sched.c 27.7 KB
Newer Older
1 2 3 4 5
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
6
 * 2006-03-31	NUMA domains added.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27 28 29 30 31 32 33 34
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
35 36
#include <linux/numa.h>
#include <linux/mutex.h>
37
#include <linux/notifier.h>
38
#include <linux/kthread.h>
39 40 41
#include <linux/pid_namespace.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
42
#include <linux/marker.h>
43 44 45 46 47

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
48
#include <asm/spu_priv1.h>
49 50 51
#include "spufs.h"

struct spu_prio_array {
52
	DECLARE_BITMAP(bitmap, MAX_PRIO);
53 54
	struct list_head runq[MAX_PRIO];
	spinlock_t runq_lock;
55
	int nr_waiting;
56 57
};

58
static unsigned long spu_avenrun[3];
59
static struct spu_prio_array *spu_prio;
60 61
static struct task_struct *spusched_task;
static struct timer_list spusched_timer;
62
static struct timer_list spuloadavg_timer;
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77
/*
 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
 */
#define NORMAL_PRIO		120

/*
 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
 * tick for every 10 CPU scheduler ticks.
 */
#define SPUSCHED_TICK		(10)

/*
 * These are the 'tuning knobs' of the scheduler:
 *
78 79
 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
80
 */
81 82
#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

#define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)

/*
 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
 * [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */
void spu_set_timeslice(struct spu_context *ctx)
{
	if (ctx->prio < NORMAL_PRIO)
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
	else
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
}

104 105 106 107 108
/*
 * Update scheduling information from the owning thread.
 */
void __spu_update_sched_info(struct spu_context *ctx)
{
109 110 111 112 113 114
	/*
	 * assert that the context is not on the runqueue, so it is safe
	 * to change its scheduling parameters.
	 */
	BUG_ON(!list_empty(&ctx->rq));

115
	/*
116 117 118
	 * 32-Bit assignments are atomic on powerpc, and we don't care about
	 * memory ordering here because retrieving the controlling thread is
	 * per definition racy.
119 120 121
	 */
	ctx->tid = current->pid;

122 123
	/*
	 * We do our own priority calculations, so we normally want
124
	 * ->static_prio to start with. Unfortunately this field
125 126 127 128 129 130 131 132
	 * contains junk for threads with a realtime scheduling
	 * policy so we have to look at ->prio in this case.
	 */
	if (rt_prio(current->prio))
		ctx->prio = current->prio;
	else
		ctx->prio = current->static_prio;
	ctx->policy = current->policy;
133 134

	/*
135 136 137 138 139 140
	 * TO DO: the context may be loaded, so we may need to activate
	 * it again on a different node. But it shouldn't hurt anything
	 * to update its parameters, because we know that the scheduler
	 * is not actively looking at this field, since it is not on the
	 * runqueue. The context will be rescheduled on the proper node
	 * if it is timesliced or preempted.
141 142
	 */
	ctx->cpus_allowed = current->cpus_allowed;
143 144 145

	/* Save the current cpu id for spu interrupt routing. */
	ctx->last_ran = raw_smp_processor_id();
146 147 148 149
}

void spu_update_sched_info(struct spu_context *ctx)
{
150
	int node;
151

152 153
	if (ctx->state == SPU_STATE_RUNNABLE) {
		node = ctx->spu->node;
154 155 156 157

		/*
		 * Take list_mutex to sync with find_victim().
		 */
158 159 160 161 162 163
		mutex_lock(&cbe_spu_info[node].list_mutex);
		__spu_update_sched_info(ctx);
		mutex_unlock(&cbe_spu_info[node].list_mutex);
	} else {
		__spu_update_sched_info(ctx);
	}
164 165
}

