *ctx;

	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
		if (list_empty(&ctx->aff_list))
			list_add(&ctx->aff_list, &gang->aff_list_head);
	}
	gang->aff_flags |= AFF_MERGED;
}

static void aff_set_offsets(struct spu_gang *gang)
{
	struct spu_context *ctx;
	int offset;

	offset = -1;
	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset--;
	}

	offset = 0;
	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset++;
	}

	gang->aff_flags |= AFF_OFFSETS_SET;
}

static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
		 int group_size, int lowest_offset)
{
	struct spu *spu;
	int node, n;

	/*
	 * TODO: A better algorithm could be used to find a good spu to be
	 *       used as reference location for the ctxs chain.
	 */
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
		if (!node_allowed(ctx, node))
			continue;
310
		mutex_lock(&cbe_spu_info[node].list_mutex);
311 312
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if ((!mem_aff || spu->has_mem_affinity) &&
313 314
							sched_spu(spu)) {
				mutex_unlock(&cbe_spu_info[node].list_mutex);
315
				return spu;
316
			}
317
		}
318
		mutex_unlock(&cbe_spu_info[node].list_mutex);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
	}
	return NULL;
}

static void aff_set_ref_point_location(struct spu_gang *gang)
{
	int mem_aff, gs, lowest_offset;
	struct spu_context *ctx;
	struct spu *tmp;

	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
	lowest_offset = 0;
	gs = 0;

	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
		gs++;

	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		lowest_offset = ctx->aff_offset;
	}

343 344
	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
							lowest_offset);
345 346
}

347
static struct spu *ctx_location(struct spu *ref, int offset, int node)
348 349 350 351 352 353
{
	struct spu *spu;

	spu = NULL;
	if (offset >= 0) {
		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
354
			BUG_ON(spu->node != node);
355 356 357 358 359 360 361
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset--;
		}
	} else {
		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
362
			BUG_ON(spu->node != node);
363 364 365 366 367 368
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset++;
		}
	}
369

370 371 372 373 374 375 376
	return spu;
}

/*
 * affinity_check is called each time a context is going to be scheduled.
 * It returns the spu ptr on which the context must run.
 */
377
static int has_affinity(struct spu_context *ctx)
378
{
379
	struct spu_gang *gang = ctx->gang;
380 381

	if (list_empty(&ctx->aff_list))
382 383
		return 0;

384 385 386 387 388 389 390
	if (!gang->aff_ref_spu) {
		if (!(gang->aff_flags & AFF_MERGED))
			aff_merge_remaining_ctxs(gang);
		if (!(gang->aff_flags & AFF_OFFSETS_SET))
			aff_set_offsets(gang);
		aff_set_ref_point_location(gang);
	}
391 392

	return gang->aff_ref_spu != NULL;
393 394
}

395 396 397 398 399
/**
 * spu_unbind_context - unbind spu context from physical spu
 * @spu:	physical spu to unbind from
 * @ctx:	context to unbind
 */
400
static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
401
{
402 403
	pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
		 spu->pid, spu->number, spu->node);
404
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
405

406 407
 	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
408 409 410 411 412 413 414 415 416 417

	if (ctx->gang){
		mutex_lock(&ctx->gang->aff_mutex);
		if (has_affinity(ctx)) {
			if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
				ctx->gang->aff_ref_spu = NULL;
		}
		mutex_unlock(&ctx->gang->aff_mutex);
	}

418
	spu_switch_notify(spu, NULL);
419
	spu_unmap_mappings(ctx);
420
	spu_save(&ctx->csa, spu);
421
	spu->timestamp = jiffies;
422 423 424
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
425
	spu->stop_callback = NULL;
426
	spu->mfc_callback = NULL;
427
	spu_associate_mm(spu, NULL);
428
	spu->pid = 0;
429
	spu->tgid = 0;
430
	ctx->ops = &spu_backing_ops;
431
	spu->flags = 0;
432
	spu->ctx = NULL;
433 434 435 436 437

	ctx->stats.slb_flt +=
		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
	ctx->stats.class2_intr +=
		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
438 439 440 441

