i40e_txrx.c 87.9 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
G
Greg Rose 已提交
15 16
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
17 18 19 20 21 22 23 24 25 26
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

M
Mitch Williams 已提交
27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29
#include "i40e.h"
30
#include "i40e_prototype.h"
31 32 33 34 35 36 37 38 39 40 41

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

42
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/**
 * i40e_fdir - Generate a Flow Director descriptor based on fdata
 * @tx_ring: Tx ring to send buffer on
 * @fdata: Flow director filter data
 * @add: Indicate if we are adding a rule or deleting one
 *
 **/
static void i40e_fdir(struct i40e_ring *tx_ring,
		      struct i40e_fdir_filter *fdata, bool add)
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	u32 flex_ptype, dtype_cmd;
	u16 i;

	/* grab the next descriptor */
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

74 75 76
	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	/* Use LAN VSI Id if not programmed by user */
	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

	dtype_cmd |= add ?
		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;

	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);

	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);

	if (fdata->cnt_index) {
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
			     ((u32)fdata->cnt_index <<
			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
	}

	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
	fdir_desc->rsvd = cpu_to_le32(0);
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
}

109
#define I40E_FD_CLEAN_DELAY 10
110 111
/**
 * i40e_program_fdir_filter - Program a Flow Director filter
112 113
 * @fdir_data: Packet data that will be filter parameters
 * @raw_packet: the pre-allocated packet buffer for FDir
114
 * @pf: The PF pointer
115 116
 * @add: True for add/update, False for remove
 **/
117 118 119
static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
				    u8 *raw_packet, struct i40e_pf *pf,
				    bool add)
120
{
121
	struct i40e_tx_buffer *tx_buf, *first;
122 123 124 125 126 127 128 129 130
	struct i40e_tx_desc *tx_desc;
	struct i40e_ring *tx_ring;
	struct i40e_vsi *vsi;
	struct device *dev;
	dma_addr_t dma;
	u32 td_cmd = 0;
	u16 i;

	/* find existing FDIR VSI */
131
	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
132 133 134
	if (!vsi)
		return -ENOENT;

135
	tx_ring = vsi->tx_rings[0];
136 137
	dev = tx_ring->dev;

138
	/* we need two descriptors to add/del a filter and we can wait */
139 140 141
	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
		if (!i)
			return -EAGAIN;
142
		msleep_interruptible(1);
143
	}
144

145 146
	dma = dma_map_single(dev, raw_packet,
			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
147 148 149 150
	if (dma_mapping_error(dev, dma))
		goto dma_fail;

	/* grab the next descriptor */
151
	i = tx_ring->next_to_use;
152
	first = &tx_ring->tx_bi[i];
153
	i40e_fdir(tx_ring, fdir_data, add);
154 155

	/* Now program a dummy descriptor */
156 157
	i = tx_ring->next_to_use;
	tx_desc = I40E_TX_DESC(tx_ring, i);
158
	tx_buf = &tx_ring->tx_bi[i];
159

160 161 162
	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;

	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
163

164
	/* record length, and DMA address */
165
	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
166 167
	dma_unmap_addr_set(tx_buf, dma, dma);

168
	tx_desc->buffer_addr = cpu_to_le64(dma);
169
	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
170

171 172 173
	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
	tx_buf->raw_buf = (void *)raw_packet;

174
	tx_desc->cmd_type_offset_bsz =
175
		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
176 177

	/* Force memory writes to complete before letting h/w
178
	 * know there are new descriptors to fetch.
179 180 181
	 */
	wmb();

182
	/* Mark the data descriptor to be watched */
183
	first->next_to_watch = tx_desc;
184

185 186 187 188 189 190 191
	writel(tx_ring->next_to_use, tx_ring->tail);
	return 0;

dma_fail:
	return -1;
}

192 193 194 195 196 197 198 199 200 201 202 203
#define IP_HEADER_OFFSET 14
#define I40E_UDPIP_DUMMY_PACKET_LEN 42
/**
 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
204
				   bool add)
205 206 207 208
{
	struct i40e_pf *pf = vsi->back;
	struct udphdr *udp;
	struct iphdr *ip;
209
	u8 *raw_packet;
210 211 212 213 214
	int ret;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

215 216 217
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
218 219 220 221 222 223
	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

224
	ip->daddr = fd_data->dst_ip;
225
	udp->dest = fd_data->dst_port;
226
	ip->saddr = fd_data->src_ip;
227 228
	udp->source = fd_data->src_port;

229 230 231 232 233 234 235 236
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

237 238 239 240
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
241 242
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
243 244 245
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
246
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
247 248 249 250 251 252 253 254
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
255
	}
256

257 258 259 260 261
	if (add)
		pf->fd_udp4_filter_cnt++;
	else
		pf->fd_udp4_filter_cnt--;

262
	return 0;
263 264 265 266 267 268 269 270 271 272 273 274 275
}

#define I40E_TCPIP_DUMMY_PACKET_LEN 54
/**
 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
276
				   bool add)
277 278 279 280
{
	struct i40e_pf *pf = vsi->back;
	struct tcphdr *tcp;
	struct iphdr *ip;
281
	u8 *raw_packet;
282 283 284 285 286 287 288
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
		0x0, 0x72, 0, 0, 0, 0};

289 290 291
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
292 293 294 295 296 297
	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

298
	ip->daddr = fd_data->dst_ip;
299
	tcp->dest = fd_data->dst_port;
300
	ip->saddr = fd_data->src_ip;
301 302
	tcp->source = fd_data->src_port;

303 304 305 306 307 308 309 310
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

311
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
312 313 314
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
315 316
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
317 318 319
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
320
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
321 322 323 324 325 326 327
		if (add)
			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
328 329
	}

330
	if (add) {
331
		pf->fd_tcp4_filter_cnt++;
332 333 334 335 336
		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
		    I40E_DEBUG_FD & pf->hw.debug_mask)
			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
		pf->hw_disabled_flags |= I40E_FLAG_FD_ATR_ENABLED;
	} else {
337 338
		pf->fd_tcp4_filter_cnt--;
		if (pf->fd_tcp4_filter_cnt == 0) {
339 340 341 342 343 344 345
			if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
			    I40E_DEBUG_FD & pf->hw.debug_mask)
				dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
			pf->hw_disabled_flags &= ~I40E_FLAG_FD_ATR_ENABLED;
		}
	}