166
static int __node_allowed(struct spu_context *ctx, int node)
167
{
168 169
	if (nr_cpus_node(node)) {
		cpumask_t mask = node_to_cpumask(node);
170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
		if (cpus_intersects(mask, ctx->cpus_allowed))
			return 1;
	}

	return 0;
}

static int node_allowed(struct spu_context *ctx, int node)
{
	int rval;

	spin_lock(&spu_prio->runq_lock);
	rval = __node_allowed(ctx, node);
	spin_unlock(&spu_prio->runq_lock);

	return rval;
187 188
}

189
void do_notify_spus_active(void)
190 191 192 193 194 195 196
{
	int node;

	/*
	 * Wake up the active spu_contexts.
	 *
	 * When the awakened processes see their "notify_active" flag is set,
197
	 * they will call spu_switch_notify().
198 199 200
	 */
	for_each_online_node(node) {
		struct spu *spu;
201 202 203 204 205 206 207 208 209 210

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state != SPU_FREE) {
				struct spu_context *ctx = spu->ctx;
				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
					&ctx->sched_flags);
				mb();
				wake_up_all(&ctx->stop_wq);
			}
211
		}
212
		mutex_unlock(&cbe_spu_info[node].list_mutex);
213 214 215
	}
}

216 217 218 219 220 221
/**
 * spu_bind_context - bind spu context to physical spu
 * @spu:	physical spu to bind to
 * @ctx:	context to bind
 */
static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
222
{
223 224
	spu_context_trace(spu_bind_context__enter, ctx, spu);

225
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
226

227 228 229
	if (ctx->flags & SPU_CREATE_NOSCHED)
		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);

230 231 232
	ctx->stats.slb_flt_base = spu->stats.slb_flt;
	ctx->stats.class2_intr_base = spu->stats.class2_intr;

233 234 235
	spu_associate_mm(spu, ctx->owner);

	spin_lock_irq(&spu->register_lock);
236 237 238 239 240
	spu->ctx = ctx;
	spu->flags = 0;
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
241
	spu->tgid = current->tgid;
242 243
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
244
	spu->stop_callback = spufs_stop_callback;
245
	spu->mfc_callback = spufs_mfc_callback;
246 247
	spin_unlock_irq(&spu->register_lock);

248
	spu_unmap_mappings(ctx);
249

250
	spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
251
	spu_restore(&ctx->csa, spu);
252
	spu->timestamp = jiffies;
253
	spu_switch_notify(spu, ctx);
254
	ctx->state = SPU_STATE_RUNNABLE;
255

256
	spuctx_switch_state(ctx, SPU_UTIL_USER);
257 258
}

259
/*
260
 * Must be used with the list_mutex held.
261 262 263
 */
static inline int sched_spu(struct spu *spu)
{
264 265
	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
}

static void aff_merge_remaining_ctxs(struct spu_gang *gang)
{
	struct spu_context *ctx;

	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
		if (list_empty(&ctx->aff_list))
			list_add(&ctx->aff_list, &gang->aff_list_head);
	}
	gang->aff_flags |= AFF_MERGED;
}

static void aff_set_offsets(struct spu_gang *gang)
{
	struct spu_context *ctx;
	int offset;

	offset = -1;
	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset--;
	}

	offset = 0;
	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset++;
	}

	gang->aff_flags |= AFF_OFFSETS_SET;
}

static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
		 int group_size, int lowest_offset)
{
	struct spu *spu;
	int node, n;

	/*
	 * TODO: A better algorithm could be used to find a good spu to be
	 *       used as reference location for the ctxs chain.
	 */
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
		if (!node_allowed(ctx, node))
			continue;
318
		mutex_lock(&cbe_spu_info[node].list_mutex);
319 320
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if ((!mem_aff || spu->has_mem_affinity) &&
321 322
							sched_spu(spu)) {
				mutex_unlock(&cbe_spu_info[node].list_mutex);
323
				return spu;
324
			}
325
		}
326
		mutex_unlock(&cbe_spu_info[node].list_mutex);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
	}
	return NULL;
}

static void aff_set_ref_point_location(struct spu_gang *gang)
{
	int mem_aff, gs, lowest_offset;
	struct spu_context *ctx;
	struct spu *tmp;

