i40e_txrx.c 104.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Driver
5
 * Copyright(c) 2013 - 2016 Intel Corporation.
6 7 8 9 10 11 12 13 14 15
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
G
Greg Rose 已提交
16 17
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
18 19 20 21 22 23 24 25 26 27
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

M
Mitch Williams 已提交
28
#include <linux/prefetch.h>
29
#include <net/busy_poll.h>
30
#include <linux/bpf_trace.h>
31
#include <net/xdp.h>
32
#include "i40e.h"
S
Scott Peterson 已提交
33
#include "i40e_trace.h"
34
#include "i40e_prototype.h"
35 36 37 38 39 40 41 42 43 44 45

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

46
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/**
 * i40e_fdir - Generate a Flow Director descriptor based on fdata
 * @tx_ring: Tx ring to send buffer on
 * @fdata: Flow director filter data
 * @add: Indicate if we are adding a rule or deleting one
 *
 **/
static void i40e_fdir(struct i40e_ring *tx_ring,
		      struct i40e_fdir_filter *fdata, bool add)
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	u32 flex_ptype, dtype_cmd;
	u16 i;

	/* grab the next descriptor */
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

78 79 80
	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
	/* Use LAN VSI Id if not programmed by user */
	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

	dtype_cmd |= add ?
		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;

	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);

	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);

	if (fdata->cnt_index) {
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
			     ((u32)fdata->cnt_index <<
			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
	}

	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
	fdir_desc->rsvd = cpu_to_le32(0);
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
}

113
#define I40E_FD_CLEAN_DELAY 10
114 115
/**
 * i40e_program_fdir_filter - Program a Flow Director filter
116 117
 * @fdir_data: Packet data that will be filter parameters
 * @raw_packet: the pre-allocated packet buffer for FDir
118
 * @pf: The PF pointer
119 120
 * @add: True for add/update, False for remove
 **/
121 122 123
static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
				    u8 *raw_packet, struct i40e_pf *pf,
				    bool add)
124
{
125
	struct i40e_tx_buffer *tx_buf, *first;
126 127 128 129 130 131 132 133 134
	struct i40e_tx_desc *tx_desc;
	struct i40e_ring *tx_ring;
	struct i40e_vsi *vsi;
	struct device *dev;
	dma_addr_t dma;
	u32 td_cmd = 0;
	u16 i;

	/* find existing FDIR VSI */
135
	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
136 137 138
	if (!vsi)
		return -ENOENT;

139
	tx_ring = vsi->tx_rings[0];
140 141
	dev = tx_ring->dev;

142
	/* we need two descriptors to add/del a filter and we can wait */
143 144 145
	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
		if (!i)
			return -EAGAIN;
146
		msleep_interruptible(1);
147
	}
148

149 150
	dma = dma_map_single(dev, raw_packet,
			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
151 152 153 154
	if (dma_mapping_error(dev, dma))
		goto dma_fail;

	/* grab the next descriptor */
155
	i = tx_ring->next_to_use;
156
	first = &tx_ring->tx_bi[i];
157
	i40e_fdir(tx_ring, fdir_data, add);
158 159

	/* Now program a dummy descriptor */
160 161
	i = tx_ring->next_to_use;
	tx_desc = I40E_TX_DESC(tx_ring, i);
162
	tx_buf = &tx_ring->tx_bi[i];
163

164 165 166
	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;

	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
167

168
	/* record length, and DMA address */
169
	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
170 171
	dma_unmap_addr_set(tx_buf, dma, dma);

172
	tx_desc->buffer_addr = cpu_to_le64(dma);
173
	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
174

175 176 177
	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
	tx_buf->raw_buf = (void *)raw_packet;

178
	tx_desc->cmd_type_offset_bsz =
179
		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
180 181

	/* Force memory writes to complete before letting h/w
182
	 * know there are new descriptors to fetch.
183 184 185
	 */
	wmb();

186
	/* Mark the data descriptor to be watched */
187
	first->next_to_watch = tx_desc;
188

189 190 191 192 193 194 195
	writel(tx_ring->next_to_use, tx_ring->tail);
	return 0;

dma_fail:
	return -1;
}

196 197 198 199 200 201 202 203 204 205 206 207
#define IP_HEADER_OFFSET 14
#define I40E_UDPIP_DUMMY_PACKET_LEN 42
/**
 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
208
				   bool add)
209 210 211 212
{
	struct i40e_pf *pf = vsi->back;
	struct udphdr *udp;
	struct iphdr *ip;
213
	u8 *raw_packet;
214 215 216 217 218
	int ret;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

219 220 221
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
222 223 224 225 226 227
	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

228
	ip->daddr = fd_data->dst_ip;
229
	udp->dest = fd_data->dst_port;
230
	ip->saddr = fd_data->src_ip;
231 232
	udp->source = fd_data->src_port;

233 234 235 236 237 238 239 240
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

241 242 243 244
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
245 246
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
247 248 249
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
250
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
251 252 253 254 255 256 257 258
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
259
	}
260

261 262 263 264 265
	if (add)
		pf->fd_udp4_filter_cnt++;
	else
		pf->fd_udp4_filter_cnt--;

266
	return 0;
267 268 269 270 271 272 273 274 275 276 277 278 279
}

#define I40E_TCPIP_DUMMY_PACKET_LEN 54
/**
 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
280
				   bool add)
281 282 283 284
{
	struct i40e_pf *pf = vsi->back;
	struct tcphdr *tcp;
	struct iphdr *ip;
285
	u8 *raw_packet;
286 287 288 289 290 291 292
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
		0x0, 0x72, 0, 0, 0, 0};

293 294 295
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
296 297 298 299 300 301
	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

302
	ip->daddr = fd_data->dst_ip;
303
	tcp->dest = fd_data->dst_port;
304
	ip->saddr = fd_data->src_ip;
305 306
	tcp->source = fd_data->src_port;

307 308 309 310 311 312 313 314
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

315
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
316 317 318
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
319 320
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
321 322 323
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
324
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
325 326 327 328 329 330 331
		if (add)
			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
332 333
	}

334
	if (add) {
335
		pf->fd_tcp4_filter_cnt++;
336 337 338
		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
		    I40E_DEBUG_FD & pf->hw.debug_mask)
			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
339
		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
340
	} else {
341
		pf->fd_tcp4_filter_cnt--;
342 343
	}

344
	return 0;
345 346
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
/**
 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
				    struct i40e_fdir_filter *fd_data,
				    bool add)
{
	struct i40e_pf *pf = vsi->back;
	struct sctphdr *sctp;
	struct iphdr *ip;
	u8 *raw_packet;
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

	ip->daddr = fd_data->dst_ip;
	sctp->dest = fd_data->dst_port;
	ip->saddr = fd_data->src_ip;
	sctp->source = fd_data->src_port;

	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
	}

	if (add)
		pf->fd_sctp4_filter_cnt++;
	else
		pf->fd_sctp4_filter_cnt--;

	return 0;
}

421 422 423 424 425 426 427 428 429 430 431 432
#define I40E_IP_DUMMY_PACKET_LEN 34
/**
 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
				  struct i40e_fdir_filter *fd_data,
433
				  bool add)
434 435 436
{
	struct i40e_pf *pf = vsi->back;
	struct iphdr *ip;
437
	u8 *raw_packet;
438 439 440 441 442 443 444 445
	int ret;
	int i;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0};

	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
446 447 448 449 450 451
		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
		if (!raw_packet)
			return -ENOMEM;
		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);

452 453
		ip->saddr = fd_data->src_ip;
		ip->daddr = fd_data->dst_ip;
454 455
		ip->protocol = 0;

456 457 458 459 460 461 462 463
		if (fd_data->flex_filter) {
			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
			__be16 pattern = fd_data->flex_word;
			u16 off = fd_data->flex_offset;

			*((__force __be16 *)(payload + off)) = pattern;
		}

464 465 466 467
		fd_data->pctype = i;
		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
		if (ret) {
			dev_info(&pf->pdev->dev,
468 469
				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
				 fd_data->pctype, fd_data->fd_id, ret);
470 471 472 473 474
			/* The packet buffer wasn't added to the ring so we
			 * need to free it now.
			 */
			kfree(raw_packet);
			return -EOPNOTSUPP;
475
		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
476 477 478 479 480 481 482 483
			if (add)
				dev_info(&pf->pdev->dev,
					 "Filter OK for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
			else
				dev_info(&pf->pdev->dev,
					 "Filter deleted for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
484 485 486
		}
	}

487 488 489 490 491
	if (add)
		pf->fd_ip4_filter_cnt++;
	else
		pf->fd_ip4_filter_cnt--;

492
	return 0;
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
}

/**
 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 * @vsi: pointer to the targeted VSI
 * @cmd: command to get or set RX flow classification rules
 * @add: true adds a filter, false removes it
 *
 **/
int i40e_add_del_fdir(struct i40e_vsi *vsi,
		      struct i40e_fdir_filter *input, bool add)
{
	struct i40e_pf *pf = vsi->back;
	int ret;

	switch (input->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
510
		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
511 512
		break;
	case UDP_V4_FLOW:
513
		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
514
		break;
515 516 517
	case SCTP_V4_FLOW:
		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
		break;
518 519 520
	case IP_USER_FLOW:
		switch (input->ip4_proto) {
		case IPPROTO_TCP:
521
			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
522 523
			break;
		case IPPROTO_UDP:
524
			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
525
			break;
526 527 528
		case IPPROTO_SCTP:
			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
			break;
529
		case IPPROTO_IP:
530
			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
531
			break;
532 533
		default:
			/* We cannot support masking based on protocol */
534 535 536
			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
				 input->ip4_proto);
			return -EINVAL;
537 538 539
		}
		break;
	default:
540
		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
541
			 input->flow_type);
542
		return -EINVAL;
543 544
	}