346
	return 0;
347 348
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
/**
 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
				    struct i40e_fdir_filter *fd_data,
				    bool add)
{
	struct i40e_pf *pf = vsi->back;
	struct sctphdr *sctp;
	struct iphdr *ip;
	u8 *raw_packet;
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

	ip->daddr = fd_data->dst_ip;
	sctp->dest = fd_data->dst_port;
	ip->saddr = fd_data->src_ip;
	sctp->source = fd_data->src_port;

	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
	}

	if (add)
		pf->fd_sctp4_filter_cnt++;
	else
		pf->fd_sctp4_filter_cnt--;

	return 0;
}

423 424 425 426 427 428 429 430 431 432 433 434
#define I40E_IP_DUMMY_PACKET_LEN 34
/**
 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
				  struct i40e_fdir_filter *fd_data,
435
				  bool add)
436 437 438
{
	struct i40e_pf *pf = vsi->back;
	struct iphdr *ip;
439
	u8 *raw_packet;
440 441 442 443 444 445 446 447
	int ret;
	int i;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0};

	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
448 449 450 451 452 453
		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
		if (!raw_packet)
			return -ENOMEM;
		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);

454 455
		ip->saddr = fd_data->src_ip;
		ip->daddr = fd_data->dst_ip;
456 457
		ip->protocol = 0;

458 459 460 461 462 463 464 465
		if (fd_data->flex_filter) {
			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
			__be16 pattern = fd_data->flex_word;
			u16 off = fd_data->flex_offset;

			*((__force __be16 *)(payload + off)) = pattern;
		}

466 467 468 469
		fd_data->pctype = i;
		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
		if (ret) {
			dev_info(&pf->pdev->dev,
470 471
				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
				 fd_data->pctype, fd_data->fd_id, ret);
472 473 474 475 476
			/* The packet buffer wasn't added to the ring so we
			 * need to free it now.
			 */
			kfree(raw_packet);
			return -EOPNOTSUPP;
477
		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
478 479 480 481 482 483 484 485
			if (add)
				dev_info(&pf->pdev->dev,
					 "Filter OK for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
			else
				dev_info(&pf->pdev->dev,
					 "Filter deleted for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
486 487 488
		}
	}

489 490 491 492 493
	if (add)
		pf->fd_ip4_filter_cnt++;
	else
		pf->fd_ip4_filter_cnt--;

494
	return 0;
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

/**
 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 * @vsi: pointer to the targeted VSI
 * @cmd: command to get or set RX flow classification rules
 * @add: true adds a filter, false removes it
 *
 **/
int i40e_add_del_fdir(struct i40e_vsi *vsi,
		      struct i40e_fdir_filter *input, bool add)
{
	struct i40e_pf *pf = vsi->back;
	int ret;

	switch (input->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
512
		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
513 514
		break;
	case UDP_V4_FLOW:
515
		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
516
		break;
517 518 519
	case SCTP_V4_FLOW:
		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
		break;
520 521 522
	case IP_USER_FLOW:
		switch (input->ip4_proto) {
		case IPPROTO_TCP:
523
			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
524 525
			break;
		case IPPROTO_UDP:
526
			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
527
			break;
528 529 530
		case IPPROTO_SCTP:
			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
			break;
531
		case IPPROTO_IP:
532
			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
533
			break;
534 535 536
		default:
			/* We cannot support masking based on protocol */
			goto unsupported_flow;
537 538 539
		}
		break;
	default:
540
unsupported_flow:
541
		dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
542 543 544 545
			 input->flow_type);
		ret = -EINVAL;
	}

546 547 548 549 550 551
	/* The buffer allocated here will be normally be freed by
	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
	 * completion. In the event of an error adding the buffer to the FDIR
	 * ring, it will immediately be freed. It may also be freed by
	 * i40e_clean_tx_ring() when closing the VSI.
	 */
552 553 554
	return ret;
}

555 556 557
/**
 * i40e_fd_handle_status - check the Programming Status for FD
 * @rx_ring: the Rx ring for this descriptor
558
 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
559 560 561 562 563
 * @prog_id: the id originally used for programming
 *
 * This is used to verify if the FD programming or invalidation
 * requested by SW to the HW is successful or not and take actions accordingly.
 **/
564 565
static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
				  union i40e_rx_desc *rx_desc, u8 prog_id)
566
{
567 568 569
	struct i40e_pf *pf = rx_ring->vsi->back;
	struct pci_dev *pdev = pf->pdev;
	u32 fcnt_prog, fcnt_avail;
570
	u32 error;
571
	u64 qw;
572

573
	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
574 575 576
	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;

577
	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
578
		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
579 580 581
		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
		    (I40E_DEBUG_FD & pf->hw.debug_mask))
			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
582
				 pf->fd_inv);
583

584 585 586 587 588 589 590 591 592
		/* Check if the programming error is for ATR.
		 * If so, auto disable ATR and set a state for
		 * flush in progress. Next time we come here if flush is in
		 * progress do nothing, once flush is complete the state will
		 * be cleared.
		 */
		if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
			return;

593 594 595 596
		pf->fd_add_err++;
		/* store the current atr filter count */
		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);

597
		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
598 599
		    (pf->hw_disabled_flags & I40E_FLAG_FD_SB_ENABLED)) {
			pf->hw_disabled_flags |= I40E_FLAG_FD_ATR_ENABLED;
600 601 602
			set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
		}

603
		/* filter programming failed most likely due to table full */
604
		fcnt_prog = i40e_get_global_fd_count(pf);
605
		fcnt_avail = pf->fdir_pf_filter_count;
606 607 608 609 610
		/* If ATR is running fcnt_prog can quickly change,
		 * if we are very close to full, it makes sense to disable
		 * FD ATR/SB and then re-enable it when there is room.
		 */
		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
611
			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
612
			    !(pf->hw_disabled_flags &
613
				     I40E_FLAG_FD_SB_ENABLED)) {
614 615
				if (I40E_DEBUG_FD & pf->hw.debug_mask)
					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
616
				pf->hw_disabled_flags |=
617 618 619
							I40E_FLAG_FD_SB_ENABLED;
			}
		}
620
	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
621
		if (I40E_DEBUG_FD & pf->hw.debug_mask)
622
			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
623
				 rx_desc->wb.qword0.hi_dword.fd_id);
624
	}
625 626 627
}