	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
	lowest_offset = 0;
	gs = 0;

	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
		gs++;

	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		lowest_offset = ctx->aff_offset;
	}

351 352
	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
							lowest_offset);
353 354
}

355
static struct spu *ctx_location(struct spu *ref, int offset, int node)
356 357 358 359 360 361
{
	struct spu *spu;

	spu = NULL;
	if (offset >= 0) {
		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
362
			BUG_ON(spu->node != node);
363 364 365 366 367 368 369
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset--;
		}
	} else {
		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
370
			BUG_ON(spu->node != node);
371 372 373 374 375 376
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset++;
		}
	}
377

378 379 380 381 382 383 384
	return spu;
}

/*
 * affinity_check is called each time a context is going to be scheduled.
 * It returns the spu ptr on which the context must run.
 */
385
static int has_affinity(struct spu_context *ctx)
386
{
387
	struct spu_gang *gang = ctx->gang;
388 389

	if (list_empty(&ctx->aff_list))
390 391
		return 0;

392 393 394
	if (atomic_read(&ctx->gang->aff_sched_count) == 0)
		ctx->gang->aff_ref_spu = NULL;

395 396 397 398 399 400 401
	if (!gang->aff_ref_spu) {
		if (!(gang->aff_flags & AFF_MERGED))
			aff_merge_remaining_ctxs(gang);
		if (!(gang->aff_flags & AFF_OFFSETS_SET))
			aff_set_offsets(gang);
		aff_set_ref_point_location(gang);
	}
402 403

	return gang->aff_ref_spu != NULL;
404 405
}

406 407 408 409 410
/**
 * spu_unbind_context - unbind spu context from physical spu
 * @spu:	physical spu to unbind from
 * @ctx:	context to unbind
 */
411
static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
412
{
413 414
	u32 status;

415 416
	spu_context_trace(spu_unbind_context__enter, ctx, spu);

417
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
418

419 420
 	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
421

422 423
	if (ctx->gang)
		atomic_dec_if_positive(&ctx->gang->aff_sched_count);
424

425
	spu_switch_notify(spu, NULL);
426
	spu_unmap_mappings(ctx);
427
	spu_save(&ctx->csa, spu);
428
	spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
429 430

	spin_lock_irq(&spu->register_lock);
431
	spu->timestamp = jiffies;
432 433 434
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
435
	spu->stop_callback = NULL;
436
	spu->mfc_callback = NULL;
437
	spu->pid = 0;
438
	spu->tgid = 0;
439
	ctx->ops = &spu_backing_ops;
440
	spu->flags = 0;
441
	spu->ctx = NULL;
442 443 444
	spin_unlock_irq(&spu->register_lock);

	spu_associate_mm(spu, NULL);
445 446 447 448 449

	ctx->stats.slb_flt +=
		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
	ctx->stats.class2_intr +=
		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
450 451 452 453

	/* This maps the underlying spu state to idle */
	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
	ctx->spu = NULL;
454 455 456

	if (spu_stopped(ctx, &status))
		wake_up_all(&ctx->stop_wq);
457 458
}

459 460 461 462
/**
 * spu_add_to_rq - add a context to the runqueue
 * @ctx:       context to add
 */
463
static void __spu_add_to_rq(struct spu_context *ctx)
464
{
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
	/*
	 * Unfortunately this code path can be called from multiple threads
	 * on behalf of a single context due to the way the problem state
	 * mmap support works.
	 *
	 * Fortunately we need to wake up all these threads at the same time
	 * and can simply skip the runqueue addition for every but the first
	 * thread getting into this codepath.
	 *
	 * It's still quite hacky, and long-term we should proxy all other
	 * threads through the owner thread so that spu_run is in control
	 * of all the scheduling activity for a given context.
	 */
	if (list_empty(&ctx->rq)) {
		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
		set_bit(ctx->prio, spu_prio->bitmap);
		if (!spu_prio->nr_waiting++)
			__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	}
484
}
485