545 546 547 548 549 550
	/* The buffer allocated here will be normally be freed by
	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
	 * completion. In the event of an error adding the buffer to the FDIR
	 * ring, it will immediately be freed. It may also be freed by
	 * i40e_clean_tx_ring() when closing the VSI.
	 */
551 552 553
	return ret;
}

554 555 556
/**
 * i40e_fd_handle_status - check the Programming Status for FD
 * @rx_ring: the Rx ring for this descriptor
557
 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
558 559 560 561 562
 * @prog_id: the id originally used for programming
 *
 * This is used to verify if the FD programming or invalidation
 * requested by SW to the HW is successful or not and take actions accordingly.
 **/
563 564
static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
				  union i40e_rx_desc *rx_desc, u8 prog_id)
565
{
566 567 568
	struct i40e_pf *pf = rx_ring->vsi->back;
	struct pci_dev *pdev = pf->pdev;
	u32 fcnt_prog, fcnt_avail;
569
	u32 error;
570
	u64 qw;
571

572
	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
573 574 575
	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;

576
	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
577
		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
578 579 580
		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
		    (I40E_DEBUG_FD & pf->hw.debug_mask))
			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
581
				 pf->fd_inv);
582

583 584 585 586 587 588
		/* Check if the programming error is for ATR.
		 * If so, auto disable ATR and set a state for
		 * flush in progress. Next time we come here if flush is in
		 * progress do nothing, once flush is complete the state will
		 * be cleared.
		 */
589
		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
590 591
			return;

592 593 594 595
		pf->fd_add_err++;
		/* store the current atr filter count */
		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);

596
		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
597 598 599 600 601 602 603 604
		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
			/* These set_bit() calls aren't atomic with the
			 * test_bit() here, but worse case we potentially
			 * disable ATR and queue a flush right after SB
			 * support is re-enabled. That shouldn't cause an
			 * issue in practice
			 */
			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
605
			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
606 607
		}

608
		/* filter programming failed most likely due to table full */
609
		fcnt_prog = i40e_get_global_fd_count(pf);
610
		fcnt_avail = pf->fdir_pf_filter_count;
611 612 613 614 615
		/* If ATR is running fcnt_prog can quickly change,
		 * if we are very close to full, it makes sense to disable
		 * FD ATR/SB and then re-enable it when there is room.
		 */
		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
616
			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
617 618
			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
					      pf->state))
619 620
				if (I40E_DEBUG_FD & pf->hw.debug_mask)
					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
621
		}
622
	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
623
		if (I40E_DEBUG_FD & pf->hw.debug_mask)
624
			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
625
				 rx_desc->wb.qword0.hi_dword.fd_id);
626
	}
627 628 629
}

/**
A
Alexander Duyck 已提交
630
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
631 632 633
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
A
Alexander Duyck 已提交
634 635
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
636
{
A
Alexander Duyck 已提交
637
	if (tx_buffer->skb) {
638 639
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
640 641
		else if (ring_is_xdp(ring))
			page_frag_free(tx_buffer->raw_buf);
642 643
		else
			dev_kfree_skb_any(tx_buffer->skb);
A
Alexander Duyck 已提交
644
		if (dma_unmap_len(tx_buffer, len))
645
			dma_unmap_single(ring->dev,
646 647
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
648
					 DMA_TO_DEVICE);
A
Alexander Duyck 已提交
649 650 651 652 653
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
654
	}
655

A
Alexander Duyck 已提交
656 657
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
658
	dma_unmap_len_set(tx_buffer, len, 0);
A
Alexander Duyck 已提交
659
	/* tx_buffer must be completely set up in the transmit path */
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
}

/**
 * i40e_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
A
Alexander Duyck 已提交
676 677
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
678 679 680 681 682 683 684 685 686

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
687 688 689 690 691

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
692
	netdev_tx_reset_queue(txring_txq(tx_ring));
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
}

/**
 * i40e_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40e_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40e_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

/**
 * i40e_get_tx_pending - how many tx descriptors not processed
 * @tx_ring: the ring of descriptors
717
 * @in_sw: use SW variables
718 719 720 721
 *
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
 **/
722
u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
723
{
J
Jesse Brandeburg 已提交
724 725
	u32 head, tail;

726 727 728 729 730 731 732
	if (!in_sw) {
		head = i40e_get_head(ring);
		tail = readl(ring->tail);
	} else {
		head = ring->next_to_clean;
		tail = ring->next_to_use;
	}
J
Jesse Brandeburg 已提交
733 734 735 736 737 738

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
739 740
}

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
/**
 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 * @vsi:  pointer to vsi struct with tx queues
 *
 * VSI has netdev and netdev has TX queues. This function is to check each of
 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 **/
void i40e_detect_recover_hung(struct i40e_vsi *vsi)
{
	struct i40e_ring *tx_ring = NULL;
	struct net_device *netdev;
	unsigned int i;
	int packets;

	if (!vsi)
		return;

	if (test_bit(__I40E_VSI_DOWN, vsi->state))
		return;

	netdev = vsi->netdev;
	if (!netdev)
		return;

	if (!netif_carrier_ok(netdev))
		return;

	for (i = 0; i < vsi->num_queue_pairs; i++) {
		tx_ring = vsi->tx_rings[i];
		if (tx_ring && tx_ring->desc) {
			/* If packet counter has not changed the queue is
			 * likely stalled, so force an interrupt for this
			 * queue.
			 *
			 * prev_pkt_ctr would be negative if there was no
			 * pending work.
			 */
			packets = tx_ring->stats.packets & INT_MAX;
			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
				i40e_force_wb(vsi, tx_ring->q_vector);
				continue;
			}

			/* Memory barrier between read of packet count and call
			 * to i40e_get_tx_pending()
			 */
			smp_rmb();
			tx_ring->tx_stats.prev_pkt_ctr =
789
			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
790 791 792 793
		}
	}
}

794
#define WB_STRIDE 4
795

796 797
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
798 799 800
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
801 802 803
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
804 805
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
806 807 808
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
809
	struct i40e_tx_desc *tx_head;
810
	struct i40e_tx_desc *tx_desc;
811 812
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
813 814 815

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
816
	i -= tx_ring->count;
817

818 819
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

A
Alexander Duyck 已提交
820 821
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
822 823 824 825 826

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

A
Alexander Duyck 已提交
827
		/* prevent any other reads prior to eop_desc */
828
		smp_rmb();
A
Alexander Duyck 已提交
829

S
Scott Peterson 已提交
830
		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
831 832
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
833 834
			break;

A
Alexander Duyck 已提交
835
		/* clear next_to_watch to prevent false hangs */
836 837
		tx_buf->next_to_watch = NULL;

A
Alexander Duyck 已提交
838 839 840
		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;
841

842 843 844 845 846
		/* free the skb/XDP data */
		if (ring_is_xdp(tx_ring))
			page_frag_free(tx_buf->raw_buf);
		else
			napi_consume_skb(tx_buf->skb, napi_budget);
847

A
Alexander Duyck 已提交
848 849 850 851 852
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);
853

A
Alexander Duyck 已提交
854 855 856
		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);
857

A
Alexander Duyck 已提交
858 859
		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
S
Scott Peterson 已提交
860 861
			i40e_trace(clean_tx_irq_unmap,
				   tx_ring, tx_desc, tx_buf);
862 863 864 865

			tx_buf++;
			tx_desc++;
			i++;
A
Alexander Duyck 已提交
866 867
			if (unlikely(!i)) {
				i -= tx_ring->count;
868 869 870 871
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

A
Alexander Duyck 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

892 893
		prefetch(tx_desc);

A
Alexander Duyck 已提交
894 895 896 897 898
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
899
	tx_ring->next_to_clean = i;
900
	u64_stats_update_begin(&tx_ring->syncp);
901 902
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
903
	u64_stats_update_end(&tx_ring->syncp);
904 905
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;
A
Alexander Duyck 已提交
906

907 908 909 910 911 912
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
913
		unsigned int j = i40e_get_tx_pending(tx_ring, false);
914 915

		if (budget &&
916
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
917
		    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
918 919 920
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}
921

922 923 924
	if (ring_is_xdp(tx_ring))
		return !!budget;

925 926
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
927 928
				  total_packets, total_bytes);

929
#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
930 931 932 933 934 935 936 937
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
938
		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
939 940 941 942 943 944
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

945 946 947 948
	return !!budget;
}

/**
949
 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
950
 * @vsi: the VSI we care about
951
 * @q_vector: the vector on which to enable writeback
952 953
 *
 **/
954 955
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
956
{
957
	u16 flags = q_vector->tx.ring[0].flags;
958
	u32 val;
959

960 961
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;
962

963 964
	if (q_vector->arm_wb_state)
		return;
965

966 967 968
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
969

970
		wr32(&vsi->back->hw,
971
		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
972 973 974 975
		     val);
	} else {
		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
976

