i40e_txrx.c 110.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/* Copyright(c) 2013 - 2018 Intel Corporation. */
3

M
Mitch Williams 已提交
4
#include <linux/prefetch.h>
5
#include <linux/bpf_trace.h>
6
#include <net/xdp.h>
7
#include "i40e.h"
S
Scott Peterson 已提交
8
#include "i40e_trace.h"
9
#include "i40e_prototype.h"
10
#include "i40e_txrx_common.h"
11
#include "i40e_xsk.h"
12

13
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
/**
 * i40e_fdir - Generate a Flow Director descriptor based on fdata
 * @tx_ring: Tx ring to send buffer on
 * @fdata: Flow director filter data
 * @add: Indicate if we are adding a rule or deleting one
 *
 **/
static void i40e_fdir(struct i40e_ring *tx_ring,
		      struct i40e_fdir_filter *fdata, bool add)
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	u32 flex_ptype, dtype_cmd;
	u16 i;

	/* grab the next descriptor */
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	/* Use LAN VSI Id if not programmed by user */
	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

	dtype_cmd |= add ?
		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;

	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);

	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);

	if (fdata->cnt_index) {
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
			     ((u32)fdata->cnt_index <<
			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
	}

	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
	fdir_desc->rsvd = cpu_to_le32(0);
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
}

77
#define I40E_FD_CLEAN_DELAY 10
78 79
/**
 * i40e_program_fdir_filter - Program a Flow Director filter
80 81
 * @fdir_data: Packet data that will be filter parameters
 * @raw_packet: the pre-allocated packet buffer for FDir
82
 * @pf: The PF pointer
83 84
 * @add: True for add/update, False for remove
 **/
85 86 87
static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
				    u8 *raw_packet, struct i40e_pf *pf,
				    bool add)
88
{
89
	struct i40e_tx_buffer *tx_buf, *first;
90 91 92 93 94 95 96 97 98
	struct i40e_tx_desc *tx_desc;
	struct i40e_ring *tx_ring;
	struct i40e_vsi *vsi;
	struct device *dev;
	dma_addr_t dma;
	u32 td_cmd = 0;
	u16 i;

	/* find existing FDIR VSI */
99
	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
100 101 102
	if (!vsi)
		return -ENOENT;

103
	tx_ring = vsi->tx_rings[0];
104 105
	dev = tx_ring->dev;

106
	/* we need two descriptors to add/del a filter and we can wait */
107 108 109
	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
		if (!i)
			return -EAGAIN;
110
		msleep_interruptible(1);
111
	}
112

113 114
	dma = dma_map_single(dev, raw_packet,
			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
115 116 117 118
	if (dma_mapping_error(dev, dma))
		goto dma_fail;

	/* grab the next descriptor */
119
	i = tx_ring->next_to_use;
120
	first = &tx_ring->tx_bi[i];
121
	i40e_fdir(tx_ring, fdir_data, add);
122 123

	/* Now program a dummy descriptor */
124 125
	i = tx_ring->next_to_use;
	tx_desc = I40E_TX_DESC(tx_ring, i);
126
	tx_buf = &tx_ring->tx_bi[i];
127

128 129 130
	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;

	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
131

132
	/* record length, and DMA address */
133
	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
134 135
	dma_unmap_addr_set(tx_buf, dma, dma);

136
	tx_desc->buffer_addr = cpu_to_le64(dma);
137
	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
138

139 140 141
	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
	tx_buf->raw_buf = (void *)raw_packet;

142
	tx_desc->cmd_type_offset_bsz =
143
		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
144 145

	/* Force memory writes to complete before letting h/w
146
	 * know there are new descriptors to fetch.
147 148 149
	 */
	wmb();

150
	/* Mark the data descriptor to be watched */
151
	first->next_to_watch = tx_desc;
152

153 154 155 156 157 158 159
	writel(tx_ring->next_to_use, tx_ring->tail);
	return 0;

dma_fail:
	return -1;
}

160 161 162
#define IP_HEADER_OFFSET		14
#define I40E_UDPIP_DUMMY_PACKET_LEN	42
#define I40E_UDPIP6_DUMMY_PACKET_LEN	62
163
/**
164
 * i40e_add_del_fdir_udp - Add/Remove UDP filters
165 166 167
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
168
 * @ipv4: true is v4, false is v6
169 170 171
 *
 * Returns 0 if the filters were successfully added or removed
 **/
172 173 174 175
static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
				 struct i40e_fdir_filter *fd_data,
				 bool add,
				 bool ipv4)
176 177
{
	struct i40e_pf *pf = vsi->back;
178
	struct ipv6hdr *ipv6;
179 180
	struct udphdr *udp;
	struct iphdr *ip;
181
	u8 *raw_packet;
182
	int ret;
183 184 185 186 187 188 189 190 191
	static char packet_ipv4[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08,
		0, 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
	static char packet_ipv6[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x86,
		0xdd, 0x60, 0, 0, 0, 0, 0, 0x11, 0,
		/*src address*/0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		/*dst address*/0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		/*udp header*/
		0, 0, 0, 0, 0, 0, 0, 0};
192

193 194 195
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
196 197
	if (ipv4) {
		memcpy(raw_packet, packet_ipv4, I40E_UDPIP_DUMMY_PACKET_LEN);
198

199 200 201
		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
		udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
		      + sizeof(struct iphdr));
202

203 204 205 206 207 208 209 210 211 212 213 214 215
		ip->daddr = fd_data->dst_ip;
		ip->saddr = fd_data->src_ip;
	} else {
		memcpy(raw_packet, packet_ipv6, I40E_UDPIP6_DUMMY_PACKET_LEN);
		ipv6 = (struct ipv6hdr *)(raw_packet + IP_HEADER_OFFSET);
		udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
		      + sizeof(struct ipv6hdr));

		memcpy(ipv6->saddr.in6_u.u6_addr32,
		       fd_data->src_ip6, sizeof(__be32) * 4);
		memcpy(ipv6->daddr.in6_u.u6_addr32,
		       fd_data->dst_ip6, sizeof(__be32) * 4);
	}
216 217 218
	udp->dest = fd_data->dst_port;
	udp->source = fd_data->src_port;

219
	if (fd_data->flex_filter) {
220
		u8 *payload;
221 222 223
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

224 225 226 227 228
		if (ipv4)
			payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
		else
			payload = raw_packet + I40E_UDPIP6_DUMMY_PACKET_LEN;

229 230 231
		*((__force __be16 *)(payload + off)) = pattern;
	}

232 233 234 235 236
	if (ipv4)
		fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
	else
		fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV6_UDP;

237 238 239
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
240 241
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
242 243 244
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
245
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
246 247 248 249 250 251 252 253
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
254
	}
255

256 257 258 259 260 261 262 263 264 265 266
	if (add) {
		if (ipv4)
			pf->fd_udp4_filter_cnt++;
		else
			pf->fd_udp6_filter_cnt++;
	} else {
		if (ipv4)
			pf->fd_udp4_filter_cnt--;
		else
			pf->fd_udp6_filter_cnt--;
	}
267

268
	return 0;
269 270
}

271 272
#define I40E_TCPIP_DUMMY_PACKET_LEN	54
#define I40E_TCPIP6_DUMMY_PACKET_LEN	74
273
/**
274
 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
275 276 277
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
278
 * @ipv4: true is v4, false is v6
279 280 281
 *
 * Returns 0 if the filters were successfully added or removed
 **/
282 283 284 285
static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
				 struct i40e_fdir_filter *fd_data,
				 bool add,
				 bool ipv4)
286 287
{
	struct i40e_pf *pf = vsi->back;
288
	struct ipv6hdr *ipv6;
289 290
	struct tcphdr *tcp;
	struct iphdr *ip;
291
	u8 *raw_packet;
292 293
	int ret;
	/* Dummy packet */
294 295 296 297 298 299 300 301 302
	static char packet_ipv4[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08,
		0, 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x50, 0x11,
		0x0, 0x72, 0, 0, 0, 0};
	static char packet_ipv6[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x86,
		0xdd, 0x60, 0, 0, 0, 0, 0, 0x6, 0,
		/*src address*/0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		/*dst address*/0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x50, 0x11,
303 304
		0x0, 0x72, 0, 0, 0, 0};

305 306 307
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
	if (ipv4) {
		memcpy(raw_packet, packet_ipv4, I40E_TCPIP_DUMMY_PACKET_LEN);

		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
		tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
		      + sizeof(struct iphdr));

		ip->daddr = fd_data->dst_ip;
		ip->saddr = fd_data->src_ip;
	} else {
		memcpy(raw_packet, packet_ipv6, I40E_TCPIP6_DUMMY_PACKET_LEN);

		tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
		      + sizeof(struct ipv6hdr));
		ipv6 = (struct ipv6hdr *)(raw_packet + IP_HEADER_OFFSET);

		memcpy(ipv6->saddr.in6_u.u6_addr32,
		       fd_data->src_ip6, sizeof(__be32) * 4);
		memcpy(ipv6->daddr.in6_u.u6_addr32,
		       fd_data->dst_ip6, sizeof(__be32) * 4);
	}
329 330 331 332 333 334 335 336

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

	tcp->dest = fd_data->dst_port;
	tcp->source = fd_data->src_port;

337
	if (fd_data->flex_filter) {
338
		u8 *payload;
339 340 341
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

342 343 344 345 346
		if (ipv4)
			payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
		else
			payload = raw_packet + I40E_TCPIP6_DUMMY_PACKET_LEN;

347 348 349
		*((__force __be16 *)(payload + off)) = pattern;
	}

350 351 352 353
	if (ipv4)
		fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
	else
		fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV6_TCP;
354 355 356
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
357 358
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
359 360 361
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
362
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
363 364 365 366 367 368 369
		if (add)
			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
370 371
	}

372
	if (add) {
373 374 375 376
		if (ipv4)
			pf->fd_tcp4_filter_cnt++;
		else
			pf->fd_tcp6_filter_cnt++;
377 378 379
		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
		    I40E_DEBUG_FD & pf->hw.debug_mask)
			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
380
		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
381
	} else {
382 383 384 385
		if (ipv4)
			pf->fd_tcp4_filter_cnt--;
		else
			pf->fd_tcp6_filter_cnt--;
386 387
	}

388
	return 0;
389 390
}

391 392
#define I40E_SCTPIP_DUMMY_PACKET_LEN	46
#define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
393
/**
394
 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
395 396 397 398
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
399
 * @ipv4: true is v4, false is v6
400 401 402
 *
 * Returns 0 if the filters were successfully added or removed
 **/
403 404 405 406
static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
				  struct i40e_fdir_filter *fd_data,
				  bool add,
				  bool ipv4)
407 408
{
	struct i40e_pf *pf = vsi->back;
409
	struct ipv6hdr *ipv6;
410 411 412 413
	struct sctphdr *sctp;
	struct iphdr *ip;
	u8 *raw_packet;
	int ret;
414 415 416 417 418 419 420 421 422 423
	/* Dummy packets */
	static char packet_ipv4[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08,
		0, 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

	static char packet_ipv6[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x86,
		0xdd, 0x60, 0, 0, 0, 0, 0, 0x84, 0,
		/*src address*/0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		/*dst address*/0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
424 425 426
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
427 428
	if (ipv4) {
		memcpy(raw_packet, packet_ipv4, I40E_SCTPIP_DUMMY_PACKET_LEN);
429