	/* This maps the underlying spu state to idle */
	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
	ctx->spu = NULL;
442 443
}

444 445 446 447
/**
 * spu_add_to_rq - add a context to the runqueue
 * @ctx:       context to add
 */
448
static void __spu_add_to_rq(struct spu_context *ctx)
449
{
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	/*
	 * Unfortunately this code path can be called from multiple threads
	 * on behalf of a single context due to the way the problem state
	 * mmap support works.
	 *
	 * Fortunately we need to wake up all these threads at the same time
	 * and can simply skip the runqueue addition for every but the first
	 * thread getting into this codepath.
	 *
	 * It's still quite hacky, and long-term we should proxy all other
	 * threads through the owner thread so that spu_run is in control
	 * of all the scheduling activity for a given context.
	 */
	if (list_empty(&ctx->rq)) {
		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
		set_bit(ctx->prio, spu_prio->bitmap);
		if (!spu_prio->nr_waiting++)
			__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	}
469
}
470

471 472 473 474 475 476 477
static void spu_add_to_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_add_to_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

478
static void __spu_del_from_rq(struct spu_context *ctx)
479
{
480 481
	int prio = ctx->prio;

482
	if (!list_empty(&ctx->rq)) {
483 484
		if (!--spu_prio->nr_waiting)
			del_timer(&spusched_timer);
485
		list_del_init(&ctx->rq);
486 487 488

		if (list_empty(&spu_prio->runq[prio]))
			clear_bit(prio, spu_prio->bitmap);
489
	}
490
}
491

492 493 494 495 496 497 498
void spu_del_from_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_del_from_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

499
static void spu_prio_wait(struct spu_context *ctx)
500
{
501
	DEFINE_WAIT(wait);
502

503 504 505 506 507 508 509
	/*
	 * The caller must explicitly wait for a context to be loaded
	 * if the nosched flag is set.  If NOSCHED is not set, the caller
	 * queues the context and waits for an spu event or error.
	 */
	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));

510
	spin_lock(&spu_prio->runq_lock);
511
	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
512
	if (!signal_pending(current)) {
513 514
		__spu_add_to_rq(ctx);
		spin_unlock(&spu_prio->runq_lock);
515
		mutex_unlock(&ctx->state_mutex);
516
		schedule();
517
		mutex_lock(&ctx->state_mutex);
518 519
		spin_lock(&spu_prio->runq_lock);
		__spu_del_from_rq(ctx);
520
	}
521
	spin_unlock(&spu_prio->runq_lock);
522 523
	__set_current_state(TASK_RUNNING);
	remove_wait_queue(&ctx->stop_wq, &wait);
524 525
}

526
static struct spu *spu_get_idle(struct spu_context *ctx)
527
{
528
	struct spu *spu, *aff_ref_spu;
529 530
	int node, n;

531 532 533 534 535 536 537 538 539 540 541 542 543
	if (ctx->gang) {
		mutex_lock(&ctx->gang->aff_mutex);
		if (has_affinity(ctx)) {
			aff_ref_spu = ctx->gang->aff_ref_spu;
			atomic_inc(&ctx->gang->aff_sched_count);
			mutex_unlock(&ctx->gang->aff_mutex);
			node = aff_ref_spu->node;

			mutex_lock(&cbe_spu_info[node].list_mutex);
			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
			if (spu && spu->alloc_state == SPU_FREE)
				goto found;
			mutex_unlock(&cbe_spu_info[node].list_mutex);
544

545 546 547 548
			mutex_lock(&ctx->gang->aff_mutex);
			if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
				ctx->gang->aff_ref_spu = NULL;
			mutex_unlock(&ctx->gang->aff_mutex);
549

550 551 552 553
			return NULL;
		}
		mutex_unlock(&ctx->gang->aff_mutex);
	}
554
	node = cpu_to_node(raw_smp_processor_id());
555 556
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
557
		if (!node_allowed(ctx, node))
558
			continue;
559 560 561 562 563 564 565