977 978 979 980 981 982 983 984 985 986 987 988 989 990
		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
	q_vector->arm_wb_state = true;
}

/**
 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
991 992 993 994 995 996 997
		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
			  /* allow 00 to be written to the index */

		wr32(&vsi->back->hw,
998
		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
999 1000 1001 1002 1003 1004 1005 1006 1007
	} else {
		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
			/* allow 00 to be written to the index */

		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
1008 1009
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
					struct i40e_ring_container *rc)
{
	return &q_vector->rx == rc;
}

static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
{
	unsigned int divisor;

	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
	case I40E_LINK_SPEED_40GB:
		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
		break;
	case I40E_LINK_SPEED_25GB:
	case I40E_LINK_SPEED_20GB:
		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
		break;
	default:
	case I40E_LINK_SPEED_10GB:
		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
		break;
	case I40E_LINK_SPEED_1GB:
	case I40E_LINK_SPEED_100MB:
		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
		break;
	}

	return divisor;
}

1041
/**
1042 1043
 * i40e_update_itr - update the dynamic ITR value based on statistics
 * @q_vector: structure containing interrupt and ring information
1044 1045
 * @rc: structure containing ring performance data
 *
1046 1047 1048 1049 1050 1051
 * Stores a new ITR value based on packets and byte
 * counts during the last interrupt.  The advantage of per interrupt
 * computation is faster updates and more accurate ITR for the current
 * traffic pattern.  Constants in this function were computed
 * based on theoretical maximum wire speed and thresholds were set based
 * on testing data as well as attempting to minimize response time
1052 1053
 * while increasing bulk throughput.
 **/
1054 1055
static void i40e_update_itr(struct i40e_q_vector *q_vector,
			    struct i40e_ring_container *rc)
1056
{
1057 1058
	unsigned int avg_wire_size, packets, bytes, itr;
	unsigned long next_update = jiffies;
1059

1060 1061 1062
	/* If we don't have any rings just leave ourselves set for maximum
	 * possible latency so we take ourselves out of the equation.
	 */
1063
	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1064
		return;
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	/* For Rx we want to push the delay up and default to low latency.
	 * for Tx we want to pull the delay down and default to high latency.
	 */
	itr = i40e_container_is_rx(q_vector, rc) ?
	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;

	/* If we didn't update within up to 1 - 2 jiffies we can assume
	 * that either packets are coming in so slow there hasn't been
	 * any work, or that there is so much work that NAPI is dealing
	 * with interrupt moderation and we don't need to do anything.
	 */
	if (time_after(next_update, rc->next_update))
		goto clear_counts;

	/* If itr_countdown is set it means we programmed an ITR within
	 * the last 4 interrupt cycles. This has a side effect of us
	 * potentially firing an early interrupt. In order to work around
	 * this we need to throw out any data received for a few
	 * interrupts following the update.
	 */
	if (q_vector->itr_countdown) {
		itr = rc->target_itr;
		goto clear_counts;
	}
1091

1092 1093
	packets = rc->total_packets;
	bytes = rc->total_bytes;
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	if (i40e_container_is_rx(q_vector, rc)) {
		/* If Rx there are 1 to 4 packets and bytes are less than
		 * 9000 assume insufficient data to use bulk rate limiting
		 * approach unless Tx is already in bulk rate limiting. We
		 * are likely latency driven.
		 */
		if (packets && packets < 4 && bytes < 9000 &&
		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
			itr = I40E_ITR_ADAPTIVE_LATENCY;
			goto adjust_by_size;
		}
	} else if (packets < 4) {
		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
		 * bulk mode and we are receiving 4 or fewer packets just
		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
		 * that the Rx can relax.
		 */
		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
		     I40E_ITR_ADAPTIVE_MAX_USECS)
			goto clear_counts;
	} else if (packets > 32) {
		/* If we have processed over 32 packets in a single interrupt
		 * for Tx assume we need to switch over to "bulk" mode.
		 */
		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
	}

	/* We have no packets to actually measure against. This means
	 * either one of the other queues on this vector is active or
	 * we are a Tx queue doing TSO with too high of an interrupt rate.
	 *
	 * Between 4 and 56 we can assume that our current interrupt delay
	 * is only slightly too low. As such we should increase it by a small
	 * fixed amount.
1130
	 */
1131 1132 1133 1134 1135 1136 1137
	if (packets < 56) {
		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
			itr &= I40E_ITR_ADAPTIVE_LATENCY;
			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
		}
		goto clear_counts;
1138 1139
	}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	if (packets <= 256) {
		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
		itr &= I40E_ITR_MASK;

		/* Between 56 and 112 is our "goldilocks" zone where we are
		 * working out "just right". Just report that our current
		 * ITR is good for us.
		 */
		if (packets <= 112)
			goto clear_counts;

		/* If packet count is 128 or greater we are likely looking
		 * at a slight overrun of the delay we want. Try halving
		 * our delay to see if that will cut the number of packets
		 * in half per interrupt.
		 */
		itr /= 2;
		itr &= I40E_ITR_MASK;
		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
			itr = I40E_ITR_ADAPTIVE_MIN_USECS;

		goto clear_counts;
	}

	/* The paths below assume we are dealing with a bulk ITR since
	 * number of packets is greater than 256. We are just going to have
	 * to compute a value and try to bring the count under control,
	 * though for smaller packet sizes there isn't much we can do as
	 * NAPI polling will likely be kicking in sooner rather than later.
	 */
	itr = I40E_ITR_ADAPTIVE_BULK;

adjust_by_size:
	/* If packet counts are 256 or greater we can assume we have a gross
	 * overestimation of what the rate should be. Instead of trying to fine
	 * tune it just use the formula below to try and dial in an exact value
	 * give the current packet size of the frame.
	 */
	avg_wire_size = bytes / packets;

	/* The following is a crude approximation of:
	 *  wmem_default / (size + overhead) = desired_pkts_per_int
	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1184
	 *
1185 1186 1187 1188 1189 1190 1191 1192 1193
	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
	 * formula down to
	 *
	 *  (170 * (size + 24)) / (size + 640) = ITR
	 *
	 * We first do some math on the packet size and then finally bitshift
	 * by 8 after rounding up. We also have to account for PCIe link speed
	 * difference as ITR scales based on this.
1194
	 */
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	if (avg_wire_size <= 60) {
		/* Start at 250k ints/sec */
		avg_wire_size = 4096;
	} else if (avg_wire_size <= 380) {
		/* 250K ints/sec to 60K ints/sec */
		avg_wire_size *= 40;
		avg_wire_size += 1696;
	} else if (avg_wire_size <= 1084) {
		/* 60K ints/sec to 36K ints/sec */
		avg_wire_size *= 15;
		avg_wire_size += 11452;
	} else if (avg_wire_size <= 1980) {
		/* 36K ints/sec to 30K ints/sec */
		avg_wire_size *= 5;
		avg_wire_size += 22420;
	} else {
		/* plateau at a limit of 30K ints/sec */
		avg_wire_size = 32256;
1213
	}
1214

1215 1216 1217 1218 1219
	/* If we are in low latency mode halve our delay which doubles the
	 * rate to somewhere between 100K to 16K ints/sec
	 */
	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
		avg_wire_size /= 2;
1220

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	/* Resultant value is 256 times larger than it needs to be. This
	 * gives us room to adjust the value as needed to either increase
	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
	 *
	 * Use addition as we have already recorded the new latency flag
	 * for the ITR value.
	 */
	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
	       I40E_ITR_ADAPTIVE_MIN_INC;

	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
		itr &= I40E_ITR_ADAPTIVE_LATENCY;
		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1234 1235
	}

1236 1237 1238 1239 1240 1241 1242
clear_counts:
	/* write back value */
	rc->target_itr = itr;

	/* next update should occur within next jiffy */
	rc->next_update = next_update + 1;

1243 1244 1245 1246
	rc->total_bytes = 0;
	rc->total_packets = 0;
}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_bi[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	new_buff->dma		= old_buff->dma;
	new_buff->page		= old_buff->page;
	new_buff->page_offset	= old_buff->page_offset;
	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
/**
 * i40e_rx_is_programming_status - check for programming status descriptor
 * @qw: qword representing status_error_len in CPU ordering
 *
 * The value of in the descriptor length field indicate if this
 * is a programming status descriptor for flow director or FCoE
 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
 * it is a packet descriptor.
 **/
static inline bool i40e_rx_is_programming_status(u64 qw)
{
	/* The Rx filter programming status and SPH bit occupy the same
	 * spot in the descriptor. Since we don't support packet split we
	 * can just reuse the bit as an indication that this is a
	 * programming status descriptor.
	 */
	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
}

1292 1293 1294 1295
/**
 * i40e_clean_programming_status - clean the programming status descriptor
 * @rx_ring: the rx ring that has this descriptor
 * @rx_desc: the rx descriptor written back by HW
1296
 * @qw: qword representing status_error_len in CPU ordering
1297 1298 1299 1300 1301 1302 1303
 *
 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 * status being successful or not and take actions accordingly. FCoE should
 * handle its context/filter programming/invalidation status and take actions.
 *
 **/
static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1304 1305
					  union i40e_rx_desc *rx_desc,
					  u64 qw)
1306
{
1307 1308
	struct i40e_rx_buffer *rx_buffer;
	u32 ntc = rx_ring->next_to_clean;
1309 1310
	u8 id;