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
		sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
		       + sizeof(struct iphdr));

		ip->daddr = fd_data->dst_ip;
		ip->saddr = fd_data->src_ip;
	} else {
		memcpy(raw_packet, packet_ipv6, I40E_SCTPIP6_DUMMY_PACKET_LEN);

		ipv6 = (struct ipv6hdr *)(raw_packet + IP_HEADER_OFFSET);
		sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
		       + sizeof(struct ipv6hdr));

		memcpy(ipv6->saddr.in6_u.u6_addr32,
		       fd_data->src_ip6, sizeof(__be32) * 4);
		memcpy(ipv6->saddr.in6_u.u6_addr32,
		       fd_data->src_ip6, sizeof(__be32) * 4);
	}
448 449 450 451 452

	sctp->dest = fd_data->dst_port;
	sctp->source = fd_data->src_port;

	if (fd_data->flex_filter) {
453
		u8 *payload;
454 455 456
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

457 458 459 460
		if (ipv4)
			payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
		else
			payload = raw_packet + I40E_SCTPIP6_DUMMY_PACKET_LEN;
461 462 463
		*((__force __be16 *)(payload + off)) = pattern;
	}

464 465 466 467 468
	if (ipv4)
		fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
	else
		fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV6_SCTP;

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
	}

488 489 490 491 492 493 494 495 496 497 498
	if (add) {
		if (ipv4)
			pf->fd_sctp4_filter_cnt++;
		else
			pf->fd_sctp6_filter_cnt++;
	} else {
		if (ipv4)
			pf->fd_sctp4_filter_cnt--;
		else
			pf->fd_sctp6_filter_cnt--;
	}
499 500 501 502

	return 0;
}

503 504
#define I40E_IP_DUMMY_PACKET_LEN	34
#define I40E_IP6_DUMMY_PACKET_LEN	54
505
/**
506
 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
507 508 509 510
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
511
 * @ipv4: true is v4, false is v6
512 513 514
 *
 * Returns 0 if the filters were successfully added or removed
 **/
515 516 517 518
static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
				struct i40e_fdir_filter *fd_data,
				bool add,
				bool ipv4)
519 520
{
	struct i40e_pf *pf = vsi->back;
521
	struct ipv6hdr *ipv6;
522
	struct iphdr *ip;
523
	u8 *raw_packet;
524 525
	int iter_start;
	int iter_end;
526 527
	int ret;
	int i;
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	static char packet_ipv4[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08,
		0, 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0};
	static char packet_ipv6[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x86,
		0xdd, 0x60, 0, 0, 0, 0, 0, 0, 0,
		/*src address*/0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		/*dst address*/0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

	if (ipv4) {
		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
	} else {
		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
	}
543

544
	for (i = iter_start; i <= iter_end; i++) {
545 546 547
		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
		if (!raw_packet)
			return -ENOMEM;
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
		if (ipv4) {
			memcpy(raw_packet, packet_ipv4,
			       I40E_IP_DUMMY_PACKET_LEN);
			ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);

			ip->saddr = fd_data->src_ip;
			ip->daddr = fd_data->dst_ip;
			ip->protocol = IPPROTO_IP;
		} else {
			memcpy(raw_packet, packet_ipv6,
			       I40E_IP6_DUMMY_PACKET_LEN);
			ipv6 = (struct ipv6hdr *)(raw_packet +
						  IP_HEADER_OFFSET);
			memcpy(ipv6->saddr.in6_u.u6_addr32,
			       fd_data->src_ip6, sizeof(__be32) * 4);
			memcpy(ipv6->daddr.in6_u.u6_addr32,
			       fd_data->dst_ip6, sizeof(__be32) * 4);

			ipv6->nexthdr = IPPROTO_NONE;
		}
568

569
		if (fd_data->flex_filter) {
570
			u8 *payload;
571 572 573
			__be16 pattern = fd_data->flex_word;
			u16 off = fd_data->flex_offset;

574 575 576 577 578
			if (ipv4)
				payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
			else
				payload = raw_packet +
					  I40E_IP6_DUMMY_PACKET_LEN;
579 580 581
			*((__force __be16 *)(payload + off)) = pattern;
		}

582 583 584 585
		fd_data->pctype = i;
		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
		if (ret) {
			dev_info(&pf->pdev->dev,
586 587
				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
				 fd_data->pctype, fd_data->fd_id, ret);
588 589 590 591 592
			/* The packet buffer wasn't added to the ring so we
			 * need to free it now.
			 */
			kfree(raw_packet);
			return -EOPNOTSUPP;
593
		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
594 595 596 597 598 599 600 601
			if (add)
				dev_info(&pf->pdev->dev,
					 "Filter OK for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
			else
				dev_info(&pf->pdev->dev,
					 "Filter deleted for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
602 603 604
		}
	}

605 606 607 608 609 610 611 612 613 614 615
	if (add) {
		if (ipv4)
			pf->fd_ip4_filter_cnt++;
		else
			pf->fd_ip6_filter_cnt++;
	} else {
		if (ipv4)
			pf->fd_ip4_filter_cnt--;
		else
			pf->fd_ip6_filter_cnt--;
	}
616

617
	return 0;
618 619 620 621 622
}

/**
 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 * @vsi: pointer to the targeted VSI
623
 * @input: filter to add or delete
624 625 626 627 628 629
 * @add: true adds a filter, false removes it
 *
 **/
int i40e_add_del_fdir(struct i40e_vsi *vsi,
		      struct i40e_fdir_filter *input, bool add)
{
630
	enum ip_ver { ipv6 = 0, ipv4 = 1 };
631 632 633 634 635
	struct i40e_pf *pf = vsi->back;
	int ret;

	switch (input->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
636
		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
637 638
		break;
	case UDP_V4_FLOW:
639
		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
640
		break;
641
	case SCTP_V4_FLOW:
642 643 644 645 646 647 648 649 650 651
		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
		break;
	case TCP_V6_FLOW:
		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
		break;
	case UDP_V6_FLOW:
		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
		break;
	case SCTP_V6_FLOW:
		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
652
		break;
653
	case IP_USER_FLOW:
654
		switch (input->ipl4_proto) {
655
		case IPPROTO_TCP:
656
			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
657 658
			break;
		case IPPROTO_UDP:
659
			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
660
			break;
661
		case IPPROTO_SCTP:
662
			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
663
			break;
664
		case IPPROTO_IP:
665
			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
666
			break;
667 668
		default:
			/* We cannot support masking based on protocol */
669
			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
				 input->ipl4_proto);
			return -EINVAL;
		}
		break;
	case IPV6_USER_FLOW:
		switch (input->ipl4_proto) {
		case IPPROTO_TCP:
			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
			break;
		case IPPROTO_UDP:
			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
			break;
		case IPPROTO_SCTP:
			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
			break;
		case IPPROTO_IP:
			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
			break;
		default:
			/* We cannot support masking based on protocol */
			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
				 input->ipl4_proto);
692
			return -EINVAL;
693 694 695
		}
		break;
	default:
696
		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
697
			 input->flow_type);
698
		return -EINVAL;
699 700
	}

701 702 703 704 705 706
	/* The buffer allocated here will be normally be freed by
	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
	 * completion. In the event of an error adding the buffer to the FDIR
	 * ring, it will immediately be freed. It may also be freed by
	 * i40e_clean_tx_ring() when closing the VSI.
	 */
707 708 709
	return ret;
}

710 711 712
/**
 * i40e_fd_handle_status - check the Programming Status for FD
 * @rx_ring: the Rx ring for this descriptor
713 714
 * @qword0_raw: qword0
 * @qword1: qword1 after le_to_cpu
715 716 717 718 719
 * @prog_id: the id originally used for programming
 *
 * This is used to verify if the FD programming or invalidation
 * requested by SW to the HW is successful or not and take actions accordingly.
 **/
720 721
static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
				  u64 qword1, u8 prog_id)
722
{
723 724
	struct i40e_pf *pf = rx_ring->vsi->back;
	struct pci_dev *pdev = pf->pdev;
725
	struct i40e_16b_rx_wb_qw0 *qw0;
726
	u32 fcnt_prog, fcnt_avail;
727 728
	u32 error;

729
	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
730
	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
731 732
		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;

733
	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
734 735
		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
		if (qw0->hi_dword.fd_id != 0 ||
736 737
		    (I40E_DEBUG_FD & pf->hw.debug_mask))
			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
738
				 pf->fd_inv);
739

740 741 742 743 744 745
		/* Check if the programming error is for ATR.
		 * If so, auto disable ATR and set a state for
		 * flush in progress. Next time we come here if flush is in
		 * progress do nothing, once flush is complete the state will
		 * be cleared.
		 */
746
		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
747 748
			return;

749 750 751 752
		pf->fd_add_err++;
		/* store the current atr filter count */
		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);

753
		if (qw0->hi_dword.fd_id == 0 &&
754 755 756 757 758 759 760 761
		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
			/* These set_bit() calls aren't atomic with the
			 * test_bit() here, but worse case we potentially
			 * disable ATR and queue a flush right after SB
			 * support is re-enabled. That shouldn't cause an
			 * issue in practice
			 */
			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
762
			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
763 764
		}

765
		/* filter programming failed most likely due to table full */
766
		fcnt_prog = i40e_get_global_fd_count(pf);
767
		fcnt_avail = pf->fdir_pf_filter_count;
768 769 770 771 772
		/* If ATR is running fcnt_prog can quickly change,
		 * if we are very close to full, it makes sense to disable
		 * FD ATR/SB and then re-enable it when there is room.
		 */
		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
773
			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
774 775
			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
					      pf->state))
776 777
				if (I40E_DEBUG_FD & pf->hw.debug_mask)
					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
778
		}
779
	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
780
		if (I40E_DEBUG_FD & pf->hw.debug_mask)
781
			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
782
				 qw0->hi_dword.fd_id);
783
	}
784 785 786
}

/**
A
Alexander Duyck 已提交
787
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
788 789 790
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
A
Alexander Duyck 已提交
791 792
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
793
{
A
Alexander Duyck 已提交
794
	if (tx_buffer->skb) {
795 796
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
797
		else if (ring_is_xdp(ring))
798
			xdp_return_frame(tx_buffer->xdpf);
799 800
		else
			dev_kfree_skb_any(tx_buffer->skb);
A
Alexander Duyck 已提交
801
		if (dma_unmap_len(tx_buffer, len))
802
			dma_unmap_single(ring->dev,
803 804
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
805
					 DMA_TO_DEVICE);
A
Alexander Duyck 已提交
806 807 808 809 810
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
811
	}
812

A
Alexander Duyck 已提交
813 814
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
815
	dma_unmap_len_set(tx_buffer, len, 0);
A
Alexander Duyck 已提交
816
	/* tx_buffer must be completely set up in the transmit path */
817 818 819 820 821 822 823 824 825 826 827
}

/**
 * i40e_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

828
	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
829 830 831 832 833
		i40e_xsk_clean_tx_ring(tx_ring);
	} else {
		/* ring already cleared, nothing to do */
		if (!tx_ring->tx_bi)
			return;
834