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state == SPU_FREE)
				goto found;
		}
		mutex_unlock(&cbe_spu_info[node].list_mutex);
566
	}
567 568 569 570 571 572 573 574

	return NULL;

 found:
	spu->alloc_state = SPU_USED;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
	pr_debug("Got SPU %d %d\n", spu->number, spu->node);
	spu_init_channels(spu);
575 576
	return spu;
}
577

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
/**
 * find_victim - find a lower priority context to preempt
 * @ctx:	canidate context for running
 *
 * Returns the freed physical spu to run the new context on.
 */
static struct spu *find_victim(struct spu_context *ctx)
{
	struct spu_context *victim = NULL;
	struct spu *spu;
	int node, n;

	/*
	 * Look for a possible preemption candidate on the local node first.
	 * If there is no candidate look at the other nodes.  This isn't
593
	 * exactly fair, but so far the whole spu scheduler tries to keep
594 595 596 597 598 599 600
	 * a strong node affinity.  We might want to fine-tune this in
	 * the future.
	 */
 restart:
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
601
		if (!node_allowed(ctx, node))
602 603
			continue;

604 605
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
606 607
			struct spu_context *tmp = spu->ctx;

608
			if (tmp && tmp->prio > ctx->prio &&
609
			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
610
			    (!victim || tmp->prio > victim->prio))
611 612
				victim = spu->ctx;
		}
613
		mutex_unlock(&cbe_spu_info[node].list_mutex);
614 615 616 617 618 619 620

		if (victim) {
			/*
			 * This nests ctx->state_mutex, but we always lock
			 * higher priority contexts before lower priority
			 * ones, so this is safe until we introduce
			 * priority inheritance schemes.
621 622 623 624
			 *
			 * XXX if the highest priority context is locked,
			 * this can loop a long time.  Might be better to
			 * look at another context or give up after X retries.
625 626 627 628 629 630 631
			 */
			if (!mutex_trylock(&victim->state_mutex)) {
				victim = NULL;
				goto restart;
			}

			spu = victim->spu;
632
			if (!spu || victim->prio <= ctx->prio) {
633 634
				/*
				 * This race can happen because we've dropped
635
				 * the active list mutex.  Not a problem, just
636 637 638 639 640 641
				 * restart the search.
				 */
				mutex_unlock(&victim->state_mutex);
				victim = NULL;
				goto restart;
			}
642 643 644

			mutex_lock(&cbe_spu_info[node].list_mutex);
			cbe_spu_info[node].nr_active--;
645
			spu_unbind_context(spu, victim);
646 647
			mutex_unlock(&cbe_spu_info[node].list_mutex);

648
			victim->stats.invol_ctx_switch++;
649
			spu->stats.invol_ctx_switch++;
650 651
			spu_add_to_rq(victim);

652
			mutex_unlock(&victim->state_mutex);
653

654 655 656 657 658 659 660
			return spu;
		}
	}

	return NULL;
}

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
{
	int node = spu->node;
	int success = 0;

	spu_set_timeslice(ctx);

	mutex_lock(&cbe_spu_info[node].list_mutex);
	if (spu->ctx == NULL) {
		spu_bind_context(spu, ctx);
		cbe_spu_info[node].nr_active++;
		spu->alloc_state = SPU_USED;
		success = 1;
	}
	mutex_unlock(&cbe_spu_info[node].list_mutex);

	if (success)
		wake_up_all(&ctx->run_wq);
	else
		spu_add_to_rq(ctx);
}

static void spu_schedule(struct spu *spu, struct spu_context *ctx)
{
685 686 687
	/* not a candidate for interruptible because it's called either
	   from the scheduler thread or from spu_deactivate */
	mutex_lock(&ctx->state_mutex);
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
	__spu_schedule(spu, ctx);
	spu_release(ctx);
}

static void spu_unschedule(struct spu *spu, struct spu_context *ctx)
{
	int node = spu->node;

	mutex_lock(&cbe_spu_info[node].list_mutex);
	cbe_spu_info[node].nr_active--;
	spu->alloc_state = SPU_FREE;
	spu_unbind_context(spu, ctx);
	ctx->stats.invol_ctx_switch++;
	spu->stats.invol_ctx_switch++;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
}