1311
	/* fetch, update, and store next to clean */
1312
	rx_buffer = &rx_ring->rx_bi[ntc++];
1313 1314 1315 1316 1317
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

1318 1319 1320 1321 1322 1323 1324
	/* place unused page back on the ring */
	i40e_reuse_rx_page(rx_ring, rx_buffer);
	rx_ring->rx_stats.page_reuse_count++;

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;

1325 1326 1327 1328
	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;

	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1329
		i40e_fd_handle_status(rx_ring, rx_desc, id);
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
}

/**
 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

J
Jesse Brandeburg 已提交
1346 1347
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
1348 1349 1350 1351 1352
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

1353 1354
	u64_stats_init(&tx_ring->syncp);

1355 1356
	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1357 1358 1359 1360
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
1372
	tx_ring->tx_stats.prev_pkt_ctr = -1;
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

1394 1395 1396 1397 1398
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

1399 1400
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
1401 1402 1403 1404 1405
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

1406 1407 1408 1409 1410 1411
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
1412
					      rx_ring->rx_buf_len,
1413 1414 1415 1416
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1417
				     i40e_rx_pg_size(rx_ring),
1418 1419
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
1420

1421
		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1422 1423 1424

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
1425 1426 1427 1428 1429 1430 1431 1432
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

1433
	rx_ring->next_to_alloc = 0;
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40e_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40e_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40e_clean_rx_ring(rx_ring);
1447 1448
	if (rx_ring->vsi->type == I40E_VSI_MAIN)
		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1449
	rx_ring->xdp_prog = NULL;
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40e_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
1469
	int err = -ENOMEM;
1470 1471
	int bi_size;

J
Jesse Brandeburg 已提交
1472 1473
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
1474 1475 1476 1477 1478
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

1479
	u64_stats_init(&rx_ring->syncp);
1480

1481
	/* Round up to nearest 4K */
1482
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

1493
	rx_ring->next_to_alloc = 0;
1494 1495 1496
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

1497 1498 1499 1500 1501 1502 1503 1504
	/* XDP RX-queue info only needed for RX rings exposed to XDP */
	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
				       rx_ring->queue_index);
		if (err < 0)
			goto err;
	}

1505 1506
	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;

1507 1508 1509 1510
	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
1511
	return err;
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
1522 1523 1524 1525

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

1526 1527 1528 1529 1530 1531 1532 1533 1534
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
/**
 * i40e_rx_offset - Return expected offset into page to access data
 * @rx_ring: Ring we are requesting offset of
 *
 * Returns the offset value for ring into the data buffer.
 */
static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
{
	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
}

1546
/**
1547 1548 1549
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
1550
 *
1551 1552
 * Returns true if the page was successfully allocated or
 * reused.
1553
 **/
1554 1555
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
1556
{
1557 1558
	struct page *page = bi->page;
	dma_addr_t dma;
1559

1560 1561 1562 1563 1564
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
1565

1566
	/* alloc new page for storage */
1567
	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1568 1569 1570 1571
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
1572

1573
	/* map page for use */
1574
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1575
				 i40e_rx_pg_size(rx_ring),
1576 1577
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
1578

1579 1580
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
1581
	 */
1582
	if (dma_mapping_error(rx_ring->dev, dma)) {
1583
		__free_pages(page, i40e_rx_pg_order(rx_ring));
1584 1585
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
1586 1587
	}

1588 1589
	bi->dma = dma;
	bi->page = page;
1590
	bi->page_offset = i40e_rx_offset(rx_ring);
1591 1592
	page_ref_add(page, USHRT_MAX - 1);
	bi->pagecnt_bias = USHRT_MAX;
1593

1594 1595
	return true;
}
1596

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1607

1608 1609 1610 1611 1612
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
1613 1614 1615
}

/**
1616
 * i40e_alloc_rx_buffers - Replace used receive buffers
1617 1618
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
1619
 *
1620
 * Returns false if all allocations were successful, true if any fail
1621
 **/
1622
bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1623
{
1624
	u16 ntu = rx_ring->next_to_use;
1625 1626 1627 1628 1629
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
1630
		return false;
1631

1632 1633
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
1634

1635 1636 1637
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
1638

1639 1640 1641
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
1642
						 rx_ring->rx_buf_len,
1643 1644
						 DMA_FROM_DEVICE);

1645 1646 1647 1648
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1649

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1667 1668 1669

	return false;

1670
no_buffers:
1671 1672
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1673 1674 1675 1676 1677

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
1678 1679 1680 1681 1682 1683
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
1684
 * @rx_desc: the receive descriptor
1685 1686 1687
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
1688
				    union i40e_rx_desc *rx_desc)
1689
{
1690 1691
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
1692
	bool ipv4, ipv6;
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
1703

1704 1705
	skb->ip_summed = CHECKSUM_NONE;

1706 1707
	skb_checksum_none_assert(skb);

1708
	/* Rx csum enabled and ip headers found? */
1709 1710 1711 1712
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
1713
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1714 1715 1716 1717
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
1718 1719
		return;

1720 1721 1722 1723
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1724 1725

	if (ipv4 &&
1726 1727
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1728 1729
		goto checksum_fail;

J
Jesse Brandeburg 已提交
1730
	/* likely incorrect csum if alternate IP extension headers found */
1731
	if (ipv6 &&
1732
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1733
		/* don't increment checksum err here, non-fatal err */
1734 1735
		return;

1736
	/* there was some L4 error, count error and punt packet to the stack */
1737
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1738 1739 1740 1741 1742 1743
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
1744
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1745 1746
		return;

1747 1748 1749
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
1750
	 */
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
1764 1765 1766 1767 1768

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
1769 1770 1771
}

/**
1772
 * i40e_ptype_to_htype - get a hash type
1773 1774 1775 1776
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
1777
static inline int i40e_ptype_to_htype(u8 ptype)
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
1805
	const __le64 rss_mask =
1806 1807 1808
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

1809
	if (!(ring->netdev->features & NETIF_F_RXHASH))
1810 1811 1812 1813 1814 1815 1816 1817
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

1818
/**
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 **/
static inline
void i40e_process_skb_fields(struct i40e_ring *rx_ring,
			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			     u8 rx_ptype)
{
	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;
1837 1838
	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1839 1840
		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;

1841
	if (unlikely(tsynvalid))
1842
		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1843 1844 1845 1846 1847 1848

	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);

	skb_record_rx_queue(skb, rx_ring->queue_index);
1849 1850 1851

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1852 1853 1854 1855 1856 1857
}

/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
1858
 * @rx_desc: pointer to the EOP Rx descriptor
1859 1860 1861 1862 1863 1864 1865 1866 1867
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
1868 1869 1870
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
				 union i40e_rx_desc *rx_desc)

1871
{
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
	/* XDP packets use error pointer so abort at this point */
	if (IS_ERR(skb))
		return true;

	/* ERR_MASK will only have valid bits if EOP set, and
	 * what we are doing here is actually checking
	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
	 * the error field
	 */
	if (unlikely(i40e_test_staterr(rx_desc,
				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
		dev_kfree_skb_any(skb);
		return true;
	}

1887 1888 1889 1890 1891 1892 1893 1894
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
1895
 * i40e_page_is_reusable - check if any reuse is possible
1896
 * @page: page struct to check
1897 1898 1899
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
1900
 */
1901
static inline bool i40e_page_is_reusable(struct page *page)
1902
{
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
1934
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1935
{
1936 1937
	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
	struct page *page = rx_buffer->page;
1938 1939 1940 1941 1942 1943 1944

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
1945
	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1946 1947
		return false;
#else
1948 1949 1950
#define I40E_LAST_OFFSET \
	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1951 1952 1953
		return false;
#endif

1954 1955 1956 1957
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
	 */
1958 1959
	if (unlikely(pagecnt_bias == 1)) {
		page_ref_add(page, USHRT_MAX - 1);
1960 1961
		rx_buffer->pagecnt_bias = USHRT_MAX;
	}
1962

1963
	return true;
1964 1965 1966 1967 1968 1969 1970
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @skb: sk_buff to place the data into
1971
 * @size: packet length from rx_desc
1972 1973
 *
 * This function will add the data contained in rx_buffer->page to the skb.
1974
 * It will just attach the page as a frag to the skb.
1975
 *
1976
 * The function will then update the page offset.
1977
 **/
1978
static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1979
			     struct i40e_rx_buffer *rx_buffer,
1980 1981
			     struct sk_buff *skb,
			     unsigned int size)
1982 1983
{
#if (PAGE_SIZE < 8192)
1984
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1985
#else
1986
	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1987 1988
#endif

1989 1990
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
			rx_buffer->page_offset, size, truesize);
1991

1992 1993 1994 1995 1996 1997
	/* page is being used so we must update the page offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
1998 1999
}

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
/**
 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
 * @rx_ring: rx descriptor ring to transact packets on
 * @size: size of buffer to add to skb
 *
 * This function will pull an Rx buffer from the ring and synchronize it
 * for use by the CPU.
 */
static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
						 const unsigned int size)
{
	struct i40e_rx_buffer *rx_buffer;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	prefetchw(rx_buffer->page);