486 487 488 489 490 491 492
static void spu_add_to_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_add_to_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

493
static void __spu_del_from_rq(struct spu_context *ctx)
494
{
495 496
	int prio = ctx->prio;

497
	if (!list_empty(&ctx->rq)) {
498 499
		if (!--spu_prio->nr_waiting)
			del_timer(&spusched_timer);
500
		list_del_init(&ctx->rq);
501 502 503

		if (list_empty(&spu_prio->runq[prio]))
			clear_bit(prio, spu_prio->bitmap);
504
	}
505
}
506

507 508 509 510 511 512 513
void spu_del_from_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_del_from_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

514
static void spu_prio_wait(struct spu_context *ctx)
515
{
516
	DEFINE_WAIT(wait);
517

518 519 520 521 522 523 524
	/*
	 * The caller must explicitly wait for a context to be loaded
	 * if the nosched flag is set.  If NOSCHED is not set, the caller
	 * queues the context and waits for an spu event or error.
	 */
	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));

525
	spin_lock(&spu_prio->runq_lock);
526
	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
527
	if (!signal_pending(current)) {
528 529
		__spu_add_to_rq(ctx);
		spin_unlock(&spu_prio->runq_lock);
530
		mutex_unlock(&ctx->state_mutex);
531
		schedule();
532
		mutex_lock(&ctx->state_mutex);
533 534
		spin_lock(&spu_prio->runq_lock);
		__spu_del_from_rq(ctx);
535
	}
536
	spin_unlock(&spu_prio->runq_lock);
537 538
	__set_current_state(TASK_RUNNING);
	remove_wait_queue(&ctx->stop_wq, &wait);
539 540
}

541
static struct spu *spu_get_idle(struct spu_context *ctx)
542
{
543
	struct spu *spu, *aff_ref_spu;
544 545
	int node, n;

546 547
	spu_context_nospu_trace(spu_get_idle__enter, ctx);

548 549 550 551 552 553 554 555 556 557 558 559 560
	if (ctx->gang) {
		mutex_lock(&ctx->gang->aff_mutex);
		if (has_affinity(ctx)) {
			aff_ref_spu = ctx->gang->aff_ref_spu;
			atomic_inc(&ctx->gang->aff_sched_count);
			mutex_unlock(&ctx->gang->aff_mutex);
			node = aff_ref_spu->node;

			mutex_lock(&cbe_spu_info[node].list_mutex);
			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
			if (spu && spu->alloc_state == SPU_FREE)
				goto found;
			mutex_unlock(&cbe_spu_info[node].list_mutex);
561

562
			atomic_dec(&ctx->gang->aff_sched_count);
563
			goto not_found;
564 565 566
		}
		mutex_unlock(&ctx->gang->aff_mutex);
	}
567
	node = cpu_to_node(raw_smp_processor_id());
568 569
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
570
		if (!node_allowed(ctx, node))
571
			continue;
572 573 574 575 576 577 578

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state == SPU_FREE)
				goto found;
		}
		mutex_unlock(&cbe_spu_info[node].list_mutex);
579
	}
580

581 582
 not_found:
	spu_context_nospu_trace(spu_get_idle__not_found, ctx);
583 584 585 586 587
	return NULL;

 found:
	spu->alloc_state = SPU_USED;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
588
	spu_context_trace(spu_get_idle__found, ctx, spu);
589
	spu_init_channels(spu);
590 591
	return spu;
}
592

593 594 595 596 597 598 599 600 601 602 603 604
/**
 * find_victim - find a lower priority context to preempt
 * @ctx:	canidate context for running
 *
 * Returns the freed physical spu to run the new context on.
 */
static struct spu *find_victim(struct spu_context *ctx)
{
	struct spu_context *victim = NULL;
	struct spu *spu;
	int node, n;