705 706 707 708 709
/**
 * spu_activate - find a free spu for a context and execute it
 * @ctx:	spu context to schedule
 * @flags:	flags (currently ignored)
 *
710
 * Tries to find a free spu to run @ctx.  If no free spu is available
711 712 713
 * add the context to the runqueue so it gets woken up once an spu
 * is available.
 */
714
int spu_activate(struct spu_context *ctx, unsigned long flags)
715
{
716
	struct spu *spu;
717

718 719 720 721 722 723 724 725
	/*
	 * If there are multiple threads waiting for a single context
	 * only one actually binds the context while the others will
	 * only be able to acquire the state_mutex once the context
	 * already is in runnable state.
	 */
	if (ctx->spu)
		return 0;
726

727 728 729
spu_activate_top:
	if (signal_pending(current))
		return -ERESTARTSYS;
730

731 732 733 734 735 736 737 738 739 740 741 742 743 744
	spu = spu_get_idle(ctx);
	/*
	 * If this is a realtime thread we try to get it running by
	 * preempting a lower priority thread.
	 */
	if (!spu && rt_prio(ctx->prio))
		spu = find_victim(ctx);
	if (spu) {
		unsigned long runcntl;

		runcntl = ctx->ops->runcntl_read(ctx);
		__spu_schedule(spu, ctx);
		if (runcntl & SPU_RUNCNTL_RUNNABLE)
			spuctx_switch_state(ctx, SPU_UTIL_USER);
745

746 747 748 749
		return 0;
	}

	if (ctx->flags & SPU_CREATE_NOSCHED) {
750
		spu_prio_wait(ctx);
751 752 753 754
		goto spu_activate_top;
	}

	spu_add_to_rq(ctx);
755

756
	return 0;
757 758
}

759 760 761 762 763 764
/**
 * grab_runnable_context - try to find a runnable context
 *
 * Remove the highest priority context on the runqueue and return it
 * to the caller.  Returns %NULL if no runnable context was found.
 */
765
static struct spu_context *grab_runnable_context(int prio, int node)
766
{
767
	struct spu_context *ctx;
768 769 770
	int best;

	spin_lock(&spu_prio->runq_lock);
771
	best = find_first_bit(spu_prio->bitmap, prio);
772
	while (best < prio) {
773 774
		struct list_head *rq = &spu_prio->runq[best];

775 776 777 778 779 780 781 782
		list_for_each_entry(ctx, rq, rq) {
			/* XXX(hch): check for affinity here aswell */
			if (__node_allowed(ctx, node)) {
				__spu_del_from_rq(ctx);
				goto found;
			}
		}
		best++;
783
	}
784 785
	ctx = NULL;
 found:
786 787 788 789 790 791 792 793 794 795
	spin_unlock(&spu_prio->runq_lock);
	return ctx;
}

static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
{
	struct spu *spu = ctx->spu;
	struct spu_context *new = NULL;

	if (spu) {
796
		new = grab_runnable_context(max_prio, spu->node);
797
		if (new || force) {
798 799 800 801 802 803 804
			spu_unschedule(spu, ctx);
			if (new) {
				if (new->flags & SPU_CREATE_NOSCHED)
					wake_up(&new->stop_wq);
				else {
					spu_release(ctx);
					spu_schedule(spu, new);
805 806 807
					/* this one can't easily be made
					   interruptible */
					mutex_lock(&ctx->state_mutex);
808 809
				}
			}
810 811 812 813 814 815
		}
	}

	return new != NULL;
}

816 817 818 819 820 821 822
/**
 * spu_deactivate - unbind a context from it's physical spu
 * @ctx:	spu context to unbind
 *
 * Unbind @ctx from the physical spu it is running on and schedule
 * the highest priority context to run on the freed physical spu.
 */
823 824
void spu_deactivate(struct spu_context *ctx)
{
825
	__spu_deactivate(ctx, 1, MAX_PRIO);
826 827
}