835 836 837 838 839
		/* Free all the Tx ring sk_buffs */
		for (i = 0; i < tx_ring->count; i++)
			i40e_unmap_and_free_tx_resource(tx_ring,
							&tx_ring->tx_bi[i]);
	}
840 841 842 843 844 845 846 847 848

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
849 850 851 852 853

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
854
	netdev_tx_reset_queue(txring_txq(tx_ring));
855 856 857 858 859 860 861 862 863 864 865 866 867
}

/**
 * i40e_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40e_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40e_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
868 869
	kfree(tx_ring->xsk_descs);
	tx_ring->xsk_descs = NULL;
870 871 872 873 874 875 876 877 878 879

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

/**
 * i40e_get_tx_pending - how many tx descriptors not processed
880
 * @ring: the ring of descriptors
881
 * @in_sw: use SW variables
882 883 884 885
 *
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
 **/
886
u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
887
{
J
Jesse Brandeburg 已提交
888 889
	u32 head, tail;

890 891 892 893 894 895 896
	if (!in_sw) {
		head = i40e_get_head(ring);
		tail = readl(ring->tail);
	} else {
		head = ring->next_to_clean;
		tail = ring->next_to_use;
	}
J
Jesse Brandeburg 已提交
897 898 899 900 901 902

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
903 904
}

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
/**
 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 * @vsi:  pointer to vsi struct with tx queues
 *
 * VSI has netdev and netdev has TX queues. This function is to check each of
 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 **/
void i40e_detect_recover_hung(struct i40e_vsi *vsi)
{
	struct i40e_ring *tx_ring = NULL;
	struct net_device *netdev;
	unsigned int i;
	int packets;

	if (!vsi)
		return;

	if (test_bit(__I40E_VSI_DOWN, vsi->state))
		return;

	netdev = vsi->netdev;
	if (!netdev)
		return;

	if (!netif_carrier_ok(netdev))
		return;

	for (i = 0; i < vsi->num_queue_pairs; i++) {
		tx_ring = vsi->tx_rings[i];
		if (tx_ring && tx_ring->desc) {
			/* If packet counter has not changed the queue is
			 * likely stalled, so force an interrupt for this
			 * queue.
			 *
			 * prev_pkt_ctr would be negative if there was no
			 * pending work.
			 */
			packets = tx_ring->stats.packets & INT_MAX;
			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
				i40e_force_wb(vsi, tx_ring->q_vector);
				continue;
			}

			/* Memory barrier between read of packet count and call
			 * to i40e_get_tx_pending()
			 */
			smp_rmb();
			tx_ring->tx_stats.prev_pkt_ctr =
953
			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
954 955 956 957
		}
	}
}

958 959
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
960 961 962
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
963 964 965
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
966 967
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
968
{
M
Mitch Williams 已提交
969
	int i = tx_ring->next_to_clean;
970
	struct i40e_tx_buffer *tx_buf;
971
	struct i40e_tx_desc *tx_head;
972
	struct i40e_tx_desc *tx_desc;
973 974
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
975 976 977

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
978
	i -= tx_ring->count;
979

980 981
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

A
Alexander Duyck 已提交
982 983
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
984 985 986 987 988

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

A
Alexander Duyck 已提交
989
		/* prevent any other reads prior to eop_desc */
990
		smp_rmb();
A
Alexander Duyck 已提交
991

S
Scott Peterson 已提交
992
		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
993 994
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
995 996
			break;

A
Alexander Duyck 已提交
997
		/* clear next_to_watch to prevent false hangs */
998 999
		tx_buf->next_to_watch = NULL;

A
Alexander Duyck 已提交
1000 1001 1002
		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;
1003

1004 1005
		/* free the skb/XDP data */
		if (ring_is_xdp(tx_ring))
1006
			xdp_return_frame(tx_buf->xdpf);
1007 1008
		else
			napi_consume_skb(tx_buf->skb, napi_budget);
1009

A
Alexander Duyck 已提交
1010 1011 1012 1013 1014
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);
1015

A
Alexander Duyck 已提交
1016 1017 1018
		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);
1019

A
Alexander Duyck 已提交
1020 1021
		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
S
Scott Peterson 已提交
1022 1023
			i40e_trace(clean_tx_irq_unmap,
				   tx_ring, tx_desc, tx_buf);
1024 1025 1026 1027

			tx_buf++;
			tx_desc++;
			i++;
A
Alexander Duyck 已提交
1028 1029
			if (unlikely(!i)) {
				i -= tx_ring->count;
1030 1031 1032 1033
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

A
Alexander Duyck 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

1054 1055
		prefetch(tx_desc);

A
Alexander Duyck 已提交
1056 1057 1058 1059 1060
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
1061
	tx_ring->next_to_clean = i;
1062 1063
	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
	i40e_arm_wb(tx_ring, vsi, budget);
1064

1065 1066 1067
	if (ring_is_xdp(tx_ring))
		return !!budget;

1068 1069
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
1070 1071
				  total_packets, total_bytes);

1072
#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1073 1074 1075 1076 1077 1078 1079 1080
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
1081
		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1082 1083 1084 1085 1086 1087
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

1088 1089 1090 1091
	return !!budget;
}

/**
1092
 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1093
 * @vsi: the VSI we care about
1094
 * @q_vector: the vector on which to enable writeback
1095 1096
 *
 **/
1097 1098
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
1099
{
1100
	u16 flags = q_vector->tx.ring[0].flags;
1101
	u32 val;
1102

1103 1104
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;
1105

1106 1107
	if (q_vector->arm_wb_state)
		return;
1108

1109 1110 1111
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1112

1113
		wr32(&vsi->back->hw,
1114
		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1115 1116 1117 1118
		     val);
	} else {
		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1119

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
	q_vector->arm_wb_state = true;
}

/**
 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1134 1135 1136 1137 1138 1139 1140
		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
			  /* allow 00 to be written to the index */

		wr32(&vsi->back->hw,
1141
		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1142 1143 1144 1145 1146 1147 1148 1149 1150
	} else {
		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
			/* allow 00 to be written to the index */

		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
1151 1152
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
					struct i40e_ring_container *rc)
{
	return &q_vector->rx == rc;
}

static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
{
	unsigned int divisor;

	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
	case I40E_LINK_SPEED_40GB:
		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
		break;
	case I40E_LINK_SPEED_25GB:
	case I40E_LINK_SPEED_20GB:
		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
		break;
	default:
	case I40E_LINK_SPEED_10GB:
		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
		break;
	case I40E_LINK_SPEED_1GB:
	case I40E_LINK_SPEED_100MB:
		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
		break;
	}

	return divisor;
}

1184
/**
1185 1186
 * i40e_update_itr - update the dynamic ITR value based on statistics
 * @q_vector: structure containing interrupt and ring information
1187 1188
 * @rc: structure containing ring performance data
 *
1189 1190 1191 1192 1193 1194
 * Stores a new ITR value based on packets and byte
 * counts during the last interrupt.  The advantage of per interrupt
 * computation is faster updates and more accurate ITR for the current
 * traffic pattern.  Constants in this function were computed
 * based on theoretical maximum wire speed and thresholds were set based
 * on testing data as well as attempting to minimize response time
1195 1196
 * while increasing bulk throughput.
 **/
1197 1198
static void i40e_update_itr(struct i40e_q_vector *q_vector,
			    struct i40e_ring_container *rc)
1199
{
1200 1201
	unsigned int avg_wire_size, packets, bytes, itr;
	unsigned long next_update = jiffies;
1202

1203 1204 1205
	/* If we don't have any rings just leave ourselves set for maximum
	 * possible latency so we take ourselves out of the equation.
	 */
1206
	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1207
		return;
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	/* For Rx we want to push the delay up and default to low latency.
	 * for Tx we want to pull the delay down and default to high latency.
	 */
	itr = i40e_container_is_rx(q_vector, rc) ?
	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;

	/* If we didn't update within up to 1 - 2 jiffies we can assume
	 * that either packets are coming in so slow there hasn't been
	 * any work, or that there is so much work that NAPI is dealing
	 * with interrupt moderation and we don't need to do anything.
	 */
	if (time_after(next_update, rc->next_update))
		goto clear_counts;

	/* If itr_countdown is set it means we programmed an ITR within
	 * the last 4 interrupt cycles. This has a side effect of us
	 * potentially firing an early interrupt. In order to work around
	 * this we need to throw out any data received for a few
	 * interrupts following the update.
	 */
	if (q_vector->itr_countdown) {
		itr = rc->target_itr;
		goto clear_counts;
	}
1234

1235 1236
	packets = rc->total_packets;
	bytes = rc->total_bytes;
1237

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	if (i40e_container_is_rx(q_vector, rc)) {
		/* If Rx there are 1 to 4 packets and bytes are less than
		 * 9000 assume insufficient data to use bulk rate limiting
		 * approach unless Tx is already in bulk rate limiting. We
		 * are likely latency driven.
		 */
		if (packets && packets < 4 && bytes < 9000 &&
		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
			itr = I40E_ITR_ADAPTIVE_LATENCY;
			goto adjust_by_size;
		}
	} else if (packets < 4) {
		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
		 * bulk mode and we are receiving 4 or fewer packets just
		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
		 * that the Rx can relax.
		 */
		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
		     I40E_ITR_ADAPTIVE_MAX_USECS)
			goto clear_counts;
	} else if (packets > 32) {
		/* If we have processed over 32 packets in a single interrupt
		 * for Tx assume we need to switch over to "bulk" mode.
		 */
		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
	}

	/* We have no packets to actually measure against. This means
	 * either one of the other queues on this vector is active or
	 * we are a Tx queue doing TSO with too high of an interrupt rate.
	 *
	 * Between 4 and 56 we can assume that our current interrupt delay
	 * is only slightly too low. As such we should increase it by a small
	 * fixed amount.
1273
	 */
1274 1275 1276 1277 1278 1279 1280
	if (packets < 56) {
		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
			itr &= I40E_ITR_ADAPTIVE_LATENCY;
			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
		}
		goto clear_counts;
1281 1282
	}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	if (packets <= 256) {
		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
		itr &= I40E_ITR_MASK;

		/* Between 56 and 112 is our "goldilocks" zone where we are
		 * working out "just right". Just report that our current
		 * ITR is good for us.
		 */
		if (packets <= 112)
			goto clear_counts;

		/* If packet count is 128 or greater we are likely looking
		 * at a slight overrun of the delay we want. Try halving
		 * our delay to see if that will cut the number of packets
		 * in half per interrupt.
		 */
		itr /= 2;
		itr &= I40E_ITR_MASK;
		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
			itr = I40E_ITR_ADAPTIVE_MIN_USECS;

		goto clear_counts;
	}

	/* The paths below assume we are dealing with a bulk ITR since
	 * number of packets is greater than 256. We are just going to have
	 * to compute a value and try to bring the count under control,
	 * though for smaller packet sizes there isn't much we can do as
	 * NAPI polling will likely be kicking in sooner rather than later.
	 */
	itr = I40E_ITR_ADAPTIVE_BULK;

adjust_by_size:
	/* If packet counts are 256 or greater we can assume we have a gross
	 * overestimation of what the rate should be. Instead of trying to fine
	 * tune it just use the formula below to try and dial in an exact value
	 * give the current packet size of the frame.
	 */
	avg_wire_size = bytes / packets;