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      size,
				      DMA_FROM_DEVICE);

2023 2024 2025
	/* We have pulled a buffer for use, so decrement pagecnt_bias */
	rx_buffer->pagecnt_bias--;

2026 2027 2028
	return rx_buffer;
}

2029
/**
2030
 * i40e_construct_skb - Allocate skb and populate it
2031
 * @rx_ring: rx descriptor ring to transact packets on
2032
 * @rx_buffer: rx buffer to pull data from
2033
 * @xdp: xdp_buff pointing to the data
2034
 *
2035 2036 2037
 * This function allocates an skb.  It then populates it with the page
 * data from the current receive descriptor, taking care to set up the
 * skb correctly.
2038
 */
2039 2040
static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
					  struct i40e_rx_buffer *rx_buffer,
2041
					  struct xdp_buff *xdp)
2042
{
2043
	unsigned int size = xdp->data_end - xdp->data;
2044
#if (PAGE_SIZE < 8192)
2045
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2046 2047 2048 2049 2050
#else
	unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
	unsigned int headlen;
	struct sk_buff *skb;
2051

2052
	/* prefetch first cache line of first page */
2053
	prefetch(xdp->data);
2054
#if L1_CACHE_BYTES < 128
2055
	prefetch(xdp->data + L1_CACHE_BYTES);
2056 2057
#endif

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	/* allocate a skb to store the frags */
	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
			       I40E_RX_HDR_SIZE,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;

	/* Determine available headroom for copy */
	headlen = size;
	if (headlen > I40E_RX_HDR_SIZE)
2068
		headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
2069

2070
	/* align pull length to size of long to optimize memcpy performance */
2071 2072
	memcpy(__skb_put(skb, headlen), xdp->data,
	       ALIGN(headlen, sizeof(long)));
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090

	/* update all of the pointers */
	size -= headlen;
	if (size) {
		skb_add_rx_frag(skb, 0, rx_buffer->page,
				rx_buffer->page_offset + headlen,
				size, truesize);

		/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
		rx_buffer->page_offset ^= truesize;
#else
		rx_buffer->page_offset += truesize;
#endif
	} else {
		/* buffer is unused, reset bias back to rx_buffer */
		rx_buffer->pagecnt_bias++;
	}
2091 2092 2093 2094

	return skb;
}

2095 2096 2097 2098
/**
 * i40e_build_skb - Build skb around an existing buffer
 * @rx_ring: Rx descriptor ring to transact packets on
 * @rx_buffer: Rx buffer to pull data from
2099
 * @xdp: xdp_buff pointing to the data
2100 2101 2102 2103 2104 2105
 *
 * This function builds an skb around an existing Rx buffer, taking care
 * to set up the skb correctly and avoid any memcpy overhead.
 */
static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
				      struct i40e_rx_buffer *rx_buffer,
2106
				      struct xdp_buff *xdp)
2107
{
2108
	unsigned int size = xdp->data_end - xdp->data;
2109 2110 2111
#if (PAGE_SIZE < 8192)
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
#else
2112 2113
	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
				SKB_DATA_ALIGN(I40E_SKB_PAD + size);
2114 2115 2116 2117
#endif
	struct sk_buff *skb;

	/* prefetch first cache line of first page */
2118
	prefetch(xdp->data);
2119
#if L1_CACHE_BYTES < 128
2120
	prefetch(xdp->data + L1_CACHE_BYTES);
2121 2122
#endif
	/* build an skb around the page buffer */
2123
	skb = build_skb(xdp->data_hard_start, truesize);
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
	if (unlikely(!skb))
		return NULL;

	/* update pointers within the skb to store the data */
	skb_reserve(skb, I40E_SKB_PAD);
	__skb_put(skb, size);

	/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif

	return skb;
}

2141 2142 2143 2144 2145 2146
/**
 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: rx buffer to pull data from
 *
 * This function will clean up the contents of the rx_buffer.  It will
2147
 * either recycle the buffer or unmap it and free the associated resources.
2148 2149 2150 2151 2152
 */
static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *rx_buffer)
{
	if (i40e_can_reuse_rx_page(rx_buffer)) {
2153 2154 2155 2156 2157
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
2158 2159
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
				     i40e_rx_pg_size(rx_ring),
2160
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2161 2162
		__page_frag_cache_drain(rx_buffer->page,
					rx_buffer->pagecnt_bias);
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
2179
 **/
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

2202 2203
#define I40E_XDP_PASS 0
#define I40E_XDP_CONSUMED 1
2204 2205 2206 2207
#define I40E_XDP_TX 2

static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
			      struct i40e_ring *xdp_ring);
2208 2209 2210 2211 2212 2213 2214 2215 2216

/**
 * i40e_run_xdp - run an XDP program
 * @rx_ring: Rx ring being processed
 * @xdp: XDP buffer containing the frame
 **/
static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
				    struct xdp_buff *xdp)
{
2217
	int err, result = I40E_XDP_PASS;
2218
	struct i40e_ring *xdp_ring;
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
	struct bpf_prog *xdp_prog;
	u32 act;

	rcu_read_lock();
	xdp_prog = READ_ONCE(rx_ring->xdp_prog);

	if (!xdp_prog)
		goto xdp_out;

	act = bpf_prog_run_xdp(xdp_prog, xdp);
	switch (act) {
	case XDP_PASS:
		break;
2232 2233 2234 2235
	case XDP_TX:
		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
		result = i40e_xmit_xdp_ring(xdp, xdp_ring);
		break;
2236 2237 2238 2239
	case XDP_REDIRECT:
		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
		result = !err ? I40E_XDP_TX : I40E_XDP_CONSUMED;
		break;
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	default:
		bpf_warn_invalid_xdp_action(act);
	case XDP_ABORTED:
		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
		/* fallthrough -- handle aborts by dropping packet */
	case XDP_DROP:
		result = I40E_XDP_CONSUMED;
		break;
	}
xdp_out:
	rcu_read_unlock();
	return ERR_PTR(-result);
}

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
/**
 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
 * @rx_ring: Rx ring
 * @rx_buffer: Rx buffer to adjust
 * @size: Size of adjustment
 **/
static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
				struct i40e_rx_buffer *rx_buffer,
				unsigned int size)
{
#if (PAGE_SIZE < 8192)
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;

	rx_buffer->page_offset ^= truesize;
#else
	unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);

	rx_buffer->page_offset += truesize;
#endif
}

2275 2276 2277 2278 2279 2280 2281 2282 2283
static inline void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
{
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.
	 */
	wmb();
	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
}

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
/**
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 **/
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2297 2298
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2299
	struct sk_buff *skb = rx_ring->skb;
2300
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2301
	bool failure = false, xdp_xmit = false;
2302 2303 2304
	struct xdp_buff xdp;

	xdp.rxq = &rx_ring->xdp_rxq;
2305

2306
	while (likely(total_rx_packets < (unsigned int)budget)) {
2307
		struct i40e_rx_buffer *rx_buffer;
2308
		union i40e_rx_desc *rx_desc;
2309
		unsigned int size;
2310
		u16 vlan_tag;
2311 2312 2313
		u8 rx_ptype;
		u64 qword;

2314 2315
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2316
			failure = failure ||
2317
				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2318 2319 2320
			cleaned_count = 0;
		}

2321 2322 2323 2324 2325
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
2326
		 * hardware wrote DD then the length will be non-zero
2327
		 */
2328
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2329

2330
		/* This memory barrier is needed to keep us from reading
2331 2332
		 * any other fields out of the rx_desc until we have
		 * verified the descriptor has been written back.
2333
		 */
2334
		dma_rmb();
2335

2336 2337
		if (unlikely(i40e_rx_is_programming_status(qword))) {
			i40e_clean_programming_status(rx_ring, rx_desc, qword);
2338
			cleaned_count++;
2339 2340 2341 2342 2343 2344 2345
			continue;
		}
		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		if (!size)
			break;

S
Scott Peterson 已提交
2346
		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2347 2348
		rx_buffer = i40e_get_rx_buffer(rx_ring, size);

2349
		/* retrieve a buffer from the ring */
2350 2351 2352
		if (!skb) {
			xdp.data = page_address(rx_buffer->page) +
				   rx_buffer->page_offset;
2353
			xdp_set_data_meta_invalid(&xdp);
2354 2355 2356 2357 2358 2359 2360 2361
			xdp.data_hard_start = xdp.data -
					      i40e_rx_offset(rx_ring);
			xdp.data_end = xdp.data + size;

			skb = i40e_run_xdp(rx_ring, &xdp);
		}

		if (IS_ERR(skb)) {
2362 2363 2364 2365 2366 2367
			if (PTR_ERR(skb) == -I40E_XDP_TX) {
				xdp_xmit = true;
				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
			} else {
				rx_buffer->pagecnt_bias++;
			}
2368 2369 2370
			total_rx_bytes += size;
			total_rx_packets++;
		} else if (skb) {
2371
			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2372 2373 2374 2375 2376
		} else if (ring_uses_build_skb(rx_ring)) {
			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
		} else {
			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
		}
2377 2378 2379 2380 2381

		/* exit if we failed to retrieve a buffer */
		if (!skb) {
			rx_ring->rx_stats.alloc_buff_failed++;
			rx_buffer->pagecnt_bias++;
2382
			break;
2383
		}
2384