828
/**
829
 * spu_yield -	yield a physical spu if others are waiting
830 831 832 833 834 835
 * @ctx:	spu context to yield
 *
 * Check if there is a higher priority context waiting and if yes
 * unbind @ctx from the physical spu and schedule the highest
 * priority context to run on the freed physical spu instead.
 */
836 837
void spu_yield(struct spu_context *ctx)
{
838 839
	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
		mutex_lock(&ctx->state_mutex);
840
		__spu_deactivate(ctx, 0, MAX_PRIO);
841 842
		mutex_unlock(&ctx->state_mutex);
	}
843
}
844

845
static noinline void spusched_tick(struct spu_context *ctx)
846
{
847 848 849 850
	struct spu_context *new = NULL;
	struct spu *spu = NULL;
	u32 status;

851 852
	if (spu_acquire(ctx))
		BUG();	/* a kernel thread never has signals pending */
853 854 855 856 857

	if (ctx->state != SPU_STATE_RUNNABLE)
		goto out;
	if (spu_stopped(ctx, &status))
		goto out;
858
	if (ctx->flags & SPU_CREATE_NOSCHED)
859
		goto out;
860
	if (ctx->policy == SCHED_FIFO)
861
		goto out;
862 863

	if (--ctx->time_slice)
864
		goto out;
865

866 867 868 869 870
	spu = ctx->spu;
	new = grab_runnable_context(ctx->prio + 1, spu->node);
	if (new) {
		spu_unschedule(spu, ctx);
		spu_add_to_rq(ctx);
871
	} else {
872
		ctx->time_slice++;
873
	}
874 875 876 877 878
out:
	spu_release(ctx);

	if (new)
		spu_schedule(spu, new);
879 880
}

881 882 883 884 885
/**
 * count_active_contexts - count nr of active tasks
 *
 * Return the number of tasks currently running or waiting to run.
 *
886
 * Note that we don't take runq_lock / list_mutex here.  Reading
887 888 889 890 891 892 893 894
 * a single 32bit value is atomic on powerpc, and we don't care
 * about memory ordering issues here.
 */
static unsigned long count_active_contexts(void)
{
	int nr_active = 0, node;

	for (node = 0; node < MAX_NUMNODES; node++)
895
		nr_active += cbe_spu_info[node].nr_active;
896 897 898 899 900 901
	nr_active += spu_prio->nr_waiting;

	return nr_active;
}

/**
902
 * spu_calc_load - update the avenrun load estimates.
903 904 905 906
 *
 * No locking against reading these values from userspace, as for
 * the CPU loadavg code.
 */
907
static void spu_calc_load(void)
908 909
{
	unsigned long active_tasks; /* fixed-point */
910 911 912 913 914

	active_tasks = count_active_contexts() * FIXED_1;
	CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
	CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
	CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
915 916
}

917 918 919 920
static void spusched_wake(unsigned long data)
{
	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	wake_up_process(spusched_task);
921 922 923 924 925 926
}

static void spuloadavg_wake(unsigned long data)
{
	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
	spu_calc_load();
927 928 929 930
}

static int spusched_thread(void *unused)
{
931
	struct spu *spu;
932 933 934 935 936 937
	int node;

	while (!kthread_should_stop()) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
		for (node = 0; node < MAX_NUMNODES; node++) {
938 939 940 941 942 943 944 945 946 947 948 949 950 951
			struct mutex *mtx = &cbe_spu_info[node].list_mutex;

			mutex_lock(mtx);
			list_for_each_entry(spu, &cbe_spu_info[node].spus,
					cbe_list) {
				struct spu_context *ctx = spu->ctx;

				if (ctx) {
					mutex_unlock(mtx);
					spusched_tick(ctx);
					mutex_lock(mtx);
				}
			}
			mutex_unlock(mtx);
952 953 954 955 956 957
		}
	}

	return 0;
}

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
void spuctx_switch_state(struct spu_context *ctx,
		enum spu_utilization_state new_state)
{
	unsigned long long curtime;
	signed long long delta;
	struct timespec ts;
	struct spu *spu;
	enum spu_utilization_state old_state;

	ktime_get_ts(&ts);
	curtime = timespec_to_ns(&ts);
	delta = curtime - ctx->stats.tstamp;