	/* The following is a crude approximation of:
	 *  wmem_default / (size + overhead) = desired_pkts_per_int
	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1327
	 *
1328 1329 1330 1331 1332 1333 1334 1335 1336
	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
	 * formula down to
	 *
	 *  (170 * (size + 24)) / (size + 640) = ITR
	 *
	 * We first do some math on the packet size and then finally bitshift
	 * by 8 after rounding up. We also have to account for PCIe link speed
	 * difference as ITR scales based on this.
1337
	 */
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	if (avg_wire_size <= 60) {
		/* Start at 250k ints/sec */
		avg_wire_size = 4096;
	} else if (avg_wire_size <= 380) {
		/* 250K ints/sec to 60K ints/sec */
		avg_wire_size *= 40;
		avg_wire_size += 1696;
	} else if (avg_wire_size <= 1084) {
		/* 60K ints/sec to 36K ints/sec */
		avg_wire_size *= 15;
		avg_wire_size += 11452;
	} else if (avg_wire_size <= 1980) {
		/* 36K ints/sec to 30K ints/sec */
		avg_wire_size *= 5;
		avg_wire_size += 22420;
	} else {
		/* plateau at a limit of 30K ints/sec */
		avg_wire_size = 32256;
1356
	}
1357

1358 1359 1360 1361 1362
	/* If we are in low latency mode halve our delay which doubles the
	 * rate to somewhere between 100K to 16K ints/sec
	 */
	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
		avg_wire_size /= 2;
1363

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	/* Resultant value is 256 times larger than it needs to be. This
	 * gives us room to adjust the value as needed to either increase
	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
	 *
	 * Use addition as we have already recorded the new latency flag
	 * for the ITR value.
	 */
	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
	       I40E_ITR_ADAPTIVE_MIN_INC;

	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
		itr &= I40E_ITR_ADAPTIVE_LATENCY;
		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1377 1378
	}

1379 1380 1381 1382 1383 1384 1385
clear_counts:
	/* write back value */
	rc->target_itr = itr;

	/* next update should occur within next jiffy */
	rc->next_update = next_update + 1;

1386 1387 1388 1389
	rc->total_bytes = 0;
	rc->total_packets = 0;
}

B
Björn Töpel 已提交
1390 1391 1392 1393 1394
static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
{
	return &rx_ring->rx_bi[idx];
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

B
Björn Töpel 已提交
1408
	new_buff = i40e_rx_bi(rx_ring, nta);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	new_buff->dma		= old_buff->dma;
	new_buff->page		= old_buff->page;
	new_buff->page_offset	= old_buff->page_offset;
	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1419 1420 1421 1422 1423

	rx_ring->rx_stats.page_reuse_count++;

	/* clear contents of buffer_info */
	old_buff->page = NULL;
1424 1425
}

1426
/**
1427
 * i40e_clean_programming_status - clean the programming status descriptor
1428
 * @rx_ring: the rx ring that has this descriptor
1429 1430
 * @qword0_raw: qword0
 * @qword1: qword1 representing status_error_len in CPU ordering
1431 1432 1433 1434 1435
 *
 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 * status being successful or not and take actions accordingly. FCoE should
 * handle its context/filter programming/invalidation status and take actions.
 *
1436
 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1437
 **/
1438 1439
void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
				   u64 qword1)
1440 1441 1442
{
	u8 id;

1443
	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1444 1445 1446
		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;

	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1447
		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
}

/**
 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

J
Jesse Brandeburg 已提交
1464 1465
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
1466 1467 1468 1469 1470
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

1471 1472 1473 1474 1475 1476 1477
	if (ring_is_xdp(tx_ring)) {
		tx_ring->xsk_descs = kcalloc(I40E_MAX_NUM_DESCRIPTORS, sizeof(*tx_ring->xsk_descs),
					     GFP_KERNEL);
		if (!tx_ring->xsk_descs)
			goto err;
	}

1478 1479
	u64_stats_init(&tx_ring->syncp);

1480 1481
	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1482 1483 1484 1485
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
1497
	tx_ring->tx_stats.prev_pkt_ctr = -1;
1498 1499 1500
	return 0;

err:
1501 1502
	kfree(tx_ring->xsk_descs);
	tx_ring->xsk_descs = NULL;
1503 1504 1505 1506 1507
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
{
	unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;

	rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
	return rx_ring->rx_bi ? 0 : -ENOMEM;
}

static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
{
	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
/**
 * i40e_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
{
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

1533 1534 1535 1536 1537
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

1538
	if (rx_ring->xsk_pool) {
1539
		i40e_xsk_clean_rx_ring(rx_ring);
1540
		goto skip_free;
1541
	}
1542

1543 1544
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
B
Björn Töpel 已提交
1545
		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1546 1547 1548 1549

		if (!rx_bi->page)
			continue;

1550 1551 1552 1553 1554 1555
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
1556
					      rx_ring->rx_buf_len,
1557 1558 1559 1560
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1561
				     i40e_rx_pg_size(rx_ring),
1562 1563
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
1564

1565
		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1566 1567 1568

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
1569 1570
	}

1571
skip_free:
1572
	if (rx_ring->xsk_pool)
1573 1574 1575
		i40e_clear_rx_bi_zc(rx_ring);
	else
		i40e_clear_rx_bi(rx_ring);
1576 1577 1578 1579

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

1580
	rx_ring->next_to_alloc = 0;
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40e_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40e_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40e_clean_rx_ring(rx_ring);
1594 1595
	if (rx_ring->vsi->type == I40E_VSI_MAIN)
		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1596
	rx_ring->xdp_prog = NULL;
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40e_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
1616
	int err;
1617

1618
	u64_stats_init(&rx_ring->syncp);
1619

1620
	/* Round up to nearest 4K */
1621
	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1622 1623 1624 1625 1626 1627 1628
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
1629
		return -ENOMEM;
1630 1631
	}

1632
	rx_ring->next_to_alloc = 0;
1633 1634 1635
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

1636 1637 1638
	/* XDP RX-queue info only needed for RX rings exposed to XDP */
	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1639
				       rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1640
		if (err < 0)
1641
			return err;
1642 1643
	}

1644 1645
	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;

1646 1647 1648 1649 1650 1651 1652 1653
	return 0;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
1654
void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1655 1656
{
	rx_ring->next_to_use = val;
1657 1658 1659 1660

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

1661 1662 1663 1664 1665 1666 1667 1668 1669
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
/**
 * i40e_rx_offset - Return expected offset into page to access data
 * @rx_ring: Ring we are requesting offset of
 *
 * Returns the offset value for ring into the data buffer.
 */
static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
{
	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
					   unsigned int size)
{
	unsigned int truesize;

#if (PAGE_SIZE < 8192)
	truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
#else
	truesize = i40e_rx_offset(rx_ring) ?
		SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) +
		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
		SKB_DATA_ALIGN(size);
#endif
	return truesize;
}

1697
/**
1698 1699 1700
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
1701
 *
1702 1703
 * Returns true if the page was successfully allocated or
 * reused.
1704
 **/
1705 1706
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
1707
{
1708 1709
	struct page *page = bi->page;
	dma_addr_t dma;
1710

1711 1712 1713 1714 1715
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
1716

1717
	/* alloc new page for storage */
1718
	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1719 1720 1721 1722
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
1723

1724
	/* map page for use */
1725
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1726
				 i40e_rx_pg_size(rx_ring),
1727 1728
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
1729

1730 1731
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
1732
	 */
1733
	if (dma_mapping_error(rx_ring->dev, dma)) {
1734
		__free_pages(page, i40e_rx_pg_order(rx_ring));
1735 1736
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
1737 1738
	}

1739 1740
	bi->dma = dma;
	bi->page = page;
1741
	bi->page_offset = i40e_rx_offset(rx_ring);
1742 1743
	page_ref_add(page, USHRT_MAX - 1);
	bi->pagecnt_bias = USHRT_MAX;
1744

1745 1746
	return true;
}
1747

1748
/**
1749
 * i40e_alloc_rx_buffers - Replace used receive buffers
1750 1751
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
1752
 *
1753
 * Returns false if all allocations were successful, true if any fail
1754
 **/
1755
bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1756
{
1757
	u16 ntu = rx_ring->next_to_use;
1758 1759 1760 1761 1762
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
1763
		return false;
1764

1765
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
B
Björn Töpel 已提交
1766
	bi = i40e_rx_bi(rx_ring, ntu);
1767

1768 1769 1770
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
1771

1772 1773 1774
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
1775
						 rx_ring->rx_buf_len,
1776 1777
						 DMA_FROM_DEVICE);

1778 1779 1780 1781
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1782

1783 1784 1785 1786 1787
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
B
Björn Töpel 已提交
1788
			bi = i40e_rx_bi(rx_ring, 0);
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1800 1801 1802

	return false;

1803
no_buffers:
1804 1805
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1806 1807 1808 1809 1810

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
1811 1812 1813 1814 1815 1816
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
1817
 * @rx_desc: the receive descriptor
1818 1819 1820
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
1821
				    union i40e_rx_desc *rx_desc)
1822
{
1823 1824
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
1825
	bool ipv4, ipv6;
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
1836

1837 1838
	skb->ip_summed = CHECKSUM_NONE;

1839 1840
	skb_checksum_none_assert(skb);

1841
	/* Rx csum enabled and ip headers found? */
1842 1843 1844 1845
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
1846
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1847 1848 1849 1850
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
1851 1852
		return;

1853 1854 1855 1856
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1857 1858

	if (ipv4 &&
1859 1860
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1861 1862
		goto checksum_fail;

J
Jesse Brandeburg 已提交
1863
	/* likely incorrect csum if alternate IP extension headers found */
1864
	if (ipv6 &&
1865
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1866
		/* don't increment checksum err here, non-fatal err */
1867 1868
		return;

1869
	/* there was some L4 error, count error and punt packet to the stack */
1870
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1871 1872 1873 1874 1875 1876
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
1877
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1878 1879
		return;

1880 1881 1882
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
1883
	 */
1884 1885 1886 1887 1888 1889 1890 1891 1892
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
1893
		fallthrough;
1894 1895 1896
	default:
		break;
	}
1897 1898 1899 1900 1901

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
1902 1903 1904
}

/**
1905
 * i40e_ptype_to_htype - get a hash type
1906 1907 1908 1909
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
1910
static inline int i40e_ptype_to_htype(u8 ptype)
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

1927 1928 1929 1930
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
1931 1932
 * @skb: skb currently being received and modified
 * @rx_ptype: Rx packet type
1933 1934 1935 1936 1937 1938 1939
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
1940
	const __le64 rss_mask =
1941 1942 1943
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

1944
	if (!(ring->netdev->features & NETIF_F_RXHASH))
1945 1946 1947 1948 1949 1950 1951 1952
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

1953
/**
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 **/
void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1964
			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1965 1966 1967 1968
{
	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;
1969 1970
	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1971
		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1972 1973
	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
		      I40E_RXD_QW1_PTYPE_SHIFT;
1974