605
	spu_context_nospu_trace(spu_find_victim__enter, ctx);
606

607 608 609
	/*
	 * Look for a possible preemption candidate on the local node first.
	 * If there is no candidate look at the other nodes.  This isn't
610
	 * exactly fair, but so far the whole spu scheduler tries to keep
611 612 613 614 615 616 617
	 * a strong node affinity.  We might want to fine-tune this in
	 * the future.
	 */
 restart:
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
618
		if (!node_allowed(ctx, node))
619 620
			continue;

621 622
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
623 624
			struct spu_context *tmp = spu->ctx;

625
			if (tmp && tmp->prio > ctx->prio &&
626
			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
627
			    (!victim || tmp->prio > victim->prio))
628 629
				victim = spu->ctx;
		}
630
		mutex_unlock(&cbe_spu_info[node].list_mutex);
631 632 633 634 635 636 637

		if (victim) {
			/*
			 * This nests ctx->state_mutex, but we always lock
			 * higher priority contexts before lower priority
			 * ones, so this is safe until we introduce
			 * priority inheritance schemes.
638 639 640 641
			 *
			 * XXX if the highest priority context is locked,
			 * this can loop a long time.  Might be better to
			 * look at another context or give up after X retries.
642 643 644 645 646 647 648
			 */
			if (!mutex_trylock(&victim->state_mutex)) {
				victim = NULL;
				goto restart;
			}

			spu = victim->spu;
649
			if (!spu || victim->prio <= ctx->prio) {
650 651
				/*
				 * This race can happen because we've dropped
652
				 * the active list mutex.  Not a problem, just
653 654 655 656 657 658
				 * restart the search.
				 */
				mutex_unlock(&victim->state_mutex);
				victim = NULL;
				goto restart;
			}
659

660 661
			spu_context_trace(__spu_deactivate__unload, ctx, spu);

662 663
			mutex_lock(&cbe_spu_info[node].list_mutex);
			cbe_spu_info[node].nr_active--;
664
			spu_unbind_context(spu, victim);
665 666
			mutex_unlock(&cbe_spu_info[node].list_mutex);

667
			victim->stats.invol_ctx_switch++;
668
			spu->stats.invol_ctx_switch++;
669
			if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
670
				spu_add_to_rq(victim);
671

672
			mutex_unlock(&victim->state_mutex);
673

674 675 676 677 678 679 680
			return spu;
		}
	}

	return NULL;
}

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
{
	int node = spu->node;
	int success = 0;

	spu_set_timeslice(ctx);

	mutex_lock(&cbe_spu_info[node].list_mutex);
	if (spu->ctx == NULL) {
		spu_bind_context(spu, ctx);
		cbe_spu_info[node].nr_active++;
		spu->alloc_state = SPU_USED;
		success = 1;
	}
	mutex_unlock(&cbe_spu_info[node].list_mutex);

	if (success)
		wake_up_all(&ctx->run_wq);
	else
		spu_add_to_rq(ctx);
}

static void spu_schedule(struct spu *spu, struct spu_context *ctx)
{
705 706 707
	/* not a candidate for interruptible because it's called either
	   from the scheduler thread or from spu_deactivate */
	mutex_lock(&ctx->state_mutex);
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	__spu_schedule(spu, ctx);
	spu_release(ctx);
}

static void spu_unschedule(struct spu *spu, struct spu_context *ctx)
{
	int node = spu->node;

	mutex_lock(&cbe_spu_info[node].list_mutex);
	cbe_spu_info[node].nr_active--;
	spu->alloc_state = SPU_FREE;
	spu_unbind_context(spu, ctx);
	ctx->stats.invol_ctx_switch++;
	spu->stats.invol_ctx_switch++;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
}

725 726 727 728 729
/**
 * spu_activate - find a free spu for a context and execute it
 * @ctx:	spu context to schedule
 * @flags:	flags (currently ignored)
 *
730
 * Tries to find a free spu to run @ctx.  If no free spu is available
731 732 733
 * add the context to the runqueue so it gets woken up once an spu
 * is available.
 */
734
int spu_activate(struct spu_context *ctx, unsigned long flags)
735
{
736
	struct spu *spu;
737