	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
	WARN_ON(delta < 0);

	spu = ctx->spu;
	old_state = ctx->stats.util_state;
	ctx->stats.util_state = new_state;
	ctx->stats.tstamp = curtime;

	/*
	 * Update the physical SPU utilization statistics.
	 */
	if (spu) {
		ctx->stats.times[old_state] += delta;
		spu->stats.times[old_state] += delta;
		spu->stats.util_state = new_state;
		spu->stats.tstamp = curtime;
	}
}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)

static int show_spu_loadavg(struct seq_file *s, void *private)
{
	int a, b, c;

	a = spu_avenrun[0] + (FIXED_1/200);
	b = spu_avenrun[1] + (FIXED_1/200);
	c = spu_avenrun[2] + (FIXED_1/200);

	/*
	 * Note that last_pid doesn't really make much sense for the
1003
	 * SPU loadavg (it even seems very odd on the CPU side...),
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	 * but we include it here to have a 100% compatible interface.
	 */
	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
		LOAD_INT(a), LOAD_FRAC(a),
		LOAD_INT(b), LOAD_FRAC(b),
		LOAD_INT(c), LOAD_FRAC(c),
		count_active_contexts(),
		atomic_read(&nr_spu_contexts),
		current->nsproxy->pid_ns->last_pid);
	return 0;
}

static int spu_loadavg_open(struct inode *inode, struct file *file)
{
	return single_open(file, show_spu_loadavg, NULL);
}

static const struct file_operations spu_loadavg_fops = {
	.open		= spu_loadavg_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1028 1029
int __init spu_sched_init(void)
{
1030 1031
	struct proc_dir_entry *entry;
	int err = -ENOMEM, i;
1032

1033
	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1034
	if (!spu_prio)
1035
		goto out;
1036

1037
	for (i = 0; i < MAX_PRIO; i++) {
1038
		INIT_LIST_HEAD(&spu_prio->runq[i]);
1039
		__clear_bit(i, spu_prio->bitmap);
1040
	}
1041
	spin_lock_init(&spu_prio->runq_lock);
1042

1043
	setup_timer(&spusched_timer, spusched_wake, 0);
1044
	setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1045

1046 1047
	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
	if (IS_ERR(spusched_task)) {
1048 1049
		err = PTR_ERR(spusched_task);
		goto out_free_spu_prio;
1050
	}
1051

1052 1053
	mod_timer(&spuloadavg_timer, 0);

1054 1055 1056 1057 1058
	entry = create_proc_entry("spu_loadavg", 0, NULL);
	if (!entry)
		goto out_stop_kthread;
	entry->proc_fops = &spu_loadavg_fops;

1059 1060
	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1061
	return 0;
1062

1063 1064 1065 1066 1067 1068
 out_stop_kthread:
	kthread_stop(spusched_task);
 out_free_spu_prio:
	kfree(spu_prio);
 out:
	return err;
1069 1070
}

1071
void spu_sched_exit(void)
1072
{
1073
	struct spu *spu;
1074 1075
	int node;

1076 1077
	remove_proc_entry("spu_loadavg", NULL);

1078
	del_timer_sync(&spusched_timer);
1079
	del_timer_sync(&spuloadavg_timer);
1080 1081
	kthread_stop(spusched_task);

1082
	for (node = 0; node < MAX_NUMNODES; node++) {
1083 1084 1085 1086 1087
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
			if (spu->alloc_state != SPU_FREE)
				spu->alloc_state = SPU_FREE;
		mutex_unlock(&cbe_spu_info[node].list_mutex);
1088
	}
1089
	kfree(spu_prio);
1090
}