i40e_txrx.c 84.3 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
G
Greg Rose 已提交
15 16
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
17 18 19 20 21 22 23 24 25 26
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

M
Mitch Williams 已提交
27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29
#include "i40e.h"
30
#include "i40e_prototype.h"
31 32 33 34 35 36 37 38 39 40 41

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

42
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/**
 * i40e_fdir - Generate a Flow Director descriptor based on fdata
 * @tx_ring: Tx ring to send buffer on
 * @fdata: Flow director filter data
 * @add: Indicate if we are adding a rule or deleting one
 *
 **/
static void i40e_fdir(struct i40e_ring *tx_ring,
		      struct i40e_fdir_filter *fdata, bool add)
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	u32 flex_ptype, dtype_cmd;
	u16 i;

	/* grab the next descriptor */
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	/* Use LAN VSI Id if not programmed by user */
	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

	dtype_cmd |= add ?
		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;

	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);

	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);

	if (fdata->cnt_index) {
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
			     ((u32)fdata->cnt_index <<
			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
	}

	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
	fdir_desc->rsvd = cpu_to_le32(0);
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
}

106
#define I40E_FD_CLEAN_DELAY 10
107 108
/**
 * i40e_program_fdir_filter - Program a Flow Director filter
109 110
 * @fdir_data: Packet data that will be filter parameters
 * @raw_packet: the pre-allocated packet buffer for FDir
111
 * @pf: The PF pointer
112 113
 * @add: True for add/update, False for remove
 **/
114 115 116
static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
				    u8 *raw_packet, struct i40e_pf *pf,
				    bool add)
117
{
118
	struct i40e_tx_buffer *tx_buf, *first;
119 120 121 122 123 124 125 126 127
	struct i40e_tx_desc *tx_desc;
	struct i40e_ring *tx_ring;
	struct i40e_vsi *vsi;
	struct device *dev;
	dma_addr_t dma;
	u32 td_cmd = 0;
	u16 i;

	/* find existing FDIR VSI */
128
	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
129 130 131
	if (!vsi)
		return -ENOENT;

132
	tx_ring = vsi->tx_rings[0];
133 134
	dev = tx_ring->dev;

135
	/* we need two descriptors to add/del a filter and we can wait */
136 137 138
	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
		if (!i)
			return -EAGAIN;
139
		msleep_interruptible(1);
140
	}
141

142 143
	dma = dma_map_single(dev, raw_packet,
			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
144 145 146 147
	if (dma_mapping_error(dev, dma))
		goto dma_fail;

	/* grab the next descriptor */
148
	i = tx_ring->next_to_use;
149
	first = &tx_ring->tx_bi[i];
150
	i40e_fdir(tx_ring, fdir_data, add);
151 152

	/* Now program a dummy descriptor */
153 154
	i = tx_ring->next_to_use;
	tx_desc = I40E_TX_DESC(tx_ring, i);
155
	tx_buf = &tx_ring->tx_bi[i];
156

157 158 159
	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;

	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
160

161
	/* record length, and DMA address */
162
	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
163 164
	dma_unmap_addr_set(tx_buf, dma, dma);

165
	tx_desc->buffer_addr = cpu_to_le64(dma);
166
	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
167

168 169 170
	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
	tx_buf->raw_buf = (void *)raw_packet;

171
	tx_desc->cmd_type_offset_bsz =
172
		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
173 174

	/* Force memory writes to complete before letting h/w
175
	 * know there are new descriptors to fetch.
176 177 178
	 */
	wmb();

179
	/* Mark the data descriptor to be watched */
180
	first->next_to_watch = tx_desc;
181

182 183 184 185 186 187 188
	writel(tx_ring->next_to_use, tx_ring->tail);
	return 0;

dma_fail:
	return -1;
}

189 190 191 192 193 194 195 196 197 198 199 200
#define IP_HEADER_OFFSET 14
#define I40E_UDPIP_DUMMY_PACKET_LEN 42
/**
 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
201
				   bool add)
202 203 204 205 206
{
	struct i40e_pf *pf = vsi->back;
	struct udphdr *udp;
	struct iphdr *ip;
	bool err = false;
207
	u8 *raw_packet;
208 209 210 211 212
	int ret;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

213 214 215
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
216 217 218 219 220 221 222 223 224 225 226
	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

	ip->daddr = fd_data->dst_ip[0];
	udp->dest = fd_data->dst_port;
	ip->saddr = fd_data->src_ip[0];
	udp->source = fd_data->src_port;