738 739 740 741 742 743 744 745
	/*
	 * If there are multiple threads waiting for a single context
	 * only one actually binds the context while the others will
	 * only be able to acquire the state_mutex once the context
	 * already is in runnable state.
	 */
	if (ctx->spu)
		return 0;
746

747 748 749
spu_activate_top:
	if (signal_pending(current))
		return -ERESTARTSYS;
750

751 752 753 754 755 756 757 758 759 760 761 762 763 764
	spu = spu_get_idle(ctx);
	/*
	 * If this is a realtime thread we try to get it running by
	 * preempting a lower priority thread.
	 */
	if (!spu && rt_prio(ctx->prio))
		spu = find_victim(ctx);
	if (spu) {
		unsigned long runcntl;

		runcntl = ctx->ops->runcntl_read(ctx);
		__spu_schedule(spu, ctx);
		if (runcntl & SPU_RUNCNTL_RUNNABLE)
			spuctx_switch_state(ctx, SPU_UTIL_USER);
765

766 767 768 769
		return 0;
	}

	if (ctx->flags & SPU_CREATE_NOSCHED) {
770
		spu_prio_wait(ctx);
771 772 773 774
		goto spu_activate_top;
	}

	spu_add_to_rq(ctx);
775

776
	return 0;
777 778
}

779 780 781 782 783 784
/**
 * grab_runnable_context - try to find a runnable context
 *
 * Remove the highest priority context on the runqueue and return it
 * to the caller.  Returns %NULL if no runnable context was found.
 */
785
static struct spu_context *grab_runnable_context(int prio, int node)
786
{
787
	struct spu_context *ctx;
788 789 790
	int best;

	spin_lock(&spu_prio->runq_lock);
791
	best = find_first_bit(spu_prio->bitmap, prio);
792
	while (best < prio) {
793 794
		struct list_head *rq = &spu_prio->runq[best];

795 796 797 798 799 800 801 802
		list_for_each_entry(ctx, rq, rq) {
			/* XXX(hch): check for affinity here aswell */
			if (__node_allowed(ctx, node)) {
				__spu_del_from_rq(ctx);
				goto found;
			}
		}
		best++;
803
	}
804 805
	ctx = NULL;
 found:
806 807 808 809 810 811 812 813 814 815
	spin_unlock(&spu_prio->runq_lock);
	return ctx;
}

static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
{
	struct spu *spu = ctx->spu;
	struct spu_context *new = NULL;

	if (spu) {
816
		new = grab_runnable_context(max_prio, spu->node);
817
		if (new || force) {
818 819 820 821 822 823 824
			spu_unschedule(spu, ctx);
			if (new) {
				if (new->flags & SPU_CREATE_NOSCHED)
					wake_up(&new->stop_wq);
				else {
					spu_release(ctx);
					spu_schedule(spu, new);
825 826 827
					/* this one can't easily be made
					   interruptible */
					mutex_lock(&ctx->state_mutex);
828 829
				}
			}
830 831 832 833 834 835
		}
	}

	return new != NULL;
}

836 837 838 839 840 841 842
/**
 * spu_deactivate - unbind a context from it's physical spu
 * @ctx:	spu context to unbind
 *
 * Unbind @ctx from the physical spu it is running on and schedule
 * the highest priority context to run on the freed physical spu.
 */
843 844
void spu_deactivate(struct spu_context *ctx)
{
845
	spu_context_nospu_trace(spu_deactivate__enter, ctx);
846
	__spu_deactivate(ctx, 1, MAX_PRIO);
847 848
}

849
/**
850
 * spu_yield -	yield a physical spu if others are waiting
851 852 853 854 855 856
 * @ctx:	spu context to yield
 *
 * Check if there is a higher priority context waiting and if yes
 * unbind @ctx from the physical spu and schedule the highest
 * priority context to run on the freed physical spu instead.
 */
857 858
void spu_yield(struct spu_context *ctx)
{
859
	spu_context_nospu_trace(spu_yield__enter, ctx);
860 861
	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
		mutex_lock(&ctx->state_mutex);
862
		__spu_deactivate(ctx, 0, MAX_PRIO);
863 864
		mutex_unlock(&ctx->state_mutex);
	}
865
}
866

