sched.c 29.5 KB
Newer Older
1 2 3 4 5
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
6
 * 2006-03-31	NUMA domains added.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27 28 29
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
30
#include <linux/slab.h>
31 32 33 34 35
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
36 37
#include <linux/numa.h>
#include <linux/mutex.h>
38
#include <linux/notifier.h>
39
#include <linux/kthread.h>
40 41 42
#include <linux/pid_namespace.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
43 44 45 46 47

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
48
#include <asm/spu_priv1.h>
49
#include "spufs.h"
50 51
#define CREATE_TRACE_POINTS
#include "sputrace.h"
52 53

struct spu_prio_array {
54
	DECLARE_BITMAP(bitmap, MAX_PRIO);
55 56
	struct list_head runq[MAX_PRIO];
	spinlock_t runq_lock;
57
	int nr_waiting;
58 59
};

60
static unsigned long spu_avenrun[3];
61
static struct spu_prio_array *spu_prio;
62 63
static struct task_struct *spusched_task;
static struct timer_list spusched_timer;
64
static struct timer_list spuloadavg_timer;
65

66 67 68 69 70 71 72 73 74 75 76 77 78 79
/*
 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
 */
#define NORMAL_PRIO		120

/*
 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
 * tick for every 10 CPU scheduler ticks.
 */
#define SPUSCHED_TICK		(10)

/*
 * These are the 'tuning knobs' of the scheduler:
 *
80 81
 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
82
 */
83 84
#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

#define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)

/*
 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
 * [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */
void spu_set_timeslice(struct spu_context *ctx)
{
	if (ctx->prio < NORMAL_PRIO)
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
	else
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
}

106 107 108 109 110
/*
 * Update scheduling information from the owning thread.
 */
void __spu_update_sched_info(struct spu_context *ctx)
{
111 112 113 114 115 116
	/*
	 * assert that the context is not on the runqueue, so it is safe
	 * to change its scheduling parameters.
	 */
	BUG_ON(!list_empty(&ctx->rq));

117
	/*
118 119 120
	 * 32-Bit assignments are atomic on powerpc, and we don't care about
	 * memory ordering here because retrieving the controlling thread is
	 * per definition racy.
121 122 123
	 */
	ctx->tid = current->pid;

124 125
	/*
	 * We do our own priority calculations, so we normally want
126
	 * ->static_prio to start with. Unfortunately this field
127 128 129 130 131 132 133 134
	 * contains junk for threads with a realtime scheduling
	 * policy so we have to look at ->prio in this case.
	 */
	if (rt_prio(current->prio))
		ctx->prio = current->prio;
	else
		ctx->prio = current->static_prio;
	ctx->policy = current->policy;
135 136

	/*
137 138 139 140 141 142
	 * TO DO: the context may be loaded, so we may need to activate
	 * it again on a different node. But it shouldn't hurt anything
	 * to update its parameters, because we know that the scheduler
	 * is not actively looking at this field, since it is not on the
	 * runqueue. The context will be rescheduled on the proper node
	 * if it is timesliced or preempted.
143 144
	 */
	ctx->cpus_allowed = current->cpus_allowed;
145 146 147

	/* Save the current cpu id for spu interrupt routing. */
	ctx->last_ran = raw_smp_processor_id();
148 149 150 151
}

void spu_update_sched_info(struct spu_context *ctx)
{
152
	int node;
153

154 155
	if (ctx->state == SPU_STATE_RUNNABLE) {
		node = ctx->spu->node;
156 157 158 159

		/*
		 * Take list_mutex to sync with find_victim().
		 */
160 161 162 163 164 165
		mutex_lock(&cbe_spu_info[node].list_mutex);
		__spu_update_sched_info(ctx);
		mutex_unlock(&cbe_spu_info[node].list_mutex);
	} else {
		__spu_update_sched_info(ctx);
	}
166 167
}

168
static int __node_allowed(struct spu_context *ctx, int node)
169
{
170
	if (nr_cpus_node(node)) {
171
		const struct cpumask *mask = cpumask_of_node(node);
172