2385
		i40e_put_rx_buffer(rx_ring, rx_buffer);
2386 2387
		cleaned_count++;

2388
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2389 2390
			continue;

2391
		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2392
			skb = NULL;
2393
			continue;
2394
		}
2395 2396 2397 2398

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

2399 2400 2401 2402
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

2403 2404
		/* populate checksum, VLAN, and protocol */
		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2405

2406 2407 2408
		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

S
Scott Peterson 已提交
2409
		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2410
		i40e_receive_skb(rx_ring, skb, vlan_tag);
2411
		skb = NULL;
2412

2413 2414 2415
		/* update budget accounting */
		total_rx_packets++;
	}
2416

2417
	if (xdp_xmit) {
2418 2419
		struct i40e_ring *xdp_ring =
			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2420

2421 2422
		i40e_xdp_ring_update_tail(xdp_ring);
		xdp_do_flush_map();
2423 2424
	}

2425 2426
	rx_ring->skb = skb;

2427
	u64_stats_update_begin(&rx_ring->syncp);
2428 2429
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
2430
	u64_stats_update_end(&rx_ring->syncp);
2431 2432 2433
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

2434
	/* guarantee a trip back through this routine if there was a failure */
2435
	return failure ? budget : (int)total_rx_packets;
2436 2437
}

2438
static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2439 2440 2441
{
	u32 val;

2442 2443 2444 2445 2446 2447 2448 2449 2450
	/* We don't bother with setting the CLEARPBA bit as the data sheet
	 * points out doing so is "meaningless since it was already
	 * auto-cleared". The auto-clearing happens when the interrupt is
	 * asserted.
	 *
	 * Hardware errata 28 for also indicates that writing to a
	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
	 * an event in the PBA anyway so we need to rely on the automask
	 * to hold pending events for us until the interrupt is re-enabled
2451 2452 2453 2454 2455
	 *
	 * The itr value is reported in microseconds, and the register
	 * value is recorded in 2 microsecond units. For this reason we
	 * only need to shift by the interval shift - 1 instead of the
	 * full value.
2456
	 */
2457 2458
	itr &= I40E_ITR_MASK;

2459 2460
	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2461
	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2462 2463 2464 2465 2466 2467 2468

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_PFINT_DYN_CTLN

2469 2470 2471 2472 2473 2474 2475 2476 2477
/* The act of updating the ITR will cause it to immediately trigger. In order
 * to prevent this from throwing off adaptive update statistics we defer the
 * update so that it can only happen so often. So after either Tx or Rx are
 * updated we make the adaptive scheme wait until either the ITR completely
 * expires via the next_update expiration or we have been through at least
 * 3 interrupts.
 */
#define ITR_COUNTDOWN_START 3

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
2488
	u32 intval;
2489

2490 2491
	/* If we don't have MSIX, then we only need to re-enable icr0 */
	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2492
		i40e_irq_dynamic_enable_icr0(vsi->back);
2493 2494 2495
		return;
	}

2496 2497 2498
	/* These will do nothing if dynamic updates are not enabled */
	i40e_update_itr(q_vector, &q_vector->tx);
	i40e_update_itr(q_vector, &q_vector->rx);
2499

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	/* This block of logic allows us to get away with only updating
	 * one ITR value with each interrupt. The idea is to perform a
	 * pseudo-lazy update with the following criteria.
	 *
	 * 1. Rx is given higher priority than Tx if both are in same state
	 * 2. If we must reduce an ITR that is given highest priority.
	 * 3. We then give priority to increasing ITR based on amount.
	 */
	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
		/* Rx ITR needs to be reduced, this is highest priority */
2510 2511 2512
		intval = i40e_buildreg_itr(I40E_RX_ITR,
					   q_vector->rx.target_itr);
		q_vector->rx.current_itr = q_vector->rx.target_itr;
2513 2514 2515 2516 2517 2518 2519
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
		/* Tx ITR needs to be reduced, this is second priority
		 * Tx ITR needs to be increased more than Rx, fourth priority
		 */
2520 2521 2522
		intval = i40e_buildreg_itr(I40E_TX_ITR,
					   q_vector->tx.target_itr);
		q_vector->tx.current_itr = q_vector->tx.target_itr;
2523 2524 2525 2526 2527 2528 2529
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
		/* Rx ITR needs to be increased, third priority */
		intval = i40e_buildreg_itr(I40E_RX_ITR,
					   q_vector->rx.target_itr);
		q_vector->rx.current_itr = q_vector->rx.target_itr;
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2530
	} else {
2531
		/* No ITR update, lowest priority */
2532
		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2533 2534
		if (q_vector->itr_countdown)
			q_vector->itr_countdown--;
2535 2536
	}

2537
	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2538
		wr32(hw, INTREG(q_vector->reg_idx), intval);
2539 2540
}

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
/**
 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40e_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
2555
	struct i40e_ring *ring;
2556
	bool clean_complete = true;
2557
	bool arm_wb = false;
2558
	int budget_per_ring;
2559
	int work_done = 0;
2560

2561
	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2562 2563 2564 2565
		napi_complete(napi);
		return 0;
	}

2566 2567 2568
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
2569
	i40e_for_each_ring(ring, q_vector->tx) {
2570
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2571 2572 2573 2574
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
2575
		ring->arm_wb = false;
2576
	}
2577

2578 2579 2580 2581
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

2582 2583 2584 2585
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2586

2587
	i40e_for_each_ring(ring, q_vector->rx) {
2588
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2589 2590

		work_done += cleaned;
2591 2592 2593
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
2594
	}
2595 2596

	/* If work not completed, return budget and polling will return */
2597
	if (!clean_complete) {
2598 2599 2600 2601 2602 2603 2604 2605 2606
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
			/* Tell napi that we are done polling */
			napi_complete_done(napi, work_done);

			/* Force an interrupt */
			i40e_force_wb(vsi, q_vector);

			/* Return budget-1 so that polling stops */
			return budget - 1;
		}
2617
tx_only:
2618 2619 2620
		if (arm_wb) {
			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
			i40e_enable_wb_on_itr(vsi, q_vector);
2621
		}
2622
		return budget;
2623
	}
2624

2625 2626 2627
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

2628
	/* Work is done so exit the polling mode and re-enable the interrupt */
2629
	napi_complete_done(napi, work_done);
2630

2631
	i40e_update_enable_itr(vsi, q_vector);
2632

2633
	return min(work_done, budget - 1);
2634 2635 2636 2637 2638 2639
}

/**
 * i40e_atr - Add a Flow Director ATR filter
 * @tx_ring:  ring to add programming descriptor to
 * @skb:      send buffer
2640
 * @tx_flags: send tx flags
2641 2642
 **/
static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2643
		     u32 tx_flags)
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	union {
		unsigned char *network;
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	struct tcphdr *th;
	unsigned int hlen;
	u32 flex_ptype, dtype_cmd;
2655
	int l4_proto;
2656
	u16 i;
2657 2658

	/* make sure ATR is enabled */
J
Jesse Brandeburg 已提交
2659
	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2660 2661
		return;

2662
	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2663 2664
		return;

2665 2666 2667 2668
	/* if sampling is disabled do nothing */
	if (!tx_ring->atr_sample_rate)
		return;

2669
	/* Currently only IPv4/IPv6 with TCP is supported */
2670 2671
	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
		return;
2672

2673 2674 2675
	/* snag network header to get L4 type and address */
	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
		      skb_inner_network_header(skb) : skb_network_header(skb);
2676

2677 2678 2679 2680
	/* Note: tx_flags gets modified to reflect inner protocols in
	 * tx_enable_csum function if encap is enabled.
	 */
	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2681
		/* access ihl as u8 to avoid unaligned access on ia64 */
2682 2683
		hlen = (hdr.network[0] & 0x0F) << 2;
		l4_proto = hdr.ipv4->protocol;
2684
	} else {
2685 2686 2687 2688 2689 2690 2691 2692 2693
		/* find the start of the innermost ipv6 header */
		unsigned int inner_hlen = hdr.network - skb->data;
		unsigned int h_offset = inner_hlen;

		/* this function updates h_offset to the end of the header */
		l4_proto =
		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
		/* hlen will contain our best estimate of the tcp header */
		hlen = h_offset - inner_hlen;
2694 2695
	}

2696
	if (l4_proto != IPPROTO_TCP)
2697 2698
		return;

2699 2700
	th = (struct tcphdr *)(hdr.network + hlen);

2701
	/* Due to lack of space, no more new filters can be programmed */
2702
	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2703
		return;
2704
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2705 2706 2707 2708 2709 2710
		/* HW ATR eviction will take care of removing filters on FIN
		 * and RST packets.
		 */
		if (th->fin || th->rst)
			return;
	}
2711 2712 2713

	tx_ring->atr_count++;

2714 2715 2716 2717 2718
	/* sample on all syn/fin/rst packets or once every atr sample rate */
	if (!th->fin &&
	    !th->syn &&
	    !th->rst &&
	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2719 2720 2721 2722 2723
		return;

	tx_ring->atr_count = 0;

	/* grab the next descriptor */
2724 2725 2726 2727 2728
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2729 2730 2731

	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2732
	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2733 2734 2735 2736 2737 2738 2739 2740 2741
		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