/**
A
Alexander Duyck 已提交
628
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
629 630 631
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
A
Alexander Duyck 已提交
632 633
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
634
{
A
Alexander Duyck 已提交
635
	if (tx_buffer->skb) {
636 637 638 639
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
		else
			dev_kfree_skb_any(tx_buffer->skb);
A
Alexander Duyck 已提交
640
		if (dma_unmap_len(tx_buffer, len))
641
			dma_unmap_single(ring->dev,
642 643
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
644
					 DMA_TO_DEVICE);
A
Alexander Duyck 已提交
645 646 647 648 649
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
650
	}
651

A
Alexander Duyck 已提交
652 653
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
654
	dma_unmap_len_set(tx_buffer, len, 0);
A
Alexander Duyck 已提交
655
	/* tx_buffer must be completely set up in the transmit path */
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
}

/**
 * i40e_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
A
Alexander Duyck 已提交
672 673
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
674 675 676 677 678 679 680 681 682

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
683 684 685 686 687

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
688
	netdev_tx_reset_queue(txring_txq(tx_ring));
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
}

/**
 * i40e_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40e_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40e_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

/**
 * i40e_get_tx_pending - how many tx descriptors not processed
 * @tx_ring: the ring of descriptors
713
 * @in_sw: is tx_pending being checked in SW or HW
714 715 716 717
 *
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
 **/
718
u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
719
{
J
Jesse Brandeburg 已提交
720 721
	u32 head, tail;

722 723 724 725
	if (!in_sw)
		head = i40e_get_head(ring);
	else
		head = ring->next_to_clean;
J
Jesse Brandeburg 已提交
726 727 728 729 730 731 732
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
733 734
}

735
#define WB_STRIDE 4
736

737 738
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
739 740 741
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
742 743 744
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
745 746
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
747 748 749
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
750
	struct i40e_tx_desc *tx_head;
751
	struct i40e_tx_desc *tx_desc;
752 753
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
754 755 756

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
757
	i -= tx_ring->count;
758

759 760
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

A
Alexander Duyck 已提交
761 762
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
763 764 765 766 767

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

A
Alexander Duyck 已提交
768 769 770
		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

771 772
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
773 774
			break;

A
Alexander Duyck 已提交
775
		/* clear next_to_watch to prevent false hangs */
776 777
		tx_buf->next_to_watch = NULL;

A
Alexander Duyck 已提交
778 779 780
		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;
781

A
Alexander Duyck 已提交
782
		/* free the skb */
783
		napi_consume_skb(tx_buf->skb, napi_budget);
784

A
Alexander Duyck 已提交
785 786 787 788 789
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);
790

A
Alexander Duyck 已提交
791 792 793
		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);
794

A
Alexander Duyck 已提交
795 796
		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
797 798 799 800

			tx_buf++;
			tx_desc++;
			i++;
A
Alexander Duyck 已提交
801 802
			if (unlikely(!i)) {
				i -= tx_ring->count;
803 804 805 806
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

A
Alexander Duyck 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

827 828
		prefetch(tx_desc);

A
Alexander Duyck 已提交
829 830 831 832 833
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
834
	tx_ring->next_to_clean = i;
835
	u64_stats_update_begin(&tx_ring->syncp);
836 837
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
838
	u64_stats_update_end(&tx_ring->syncp);
839 840
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;
A
Alexander Duyck 已提交
841

842 843 844 845 846 847
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
848
		unsigned int j = i40e_get_tx_pending(tx_ring, false);
849 850

		if (budget &&
851
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
852
		    !test_bit(__I40E_DOWN, &vsi->state) &&
853 854 855
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}
856

857 858
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
859 860
				  total_packets, total_bytes);

861 862 863 864 865 866 867 868 869
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
870
		   !test_bit(__I40E_DOWN, &vsi->state)) {
871 872 873 874 875 876
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

877 878 879 880
	return !!budget;
}

/**
881
 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
882
 * @vsi: the VSI we care about
883
 * @q_vector: the vector on which to enable writeback
884 885
 *
 **/
886 887
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
888
{
889
	u16 flags = q_vector->tx.ring[0].flags;
890
	u32 val;
891

892 893
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;
894

895 896
	if (q_vector->arm_wb_state)
		return;
897

898 899 900
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
901

902 903 904 905 906 907
		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
		     val);
	} else {
		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922
		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
	q_vector->arm_wb_state = true;
}

/**
 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
			  /* allow 00 to be written to the index */

		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
					 vsi->base_vector - 1), val);
	} else {
		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
			/* allow 00 to be written to the index */

		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
941 942 943 944 945 946
}

/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
947 948
 * Returns true if ITR changed, false if not
 *
949 950 951 952 953 954 955 956
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
957
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
958 959
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
960
	struct i40e_q_vector *qv = rc->ring->q_vector;
961 962
	u32 new_itr = rc->itr;
	int bytes_per_int;
963
	int usecs;
964 965

	if (rc->total_packets == 0 || !rc->itr)
966
		return false;
967 968

	/* simple throttlerate management
969
	 *   0-10MB/s   lowest (50000 ints/s)
970
	 *  10-20MB/s   low    (20000 ints/s)
971 972
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
973 974 975 976
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
977 978
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
979
	 */
980
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
981
	bytes_per_int = rc->total_bytes / usecs;
982

983
	switch (new_latency_range) {
984 985 986 987 988 989 990 991 992 993 994
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
995
	case I40E_ULTRA_LATENCY:
996 997 998
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
999 1000
		break;
	}
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

1013
	rc->latency_range = new_latency_range;
1014 1015 1016

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
1017
		new_itr = I40E_ITR_50K;
1018 1019 1020 1021 1022
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
1023 1024 1025
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
1026 1027 1028 1029 1030 1031 1032 1033
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
1034 1035 1036 1037 1038 1039 1040

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
}

/**
 * i40e_clean_programming_status - clean the programming status descriptor
 * @rx_ring: the rx ring that has this descriptor
 * @rx_desc: the rx descriptor written back by HW
 *
 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 * status being successful or not and take actions accordingly. FCoE should
 * handle its context/filter programming/invalidation status and take actions.
 *
 **/
static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
					  union i40e_rx_desc *rx_desc)
{
	u64 qw;
	u8 id;

	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;

	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1064
		i40e_fd_handle_status(rx_ring, rx_desc, id);
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
}

/**
 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

J
Jesse Brandeburg 已提交
1081 1082
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
1083 1084 1085 1086 1087 1088 1089
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1090 1091 1092 1093
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

1126 1127 1128 1129 1130
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

1131 1132
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
1133 1134 1135 1136 1137
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
					      I40E_RXBUFFER_2048,
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
				     PAGE_SIZE,
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
1152
		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1153 1154 1155

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
1156 1157 1158 1159 1160 1161 1162 1163
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