173
		if (cpumask_intersects(mask, &ctx->cpus_allowed))
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
			return 1;
	}

	return 0;
}

static int node_allowed(struct spu_context *ctx, int node)
{
	int rval;

	spin_lock(&spu_prio->runq_lock);
	rval = __node_allowed(ctx, node);
	spin_unlock(&spu_prio->runq_lock);

	return rval;
189 190
}

191
void do_notify_spus_active(void)
192 193 194 195 196 197 198
{
	int node;

	/*
	 * Wake up the active spu_contexts.
	 *
	 * When the awakened processes see their "notify_active" flag is set,
199
	 * they will call spu_switch_notify().
200 201 202
	 */
	for_each_online_node(node) {
		struct spu *spu;
203 204 205 206 207 208 209 210 211 212

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state != SPU_FREE) {
				struct spu_context *ctx = spu->ctx;
				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
					&ctx->sched_flags);
				mb();
				wake_up_all(&ctx->stop_wq);
			}
213
		}
214
		mutex_unlock(&cbe_spu_info[node].list_mutex);
215 216 217
	}
}

218 219 220 221 222 223
/**
 * spu_bind_context - bind spu context to physical spu
 * @spu:	physical spu to bind to
 * @ctx:	context to bind
 */
static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
224
{
225 226
	spu_context_trace(spu_bind_context__enter, ctx, spu);

227
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
228

229 230 231
	if (ctx->flags & SPU_CREATE_NOSCHED)
		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);

232 233 234
	ctx->stats.slb_flt_base = spu->stats.slb_flt;
	ctx->stats.class2_intr_base = spu->stats.class2_intr;

235 236 237
	spu_associate_mm(spu, ctx->owner);

	spin_lock_irq(&spu->register_lock);
238 239 240 241 242
	spu->ctx = ctx;
	spu->flags = 0;
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
243
	spu->tgid = current->tgid;
244 245
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
246
	spu->stop_callback = spufs_stop_callback;
247
	spu->mfc_callback = spufs_mfc_callback;
248 249
	spin_unlock_irq(&spu->register_lock);

250
	spu_unmap_mappings(ctx);
251

252
	spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
253
	spu_restore(&ctx->csa, spu);
254
	spu->timestamp = jiffies;
255
	spu_switch_notify(spu, ctx);
256
	ctx->state = SPU_STATE_RUNNABLE;
257

258
	spuctx_switch_state(ctx, SPU_UTIL_USER);
259 260
}

261
/*
262
 * Must be used with the list_mutex held.
263 264 265
 */
static inline int sched_spu(struct spu *spu)
{
266 267
	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
}

static void aff_merge_remaining_ctxs(struct spu_gang *gang)
{
	struct spu_context *ctx;

	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
		if (list_empty(&ctx->aff_list))
			list_add(&ctx->aff_list, &gang->aff_list_head);
	}
	gang->aff_flags |= AFF_MERGED;
}

static void aff_set_offsets(struct spu_gang *gang)
{
	struct spu_context *ctx;
	int offset;

	offset = -1;
	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset--;
	}

	offset = 0;
	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset++;
	}

	gang->aff_flags |= AFF_OFFSETS_SET;
}

static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
		 int group_size, int lowest_offset)
{
	struct spu *spu;
	int node, n;

	/*
	 * TODO: A better algorithm could be used to find a good spu to be
	 *       used as reference location for the ctxs chain.
	 */
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
317 318 319 320 321 322 323 324 325
		/*
		 * "available_spus" counts how many spus are not potentially
		 * going to be used by other affinity gangs whose reference
		 * context is already in place. Although this code seeks to
		 * avoid having affinity gangs with a summed amount of
		 * contexts bigger than the amount of spus in the node,
		 * this may happen sporadically. In this case, available_spus
		 * becomes negative, which is harmless.
		 */
326 327
		int available_spus;

328 329 330
		node = (node < MAX_NUMNODES) ? node : 0;
		if (!node_allowed(ctx, node))
			continue;
331 332

		available_spus = 0;
333
		mutex_lock(&cbe_spu_info[node].list_mutex);
334
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
335 336 337 338
			if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
					&& spu->ctx->gang->aff_ref_spu)
				available_spus -= spu->ctx->gang->contexts;
			available_spus++;
339 340 341 342 343 344
		}
		if (available_spus < ctx->gang->contexts) {
			mutex_unlock(&cbe_spu_info[node].list_mutex);
			continue;
		}