1975
	if (unlikely(tsynvalid))
1976
		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1977 1978 1979 1980 1981 1982

	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);

	skb_record_rx_queue(skb, rx_ring->queue_index);
1983

1984 1985 1986 1987 1988 1989 1990
	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
		u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;

		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
				       le16_to_cpu(vlan_tag));
	}

1991 1992
	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1993 1994 1995 1996 1997 1998
}

/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
1999
 * @rx_desc: pointer to the EOP Rx descriptor
2000 2001 2002 2003 2004 2005 2006 2007 2008
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
2009 2010 2011
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
				 union i40e_rx_desc *rx_desc)

2012
{
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
	/* XDP packets use error pointer so abort at this point */
	if (IS_ERR(skb))
		return true;

	/* ERR_MASK will only have valid bits if EOP set, and
	 * what we are doing here is actually checking
	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
	 * the error field
	 */
	if (unlikely(i40e_test_staterr(rx_desc,
				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
		dev_kfree_skb_any(skb);
		return true;
	}

2028 2029 2030 2031 2032 2033 2034
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

2035 2036 2037 2038 2039
/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
2040
 * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
2063 2064
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
				   int rx_buffer_pgcnt)
2065
{
2066 2067
	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
	struct page *page = rx_buffer->page;
2068 2069

	/* Is any reuse possible? */
2070
	if (!dev_page_is_reusable(page))
2071 2072 2073 2074
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
2075
	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2076 2077
		return false;
#else
2078 2079 2080
#define I40E_LAST_OFFSET \
	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
2081 2082 2083
		return false;
#endif

2084 2085 2086 2087
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
	 */
2088 2089
	if (unlikely(pagecnt_bias == 1)) {
		page_ref_add(page, USHRT_MAX - 1);
2090 2091
		rx_buffer->pagecnt_bias = USHRT_MAX;
	}
2092

2093
	return true;
2094 2095 2096 2097 2098 2099 2100
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @skb: sk_buff to place the data into
2101
 * @size: packet length from rx_desc
2102 2103
 *
 * This function will add the data contained in rx_buffer->page to the skb.
2104
 * It will just attach the page as a frag to the skb.
2105
 *
2106
 * The function will then update the page offset.
2107
 **/
2108
static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
2109
			     struct i40e_rx_buffer *rx_buffer,
2110 2111
			     struct sk_buff *skb,
			     unsigned int size)
2112 2113
{
#if (PAGE_SIZE < 8192)
2114
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2115
#else
2116
	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
2117 2118
#endif

2119 2120
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
			rx_buffer->page_offset, size, truesize);
2121

2122 2123 2124 2125 2126 2127
	/* page is being used so we must update the page offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
2128 2129
}

2130 2131 2132 2133
/**
 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
 * @rx_ring: rx descriptor ring to transact packets on
 * @size: size of buffer to add to skb
2134
 * @rx_buffer_pgcnt: buffer page refcount
2135 2136 2137 2138 2139
 *
 * This function will pull an Rx buffer from the ring and synchronize it
 * for use by the CPU.
 */
static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2140 2141
						 const unsigned int size,
						 int *rx_buffer_pgcnt)
2142 2143 2144
{
	struct i40e_rx_buffer *rx_buffer;

B
Björn Töpel 已提交
2145
	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2146 2147 2148 2149 2150 2151
	*rx_buffer_pgcnt =
#if (PAGE_SIZE < 8192)
		page_count(rx_buffer->page);
#else
		0;
#endif
2152
	prefetch_page_address(rx_buffer->page);
2153 2154 2155 2156 2157 2158 2159 2160

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      size,
				      DMA_FROM_DEVICE);

2161 2162 2163
	/* We have pulled a buffer for use, so decrement pagecnt_bias */
	rx_buffer->pagecnt_bias--;

2164 2165 2166
	return rx_buffer;
}

2167
/**
2168
 * i40e_construct_skb - Allocate skb and populate it
2169
 * @rx_ring: rx descriptor ring to transact packets on
2170
 * @rx_buffer: rx buffer to pull data from
2171
 * @xdp: xdp_buff pointing to the data
2172
 *
2173 2174 2175
 * This function allocates an skb.  It then populates it with the page
 * data from the current receive descriptor, taking care to set up the
 * skb correctly.
2176
 */
2177 2178
static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
					  struct i40e_rx_buffer *rx_buffer,
2179
					  struct xdp_buff *xdp)
2180
{
2181
	unsigned int size = xdp->data_end - xdp->data;
2182
#if (PAGE_SIZE < 8192)
2183
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2184 2185 2186 2187 2188
#else
	unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
	unsigned int headlen;
	struct sk_buff *skb;
2189

2190
	/* prefetch first cache line of first page */
2191 2192
	net_prefetch(xdp->data);

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	/* Note, we get here by enabling legacy-rx via:
	 *
	 *    ethtool --set-priv-flags <dev> legacy-rx on
	 *
	 * In this mode, we currently get 0 extra XDP headroom as
	 * opposed to having legacy-rx off, where we process XDP
	 * packets going to stack via i40e_build_skb(). The latter
	 * provides us currently with 192 bytes of headroom.
	 *
	 * For i40e_construct_skb() mode it means that the
	 * xdp->data_meta will always point to xdp->data, since
	 * the helper cannot expand the head. Should this ever
	 * change in future for legacy-rx mode on, then lets also
	 * add xdp->data_meta handling here.
	 */
2208

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	/* allocate a skb to store the frags */
	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
			       I40E_RX_HDR_SIZE,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;

	/* Determine available headroom for copy */
	headlen = size;
	if (headlen > I40E_RX_HDR_SIZE)
2219 2220
		headlen = eth_get_headlen(skb->dev, xdp->data,
					  I40E_RX_HDR_SIZE);
2221

2222
	/* align pull length to size of long to optimize memcpy performance */
2223 2224
	memcpy(__skb_put(skb, headlen), xdp->data,
	       ALIGN(headlen, sizeof(long)));
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242

	/* update all of the pointers */
	size -= headlen;
	if (size) {
		skb_add_rx_frag(skb, 0, rx_buffer->page,
				rx_buffer->page_offset + headlen,
				size, truesize);

		/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
		rx_buffer->page_offset ^= truesize;
#else
		rx_buffer->page_offset += truesize;
#endif
	} else {
		/* buffer is unused, reset bias back to rx_buffer */
		rx_buffer->pagecnt_bias++;
	}
2243 2244 2245 2246

	return skb;
}

2247 2248 2249 2250
/**
 * i40e_build_skb - Build skb around an existing buffer
 * @rx_ring: Rx descriptor ring to transact packets on
 * @rx_buffer: Rx buffer to pull data from
2251
 * @xdp: xdp_buff pointing to the data
2252 2253 2254 2255 2256 2257
 *
 * This function builds an skb around an existing Rx buffer, taking care
 * to set up the skb correctly and avoid any memcpy overhead.
 */
static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
				      struct i40e_rx_buffer *rx_buffer,
2258
				      struct xdp_buff *xdp)
2259
{
2260
	unsigned int metasize = xdp->data - xdp->data_meta;
2261 2262 2263
#if (PAGE_SIZE < 8192)
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
#else
2264
	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2265 2266
				SKB_DATA_ALIGN(xdp->data_end -
					       xdp->data_hard_start);
2267 2268 2269
#endif
	struct sk_buff *skb;

2270 2271 2272 2273 2274
	/* Prefetch first cache line of first page. If xdp->data_meta
	 * is unused, this points exactly as xdp->data, otherwise we
	 * likely have a consumer accessing first few bytes of meta
	 * data, and then actual data.
	 */
2275 2276
	net_prefetch(xdp->data_meta);

2277
	/* build an skb around the page buffer */
2278
	skb = build_skb(xdp->data_hard_start, truesize);
2279 2280 2281 2282
	if (unlikely(!skb))
		return NULL;

	/* update pointers within the skb to store the data */
2283
	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2284 2285 2286
	__skb_put(skb, xdp->data_end - xdp->data);
	if (metasize)
		skb_metadata_set(skb, metasize);
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297

	/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif

	return skb;
}

2298 2299 2300 2301
/**
 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: rx buffer to pull data from
2302
 * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2303 2304
 *
 * This function will clean up the contents of the rx_buffer.  It will
2305
 * either recycle the buffer or unmap it and free the associated resources.
2306 2307
 */
static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2308 2309
			       struct i40e_rx_buffer *rx_buffer,
			       int rx_buffer_pgcnt)
2310
{
2311
	if (i40e_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2312 2313 2314 2315
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
2316 2317
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
				     i40e_rx_pg_size(rx_ring),
2318
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2319 2320
		__page_frag_cache_drain(rx_buffer->page,
					rx_buffer->pagecnt_bias);
2321 2322
		/* clear contents of buffer_info */
		rx_buffer->page = NULL;
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	}
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
2336
 **/
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

2359
static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2360
			      struct i40e_ring *xdp_ring);
2361

2362
int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2363
{
2364
	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2365 2366 2367 2368 2369 2370 2371

	if (unlikely(!xdpf))
		return I40E_XDP_CONSUMED;

	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
}

2372 2373 2374 2375 2376 2377 2378 2379
/**
 * i40e_run_xdp - run an XDP program
 * @rx_ring: Rx ring being processed
 * @xdp: XDP buffer containing the frame
 **/
static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
				    struct xdp_buff *xdp)
{
2380
	int err, result = I40E_XDP_PASS;
2381
	struct i40e_ring *xdp_ring;
2382 2383 2384 2385 2386 2387 2388 2389 2390
	struct bpf_prog *xdp_prog;
	u32 act;

	rcu_read_lock();
	xdp_prog = READ_ONCE(rx_ring->xdp_prog);

	if (!xdp_prog)
		goto xdp_out;

2391 2392
	prefetchw(xdp->data_hard_start); /* xdp_frame write */

2393 2394 2395 2396
	act = bpf_prog_run_xdp(xdp_prog, xdp);
	switch (act) {
	case XDP_PASS:
		break;
2397 2398
	case XDP_TX:
		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2399
		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2400
		break;
2401 2402
	case XDP_REDIRECT:
		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2403
		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
2404
		break;
2405 2406
	default:
		bpf_warn_invalid_xdp_action(act);
2407
		fallthrough;
2408 2409
	case XDP_ABORTED:
		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2410
		fallthrough; /* handle aborts by dropping packet */
2411 2412 2413 2414 2415 2416 2417 2418 2419
	case XDP_DROP:
		result = I40E_XDP_CONSUMED;
		break;
	}
xdp_out:
	rcu_read_unlock();
	return ERR_PTR(-result);
}

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
/**
 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
 * @rx_ring: Rx ring
 * @rx_buffer: Rx buffer to adjust
 * @size: Size of adjustment
 **/
static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
				struct i40e_rx_buffer *rx_buffer,
				unsigned int size)
{
2430
	unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2431

2432
#if (PAGE_SIZE < 8192)
2433 2434 2435 2436 2437 2438
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
}

2439 2440 2441 2442 2443 2444
/**
 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
 * @xdp_ring: XDP Tx ring
 *
 * This function updates the XDP Tx ring tail register.
 **/
2445
void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2446 2447 2448 2449 2450 2451 2452 2453
{
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.
	 */
	wmb();
	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
}