1164
	rx_ring->next_to_alloc = 0;
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40e_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40e_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40e_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40e_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

J
Jesse Brandeburg 已提交
1199 1200
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
1201 1202 1203 1204 1205
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

1206
	u64_stats_init(&rx_ring->syncp);
1207

1208
	/* Round up to nearest 4K */
1209
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

1220
	rx_ring->next_to_alloc = 0;
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
1239 1240 1241 1242

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

/**
1253 1254 1255
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
1256
 *
1257 1258
 * Returns true if the page was successfully allocated or
 * reused.
1259
 **/
1260 1261
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
1262
{
1263 1264
	struct page *page = bi->page;
	dma_addr_t dma;
1265

1266 1267 1268 1269 1270
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
1271

1272 1273 1274 1275 1276 1277
	/* alloc new page for storage */
	page = dev_alloc_page();
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
1278

1279
	/* map page for use */
1280 1281 1282 1283
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
				 PAGE_SIZE,
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
1284

1285 1286
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
1287
	 */
1288 1289 1290 1291
	if (dma_mapping_error(rx_ring->dev, dma)) {
		__free_pages(page, 0);
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
1292 1293
	}

1294 1295 1296
	bi->dma = dma;
	bi->page = page;
	bi->page_offset = 0;
1297
	bi->pagecnt_bias = 1;
1298

1299 1300
	return true;
}
1301

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1312

1313 1314 1315 1316 1317
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
1318 1319 1320
}

/**
1321
 * i40e_alloc_rx_buffers - Replace used receive buffers
1322 1323
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
1324
 *
1325
 * Returns false if all allocations were successful, true if any fail
1326
 **/
1327
bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1328
{
1329
	u16 ntu = rx_ring->next_to_use;
1330 1331 1332 1333 1334
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
1335
		return false;
1336

1337 1338
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
1339

1340 1341 1342
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
1343

1344 1345 1346 1347 1348 1349
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
						 I40E_RXBUFFER_2048,
						 DMA_FROM_DEVICE);

1350 1351 1352 1353
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1354

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1372 1373 1374

	return false;

1375
no_buffers:
1376 1377
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1378 1379 1380 1381 1382

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
1383 1384 1385 1386 1387 1388
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
1389
 * @rx_desc: the receive descriptor
1390 1391 1392
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
1393
				    union i40e_rx_desc *rx_desc)
1394
{
1395 1396
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
1397
	bool ipv4, ipv6;
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
1408

1409 1410
	skb->ip_summed = CHECKSUM_NONE;

1411 1412
	skb_checksum_none_assert(skb);

1413
	/* Rx csum enabled and ip headers found? */
1414 1415 1416 1417
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
1418
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1419 1420 1421 1422
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
1423 1424
		return;

1425 1426 1427 1428
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1429 1430

	if (ipv4 &&
1431 1432
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1433 1434
		goto checksum_fail;

J
Jesse Brandeburg 已提交
1435
	/* likely incorrect csum if alternate IP extension headers found */
1436
	if (ipv6 &&
1437
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1438
		/* don't increment checksum err here, non-fatal err */
1439 1440
		return;

1441
	/* there was some L4 error, count error and punt packet to the stack */
1442
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1443 1444 1445 1446 1447 1448
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
1449
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1450 1451
		return;

1452 1453 1454
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
1455
	 */
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
1469 1470 1471 1472 1473

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
1474 1475 1476
}

/**
1477
 * i40e_ptype_to_htype - get a hash type
1478 1479 1480 1481
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
1482
static inline int i40e_ptype_to_htype(u8 ptype)
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
1510
	const __le64 rss_mask =
1511 1512 1513
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

1514
	if (!(ring->netdev->features & NETIF_F_RXHASH))
1515 1516 1517 1518 1519 1520 1521 1522
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

1523
/**
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 **/
static inline
void i40e_process_skb_fields(struct i40e_ring *rx_ring,
			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			     u8 rx_ptype)
{
	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;
1542 1543
	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1544 1545
		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;

1546
	if (unlikely(tsynvalid))
1547
		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1548 1549 1550 1551 1552 1553

	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);

	skb_record_rx_queue(skb, rx_ring->queue_index);
1554 1555 1556

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
}

/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_bi[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
1601 1602 1603 1604
	new_buff->dma		= old_buff->dma;
	new_buff->page		= old_buff->page;
	new_buff->page_offset	= old_buff->page_offset;
	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1605 1606 1607
}

/**
1608
 * i40e_page_is_reusable - check if any reuse is possible
1609
 * @page: page struct to check
1610 1611 1612
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
1613
 */
1614
static inline bool i40e_page_is_reusable(struct page *page)
1615
{
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 * @page: page address from rx_buffer
 * @truesize: actual size of the buffer in this page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
				   struct page *page,
				   const unsigned int truesize)
{
#if (PAGE_SIZE >= 8192)
	unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
#endif
1656
	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias--;
1657 1658 1659 1660 1661 1662 1663

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
1664
	if (unlikely(page_count(page) != pagecnt_bias))
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= truesize;
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > last_offset)
		return false;
#endif

1677 1678 1679 1680 1681 1682 1683 1684
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
	 */
	if (unlikely(pagecnt_bias == 1)) {
		page_ref_add(page, USHRT_MAX);
		rx_buffer->pagecnt_bias = USHRT_MAX;
	}
1685
	return true;
1686 1687 1688 1689 1690 1691
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
1692
 * @size: packet length from rx_desc
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
 * @skb: sk_buff to place the data into
 *
 * This function will add the data contained in rx_buffer->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the adapter.
 **/
static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
			     struct i40e_rx_buffer *rx_buffer,
1705
			     unsigned int size,
1706 1707 1708
			     struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
1709
	unsigned char *va = page_address(page) + rx_buffer->page_offset;
1710 1711 1712 1713 1714
#if (PAGE_SIZE < 8192)
	unsigned int truesize = I40E_RXBUFFER_2048;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
1715 1716 1717 1718
	unsigned int pull_len;

	if (unlikely(skb_is_nonlinear(skb)))
		goto add_tail_frag;
1719 1720 1721 1722

	/* will the data fit in the skb we allocated? if so, just
	 * copy it as it is pretty small anyway
	 */
1723
	if (size <= I40E_RX_HDR_SIZE) {
1724 1725
		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

1726 1727
		/* page is reusable, we can reuse buffer as-is */
		if (likely(i40e_page_is_reusable(page)))
1728 1729 1730 1731 1732 1733
			return true;