867
static noinline void spusched_tick(struct spu_context *ctx)
868
{
869 870 871
	struct spu_context *new = NULL;
	struct spu *spu = NULL;

872 873
	if (spu_acquire(ctx))
		BUG();	/* a kernel thread never has signals pending */
874 875 876

	if (ctx->state != SPU_STATE_RUNNABLE)
		goto out;
877
	if (ctx->flags & SPU_CREATE_NOSCHED)
878
		goto out;
879
	if (ctx->policy == SCHED_FIFO)
880
		goto out;
881

882
	if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
883
		goto out;
884

885
	spu = ctx->spu;
886 887 888

	spu_context_trace(spusched_tick__preempt, ctx, spu);

889 890 891
	new = grab_runnable_context(ctx->prio + 1, spu->node);
	if (new) {
		spu_unschedule(spu, ctx);
892
		if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
893
			spu_add_to_rq(ctx);
894
	} else {
895
		spu_context_nospu_trace(spusched_tick__newslice, ctx);
896 897
		if (!ctx->time_slice)
			ctx->time_slice++;
898
	}
899 900 901 902 903
out:
	spu_release(ctx);

	if (new)
		spu_schedule(spu, new);
904 905
}

906 907 908 909 910
/**
 * count_active_contexts - count nr of active tasks
 *
 * Return the number of tasks currently running or waiting to run.
 *
911
 * Note that we don't take runq_lock / list_mutex here.  Reading
912 913 914 915 916 917 918 919
 * a single 32bit value is atomic on powerpc, and we don't care
 * about memory ordering issues here.
 */
static unsigned long count_active_contexts(void)
{
	int nr_active = 0, node;

	for (node = 0; node < MAX_NUMNODES; node++)
920
		nr_active += cbe_spu_info[node].nr_active;
921 922 923 924 925 926
	nr_active += spu_prio->nr_waiting;

	return nr_active;
}

/**
927
 * spu_calc_load - update the avenrun load estimates.
928 929 930 931
 *
 * No locking against reading these values from userspace, as for
 * the CPU loadavg code.
 */
932
static void spu_calc_load(void)
933 934
{
	unsigned long active_tasks; /* fixed-point */
935 936 937 938 939

	active_tasks = count_active_contexts() * FIXED_1;
	CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
	CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
	CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
940 941
}

942 943 944 945
static void spusched_wake(unsigned long data)
{
	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	wake_up_process(spusched_task);
946 947 948 949 950 951
}

static void spuloadavg_wake(unsigned long data)
{
	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
	spu_calc_load();
952 953 954 955
}

static int spusched_thread(void *unused)
{
956
	struct spu *spu;
957 958 959 960 961 962
	int node;

	while (!kthread_should_stop()) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
		for (node = 0; node < MAX_NUMNODES; node++) {
963 964 965 966 967 968 969 970 971 972 973 974 975 976
			struct mutex *mtx = &cbe_spu_info[node].list_mutex;

			mutex_lock(mtx);
			list_for_each_entry(spu, &cbe_spu_info[node].spus,
					cbe_list) {
				struct spu_context *ctx = spu->ctx;

				if (ctx) {
					mutex_unlock(mtx);
					spusched_tick(ctx);
					mutex_lock(mtx);
				}
			}
			mutex_unlock(mtx);
977 978 979 980 981 982
		}
	}

	return 0;
}

983 984 985 986 987 988 989 990
void spuctx_switch_state(struct spu_context *ctx,
		enum spu_utilization_state new_state)
{
	unsigned long long curtime;
	signed long long delta;
	struct timespec ts;
	struct spu *spu;
	enum spu_utilization_state old_state;
991
	int node;
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

	ktime_get_ts(&ts);
	curtime = timespec_to_ns(&ts);
	delta = curtime - ctx->stats.tstamp;