2454 2455 2456 2457 2458 2459 2460 2461
/**
 * i40e_update_rx_stats - Update Rx ring statistics
 * @rx_ring: rx descriptor ring
 * @total_rx_bytes: number of bytes received
 * @total_rx_packets: number of packets received
 *
 * This function updates the Rx ring statistics.
 **/
2462 2463 2464
void i40e_update_rx_stats(struct i40e_ring *rx_ring,
			  unsigned int total_rx_bytes,
			  unsigned int total_rx_packets)
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
{
	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
}

/**
 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
 * @rx_ring: Rx ring
 * @xdp_res: Result of the receive batch
 *
 * This function bumps XDP Tx tail and/or flush redirect map, and
 * should be called when a batch of packets has been processed in the
 * napi loop.
 **/
2483
void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
{
	if (xdp_res & I40E_XDP_REDIR)
		xdp_do_flush_map();

	if (xdp_res & I40E_XDP_TX) {
		struct i40e_ring *xdp_ring =
			rx_ring->vsi->xdp_rings[rx_ring->queue_index];

		i40e_xdp_ring_update_tail(xdp_ring);
	}
}

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
/**
 * i40e_inc_ntc: Advance the next_to_clean index
 * @rx_ring: Rx ring
 **/
static void i40e_inc_ntc(struct i40e_ring *rx_ring)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;
	prefetch(I40E_RX_DESC(rx_ring, ntc));
}

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
/**
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 **/
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2522
{
2523
	unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
2524
	struct sk_buff *skb = rx_ring->skb;
2525
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2526 2527
	unsigned int xdp_xmit = 0;
	bool failure = false;
2528 2529
	struct xdp_buff xdp;

2530
#if (PAGE_SIZE < 8192)
2531
	frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2532
#endif
2533
	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
2534

2535
	while (likely(total_rx_packets < (unsigned int)budget)) {
2536
		struct i40e_rx_buffer *rx_buffer;
2537
		union i40e_rx_desc *rx_desc;
2538
		int rx_buffer_pgcnt;
2539
		unsigned int size;
2540 2541
		u64 qword;

2542 2543
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2544
			failure = failure ||
2545
				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2546 2547 2548
			cleaned_count = 0;
		}

2549 2550 2551 2552 2553
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
2554
		 * hardware wrote DD then the length will be non-zero
2555
		 */
2556
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2557

2558
		/* This memory barrier is needed to keep us from reading
2559 2560
		 * any other fields out of the rx_desc until we have
		 * verified the descriptor has been written back.
2561
		 */
2562
		dma_rmb();
2563

2564 2565 2566 2567 2568 2569
		if (i40e_rx_is_programming_status(qword)) {
			i40e_clean_programming_status(rx_ring,
						      rx_desc->raw.qword[0],
						      qword);
			rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
			i40e_inc_ntc(rx_ring);
2570
			i40e_reuse_rx_page(rx_ring, rx_buffer);
2571
			cleaned_count++;
2572 2573
			continue;
		}
2574

2575 2576 2577 2578 2579
		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		if (!size)
			break;

S
Scott Peterson 已提交
2580
		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2581
		rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2582

2583
		/* retrieve a buffer from the ring */
2584
		if (!skb) {
2585 2586 2587 2588 2589 2590
			unsigned int offset = i40e_rx_offset(rx_ring);
			unsigned char *hard_start;

			hard_start = page_address(rx_buffer->page) +
				     rx_buffer->page_offset - offset;
			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
2591 2592 2593 2594
#if (PAGE_SIZE > 4096)
			/* At larger PAGE_SIZE, frame_sz depend on len size */
			xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
#endif
2595 2596 2597 2598
			skb = i40e_run_xdp(rx_ring, &xdp);
		}

		if (IS_ERR(skb)) {
2599 2600 2601 2602
			unsigned int xdp_res = -PTR_ERR(skb);

			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
				xdp_xmit |= xdp_res;
2603 2604 2605 2606
				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
			} else {
				rx_buffer->pagecnt_bias++;
			}
2607 2608 2609
			total_rx_bytes += size;
			total_rx_packets++;
		} else if (skb) {
2610
			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2611 2612 2613 2614 2615
		} else if (ring_uses_build_skb(rx_ring)) {
			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
		} else {
			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
		}
2616 2617 2618 2619 2620

		/* exit if we failed to retrieve a buffer */
		if (!skb) {
			rx_ring->rx_stats.alloc_buff_failed++;
			rx_buffer->pagecnt_bias++;
2621
			break;
2622
		}
2623

2624
		i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2625 2626
		cleaned_count++;

2627
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2628 2629
			continue;

2630
		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2631
			skb = NULL;
2632
			continue;
2633
		}
2634 2635 2636 2637

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

2638
		/* populate checksum, VLAN, and protocol */
2639
		i40e_process_skb_fields(rx_ring, rx_desc, skb);
2640

S
Scott Peterson 已提交
2641
		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2642
		napi_gro_receive(&rx_ring->q_vector->napi, skb);
2643
		skb = NULL;
2644

2645 2646 2647
		/* update budget accounting */
		total_rx_packets++;
	}
2648

2649
	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2650 2651
	rx_ring->skb = skb;

2652
	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2653

2654
	/* guarantee a trip back through this routine if there was a failure */
2655
	return failure ? budget : (int)total_rx_packets;
2656 2657
}

2658
static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2659 2660 2661
{
	u32 val;

2662 2663 2664 2665 2666 2667 2668 2669 2670
	/* We don't bother with setting the CLEARPBA bit as the data sheet
	 * points out doing so is "meaningless since it was already
	 * auto-cleared". The auto-clearing happens when the interrupt is
	 * asserted.
	 *
	 * Hardware errata 28 for also indicates that writing to a
	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
	 * an event in the PBA anyway so we need to rely on the automask
	 * to hold pending events for us until the interrupt is re-enabled
2671 2672 2673 2674 2675
	 *
	 * The itr value is reported in microseconds, and the register
	 * value is recorded in 2 microsecond units. For this reason we
	 * only need to shift by the interval shift - 1 instead of the
	 * full value.
2676
	 */
2677 2678
	itr &= I40E_ITR_MASK;

2679 2680
	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2681
	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2682 2683 2684 2685 2686 2687 2688

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_PFINT_DYN_CTLN

2689 2690 2691 2692 2693 2694 2695 2696 2697
/* The act of updating the ITR will cause it to immediately trigger. In order
 * to prevent this from throwing off adaptive update statistics we defer the
 * update so that it can only happen so often. So after either Tx or Rx are
 * updated we make the adaptive scheme wait until either the ITR completely
 * expires via the next_update expiration or we have been through at least
 * 3 interrupts.
 */
#define ITR_COUNTDOWN_START 3

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
2708
	u32 intval;
2709

2710 2711
	/* If we don't have MSIX, then we only need to re-enable icr0 */
	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2712
		i40e_irq_dynamic_enable_icr0(vsi->back);
2713 2714 2715
		return;
	}

2716 2717 2718
	/* These will do nothing if dynamic updates are not enabled */
	i40e_update_itr(q_vector, &q_vector->tx);
	i40e_update_itr(q_vector, &q_vector->rx);
2719

2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
	/* This block of logic allows us to get away with only updating
	 * one ITR value with each interrupt. The idea is to perform a
	 * pseudo-lazy update with the following criteria.
	 *
	 * 1. Rx is given higher priority than Tx if both are in same state
	 * 2. If we must reduce an ITR that is given highest priority.
	 * 3. We then give priority to increasing ITR based on amount.
	 */
	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
		/* Rx ITR needs to be reduced, this is highest priority */
2730 2731 2732
		intval = i40e_buildreg_itr(I40E_RX_ITR,
					   q_vector->rx.target_itr);
		q_vector->rx.current_itr = q_vector->rx.target_itr;
2733 2734 2735 2736 2737 2738 2739
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
		/* Tx ITR needs to be reduced, this is second priority
		 * Tx ITR needs to be increased more than Rx, fourth priority
		 */
2740 2741 2742
		intval = i40e_buildreg_itr(I40E_TX_ITR,
					   q_vector->tx.target_itr);
		q_vector->tx.current_itr = q_vector->tx.target_itr;
2743 2744 2745 2746 2747 2748 2749
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
		/* Rx ITR needs to be increased, third priority */
		intval = i40e_buildreg_itr(I40E_RX_ITR,
					   q_vector->rx.target_itr);
		q_vector->rx.current_itr = q_vector->rx.target_itr;
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2750
	} else {
2751
		/* No ITR update, lowest priority */
2752
		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2753 2754
		if (q_vector->itr_countdown)
			q_vector->itr_countdown--;
2755 2756
	}

2757
	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2758
		wr32(hw, INTREG(q_vector->reg_idx), intval);
2759 2760
}

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
/**
 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40e_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
2775
	struct i40e_ring *ring;
2776
	bool clean_complete = true;
2777
	bool arm_wb = false;
2778
	int budget_per_ring;
2779
	int work_done = 0;
2780

2781
	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2782 2783 2784 2785
		napi_complete(napi);
		return 0;
	}

2786 2787 2788
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
2789
	i40e_for_each_ring(ring, q_vector->tx) {
2790
		bool wd = ring->xsk_pool ?
2791
			  i40e_clean_xdp_tx_irq(vsi, ring) :
2792 2793 2794
			  i40e_clean_tx_irq(vsi, ring, budget);

		if (!wd) {
2795 2796 2797 2798
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
2799
		ring->arm_wb = false;
2800
	}
2801

2802 2803 2804 2805
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
	/* normally we have 1 Rx ring per q_vector */
	if (unlikely(q_vector->num_ringpairs > 1))
		/* We attempt to distribute budget to each Rx queue fairly, but
		 * don't allow the budget to go below 1 because that would exit
		 * polling early.
		 */
		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
	else
		/* Max of 1 Rx ring in this q_vector so give it the budget */
		budget_per_ring = budget;
2816

2817
	i40e_for_each_ring(ring, q_vector->rx) {
2818
		int cleaned = ring->xsk_pool ?
2819 2820
			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
			      i40e_clean_rx_irq(ring, budget_per_ring);
2821 2822

		work_done += cleaned;
2823 2824 2825
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
2826
	}
2827 2828

	/* If work not completed, return budget and polling will return */
2829
	if (!clean_complete) {
2830 2831 2832 2833 2834 2835 2836 2837 2838
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
			/* Tell napi that we are done polling */
			napi_complete_done(napi, work_done);

			/* Force an interrupt */
			i40e_force_wb(vsi, q_vector);

			/* Return budget-1 so that polling stops */
			return budget - 1;
		}
2849
tx_only:
2850 2851 2852
		if (arm_wb) {
			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
			i40e_enable_wb_on_itr(vsi, q_vector);
2853
		}
2854
		return budget;
2855
	}
2856

2857 2858 2859
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

2860 2861 2862 2863 2864
	/* Exit the polling mode, but don't re-enable interrupts if stack might
	 * poll us due to busy-polling
	 */
	if (likely(napi_complete_done(napi, work_done)))
		i40e_update_enable_itr(vsi, q_vector);
2865