		/* this page cannot be reused so discard it */
		return false;
	}

1734 1735 1736 1737 1738
	/* we need the header to contain the greater of either
	 * ETH_HLEN or 60 bytes if the skb->len is less than
	 * 60 for skb_pad.
	 */
	pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1739

1740 1741 1742 1743
	/* align pull length to size of long to optimize
	 * memcpy performance
	 */
	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
1744

1745 1746 1747
	/* update all of the pointers */
	va += pull_len;
	size -= pull_len;
1748

1749 1750 1751
add_tail_frag:
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
			(unsigned long)va & ~PAGE_MASK, size, truesize);
1752

1753
	return i40e_can_reuse_rx_page(rx_buffer, page, truesize);
1754 1755 1756 1757 1758 1759
}

/**
 * i40e_fetch_rx_buffer - Allocate skb and populate it
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_desc: descriptor containing info written by hardware
1760
 * @size: size of buffer to add to skb
1761
 *
1762 1763 1764 1765 1766 1767 1768
 * This function allocates an skb on the fly, and populates it with the page
 * data from the current receive descriptor, taking care to set up the skb
 * correctly, as well as handling calling the page recycle function if
 * necessary.
 */
static inline
struct sk_buff *i40e_fetch_rx_buffer(struct i40e_ring *rx_ring,
1769
				     union i40e_rx_desc *rx_desc,
1770 1771
				     struct sk_buff *skb,
				     unsigned int size)
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
{
	struct i40e_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) + rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
				       I40E_RX_HDR_SIZE,
				       GFP_ATOMIC | __GFP_NOWARN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_buff_failed++;
			return NULL;
		}

		/* we will be copying header into skb->data in
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
1809
				      size,
1810 1811 1812
				      DMA_FROM_DEVICE);

	/* pull page into skb */
1813
	if (i40e_add_rx_frag(rx_ring, rx_buffer, size, skb)) {
1814 1815 1816 1817 1818
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
1819 1820
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1821 1822
		__page_frag_cache_drain(rx_buffer->page,
					rx_buffer->pagecnt_bias);
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;

	return skb;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
1841
 **/
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

#define staterrlen rx_desc->wb.qword1.status_error_len
	if (unlikely(i40e_rx_is_programming_status(le64_to_cpu(staterrlen)))) {
		i40e_clean_programming_status(rx_ring, rx_desc);
		return true;
	}
	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

/**
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 **/
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1882 1883
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1884
	struct sk_buff *skb = rx_ring->skb;
1885
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1886
	bool failure = false;
1887

1888 1889
	while (likely(total_rx_packets < budget)) {
		union i40e_rx_desc *rx_desc;
1890
		unsigned int size;
1891
		u16 vlan_tag;
1892 1893 1894
		u8 rx_ptype;
		u64 qword;

1895 1896
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1897
			failure = failure ||
1898
				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1899 1900 1901
			cleaned_count = 0;
		}

1902 1903 1904 1905 1906
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
1907
		 * hardware wrote DD then the length will be non-zero
1908
		 */
1909 1910 1911 1912
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		if (!size)
1913 1914
			break;

1915
		/* This memory barrier is needed to keep us from reading
1916 1917
		 * any other fields out of the rx_desc until we have
		 * verified the descriptor has been written back.
1918
		 */
1919
		dma_rmb();
1920

1921
		skb = i40e_fetch_rx_buffer(rx_ring, rx_desc, skb, size);
1922 1923
		if (!skb)
			break;
1924 1925 1926

		cleaned_count++;

1927
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1928 1929
			continue;

1930 1931 1932 1933 1934 1935
		/* ERR_MASK will only have valid bits if EOP set, and
		 * what we are doing here is actually checking
		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
		 * the error field
		 */
		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1936
			dev_kfree_skb_any(skb);
1937
			skb = NULL;
1938 1939 1940
			continue;
		}

1941 1942
		if (i40e_cleanup_headers(rx_ring, skb)) {
			skb = NULL;
1943
			continue;
1944
		}
1945 1946 1947 1948

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

1949 1950 1951 1952
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

1953 1954
		/* populate checksum, VLAN, and protocol */
		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1955

1956 1957 1958
		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

1959
		i40e_receive_skb(rx_ring, skb, vlan_tag);
1960
		skb = NULL;
1961

1962 1963 1964
		/* update budget accounting */
		total_rx_packets++;
	}
1965

1966 1967
	rx_ring->skb = skb;

1968
	u64_stats_update_begin(&rx_ring->syncp);
1969 1970
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
1971
	u64_stats_update_end(&rx_ring->syncp);
1972 1973 1974
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1975
	/* guarantee a trip back through this routine if there was a failure */
1976
	return failure ? budget : total_rx_packets;
1977 1978
}

1979 1980 1981 1982 1983
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1984 1985 1986
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
1987 1988 1989 1990 1991 1992 1993 1994
	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_PFINT_DYN_CTLN
1995
static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
1996
{
1997
	return vsi->rx_rings[idx]->rx_itr_setting;
1998 1999
}

2000
static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
2001
{
2002
	return vsi->tx_rings[idx]->tx_itr_setting;
2003
}
2004

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
2015 2016
	bool rx = false, tx = false;
	u32 rxval, txval;
2017
	int vector;
2018
	int idx = q_vector->v_idx;
2019
	int rx_itr_setting, tx_itr_setting;
2020 2021

	vector = (q_vector->v_idx + vsi->base_vector);
2022

2023 2024 2025
	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
2026 2027
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

2028 2029
	rx_itr_setting = get_rx_itr(vsi, idx);
	tx_itr_setting = get_tx_itr(vsi, idx);
2030

2031
	if (q_vector->itr_countdown > 0 ||
2032 2033
	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
2034 2035 2036
		goto enable_int;
	}

2037
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2038 2039
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
2040
	}
2041

2042
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2043 2044
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
2045
	}
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
	}

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

2074
enable_int:
2075 2076
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
2077 2078 2079 2080 2081

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2082 2083
}

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
/**
 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40e_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
2098
	struct i40e_ring *ring;
2099
	bool clean_complete = true;
2100
	bool arm_wb = false;
2101
	int budget_per_ring;
2102
	int work_done = 0;
2103 2104 2105 2106 2107 2108

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

2109 2110
	/* Clear hung_detected bit */
	clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
2111 2112 2113
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
2114
	i40e_for_each_ring(ring, q_vector->tx) {
2115
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2116 2117 2118 2119
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
2120
		ring->arm_wb = false;
2121
	}
2122