345 346
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if ((!mem_aff || spu->has_mem_affinity) &&
347 348
							sched_spu(spu)) {
				mutex_unlock(&cbe_spu_info[node].list_mutex);
349
				return spu;
350
			}
351
		}
352
		mutex_unlock(&cbe_spu_info[node].list_mutex);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
	}
	return NULL;
}

static void aff_set_ref_point_location(struct spu_gang *gang)
{
	int mem_aff, gs, lowest_offset;
	struct spu_context *ctx;
	struct spu *tmp;

	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
	lowest_offset = 0;
	gs = 0;

	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
		gs++;

	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		lowest_offset = ctx->aff_offset;
	}

377 378
	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
							lowest_offset);
379 380
}

381
static struct spu *ctx_location(struct spu *ref, int offset, int node)
382 383 384 385 386 387
{
	struct spu *spu;

	spu = NULL;
	if (offset >= 0) {
		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
388
			BUG_ON(spu->node != node);
389 390 391 392 393 394 395
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset--;
		}
	} else {
		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
396
			BUG_ON(spu->node != node);
397 398 399 400 401 402
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset++;
		}
	}
403

404 405 406 407 408 409 410
	return spu;
}

/*
 * affinity_check is called each time a context is going to be scheduled.
 * It returns the spu ptr on which the context must run.
 */
411
static int has_affinity(struct spu_context *ctx)
412
{
413
	struct spu_gang *gang = ctx->gang;
414 415

	if (list_empty(&ctx->aff_list))
416 417
		return 0;

418 419 420
	if (atomic_read(&ctx->gang->aff_sched_count) == 0)
		ctx->gang->aff_ref_spu = NULL;

421 422 423 424 425 426 427
	if (!gang->aff_ref_spu) {
		if (!(gang->aff_flags & AFF_MERGED))
			aff_merge_remaining_ctxs(gang);
		if (!(gang->aff_flags & AFF_OFFSETS_SET))
			aff_set_offsets(gang);
		aff_set_ref_point_location(gang);
	}
428 429

	return gang->aff_ref_spu != NULL;
430 431
}

432 433 434 435 436
/**
 * spu_unbind_context - unbind spu context from physical spu
 * @spu:	physical spu to unbind from
 * @ctx:	context to unbind
 */
437
static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
438
{
439 440
	u32 status;

441 442
	spu_context_trace(spu_unbind_context__enter, ctx, spu);

443
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
444

445 446
 	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
447

448
	if (ctx->gang)
449 450 451 452 453
		/*
		 * If ctx->gang->aff_sched_count is positive, SPU affinity is
		 * being considered in this gang. Using atomic_dec_if_positive
		 * allow us to skip an explicit check for affinity in this gang
		 */
454
		atomic_dec_if_positive(&ctx->gang->aff_sched_count);
455

456
	spu_switch_notify(spu, NULL);
457
	spu_unmap_mappings(ctx);
458
	spu_save(&ctx->csa, spu);
459
	spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
460 461

	spin_lock_irq(&spu->register_lock);
462
	spu->timestamp = jiffies;
463 464 465
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
466
	spu->stop_callback = NULL;
467
	spu->mfc_callback = NULL;
468
	spu->pid = 0;
469
	spu->tgid = 0;
470
	ctx->ops = &spu_backing_ops;
471
	spu->flags = 0;
472
	spu->ctx = NULL;
473 474 475
	spin_unlock_irq(&spu->register_lock);

	spu_associate_mm(spu, NULL);
476 477 478 479 480

	ctx->stats.slb_flt +=
		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
	ctx->stats.class2_intr +=
		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
481 482 483 484

	/* This maps the underlying spu state to idle */
	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
	ctx->spu = NULL;
485 486 487

	if (spu_stopped(ctx, &status))
		wake_up_all(&ctx->stop_wq);
488 489
}

490 491 492 493
/**
 * spu_add_to_rq - add a context to the runqueue
 * @ctx:       context to add
 */
494
static void __spu_add_to_rq(struct spu_context *ctx)
495
{
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
	/*
	 * Unfortunately this code path can be called from multiple threads
	 * on behalf of a single context due to the way the problem state
	 * mmap support works.
	 *
	 * Fortunately we need to wake up all these threads at the same time
	 * and can simply skip the runqueue addition for every but the first
	 * thread getting into this codepath.
	 *
	 * It's still quite hacky, and long-term we should proxy all other
	 * threads through the owner thread so that spu_run is in control
	 * of all the scheduling activity for a given context.
	 */
	if (list_empty(&ctx->rq)) {
		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
		set_bit(ctx->prio, spu_prio->bitmap);
		if (!spu_prio->nr_waiting++)
I
Ingo Molnar 已提交
513
			mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
514
	}
515
}
516