2866
	return min(work_done, budget - 1);
2867 2868 2869 2870 2871 2872
}

/**
 * i40e_atr - Add a Flow Director ATR filter
 * @tx_ring:  ring to add programming descriptor to
 * @skb:      send buffer
2873
 * @tx_flags: send tx flags
2874 2875
 **/
static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2876
		     u32 tx_flags)
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	union {
		unsigned char *network;
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	struct tcphdr *th;
	unsigned int hlen;
	u32 flex_ptype, dtype_cmd;
2888
	int l4_proto;
2889
	u16 i;
2890 2891

	/* make sure ATR is enabled */
J
Jesse Brandeburg 已提交
2892
	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2893 2894
		return;

2895
	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2896 2897
		return;

2898 2899 2900 2901
	/* if sampling is disabled do nothing */
	if (!tx_ring->atr_sample_rate)
		return;

2902
	/* Currently only IPv4/IPv6 with TCP is supported */
2903 2904
	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
		return;
2905

2906 2907 2908
	/* snag network header to get L4 type and address */
	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
		      skb_inner_network_header(skb) : skb_network_header(skb);
2909

2910 2911 2912 2913
	/* Note: tx_flags gets modified to reflect inner protocols in
	 * tx_enable_csum function if encap is enabled.
	 */
	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2914
		/* access ihl as u8 to avoid unaligned access on ia64 */
2915 2916
		hlen = (hdr.network[0] & 0x0F) << 2;
		l4_proto = hdr.ipv4->protocol;
2917
	} else {
2918 2919 2920 2921 2922 2923 2924 2925 2926
		/* find the start of the innermost ipv6 header */
		unsigned int inner_hlen = hdr.network - skb->data;
		unsigned int h_offset = inner_hlen;

		/* this function updates h_offset to the end of the header */
		l4_proto =
		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
		/* hlen will contain our best estimate of the tcp header */
		hlen = h_offset - inner_hlen;
2927 2928
	}

2929
	if (l4_proto != IPPROTO_TCP)
2930 2931
		return;

2932 2933
	th = (struct tcphdr *)(hdr.network + hlen);

2934
	/* Due to lack of space, no more new filters can be programmed */
2935
	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2936
		return;
2937
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2938 2939 2940 2941 2942 2943
		/* HW ATR eviction will take care of removing filters on FIN
		 * and RST packets.
		 */
		if (th->fin || th->rst)
			return;
	}
2944 2945 2946

	tx_ring->atr_count++;

2947 2948 2949 2950 2951
	/* sample on all syn/fin/rst packets or once every atr sample rate */
	if (!th->fin &&
	    !th->syn &&
	    !th->rst &&
	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2952 2953 2954 2955 2956
		return;

	tx_ring->atr_count = 0;

	/* grab the next descriptor */
2957 2958 2959 2960 2961
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2962 2963 2964

	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2965
	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2966 2967 2968 2969 2970 2971 2972 2973 2974
		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

2975
	dtype_cmd |= (th->fin || th->rst) ?
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
		     I40E_TXD_FLTR_QW1_DEST_SHIFT;

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;

2987
	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2988
	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2989 2990 2991 2992 2993 2994 2995 2996 2997
		dtype_cmd |=
			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
	else
		dtype_cmd |=
			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2998

2999
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
3000 3001
		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;

3002
	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
J
Jesse Brandeburg 已提交
3003
	fdir_desc->rsvd = cpu_to_le32(0);
3004
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
J
Jesse Brandeburg 已提交
3005
	fdir_desc->fd_id = cpu_to_le32(0);
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
}

/**
 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
3020 3021 3022
static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
					     struct i40e_ring *tx_ring,
					     u32 *flags)
3023 3024 3025 3026
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

3040
	/* if we have a HW VLAN tag being added, default to the HW one */
3041 3042
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3043 3044
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
3045
	} else if (protocol == htons(ETH_P_8021Q)) {
3046
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
3047

3048 3049 3050 3051 3052 3053 3054 3055 3056
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

3057 3058 3059
	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
		goto out;

3060
	/* Insert 802.1p priority into VLAN header */
3061 3062
	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
	    (skb->priority != TC_PRIO_CONTROL)) {
3063 3064 3065 3066 3067
		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
		tx_flags |= (skb->priority & 0x7) <<
				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
			struct vlan_ethhdr *vhdr;
3068 3069 3070 3071 3072
			int rc;

			rc = skb_cow_head(skb, 0);
			if (rc < 0)
				return rc;
3073 3074 3075 3076 3077 3078 3079
			vhdr = (struct vlan_ethhdr *)skb->data;
			vhdr->h_vlan_TCI = htons(tx_flags >>
						 I40E_TX_FLAGS_VLAN_SHIFT);
		} else {
			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
		}
	}
3080 3081

out:
3082 3083 3084 3085 3086 3087
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
3088
 * @first:    pointer to first Tx buffer for xmit
3089
 * @hdr_len:  ptr to the size of the packet header
3090
 * @cd_type_cmd_tso_mss: Quad Word 1
3091 3092 3093
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
3094 3095
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
3096
{
3097
	struct sk_buff *skb = first->skb;
3098
	u64 cd_cmd, cd_tso_len, cd_mss;
3099 3100 3101 3102 3103
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
3104 3105
	union {
		struct tcphdr *tcp;
3106
		struct udphdr *udp;
3107 3108 3109
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
3110
	u16 gso_segs, gso_size;
3111 3112
	int err;

3113 3114 3115
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

3116 3117 3118
	if (!skb_is_gso(skb))
		return 0;

3119 3120 3121
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
3122

3123 3124
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
3125

3126 3127 3128 3129
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
3130
	} else {
3131 3132 3133
		ip.v6->payload_len = 0;
	}

3134
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3135
					 SKB_GSO_GRE_CSUM |
3136
					 SKB_GSO_IPXIP4 |
3137
					 SKB_GSO_IPXIP6 |
3138
					 SKB_GSO_UDP_TUNNEL |
3139
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3140 3141 3142 3143
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

3144 3145 3146 3147
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
3148
			paylen = skb->len - l4_offset;
3149 3150
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
3151 3152
		}

3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
3164 3165
	}

3166 3167 3168 3169
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
3170
	paylen = skb->len - l4_offset;
3171

3172 3173 3174 3175 3176 3177 3178 3179 3180
	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
		/* compute length of segmentation header */
		*hdr_len = sizeof(*l4.udp) + l4_offset;
	} else {
		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
		/* compute length of segmentation header */
		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
	}
3181

3182 3183 3184 3185 3186 3187 3188 3189
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

3190 3191 3192
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
3193
	cd_mss = gso_size;
3194 3195 3196
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3197 3198 3199
	return 1;
}

J
Jacob Keller 已提交
3200 3201 3202 3203 3204
/**
 * i40e_tsyn - set up the tsyn context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @tx_flags: the collected send information
3205
 * @cd_type_cmd_tso_mss: Quad Word 1
J
Jacob Keller 已提交
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
 *
 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
 **/
static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
{
	struct i40e_pf *pf;

	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
		return 0;

	/* Tx timestamps cannot be sampled when doing TSO */
	if (tx_flags & I40E_TX_FLAGS_TSO)
		return 0;

	/* only timestamp the outbound packet if the user has requested it and
	 * we are not already transmitting a packet to be timestamped
	 */
	pf = i40e_netdev_to_pf(tx_ring->netdev);
3225 3226 3227
	if (!(pf->flags & I40E_FLAG_PTP))
		return 0;

3228
	if (pf->ptp_tx &&
3229
	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
J
Jacob Keller 已提交
3230
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3231
		pf->ptp_tx_start = jiffies;
J
Jacob Keller 已提交
3232 3233
		pf->ptp_tx_skb = skb_get(skb);
	} else {
3234
		pf->tx_hwtstamp_skipped++;
J
Jacob Keller 已提交
3235 3236 3237 3238 3239 3240 3241 3242 3243
		return 0;
	}

	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
				I40E_TXD_CTX_QW1_CMD_SHIFT;

	return 1;
}

3244 3245 3246
/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
3247
 * @tx_flags: pointer to Tx flags currently set
3248 3249
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
3250
 * @tx_ring: Tx descriptor ring
3251 3252
 * @cd_tunneling: ptr to context desc bits
 **/
3253 3254 3255 3256
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
3257
{
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
3268
	unsigned char *exthdr;
3269
	u32 offset, cmd = 0;
3270
	__be16 frag_off;
3271 3272
	u8 l4_proto = 0;

3273 3274 3275
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

3276 3277
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
3278

3279 3280 3281
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

3282
	if (skb->encapsulation) {
3283
		u32 tunnel = 0;
3284 3285
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3286 3287 3288 3289
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

3290 3291
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3292
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3293 3294

			exthdr = ip.hdr + sizeof(*ip.v6);
3295
			l4_proto = ip.v6->nexthdr;
3296 3297 3298
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
3299 3300 3301 3302
		}

		/* define outer transport */
		switch (l4_proto) {
3303
		case IPPROTO_UDP:
3304
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3305
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3306
			break;
3307
		case IPPROTO_GRE:
3308
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3309
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3310
			break;
3311 3312 3313 3314 3315
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
3316
		default:
3317 3318 3319 3320 3321
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
3322
		}
3323

3324 3325 3326 3327 3328 3329 3330
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

3331 3332 3333 3334
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

3335 3336
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3337
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3338 3339 3340
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

3341 3342 3343
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

3344 3345
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
3346
		l4_proto = 0;
3347

3348 3349 3350 3351 3352
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
3353
			*tx_flags |= I40E_TX_FLAGS_IPV6;
3354 3355 3356
	}

	/* Enable IP checksum offloads */
3357
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3358
		l4_proto = ip.v4->protocol;
3359 3360 3361
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
3362 3363 3364
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
3365
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3366
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3367 3368 3369 3370 3371 3372

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
3373
	}
3374

3375 3376
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3377 3378

	/* Enable L4 checksum offloads */
3379
	switch (l4_proto) {
3380 3381
	case IPPROTO_TCP:
		/* enable checksum offloads */
3382 3383
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3384 3385 3386
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
3387 3388 3389
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3390 3391 3392
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
3393 3394 3395
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3396 3397
		break;
	default:
3398 3399 3400 3401
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
3402
	}
3403 3404 3405

	*td_cmd |= cmd;
	*td_offset |= offset;
3406 3407

	return 1;
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
3422
	int i = tx_ring->next_to_use;
3423

3424 3425
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
3426 3427 3428
		return;

	/* grab the next descriptor */
3429 3430 3431 3432
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3433 3434 3435 3436

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3437
	context_desc->rsvd = cpu_to_le16(0);
3438 3439 3440
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

E
Eric Dumazet 已提交
3441 3442 3443 3444 3445 3446 3447
/**
 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
3448
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
E
Eric Dumazet 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

3464
/**
3465
 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3466 3467
 * @skb:      send buffer
 *
3468 3469 3470 3471 3472 3473 3474 3475
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
3476
 **/
3477
bool __i40e_chk_linearize(struct sk_buff *skb)
3478
{
3479
	const skb_frag_t *frag, *stale;
3480
	int nr_frags, sum;
3481