2123 2124 2125 2126
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

2127 2128 2129 2130
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2131

2132
	i40e_for_each_ring(ring, q_vector->rx) {
2133
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2134 2135

		work_done += cleaned;
2136 2137 2138
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
2139
	}
2140 2141

	/* If work not completed, return budget and polling will return */
2142
	if (!clean_complete) {
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
		const cpumask_t *aff_mask = &q_vector->affinity_mask;
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
		if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
			   !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
2155
tx_only:
2156 2157 2158 2159 2160
			if (arm_wb) {
				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
				i40e_enable_wb_on_itr(vsi, q_vector);
			}
			return budget;
2161
		}
2162
	}
2163

2164 2165 2166
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

2167
	/* Work is done so exit the polling mode and re-enable the interrupt */
2168
	napi_complete_done(napi, work_done);
2169 2170 2171 2172 2173 2174 2175 2176

	/* If we're prematurely stopping polling to fix the interrupt
	 * affinity we want to make sure polling starts back up so we
	 * issue a call to i40e_force_wb which triggers a SW interrupt.
	 */
	if (!clean_complete)
		i40e_force_wb(vsi, q_vector);
	else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
2177
		i40e_irq_dynamic_enable_icr0(vsi->back, false);
2178 2179 2180
	else
		i40e_update_enable_itr(vsi, q_vector);

2181
	return min(work_done, budget - 1);
2182 2183 2184 2185 2186 2187
}

/**
 * i40e_atr - Add a Flow Director ATR filter
 * @tx_ring:  ring to add programming descriptor to
 * @skb:      send buffer
2188
 * @tx_flags: send tx flags
2189 2190
 **/
static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2191
		     u32 tx_flags)
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	union {
		unsigned char *network;
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	struct tcphdr *th;
	unsigned int hlen;
	u32 flex_ptype, dtype_cmd;
2203
	int l4_proto;
2204
	u16 i;
2205 2206

	/* make sure ATR is enabled */
J
Jesse Brandeburg 已提交
2207
	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2208 2209
		return;

2210
	if ((pf->hw_disabled_flags & I40E_FLAG_FD_ATR_ENABLED))
2211 2212
		return;

2213 2214 2215 2216
	/* if sampling is disabled do nothing */
	if (!tx_ring->atr_sample_rate)
		return;

2217
	/* Currently only IPv4/IPv6 with TCP is supported */
2218 2219
	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
		return;
2220

2221 2222 2223
	/* snag network header to get L4 type and address */
	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
		      skb_inner_network_header(skb) : skb_network_header(skb);
2224

2225 2226 2227 2228
	/* Note: tx_flags gets modified to reflect inner protocols in
	 * tx_enable_csum function if encap is enabled.
	 */
	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2229
		/* access ihl as u8 to avoid unaligned access on ia64 */
2230 2231
		hlen = (hdr.network[0] & 0x0F) << 2;
		l4_proto = hdr.ipv4->protocol;
2232
	} else {
2233 2234 2235
		hlen = hdr.network - skb->data;
		l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
		hlen -= hdr.network - skb->data;
2236 2237
	}

2238
	if (l4_proto != IPPROTO_TCP)
2239 2240
		return;

2241 2242
	th = (struct tcphdr *)(hdr.network + hlen);

2243
	/* Due to lack of space, no more new filters can be programmed */
2244
	if (th->syn && (pf->hw_disabled_flags & I40E_FLAG_FD_ATR_ENABLED))
2245
		return;
2246
	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2247
	    (!(pf->hw_disabled_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2248 2249 2250 2251 2252 2253
		/* HW ATR eviction will take care of removing filters on FIN
		 * and RST packets.
		 */
		if (th->fin || th->rst)
			return;
	}
2254 2255 2256

	tx_ring->atr_count++;

2257 2258 2259 2260 2261
	/* sample on all syn/fin/rst packets or once every atr sample rate */
	if (!th->fin &&
	    !th->syn &&
	    !th->rst &&
	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2262 2263 2264 2265 2266
		return;

	tx_ring->atr_count = 0;

	/* grab the next descriptor */
2267 2268 2269 2270 2271
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2272 2273 2274

	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2275
	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2276 2277 2278 2279 2280 2281 2282 2283 2284
		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

2285
	dtype_cmd |= (th->fin || th->rst) ?
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
		     I40E_TXD_FLTR_QW1_DEST_SHIFT;

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;

2297
	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2298
	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2299 2300 2301 2302 2303 2304 2305 2306 2307
		dtype_cmd |=
			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
	else
		dtype_cmd |=
			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2308

2309
	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2310
	    (!(pf->hw_disabled_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2311 2312
		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;

2313
	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
J
Jesse Brandeburg 已提交
2314
	fdir_desc->rsvd = cpu_to_le32(0);
2315
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
J
Jesse Brandeburg 已提交
2316
	fdir_desc->fd_id = cpu_to_le32(0);
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
}

/**
 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
2331 2332 2333
static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
					     struct i40e_ring *tx_ring,
					     u32 *flags)
2334 2335 2336 2337
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

2351
	/* if we have a HW VLAN tag being added, default to the HW one */
2352 2353
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2354 2355
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
2356
	} else if (protocol == htons(ETH_P_8021Q)) {
2357
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
2358

2359 2360 2361 2362 2363 2364 2365 2366 2367
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

2368 2369 2370
	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
		goto out;

2371
	/* Insert 802.1p priority into VLAN header */
2372 2373
	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
	    (skb->priority != TC_PRIO_CONTROL)) {
2374 2375 2376 2377 2378
		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
		tx_flags |= (skb->priority & 0x7) <<
				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
			struct vlan_ethhdr *vhdr;
2379 2380 2381 2382 2383
			int rc;

			rc = skb_cow_head(skb, 0);
			if (rc < 0)
				return rc;
2384 2385 2386 2387 2388 2389 2390
			vhdr = (struct vlan_ethhdr *)skb->data;
			vhdr->h_vlan_TCI = htons(tx_flags >>
						 I40E_TX_FLAGS_VLAN_SHIFT);
		} else {
			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
		}
	}
2391 2392

out:
2393 2394 2395 2396 2397 2398
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
2399
 * @first:    pointer to first Tx buffer for xmit
2400
 * @hdr_len:  ptr to the size of the packet header
2401
 * @cd_type_cmd_tso_mss: Quad Word 1
2402 2403 2404
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
2405 2406
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
2407
{
2408
	struct sk_buff *skb = first->skb;
2409
	u64 cd_cmd, cd_tso_len, cd_mss;
2410 2411 2412 2413 2414
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
2415 2416
	union {
		struct tcphdr *tcp;
2417
		struct udphdr *udp;
2418 2419 2420
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
2421
	u16 gso_segs, gso_size;
2422 2423
	int err;