2742
	dtype_cmd |= (th->fin || th->rst) ?
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
		     I40E_TXD_FLTR_QW1_DEST_SHIFT;

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;

2754
	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2755
	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2756 2757 2758 2759 2760 2761 2762 2763 2764
		dtype_cmd |=
			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
	else
		dtype_cmd |=
			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2765

2766
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2767 2768
		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;

2769
	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
J
Jesse Brandeburg 已提交
2770
	fdir_desc->rsvd = cpu_to_le32(0);
2771
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
J
Jesse Brandeburg 已提交
2772
	fdir_desc->fd_id = cpu_to_le32(0);
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
}

/**
 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
2787 2788 2789
static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
					     struct i40e_ring *tx_ring,
					     u32 *flags)
2790 2791 2792 2793
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

2807
	/* if we have a HW VLAN tag being added, default to the HW one */
2808 2809
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2810 2811
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
2812
	} else if (protocol == htons(ETH_P_8021Q)) {
2813
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
2814

2815 2816 2817 2818 2819 2820 2821 2822 2823
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

2824 2825 2826
	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
		goto out;

2827
	/* Insert 802.1p priority into VLAN header */
2828 2829
	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
	    (skb->priority != TC_PRIO_CONTROL)) {
2830 2831 2832 2833 2834
		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
		tx_flags |= (skb->priority & 0x7) <<
				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
			struct vlan_ethhdr *vhdr;
2835 2836 2837 2838 2839
			int rc;

			rc = skb_cow_head(skb, 0);
			if (rc < 0)
				return rc;
2840 2841 2842 2843 2844 2845 2846
			vhdr = (struct vlan_ethhdr *)skb->data;
			vhdr->h_vlan_TCI = htons(tx_flags >>
						 I40E_TX_FLAGS_VLAN_SHIFT);
		} else {
			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
		}
	}
2847 2848

out:
2849 2850 2851 2852 2853 2854
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
2855
 * @first:    pointer to first Tx buffer for xmit
2856
 * @hdr_len:  ptr to the size of the packet header
2857
 * @cd_type_cmd_tso_mss: Quad Word 1
2858 2859 2860
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
2861 2862
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
2863
{
2864
	struct sk_buff *skb = first->skb;
2865
	u64 cd_cmd, cd_tso_len, cd_mss;
2866 2867 2868 2869 2870
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
2871 2872
	union {
		struct tcphdr *tcp;
2873
		struct udphdr *udp;
2874 2875 2876
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
2877
	u16 gso_segs, gso_size;
2878 2879
	int err;

2880 2881 2882
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2883 2884 2885
	if (!skb_is_gso(skb))
		return 0;

2886 2887 2888
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
2889

2890 2891
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2892

2893 2894 2895 2896
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
2897
	} else {
2898 2899 2900
		ip.v6->payload_len = 0;
	}

2901
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2902
					 SKB_GSO_GRE_CSUM |
2903
					 SKB_GSO_IPXIP4 |
2904
					 SKB_GSO_IPXIP6 |
2905
					 SKB_GSO_UDP_TUNNEL |
2906
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2907 2908 2909 2910
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

2911 2912 2913 2914
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
2915
			paylen = skb->len - l4_offset;
2916 2917
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
2918 2919
		}

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
2931 2932
	}

2933 2934 2935 2936
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
2937
	paylen = skb->len - l4_offset;
2938
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2939 2940 2941

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2942

2943 2944 2945 2946 2947 2948 2949 2950
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

2951 2952 2953
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
2954
	cd_mss = gso_size;
2955 2956 2957
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2958 2959 2960
	return 1;
}

J
Jacob Keller 已提交
2961 2962 2963 2964 2965
/**
 * i40e_tsyn - set up the tsyn context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @tx_flags: the collected send information
2966
 * @cd_type_cmd_tso_mss: Quad Word 1
J
Jacob Keller 已提交
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
 *
 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
 **/
static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
{
	struct i40e_pf *pf;

	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
		return 0;

	/* Tx timestamps cannot be sampled when doing TSO */
	if (tx_flags & I40E_TX_FLAGS_TSO)
		return 0;

	/* only timestamp the outbound packet if the user has requested it and
	 * we are not already transmitting a packet to be timestamped
	 */
	pf = i40e_netdev_to_pf(tx_ring->netdev);
2986 2987 2988
	if (!(pf->flags & I40E_FLAG_PTP))
		return 0;

2989
	if (pf->ptp_tx &&
2990
	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
J
Jacob Keller 已提交
2991
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2992
		pf->ptp_tx_start = jiffies;
J
Jacob Keller 已提交
2993 2994
		pf->ptp_tx_skb = skb_get(skb);
	} else {
2995
		pf->tx_hwtstamp_skipped++;
J
Jacob Keller 已提交
2996 2997 2998 2999 3000 3001 3002 3003 3004
		return 0;
	}

	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
				I40E_TXD_CTX_QW1_CMD_SHIFT;

	return 1;
}

3005 3006 3007
/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
3008
 * @tx_flags: pointer to Tx flags currently set
3009 3010
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
3011
 * @tx_ring: Tx descriptor ring
3012 3013
 * @cd_tunneling: ptr to context desc bits
 **/
3014 3015 3016 3017
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
3018
{
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
3029
	unsigned char *exthdr;
3030
	u32 offset, cmd = 0;
3031
	__be16 frag_off;
3032 3033
	u8 l4_proto = 0;

3034 3035 3036
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

3037 3038
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
3039

3040 3041 3042
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

3043
	if (skb->encapsulation) {
3044
		u32 tunnel = 0;
3045 3046
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3047 3048 3049 3050
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

3051 3052
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3053
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3054 3055

			exthdr = ip.hdr + sizeof(*ip.v6);
3056
			l4_proto = ip.v6->nexthdr;
3057 3058 3059
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
3060 3061 3062 3063
		}

		/* define outer transport */
		switch (l4_proto) {
3064
		case IPPROTO_UDP:
3065
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3066
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3067
			break;
3068
		case IPPROTO_GRE:
3069
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3070
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3071
			break;
3072 3073 3074 3075 3076
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
3077
		default:
3078 3079 3080 3081 3082
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
3083
		}
3084

3085 3086 3087 3088 3089 3090 3091
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

3092 3093 3094 3095
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

3096 3097
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3098
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3099 3100 3101
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

3102 3103 3104
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

3105 3106
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
3107
		l4_proto = 0;
3108

3109 3110 3111 3112 3113
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
3114
			*tx_flags |= I40E_TX_FLAGS_IPV6;
3115 3116 3117
	}

	/* Enable IP checksum offloads */
3118
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3119
		l4_proto = ip.v4->protocol;
3120 3121 3122
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
3123 3124 3125
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
3126
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3127
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3128 3129 3130 3131 3132 3133

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
3134
	}
3135

3136 3137
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3138 3139

	/* Enable L4 checksum offloads */
3140
	switch (l4_proto) {
3141 3142
	case IPPROTO_TCP:
		/* enable checksum offloads */
3143 3144
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3145 3146 3147
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
3148 3149 3150
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3151 3152 3153
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
3154 3155 3156
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3157 3158
		break;
	default:
3159 3160 3161 3162
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
3163
	}
3164 3165 3166

	*td_cmd |= cmd;
	*td_offset |= offset;
3167 3168

	return 1;
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
3183
	int i = tx_ring->next_to_use;
3184

3185 3186
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
3187 3188 3189
		return;

	/* grab the next descriptor */
3190 3191 3192 3193
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3194 3195 3196 3197

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3198
	context_desc->rsvd = cpu_to_le16(0);
3199 3200 3201
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

E
Eric Dumazet 已提交
3202 3203 3204 3205 3206 3207 3208
/**
 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
3209
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
E
Eric Dumazet 已提交
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

3225
/**
3226
 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3227 3228
 * @skb:      send buffer
 *
3229 3230 3231 3232 3233 3234 3235 3236
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
3237
 **/
3238
bool __i40e_chk_linearize(struct sk_buff *skb)
3239
{
3240
	const struct skb_frag_struct *frag, *stale;
3241
	int nr_frags, sum;
3242

3243
	/* no need to check if number of frags is less than 7 */
3244
	nr_frags = skb_shinfo(skb)->nr_frags;
3245
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3246
		return false;
3247

3248
	/* We need to walk through the list and validate that each group
3249
	 * of 6 fragments totals at least gso_size.
3250
	 */
3251
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3252 3253 3254 3255 3256 3257 3258 3259
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
3260
	sum = 1 - skb_shinfo(skb)->gso_size;
3261

3262 3263 3264 3265 3266 3267
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
3268 3269 3270 3271

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
3272 3273 3274
	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
		int stale_size = skb_frag_size(stale);

3275
		sum += skb_frag_size(frag++);
3276

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
		/* The stale fragment may present us with a smaller
		 * descriptor than the actual fragment size. To account
		 * for that we need to remove all the data on the front and
		 * figure out what the remainder would be in the last
		 * descriptor associated with the fragment.
		 */
		if (stale_size > I40E_MAX_DATA_PER_TXD) {
			int align_pad = -(stale->page_offset) &
					(I40E_MAX_READ_REQ_SIZE - 1);

			sum -= align_pad;
			stale_size -= align_pad;

			do {
				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
			} while (stale_size > I40E_MAX_DATA_PER_TXD);
		}