3482
	/* no need to check if number of frags is less than 7 */
3483
	nr_frags = skb_shinfo(skb)->nr_frags;
3484
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3485
		return false;
3486

3487
	/* We need to walk through the list and validate that each group
3488
	 * of 6 fragments totals at least gso_size.
3489
	 */
3490
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3491 3492 3493 3494 3495 3496 3497 3498
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
3499
	sum = 1 - skb_shinfo(skb)->gso_size;
3500

3501 3502 3503 3504 3505 3506
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
3507 3508 3509 3510

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
3511 3512 3513
	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
		int stale_size = skb_frag_size(stale);

3514
		sum += skb_frag_size(frag++);
3515

3516 3517 3518 3519 3520 3521 3522
		/* The stale fragment may present us with a smaller
		 * descriptor than the actual fragment size. To account
		 * for that we need to remove all the data on the front and
		 * figure out what the remainder would be in the last
		 * descriptor associated with the fragment.
		 */
		if (stale_size > I40E_MAX_DATA_PER_TXD) {
J
Jonathan Lemon 已提交
3523
			int align_pad = -(skb_frag_off(stale)) &
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
					(I40E_MAX_READ_REQ_SIZE - 1);

			sum -= align_pad;
			stale_size -= align_pad;

			do {
				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
			} while (stale_size > I40E_MAX_DATA_PER_TXD);
		}

3535 3536 3537 3538
		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

3539
		if (!nr_frags--)
3540 3541
			break;

3542
		sum -= stale_size;
3543 3544
	}

3545
	return false;
3546 3547
}

3548 3549 3550 3551 3552 3553 3554 3555 3556
/**
 * i40e_tx_map - Build the Tx descriptor
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
3557 3558
 *
 * Returns 0 on success, -1 on failure to DMA
3559
 **/
3560 3561 3562
static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
			      struct i40e_tx_buffer *first, u32 tx_flags,
			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3563 3564 3565
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
3566
	skb_frag_t *frag;
3567 3568
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
A
Alexander Duyck 已提交
3569
	u16 i = tx_ring->next_to_use;
3570 3571
	u32 td_tag = 0;
	dma_addr_t dma;
3572
	u16 desc_count = 1;
3573 3574 3575 3576 3577 3578 3579

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

A
Alexander Duyck 已提交
3580 3581 3582 3583
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

3584
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
3585 3586 3587
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3588 3589
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

A
Alexander Duyck 已提交
3590 3591 3592 3593 3594 3595 3596
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

3597 3598
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
A
Alexander Duyck 已提交
3599 3600 3601
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3602 3603
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
3604
					   max_data, td_tag);
3605 3606 3607

			tx_desc++;
			i++;
3608 3609
			desc_count++;

3610 3611 3612 3613 3614
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

3615 3616
			dma += max_data;
			size -= max_data;
3617

3618
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
A
Alexander Duyck 已提交
3619 3620
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}
3621 3622 3623 3624

		if (likely(!data_len))
			break;

A
Alexander Duyck 已提交
3625 3626
		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);
3627 3628 3629

		tx_desc++;
		i++;
3630 3631
		desc_count++;

3632 3633 3634 3635 3636
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

A
Alexander Duyck 已提交
3637 3638
		size = skb_frag_size(frag);
		data_len -= size;
3639

A
Alexander Duyck 已提交
3640 3641
		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);
3642

A
Alexander Duyck 已提交
3643 3644
		tx_bi = &tx_ring->tx_bi[i];
	}
3645

3646
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
A
Alexander Duyck 已提交
3647 3648 3649 3650 3651 3652 3653

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

E
Eric Dumazet 已提交
3654
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3655

3656 3657 3658
	/* write last descriptor with EOP bit */
	td_cmd |= I40E_TX_DESC_CMD_EOP;

3659 3660
	/* We OR these values together to check both against 4 (WB_STRIDE)
	 * below. This is safe since we don't re-use desc_count afterwards.
3661 3662 3663
	 */
	desc_count |= ++tx_ring->packet_stride;

3664
	if (desc_count >= WB_STRIDE) {
3665 3666
		/* write last descriptor with RS bit set */
		td_cmd |= I40E_TX_DESC_CMD_RS;
3667 3668 3669 3670
		tx_ring->packet_stride = 0;
	}

	tx_desc->cmd_type_offset_bsz =
3671 3672
			build_ctob(td_cmd, td_offset, size, td_tag);

3673 3674
	skb_tx_timestamp(skb);

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
3685

A
Alexander Duyck 已提交
3686
	/* notify HW of packet */
3687
	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3688 3689
		writel(i, tx_ring->tail);
	}
3690

3691
	return 0;
3692 3693

dma_error:
A
Alexander Duyck 已提交
3694
	dev_info(tx_ring->dev, "TX DMA map failed\n");
3695 3696 3697 3698

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
A
Alexander Duyck 已提交
3699
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3700 3701 3702 3703 3704 3705 3706 3707
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
3708 3709

	return -1;
3710 3711
}

3712 3713
/**
 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3714
 * @xdpf: data to transmit
3715 3716
 * @xdp_ring: XDP Tx ring
 **/
3717
static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3718 3719 3720 3721 3722
			      struct i40e_ring *xdp_ring)
{
	u16 i = xdp_ring->next_to_use;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
3723
	void *data = xdpf->data;
3724
	u32 size = xdpf->len;
3725 3726 3727 3728 3729 3730
	dma_addr_t dma;

	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
		xdp_ring->tx_stats.tx_busy++;
		return I40E_XDP_CONSUMED;
	}
3731
	dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3732 3733 3734 3735 3736 3737
	if (dma_mapping_error(xdp_ring->dev, dma))
		return I40E_XDP_CONSUMED;

	tx_bi = &xdp_ring->tx_bi[i];
	tx_bi->bytecount = size;
	tx_bi->gso_segs = 1;
3738
	tx_bi->xdpf = xdpf;
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754

	/* record length, and DMA address */
	dma_unmap_len_set(tx_bi, len, size);
	dma_unmap_addr_set(tx_bi, dma, dma);

	tx_desc = I40E_TX_DESC(xdp_ring, i);
	tx_desc->buffer_addr = cpu_to_le64(dma);
	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
						  | I40E_TXD_CMD,
						  0, size, 0);

	/* Make certain all of the status bits have been updated
	 * before next_to_watch is written.
	 */
	smp_wmb();

3755
	xdp_ring->xdp_tx_active++;
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
	i++;
	if (i == xdp_ring->count)
		i = 0;

	tx_bi->next_to_watch = tx_desc;
	xdp_ring->next_to_use = i;

	return I40E_XDP_TX;
}

3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
3784
	int tso, count;
J
Jacob Keller 已提交
3785
	int tsyn;
J
Jesse Brandeburg 已提交
3786

3787 3788 3789
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

S
Scott Peterson 已提交
3790 3791
	i40e_trace(xmit_frame_ring, skb, tx_ring);

3792
	count = i40e_xmit_descriptor_count(skb);
3793
	if (i40e_chk_linearize(skb, count)) {
3794 3795 3796 3797
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
3798
		count = i40e_txd_use_count(skb->len);
3799 3800
		tx_ring->tx_stats.tx_linearize++;
	}
3801 3802 3803 3804 3805 3806 3807 3808 3809

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
3810
		return NETDEV_TX_BUSY;
3811
	}
3812

3813 3814 3815 3816 3817 3818
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

3819 3820 3821 3822 3823
	/* prepare the xmit flags */
	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
		goto out_drop;

	/* obtain protocol of skb */
3824
	protocol = vlan_get_protocol(skb);
3825 3826

	/* setup IPv4/IPv6 offloads */
3827
	if (protocol == htons(ETH_P_IP))
3828
		tx_flags |= I40E_TX_FLAGS_IPV4;
3829
	else if (protocol == htons(ETH_P_IPV6))
3830 3831
		tx_flags |= I40E_TX_FLAGS_IPV6;

3832
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3833 3834 3835 3836 3837 3838

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

3839 3840 3841 3842 3843 3844
	/* Always offload the checksum, since it's in the data descriptor */
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;

J
Jacob Keller 已提交
3845 3846 3847 3848 3849
	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);

	if (tsyn)
		tx_flags |= I40E_TX_FLAGS_TSYN;

3850 3851 3852
	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

3853 3854 3855 3856 3857 3858 3859
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

	/* Add Flow Director ATR if it's enabled.
	 *
	 * NOTE: this must always be directly before the data descriptor.
	 */
3860
	i40e_atr(tx_ring, skb, tx_flags);
3861

3862 3863 3864
	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
			td_cmd, td_offset))
		goto cleanup_tx_tstamp;
3865 3866 3867 3868

	return NETDEV_TX_OK;

out_drop:
S
Scott Peterson 已提交
3869
	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3870 3871
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
3872 3873 3874 3875 3876 3877 3878 3879 3880
cleanup_tx_tstamp:
	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);

		dev_kfree_skb_any(pf->ptp_tx_skb);
		pf->ptp_tx_skb = NULL;
		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
	}

3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
	return NETDEV_TX_OK;
}

/**
 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40e_netdev_priv *np = netdev_priv(netdev);
	struct i40e_vsi *vsi = np->vsi;
3895
	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3896 3897 3898 3899

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
3900 3901
	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
		return NETDEV_TX_OK;
3902 3903 3904

	return i40e_xmit_frame_ring(skb, tx_ring);
}
3905 3906 3907 3908

/**
 * i40e_xdp_xmit - Implements ndo_xdp_xmit
 * @dev: netdev
3909 3910 3911
 * @n: number of frames
 * @frames: array of XDP buffer pointers
 * @flags: XDP extra info
3912
 *
3913 3914 3915 3916 3917
 * Returns number of frames successfully sent. Frames that fail are
 * free'ed via XDP return API.
 *
 * For error cases, a negative errno code is returned and no-frames
 * are transmitted (caller must handle freeing frames).
3918
 **/
3919 3920
int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
		  u32 flags)
3921 3922 3923 3924
{
	struct i40e_netdev_priv *np = netdev_priv(dev);
	unsigned int queue_index = smp_processor_id();
	struct i40e_vsi *vsi = np->vsi;
3925
	struct i40e_pf *pf = vsi->back;
3926
	struct i40e_ring *xdp_ring;
3927 3928
	int drops = 0;
	int i;
3929 3930 3931 3932

	if (test_bit(__I40E_VSI_DOWN, vsi->state))
		return -ENETDOWN;

3933 3934
	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
	    test_bit(__I40E_CONFIG_BUSY, pf->state))
3935 3936
		return -ENXIO;

3937
	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3938 3939
		return -EINVAL;

3940 3941
	xdp_ring = vsi->xdp_rings[queue_index];

3942 3943 3944
	for (i = 0; i < n; i++) {
		struct xdp_frame *xdpf = frames[i];
		int err;
3945

3946
		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3947 3948 3949 3950 3951 3952
		if (err != I40E_XDP_TX) {
			xdp_return_frame_rx_napi(xdpf);
			drops++;
		}
	}

3953 3954
	if (unlikely(flags & XDP_XMIT_FLUSH))
		i40e_xdp_ring_update_tail(xdp_ring);
3955

3956
	return n - drops;
3957
}