2424 2425 2426
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2427 2428 2429
	if (!skb_is_gso(skb))
		return 0;

2430 2431 2432
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
2433

2434 2435
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2436

2437 2438 2439 2440
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
2441
	} else {
2442 2443 2444
		ip.v6->payload_len = 0;
	}

2445
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2446
					 SKB_GSO_GRE_CSUM |
2447
					 SKB_GSO_IPXIP4 |
2448
					 SKB_GSO_IPXIP6 |
2449
					 SKB_GSO_UDP_TUNNEL |
2450
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2451 2452 2453 2454
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

2455 2456 2457 2458
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
2459
			paylen = skb->len - l4_offset;
2460 2461
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
2462 2463
		}

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
2475 2476
	}

2477 2478 2479 2480
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
2481
	paylen = skb->len - l4_offset;
2482
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2483 2484 2485

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2486

2487 2488 2489 2490 2491 2492 2493 2494
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

2495 2496 2497
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
2498
	cd_mss = gso_size;
2499 2500 2501
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2502 2503 2504
	return 1;
}

J
Jacob Keller 已提交
2505 2506 2507 2508 2509
/**
 * i40e_tsyn - set up the tsyn context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @tx_flags: the collected send information
2510
 * @cd_type_cmd_tso_mss: Quad Word 1
J
Jacob Keller 已提交
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
 *
 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
 **/
static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
{
	struct i40e_pf *pf;

	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
		return 0;

	/* Tx timestamps cannot be sampled when doing TSO */
	if (tx_flags & I40E_TX_FLAGS_TSO)
		return 0;

	/* only timestamp the outbound packet if the user has requested it and
	 * we are not already transmitting a packet to be timestamped
	 */
	pf = i40e_netdev_to_pf(tx_ring->netdev);
2530 2531 2532
	if (!(pf->flags & I40E_FLAG_PTP))
		return 0;

2533 2534
	if (pf->ptp_tx &&
	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
J
Jacob Keller 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
		pf->ptp_tx_skb = skb_get(skb);
	} else {
		return 0;
	}

	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
				I40E_TXD_CTX_QW1_CMD_SHIFT;

	return 1;
}

2547 2548 2549
/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
2550
 * @tx_flags: pointer to Tx flags currently set
2551 2552
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
2553
 * @tx_ring: Tx descriptor ring
2554 2555
 * @cd_tunneling: ptr to context desc bits
 **/
2556 2557 2558 2559
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
2560
{
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
2571
	unsigned char *exthdr;
2572
	u32 offset, cmd = 0;
2573
	__be16 frag_off;
2574 2575
	u8 l4_proto = 0;

2576 2577 2578
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2579 2580
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2581

2582 2583 2584
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

2585
	if (skb->encapsulation) {
2586
		u32 tunnel = 0;
2587 2588
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2589 2590 2591 2592
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

2593 2594
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2595
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2596 2597

			exthdr = ip.hdr + sizeof(*ip.v6);
2598
			l4_proto = ip.v6->nexthdr;
2599 2600 2601
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
2602 2603 2604 2605
		}

		/* define outer transport */
		switch (l4_proto) {
2606
		case IPPROTO_UDP:
2607
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2608
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2609
			break;
2610
		case IPPROTO_GRE:
2611
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2612
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2613
			break;
2614 2615 2616 2617 2618
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
2619
		default:
2620 2621 2622 2623 2624
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
2625
		}
2626

2627 2628 2629 2630 2631 2632 2633
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

2634 2635 2636 2637
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

2638 2639
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2640
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2641 2642 2643
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

2644 2645 2646
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

2647 2648
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
2649
		l4_proto = 0;
2650

2651 2652 2653 2654 2655
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
2656
			*tx_flags |= I40E_TX_FLAGS_IPV6;
2657 2658 2659
	}

	/* Enable IP checksum offloads */
2660
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2661
		l4_proto = ip.v4->protocol;
2662 2663 2664
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
2665 2666 2667
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
2668
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2669
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2670 2671 2672 2673 2674 2675

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
2676
	}
2677

2678 2679
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2680 2681

	/* Enable L4 checksum offloads */
2682
	switch (l4_proto) {
2683 2684
	case IPPROTO_TCP:
		/* enable checksum offloads */
2685 2686
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2687 2688 2689
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
2690 2691 2692
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2693 2694 2695
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
2696 2697 2698
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2699 2700
		break;
	default:
2701 2702 2703 2704
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
2705
	}
2706 2707 2708

	*td_cmd |= cmd;
	*td_offset |= offset;
2709 2710

	return 1;
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
2725
	int i = tx_ring->next_to_use;
2726

2727 2728
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
2729 2730 2731
		return;

	/* grab the next descriptor */
2732 2733 2734 2735
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2736 2737 2738 2739

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2740
	context_desc->rsvd = cpu_to_le16(0);
2741 2742 2743
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

E
Eric Dumazet 已提交
2744 2745 2746 2747 2748 2749 2750
/**
 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
2751
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
E
Eric Dumazet 已提交
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

2767
/**
2768
 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2769 2770
 * @skb:      send buffer
 *
2771 2772 2773 2774 2775 2776 2777 2778
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
2779
 **/
2780
bool __i40e_chk_linearize(struct sk_buff *skb)
2781
{
2782
	const struct skb_frag_struct *frag, *stale;
2783
	int nr_frags, sum;
2784

2785
	/* no need to check if number of frags is less than 7 */
2786
	nr_frags = skb_shinfo(skb)->nr_frags;
2787
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2788
		return false;
2789

2790
	/* We need to walk through the list and validate that each group
2791
	 * of 6 fragments totals at least gso_size.
2792
	 */
2793
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2794 2795 2796 2797 2798 2799 2800 2801
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
2802
	sum = 1 - skb_shinfo(skb)->gso_size;
2803

2804 2805 2806 2807 2808 2809
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
2810 2811 2812 2813 2814 2815

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
2816
		sum += skb_frag_size(frag++);
2817 2818 2819 2820 2821

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

2822
		if (!nr_frags--)
2823 2824
			break;