517 518 519 520 521 522 523
static void spu_add_to_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_add_to_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

524
static void __spu_del_from_rq(struct spu_context *ctx)
525
{
526 527
	int prio = ctx->prio;

528
	if (!list_empty(&ctx->rq)) {
529 530
		if (!--spu_prio->nr_waiting)
			del_timer(&spusched_timer);
531
		list_del_init(&ctx->rq);
532 533 534

		if (list_empty(&spu_prio->runq[prio]))
			clear_bit(prio, spu_prio->bitmap);
535
	}
536
}
537

538 539 540 541 542 543 544
void spu_del_from_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_del_from_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

545
static void spu_prio_wait(struct spu_context *ctx)
546
{
547
	DEFINE_WAIT(wait);
548

549 550 551 552 553 554 555
	/*
	 * The caller must explicitly wait for a context to be loaded
	 * if the nosched flag is set.  If NOSCHED is not set, the caller
	 * queues the context and waits for an spu event or error.
	 */
	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));

556
	spin_lock(&spu_prio->runq_lock);
557
	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
558
	if (!signal_pending(current)) {
559 560
		__spu_add_to_rq(ctx);
		spin_unlock(&spu_prio->runq_lock);
561
		mutex_unlock(&ctx->state_mutex);
562
		schedule();
563
		mutex_lock(&ctx->state_mutex);
564 565
		spin_lock(&spu_prio->runq_lock);
		__spu_del_from_rq(ctx);
566
	}
567
	spin_unlock(&spu_prio->runq_lock);
568 569
	__set_current_state(TASK_RUNNING);
	remove_wait_queue(&ctx->stop_wq, &wait);
570 571
}

572
static struct spu *spu_get_idle(struct spu_context *ctx)
573
{
574
	struct spu *spu, *aff_ref_spu;
575 576
	int node, n;

577 578
	spu_context_nospu_trace(spu_get_idle__enter, ctx);

579 580 581 582 583 584 585 586 587 588 589 590 591
	if (ctx->gang) {
		mutex_lock(&ctx->gang->aff_mutex);
		if (has_affinity(ctx)) {
			aff_ref_spu = ctx->gang->aff_ref_spu;
			atomic_inc(&ctx->gang->aff_sched_count);
			mutex_unlock(&ctx->gang->aff_mutex);
			node = aff_ref_spu->node;

			mutex_lock(&cbe_spu_info[node].list_mutex);
			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
			if (spu && spu->alloc_state == SPU_FREE)
				goto found;
			mutex_unlock(&cbe_spu_info[node].list_mutex);
592

593
			atomic_dec(&ctx->gang->aff_sched_count);
594
			goto not_found;
595 596 597
		}
		mutex_unlock(&ctx->gang->aff_mutex);
	}
598
	node = cpu_to_node(raw_smp_processor_id());
599 600
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
601
		if (!node_allowed(ctx, node))
602
			continue;
603 604 605 606 607 608 609

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state == SPU_FREE)
				goto found;
		}
		mutex_unlock(&cbe_spu_info[node].list_mutex);
610
	}
611

612 613
 not_found:
	spu_context_nospu_trace(spu_get_idle__not_found, ctx);
614 615 616 617 618
	return NULL;

 found:
	spu->alloc_state = SPU_USED;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
619
	spu_context_trace(spu_get_idle__found, ctx, spu);
620
	spu_init_channels(spu);
621 622
	return spu;
}
623

624 625 626 627 628 629 630 631 632 633 634 635
/**
 * find_victim - find a lower priority context to preempt
 * @ctx:	canidate context for running
 *
 * Returns the freed physical spu to run the new context on.
 */
static struct spu *find_victim(struct spu_context *ctx)
{
	struct spu_context *victim = NULL;
	struct spu *spu;
	int node, n;