	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
	WARN_ON(delta < 0);

	spu = ctx->spu;
	old_state = ctx->stats.util_state;
	ctx->stats.util_state = new_state;
	ctx->stats.tstamp = curtime;

	/*
	 * Update the physical SPU utilization statistics.
	 */
	if (spu) {
		ctx->stats.times[old_state] += delta;
		spu->stats.times[old_state] += delta;
		spu->stats.util_state = new_state;
		spu->stats.tstamp = curtime;
1013 1014 1015 1016 1017
		node = spu->node;
		if (old_state == SPU_UTIL_USER)
			atomic_dec(&cbe_spu_info[node].busy_spus);
		if (new_state == SPU_UTIL_USER);
			atomic_inc(&cbe_spu_info[node].busy_spus);
1018 1019 1020
	}
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)

static int show_spu_loadavg(struct seq_file *s, void *private)
{
	int a, b, c;

	a = spu_avenrun[0] + (FIXED_1/200);
	b = spu_avenrun[1] + (FIXED_1/200);
	c = spu_avenrun[2] + (FIXED_1/200);

	/*
	 * Note that last_pid doesn't really make much sense for the
1034
	 * SPU loadavg (it even seems very odd on the CPU side...),
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	 * but we include it here to have a 100% compatible interface.
	 */
	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
		LOAD_INT(a), LOAD_FRAC(a),
		LOAD_INT(b), LOAD_FRAC(b),
		LOAD_INT(c), LOAD_FRAC(c),
		count_active_contexts(),
		atomic_read(&nr_spu_contexts),
		current->nsproxy->pid_ns->last_pid);
	return 0;
}

static int spu_loadavg_open(struct inode *inode, struct file *file)
{
	return single_open(file, show_spu_loadavg, NULL);
}

static const struct file_operations spu_loadavg_fops = {
	.open		= spu_loadavg_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1059 1060
int __init spu_sched_init(void)
{
1061 1062
	struct proc_dir_entry *entry;
	int err = -ENOMEM, i;
1063

1064
	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1065
	if (!spu_prio)
1066
		goto out;
1067

1068
	for (i = 0; i < MAX_PRIO; i++) {
1069
		INIT_LIST_HEAD(&spu_prio->runq[i]);
1070
		__clear_bit(i, spu_prio->bitmap);
1071
	}
1072
	spin_lock_init(&spu_prio->runq_lock);
1073

1074
	setup_timer(&spusched_timer, spusched_wake, 0);
1075
	setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1076

1077 1078
	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
	if (IS_ERR(spusched_task)) {
1079 1080
		err = PTR_ERR(spusched_task);
		goto out_free_spu_prio;
1081
	}
1082

1083 1084
	mod_timer(&spuloadavg_timer, 0);

1085
	entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
1086 1087 1088
	if (!entry)
		goto out_stop_kthread;

1089 1090
	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1091
	return 0;
1092

1093 1094 1095 1096 1097 1098
 out_stop_kthread:
	kthread_stop(spusched_task);
 out_free_spu_prio:
	kfree(spu_prio);
 out:
	return err;
1099 1100
}

1101
void spu_sched_exit(void)
1102
{
1103
	struct spu *spu;
1104 1105
	int node;

1106 1107
	remove_proc_entry("spu_loadavg", NULL);

1108
	del_timer_sync(&spusched_timer);
1109
	del_timer_sync(&spuloadavg_timer);
1110 1111
	kthread_stop(spusched_task);

1112
	for (node = 0; node < MAX_NUMNODES; node++) {
1113 1114 1115 1116 1117
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
			if (spu->alloc_state != SPU_FREE)
				spu->alloc_state = SPU_FREE;
		mutex_unlock(&cbe_spu_info[node].list_mutex);
1118
	}
1119
	kfree(spu_prio);
1120
}