2825
		sum -= skb_frag_size(stale++);
2826 2827
	}

2828
	return false;
2829 2830
}

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
/**
 * i40e_tx_map - Build the Tx descriptor
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
2841 2842 2843
static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
			       struct i40e_tx_buffer *first, u32 tx_flags,
			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2844 2845 2846
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
A
Alexander Duyck 已提交
2847
	struct skb_frag_struct *frag;
2848 2849
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
A
Alexander Duyck 已提交
2850
	u16 i = tx_ring->next_to_use;
2851 2852
	u32 td_tag = 0;
	dma_addr_t dma;
2853
	u16 desc_count = 1;
2854 2855 2856 2857 2858 2859 2860

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

A
Alexander Duyck 已提交
2861 2862 2863 2864
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

2865
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
2866 2867 2868
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2869 2870
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

A
Alexander Duyck 已提交
2871 2872 2873 2874 2875 2876 2877
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

2878 2879
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
A
Alexander Duyck 已提交
2880 2881 2882
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2883 2884
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
2885
					   max_data, td_tag);
2886 2887 2888

			tx_desc++;
			i++;
2889 2890
			desc_count++;

2891 2892 2893 2894 2895
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

2896 2897
			dma += max_data;
			size -= max_data;
2898

2899
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
A
Alexander Duyck 已提交
2900 2901
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}
2902 2903 2904 2905

		if (likely(!data_len))
			break;

A
Alexander Duyck 已提交
2906 2907
		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);
2908 2909 2910

		tx_desc++;
		i++;
2911 2912
		desc_count++;

2913 2914 2915 2916 2917
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

A
Alexander Duyck 已提交
2918 2919
		size = skb_frag_size(frag);
		data_len -= size;
2920

A
Alexander Duyck 已提交
2921 2922
		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);
2923

A
Alexander Duyck 已提交
2924 2925
		tx_bi = &tx_ring->tx_bi[i];
	}
2926

2927
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
A
Alexander Duyck 已提交
2928 2929 2930 2931 2932 2933 2934

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

E
Eric Dumazet 已提交
2935
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2936

2937 2938 2939 2940 2941 2942 2943 2944 2945
	/* write last descriptor with EOP bit */
	td_cmd |= I40E_TX_DESC_CMD_EOP;

	/* We can OR these values together as they both are checked against
	 * 4 below and at this point desc_count will be used as a boolean value
	 * after this if/else block.
	 */
	desc_count |= ++tx_ring->packet_stride;

2946
	/* Algorithm to optimize tail and RS bit setting:
2947 2948 2949 2950 2951 2952
	 * if queue is stopped
	 *	mark RS bit
	 *	reset packet counter
	 * else if xmit_more is supported and is true
	 *	advance packet counter to 4
	 *	reset desc_count to 0
2953
	 *
2954 2955 2956 2957 2958
	 * if desc_count >= 4
	 *	mark RS bit
	 *	reset packet counter
	 * if desc_count > 0
	 *	update tail
2959
	 *
2960
	 * Note: If there are less than 4 descriptors
2961 2962 2963
	 * pending and interrupts were disabled the service task will
	 * trigger a force WB.
	 */
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
	if (netif_xmit_stopped(txring_txq(tx_ring))) {
		goto do_rs;
	} else if (skb->xmit_more) {
		/* set stride to arm on next packet and reset desc_count */
		tx_ring->packet_stride = WB_STRIDE;
		desc_count = 0;
	} else if (desc_count >= WB_STRIDE) {
do_rs:
		/* write last descriptor with RS bit set */
		td_cmd |= I40E_TX_DESC_CMD_RS;
2974 2975 2976 2977
		tx_ring->packet_stride = 0;
	}

	tx_desc->cmd_type_offset_bsz =
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
2990

A
Alexander Duyck 已提交
2991
	/* notify HW of packet */
2992
	if (desc_count) {
2993
		writel(i, tx_ring->tail);
2994 2995 2996 2997 2998

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
2999
	}
3000

3001 3002 3003
	return;

dma_error:
A
Alexander Duyck 已提交
3004
	dev_info(tx_ring->dev, "TX DMA map failed\n");
3005 3006 3007 3008

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
A
Alexander Duyck 已提交
3009
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
3038
	int tso, count;
J
Jacob Keller 已提交
3039
	int tsyn;
J
Jesse Brandeburg 已提交
3040

3041 3042 3043
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

3044
	count = i40e_xmit_descriptor_count(skb);
3045
	if (i40e_chk_linearize(skb, count)) {
3046 3047 3048 3049
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
3050
		count = i40e_txd_use_count(skb->len);
3051 3052
		tx_ring->tx_stats.tx_linearize++;
	}
3053 3054 3055 3056 3057 3058 3059 3060 3061

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
3062
		return NETDEV_TX_BUSY;
3063
	}
3064

3065 3066 3067 3068 3069 3070
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

3071 3072 3073 3074 3075
	/* prepare the xmit flags */
	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
		goto out_drop;

	/* obtain protocol of skb */
3076
	protocol = vlan_get_protocol(skb);
3077 3078

	/* setup IPv4/IPv6 offloads */
3079
	if (protocol == htons(ETH_P_IP))
3080
		tx_flags |= I40E_TX_FLAGS_IPV4;
3081
	else if (protocol == htons(ETH_P_IPV6))
3082 3083
		tx_flags |= I40E_TX_FLAGS_IPV6;

3084
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3085 3086 3087 3088 3089 3090

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

3091 3092 3093 3094 3095 3096
	/* Always offload the checksum, since it's in the data descriptor */
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;

J
Jacob Keller 已提交
3097 3098 3099 3100 3101
	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);

	if (tsyn)
		tx_flags |= I40E_TX_FLAGS_TSYN;

3102 3103
	skb_tx_timestamp(skb);

3104 3105 3106
	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

3107 3108 3109 3110 3111 3112 3113
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

	/* Add Flow Director ATR if it's enabled.
	 *
	 * NOTE: this must always be directly before the data descriptor.
	 */
3114
	i40e_atr(tx_ring, skb, tx_flags);
3115 3116 3117 3118 3119 3120 3121

	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		    td_cmd, td_offset);

	return NETDEV_TX_OK;

out_drop:
3122 3123
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
	return NETDEV_TX_OK;
}

/**
 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40e_netdev_priv *np = netdev_priv(netdev);
	struct i40e_vsi *vsi = np->vsi;
3138
	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3139 3140 3141 3142

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
3143 3144
	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
		return NETDEV_TX_OK;
3145 3146 3147

	return i40e_xmit_frame_ring(skb, tx_ring);
}