636
	spu_context_nospu_trace(spu_find_victim__enter, ctx);
637

638 639 640
	/*
	 * Look for a possible preemption candidate on the local node first.
	 * If there is no candidate look at the other nodes.  This isn't
641
	 * exactly fair, but so far the whole spu scheduler tries to keep
642 643 644 645 646 647 648
	 * a strong node affinity.  We might want to fine-tune this in
	 * the future.
	 */
 restart:
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
649
		if (!node_allowed(ctx, node))
650 651
			continue;

652 653
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
654 655
			struct spu_context *tmp = spu->ctx;

656
			if (tmp && tmp->prio > ctx->prio &&
657
			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
658
			    (!victim || tmp->prio > victim->prio)) {
659
				victim = spu->ctx;
660
			}
661
		}
662 663
		if (victim)
			get_spu_context(victim);
664
		mutex_unlock(&cbe_spu_info[node].list_mutex);
665 666 667 668 669 670 671

		if (victim) {
			/*
			 * This nests ctx->state_mutex, but we always lock
			 * higher priority contexts before lower priority
			 * ones, so this is safe until we introduce
			 * priority inheritance schemes.
672 673 674 675
			 *
			 * XXX if the highest priority context is locked,
			 * this can loop a long time.  Might be better to
			 * look at another context or give up after X retries.
676 677
			 */
			if (!mutex_trylock(&victim->state_mutex)) {
678
				put_spu_context(victim);
679 680 681 682 683
				victim = NULL;
				goto restart;
			}

			spu = victim->spu;
684
			if (!spu || victim->prio <= ctx->prio) {
685 686
				/*
				 * This race can happen because we've dropped
687
				 * the active list mutex.  Not a problem, just
688 689 690
				 * restart the search.
				 */
				mutex_unlock(&victim->state_mutex);
691
				put_spu_context(victim);
692 693 694
				victim = NULL;
				goto restart;
			}
695

696 697
			spu_context_trace(__spu_deactivate__unload, ctx, spu);

698 699
			mutex_lock(&cbe_spu_info[node].list_mutex);
			cbe_spu_info[node].nr_active--;
700
			spu_unbind_context(spu, victim);
701 702
			mutex_unlock(&cbe_spu_info[node].list_mutex);

703
			victim->stats.invol_ctx_switch++;
704
			spu->stats.invol_ctx_switch++;
705
			if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
706
				spu_add_to_rq(victim);
707

708
			mutex_unlock(&victim->state_mutex);
709
			put_spu_context(victim);
710

711 712 713 714 715 716 717
			return spu;
		}
	}

	return NULL;
}

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
{
	int node = spu->node;
	int success = 0;

	spu_set_timeslice(ctx);

	mutex_lock(&cbe_spu_info[node].list_mutex);
	if (spu->ctx == NULL) {
		spu_bind_context(spu, ctx);
		cbe_spu_info[node].nr_active++;
		spu->alloc_state = SPU_USED;
		success = 1;
	}
	mutex_unlock(&cbe_spu_info[node].list_mutex);

	if (success)
		wake_up_all(&ctx->run_wq);
	else
		spu_add_to_rq(ctx);
}

static void spu_schedule(struct spu *spu, struct spu_context *ctx)
{
742 743 744
	/* not a candidate for interruptible because it's called either
	   from the scheduler thread or from spu_deactivate */
	mutex_lock(&ctx->state_mutex);
745 746
	if (ctx->state == SPU_STATE_SAVED)
		__spu_schedule(spu, ctx);
747 748 749
	spu_release(ctx);
}

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
/**
 * spu_unschedule - remove a context from a spu, and possibly release it.
 * @spu:	The SPU to unschedule from
 * @ctx:	The context currently scheduled on the SPU
 * @free_spu	Whether to free the SPU for other contexts
 *
 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
 * SPU is made available for other contexts (ie, may be returned by
 * spu_get_idle). If this is zero, the caller is expected to schedule another
 * context to this spu.
 *
 * Should be called with ctx->state_mutex held.
 */
static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
		int free_spu)
765 766 767 768 769
{
	int node = spu->node;

	mutex_lock(&cbe_spu_info[node].list_mutex);
	cbe_spu_info[node].nr_active--;
770 771
	if (free_spu)
		spu->alloc_state = SPU_FREE;
772 773 774 775 776 777
	spu_unbind_context(spu, ctx);
	ctx->stats.invol_ctx_switch++;
	spu->stats.invol_ctx_switch++;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
}