3296 3297 3298 3299
		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

3300
		if (!nr_frags--)
3301 3302
			break;

3303
		sum -= stale_size;
3304 3305
	}

3306
	return false;
3307 3308
}

3309 3310 3311 3312 3313 3314 3315 3316 3317
/**
 * i40e_tx_map - Build the Tx descriptor
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
3318 3319
 *
 * Returns 0 on success, -1 on failure to DMA
3320
 **/
3321 3322 3323
static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
			      struct i40e_tx_buffer *first, u32 tx_flags,
			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3324 3325 3326
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
A
Alexander Duyck 已提交
3327
	struct skb_frag_struct *frag;
3328 3329
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
A
Alexander Duyck 已提交
3330
	u16 i = tx_ring->next_to_use;
3331 3332
	u32 td_tag = 0;
	dma_addr_t dma;
3333
	u16 desc_count = 1;
3334 3335 3336 3337 3338 3339 3340

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

A
Alexander Duyck 已提交
3341 3342 3343 3344
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

3345
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
3346 3347 3348
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3349 3350
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

A
Alexander Duyck 已提交
3351 3352 3353 3354 3355 3356 3357
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

3358 3359
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
A
Alexander Duyck 已提交
3360 3361 3362
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3363 3364
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
3365
					   max_data, td_tag);
3366 3367 3368

			tx_desc++;
			i++;
3369 3370
			desc_count++;

3371 3372 3373 3374 3375
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

3376 3377
			dma += max_data;
			size -= max_data;
3378

3379
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
A
Alexander Duyck 已提交
3380 3381
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}
3382 3383 3384 3385

		if (likely(!data_len))
			break;

A
Alexander Duyck 已提交
3386 3387
		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);
3388 3389 3390

		tx_desc++;
		i++;
3391 3392
		desc_count++;

3393 3394 3395 3396 3397
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

A
Alexander Duyck 已提交
3398 3399
		size = skb_frag_size(frag);
		data_len -= size;
3400

A
Alexander Duyck 已提交
3401 3402
		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);
3403

A
Alexander Duyck 已提交
3404 3405
		tx_bi = &tx_ring->tx_bi[i];
	}
3406

3407
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
A
Alexander Duyck 已提交
3408 3409 3410 3411 3412 3413 3414

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

E
Eric Dumazet 已提交
3415
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3416

3417 3418 3419
	/* write last descriptor with EOP bit */
	td_cmd |= I40E_TX_DESC_CMD_EOP;

3420 3421
	/* We OR these values together to check both against 4 (WB_STRIDE)
	 * below. This is safe since we don't re-use desc_count afterwards.
3422 3423 3424
	 */
	desc_count |= ++tx_ring->packet_stride;

3425
	if (desc_count >= WB_STRIDE) {
3426 3427
		/* write last descriptor with RS bit set */
		td_cmd |= I40E_TX_DESC_CMD_RS;
3428 3429 3430 3431
		tx_ring->packet_stride = 0;
	}

	tx_desc->cmd_type_offset_bsz =
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
3444

A
Alexander Duyck 已提交
3445
	/* notify HW of packet */
3446
	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
3447
		writel(i, tx_ring->tail);
3448 3449 3450 3451 3452

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
3453
	}
3454

3455
	return 0;
3456 3457

dma_error:
A
Alexander Duyck 已提交
3458
	dev_info(tx_ring->dev, "TX DMA map failed\n");
3459 3460 3461 3462

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
A
Alexander Duyck 已提交
3463
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3464 3465 3466 3467 3468 3469 3470 3471
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
3472 3473

	return -1;
3474 3475
}

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
/**
 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
 * @xdp: data to transmit
 * @xdp_ring: XDP Tx ring
 **/
static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
			      struct i40e_ring *xdp_ring)
{
	u32 size = xdp->data_end - xdp->data;
	u16 i = xdp_ring->next_to_use;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
	dma_addr_t dma;

	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
		xdp_ring->tx_stats.tx_busy++;
		return I40E_XDP_CONSUMED;
	}

	dma = dma_map_single(xdp_ring->dev, xdp->data, size, DMA_TO_DEVICE);
	if (dma_mapping_error(xdp_ring->dev, dma))
		return I40E_XDP_CONSUMED;

	tx_bi = &xdp_ring->tx_bi[i];
	tx_bi->bytecount = size;
	tx_bi->gso_segs = 1;
	tx_bi->raw_buf = xdp->data;

	/* record length, and DMA address */
	dma_unmap_len_set(tx_bi, len, size);
	dma_unmap_addr_set(tx_bi, dma, dma);

	tx_desc = I40E_TX_DESC(xdp_ring, i);
	tx_desc->buffer_addr = cpu_to_le64(dma);
	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
						  | I40E_TXD_CMD,
						  0, size, 0);

	/* Make certain all of the status bits have been updated
	 * before next_to_watch is written.
	 */
	smp_wmb();

	i++;
	if (i == xdp_ring->count)
		i = 0;

	tx_bi->next_to_watch = tx_desc;
	xdp_ring->next_to_use = i;

	return I40E_XDP_TX;
}

3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
3547
	int tso, count;
J
Jacob Keller 已提交
3548
	int tsyn;
J
Jesse Brandeburg 已提交
3549

3550 3551 3552
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

S
Scott Peterson 已提交
3553 3554
	i40e_trace(xmit_frame_ring, skb, tx_ring);

3555
	count = i40e_xmit_descriptor_count(skb);
3556
	if (i40e_chk_linearize(skb, count)) {
3557 3558 3559 3560
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
3561
		count = i40e_txd_use_count(skb->len);
3562 3563
		tx_ring->tx_stats.tx_linearize++;
	}
3564 3565 3566 3567 3568 3569 3570 3571 3572

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
3573
		return NETDEV_TX_BUSY;
3574
	}
3575

3576 3577 3578 3579 3580 3581
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

3582 3583 3584 3585 3586
	/* prepare the xmit flags */
	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
		goto out_drop;

	/* obtain protocol of skb */
3587
	protocol = vlan_get_protocol(skb);
3588 3589

	/* setup IPv4/IPv6 offloads */
3590
	if (protocol == htons(ETH_P_IP))
3591
		tx_flags |= I40E_TX_FLAGS_IPV4;
3592
	else if (protocol == htons(ETH_P_IPV6))
3593 3594
		tx_flags |= I40E_TX_FLAGS_IPV6;

3595
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3596 3597 3598 3599 3600 3601

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

3602 3603 3604 3605 3606 3607
	/* Always offload the checksum, since it's in the data descriptor */
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;

J
Jacob Keller 已提交
3608 3609 3610 3611 3612
	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);

	if (tsyn)
		tx_flags |= I40E_TX_FLAGS_TSYN;

3613 3614
	skb_tx_timestamp(skb);

3615 3616 3617
	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

3618 3619 3620 3621 3622 3623 3624
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

	/* Add Flow Director ATR if it's enabled.
	 *
	 * NOTE: this must always be directly before the data descriptor.
	 */
3625
	i40e_atr(tx_ring, skb, tx_flags);
3626

3627 3628 3629
	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
			td_cmd, td_offset))
		goto cleanup_tx_tstamp;
3630 3631 3632 3633

	return NETDEV_TX_OK;

out_drop:
S
Scott Peterson 已提交
3634
	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3635 3636
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
3637 3638 3639 3640 3641 3642 3643 3644 3645
cleanup_tx_tstamp:
	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);

		dev_kfree_skb_any(pf->ptp_tx_skb);
		pf->ptp_tx_skb = NULL;
		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
	}

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
	return NETDEV_TX_OK;
}

/**
 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40e_netdev_priv *np = netdev_priv(netdev);
	struct i40e_vsi *vsi = np->vsi;
3660
	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3661 3662 3663 3664

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
3665 3666
	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
		return NETDEV_TX_OK;
3667 3668 3669

	return i40e_xmit_frame_ring(skb, tx_ring);
}
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715

/**
 * i40e_xdp_xmit - Implements ndo_xdp_xmit
 * @dev: netdev
 * @xdp: XDP buffer
 *
 * Returns Zero if sent, else an error code
 **/
int i40e_xdp_xmit(struct net_device *dev, struct xdp_buff *xdp)
{
	struct i40e_netdev_priv *np = netdev_priv(dev);
	unsigned int queue_index = smp_processor_id();
	struct i40e_vsi *vsi = np->vsi;
	int err;

	if (test_bit(__I40E_VSI_DOWN, vsi->state))
		return -ENETDOWN;

	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs)
		return -ENXIO;

	err = i40e_xmit_xdp_ring(xdp, vsi->xdp_rings[queue_index]);
	if (err != I40E_XDP_TX)
		return -ENOSPC;

	return 0;
}

/**
 * i40e_xdp_flush - Implements ndo_xdp_flush
 * @dev: netdev
 **/
void i40e_xdp_flush(struct net_device *dev)
{
	struct i40e_netdev_priv *np = netdev_priv(dev);
	unsigned int queue_index = smp_processor_id();
	struct i40e_vsi *vsi = np->vsi;

	if (test_bit(__I40E_VSI_DOWN, vsi->state))
		return;

	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs)
		return;

	i40e_xdp_ring_update_tail(vsi->xdp_rings[queue_index]);
}