778 779 780 781 782
/**
 * spu_activate - find a free spu for a context and execute it
 * @ctx:	spu context to schedule
 * @flags:	flags (currently ignored)
 *
783
 * Tries to find a free spu to run @ctx.  If no free spu is available
784 785 786
 * add the context to the runqueue so it gets woken up once an spu
 * is available.
 */
787
int spu_activate(struct spu_context *ctx, unsigned long flags)
788
{
789
	struct spu *spu;
790

791 792 793 794 795 796 797 798
	/*
	 * If there are multiple threads waiting for a single context
	 * only one actually binds the context while the others will
	 * only be able to acquire the state_mutex once the context
	 * already is in runnable state.
	 */
	if (ctx->spu)
		return 0;
799

800 801 802
spu_activate_top:
	if (signal_pending(current))
		return -ERESTARTSYS;
803

804 805 806 807 808 809 810 811 812 813 814 815 816 817
	spu = spu_get_idle(ctx);
	/*
	 * If this is a realtime thread we try to get it running by
	 * preempting a lower priority thread.
	 */
	if (!spu && rt_prio(ctx->prio))
		spu = find_victim(ctx);
	if (spu) {
		unsigned long runcntl;

		runcntl = ctx->ops->runcntl_read(ctx);
		__spu_schedule(spu, ctx);
		if (runcntl & SPU_RUNCNTL_RUNNABLE)
			spuctx_switch_state(ctx, SPU_UTIL_USER);
818

819 820 821 822
		return 0;
	}

	if (ctx->flags & SPU_CREATE_NOSCHED) {
823
		spu_prio_wait(ctx);
824 825 826 827
		goto spu_activate_top;
	}

	spu_add_to_rq(ctx);
828

829
	return 0;
830 831
}

832 833 834 835 836 837
/**
 * grab_runnable_context - try to find a runnable context
 *
 * Remove the highest priority context on the runqueue and return it
 * to the caller.  Returns %NULL if no runnable context was found.
 */
838
static struct spu_context *grab_runnable_context(int prio, int node)
839
{
840
	struct spu_context *ctx;
841 842 843
	int best;

	spin_lock(&spu_prio->runq_lock);
844
	best = find_first_bit(spu_prio->bitmap, prio);
845
	while (best < prio) {
846 847
		struct list_head *rq = &spu_prio->runq[best];

848 849 850 851 852 853 854 855
		list_for_each_entry(ctx, rq, rq) {
			/* XXX(hch): check for affinity here aswell */
			if (__node_allowed(ctx, node)) {
				__spu_del_from_rq(ctx);
				goto found;
			}
		}
		best++;
856
	}
857 858
	ctx = NULL;
 found:
859 860 861 862 863 864 865 866 867 868
	spin_unlock(&spu_prio->runq_lock);
	return ctx;
}

static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
{
	struct spu *spu = ctx->spu;
	struct spu_context *new = NULL;

	if (spu) {
869
		new = grab_runnable_context(max_prio, spu->node);
870
		if (new || force) {
871
			spu_unschedule(spu, ctx, new == NULL);
872 873 874 875 876 877
			if (new) {
				if (new->flags & SPU_CREATE_NOSCHED)
					wake_up(&new->stop_wq);
				else {
					spu_release(ctx);
					spu_schedule(spu, new);
878 879 880
					/* this one can't easily be made
					   interruptible */
					mutex_lock(&ctx->state_mutex);
881 882
				}
			}
883 884 885 886 887 888
		}
	}

	return new != NULL;
}

889 890 891 892 893 894 895
/**
 * spu_deactivate - unbind a context from it's physical spu
 * @ctx:	spu context to unbind
 *
 * Unbind @ctx from the physical spu it is running on and schedule
 * the highest priority context to run on the freed physical spu.
 */
896 897
void spu_deactivate(struct spu_context *ctx)
{
898
	spu_context_nospu_trace(spu_deactivate__enter, ctx);
899
	__spu_deactivate(ctx, 1, MAX_PRIO);
900 901
}

902
/**
903
 * spu_yield -	yield a physical spu if others are waiting
904 905 906 907 908 909
 * @ctx:	spu context to yield
 *
 * Check if there is a higher priority context waiting and if yes
 * unbind @ctx from the physical spu and schedule the highest
 * priority context to run on the freed physical spu instead.
 */
910 911
void spu_yield(struct spu_context *ctx)
{
912
	spu_context_nospu_trace(spu_yield__enter, ctx);
913 914
	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
		mutex_lock(&ctx->state_mutex);
915
		__spu_deactivate(ctx, 0, MAX_PRIO);
916 917
		mutex_unlock(&ctx->state_mutex);
	}
918
}
919

920
static noinline void spusched_tick(struct spu_context *ctx)
921
{
922 923 924
	struct spu_context *new = NULL;
	struct spu *spu = NULL;

925 926
	if (spu_acquire(ctx))
		BUG();	/* a kernel thread never has signals pending */
927 928 929

	if (ctx->state != SPU_STATE_RUNNABLE)
		goto out;
930
	if (ctx->flags & SPU_CREATE_NOSCHED)
931
		goto out;
932
	if (ctx->policy == SCHED_FIFO)
933
		goto out;
934

935
	if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
936
		goto out;
937

938
	spu = ctx->spu;
939 940 941

	spu_context_trace(spusched_tick__preempt, ctx, spu);

942 943
	new = grab_runnable_context(ctx->prio + 1, spu->node);
	if (new) {
944
		spu_unschedule(spu, ctx, 0);
945
		if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
946
			spu_add_to_rq(ctx);
947
	} else {
948
		spu_context_nospu_trace(spusched_tick__newslice, ctx);
949 950
		if (!ctx->time_slice)
			ctx->time_slice++;
951
	}
952 953 954 955 956
out:
	spu_release(ctx);

	if (new)
		spu_schedule(spu, new);
957 958
}

959 960 961 962 963
/**
 * count_active_contexts - count nr of active tasks
 *
 * Return the number of tasks currently running or waiting to run.
 *
964
 * Note that we don't take runq_lock / list_mutex here.  Reading
965 966 967 968 969 970 971 972
 * a single 32bit value is atomic on powerpc, and we don't care
 * about memory ordering issues here.
 */
static unsigned long count_active_contexts(void)
{
	int nr_active = 0, node;

	for (node = 0; node < MAX_NUMNODES; node++)
973
		nr_active += cbe_spu_info[node].nr_active;
974 975 976 977 978 979
	nr_active += spu_prio->nr_waiting;

	return nr_active;
}

/**
980
 * spu_calc_load - update the avenrun load estimates.
981 982 983 984
 *
 * No locking against reading these values from userspace, as for
 * the CPU loadavg code.
 */
985
static void spu_calc_load(void)
986 987
{
	unsigned long active_tasks; /* fixed-point */
988 989 990 991 992

	active_tasks = count_active_contexts() * FIXED_1;
	CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
	CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
	CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
993 994
}

995 996 997 998
static void spusched_wake(unsigned long data)
{
	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	wake_up_process(spusched_task);
999 1000 1001 1002 1003 1004
}

static void spuloadavg_wake(unsigned long data)
{
	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
	spu_calc_load();
1005 1006 1007 1008
}

static int spusched_thread(void *unused)
{
1009
	struct spu *spu;
1010 1011 1012 1013 1014 1015
	int node;

	while (!kthread_should_stop()) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
		for (node = 0; node < MAX_NUMNODES; node++) {
1016 1017 1018 1019 1020 1021 1022 1023
			struct mutex *mtx = &cbe_spu_info[node].list_mutex;

			mutex_lock(mtx);
			list_for_each_entry(spu, &cbe_spu_info[node].spus,
					cbe_list) {
				struct spu_context *ctx = spu->ctx;

				if (ctx) {
1024
					get_spu_context(ctx);
1025 1026 1027
					mutex_unlock(mtx);
					spusched_tick(ctx);
					mutex_lock(mtx);
1028
					put_spu_context(ctx);
1029 1030 1031
				}
			}
			mutex_unlock(mtx);
1032 1033 1034 1035 1036 1037
		}
	}

	return 0;
}

1038 1039 1040 1041 1042 1043 1044 1045
void spuctx_switch_state(struct spu_context *ctx,
		enum spu_utilization_state new_state)
{
	unsigned long long curtime;
	signed long long delta;
	struct timespec ts;
	struct spu *spu;
	enum spu_utilization_state old_state;
1046
	int node;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

	ktime_get_ts(&ts);
	curtime = timespec_to_ns(&ts);
	delta = curtime - ctx->stats.tstamp;

	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
	WARN_ON(delta < 0);

	spu = ctx->spu;
	old_state = ctx->stats.util_state;
	ctx->stats.util_state = new_state;
	ctx->stats.tstamp = curtime;

	/*
	 * Update the physical SPU utilization statistics.
	 */
	if (spu) {
		ctx->stats.times[old_state] += delta;
		spu->stats.times[old_state] += delta;
		spu->stats.util_state = new_state;
		spu->stats.tstamp = curtime;
1068 1069 1070
		node = spu->node;
		if (old_state == SPU_UTIL_USER)
			atomic_dec(&cbe_spu_info[node].busy_spus);
1071
		if (new_state == SPU_UTIL_USER)
1072
			atomic_inc(&cbe_spu_info[node].busy_spus);
1073 1074 1075
	}
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)

static int show_spu_loadavg(struct seq_file *s, void *private)
{
	int a, b, c;

	a = spu_avenrun[0] + (FIXED_1/200);
	b = spu_avenrun[1] + (FIXED_1/200);
	c = spu_avenrun[2] + (FIXED_1/200);

	/*
	 * Note that last_pid doesn't really make much sense for the
1089
	 * SPU loadavg (it even seems very odd on the CPU side...),
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	 * but we include it here to have a 100% compatible interface.
	 */
	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
		LOAD_INT(a), LOAD_FRAC(a),
		LOAD_INT(b), LOAD_FRAC(b),
		LOAD_INT(c), LOAD_FRAC(c),
		count_active_contexts(),
		atomic_read(&nr_spu_contexts),
		current->nsproxy->pid_ns->last_pid);
	return 0;
}

static int spu_loadavg_open(struct inode *inode, struct file *file)
{
	return single_open(file, show_spu_loadavg, NULL);
}

static const struct file_operations spu_loadavg_fops = {
	.open		= spu_loadavg_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1114 1115
int __init spu_sched_init(void)
{
1116 1117
	struct proc_dir_entry *entry;
	int err = -ENOMEM, i;
1118

1119
	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1120
	if (!spu_prio)
1121
		goto out;
1122

1123
	for (i = 0; i < MAX_PRIO; i++) {
1124
		INIT_LIST_HEAD(&spu_prio->runq[i]);
1125
		__clear_bit(i, spu_prio->bitmap);
1126
	}
1127
	spin_lock_init(&spu_prio->runq_lock);
1128

1129
	setup_timer(&spusched_timer, spusched_wake, 0);
1130
	setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1131

1132 1133
	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
	if (IS_ERR(spusched_task)) {
1134 1135
		err = PTR_ERR(spusched_task);
		goto out_free_spu_prio;
1136
	}
1137

1138 1139
	mod_timer(&spuloadavg_timer, 0);

1140
	entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
1141 1142 1143
	if (!entry)
		goto out_stop_kthread;

1144 1145
	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1146
	return 0;
1147

1148 1149 1150 1151 1152 1153
 out_stop_kthread:
	kthread_stop(spusched_task);
 out_free_spu_prio:
	kfree(spu_prio);
 out:
	return err;
1154 1155
}

1156
void spu_sched_exit(void)
1157
{
1158
	struct spu *spu;
1159 1160
	int node;

1161 1162
	remove_proc_entry("spu_loadavg", NULL);

1163
	del_timer_sync(&spusched_timer);
1164
	del_timer_sync(&spuloadavg_timer);
1165 1166
	kthread_stop(spusched_task);

1167
	for (node = 0; node < MAX_NUMNODES; node++) {
1168 1169 1170 1171 1172
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
			if (spu->alloc_state != SPU_FREE)
				spu->alloc_state = SPU_FREE;
		mutex_unlock(&cbe_spu_info[node].list_mutex);
1173
	}
1174
	kfree(spu_prio);
1175
}