227 228 229 230
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
231 232
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
233
		err = true;
234
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
235 236 237 238 239 240 241 242
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
243
	}
244 245 246
	if (err)
		kfree(raw_packet);

247 248 249 250 251 252 253 254 255 256 257 258 259 260
	return err ? -EOPNOTSUPP : 0;
}

#define I40E_TCPIP_DUMMY_PACKET_LEN 54
/**
 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
261
				   bool add)
262 263 264 265 266
{
	struct i40e_pf *pf = vsi->back;
	struct tcphdr *tcp;
	struct iphdr *ip;
	bool err = false;
267
	u8 *raw_packet;
268 269 270 271 272 273 274
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
		0x0, 0x72, 0, 0, 0, 0};

275 276 277
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
278 279 280 281 282 283 284 285 286 287 288 289
	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

	ip->daddr = fd_data->dst_ip[0];
	tcp->dest = fd_data->dst_port;
	ip->saddr = fd_data->src_ip[0];
	tcp->source = fd_data->src_port;

	if (add) {
290
		pf->fd_tcp_rule++;
291 292 293 294
		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
		    I40E_DEBUG_FD & pf->hw.debug_mask)
			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
		pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
295 296 297 298
	} else {
		pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
				  (pf->fd_tcp_rule - 1) : 0;
		if (pf->fd_tcp_rule == 0) {
299 300
			if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
			    I40E_DEBUG_FD & pf->hw.debug_mask)
301
				dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
302
			pf->auto_disable_flags &= ~I40E_FLAG_FD_ATR_ENABLED;
303
		}
304 305
	}

306
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
307 308 309 310
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);

	if (ret) {
		dev_info(&pf->pdev->dev,
311 312
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
313
		err = true;
314
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
315 316 317 318 319 320 321
		if (add)
			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
322 323
	}

324 325 326
	if (err)
		kfree(raw_packet);

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	return err ? -EOPNOTSUPP : 0;
}

#define I40E_IP_DUMMY_PACKET_LEN 34
/**
 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
				  struct i40e_fdir_filter *fd_data,
342
				  bool add)
343 344 345 346
{
	struct i40e_pf *pf = vsi->back;
	struct iphdr *ip;
	bool err = false;
347
	u8 *raw_packet;
348 349 350 351 352 353 354 355
	int ret;
	int i;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0};

	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
356 357 358 359 360 361 362 363 364 365
		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
		if (!raw_packet)
			return -ENOMEM;
		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);

		ip->saddr = fd_data->src_ip[0];
		ip->daddr = fd_data->dst_ip[0];
		ip->protocol = 0;

366 367 368 369 370
		fd_data->pctype = i;
		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);

		if (ret) {
			dev_info(&pf->pdev->dev,
371 372
				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
				 fd_data->pctype, fd_data->fd_id, ret);
373
			err = true;
374
		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
375 376 377 378 379 380 381 382
			if (add)
				dev_info(&pf->pdev->dev,
					 "Filter OK for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
			else
				dev_info(&pf->pdev->dev,
					 "Filter deleted for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
383 384 385
		}
	}

386 387 388
	if (err)
		kfree(raw_packet);

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
	return err ? -EOPNOTSUPP : 0;
}

/**
 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 * @vsi: pointer to the targeted VSI
 * @cmd: command to get or set RX flow classification rules
 * @add: true adds a filter, false removes it
 *
 **/
int i40e_add_del_fdir(struct i40e_vsi *vsi,
		      struct i40e_fdir_filter *input, bool add)
{
	struct i40e_pf *pf = vsi->back;
	int ret;

	switch (input->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
407
		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
408 409
		break;
	case UDP_V4_FLOW:
410
		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
411 412 413 414
		break;
	case IP_USER_FLOW:
		switch (input->ip4_proto) {
		case IPPROTO_TCP:
415
			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
416 417
			break;
		case IPPROTO_UDP:
418
			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
419
			break;
420
		case IPPROTO_IP:
421
			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
422
			break;
423 424 425
		default:
			/* We cannot support masking based on protocol */
			goto unsupported_flow;
426 427 428
		}
		break;
	default:
429
unsupported_flow:
430
		dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
431 432 433 434
			 input->flow_type);
		ret = -EINVAL;
	}

435 436 437 438 439 440
	/* The buffer allocated here will be normally be freed by
	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
	 * completion. In the event of an error adding the buffer to the FDIR
	 * ring, it will immediately be freed. It may also be freed by
	 * i40e_clean_tx_ring() when closing the VSI.
	 */
441 442 443
	return ret;
}

444 445 446
/**
 * i40e_fd_handle_status - check the Programming Status for FD
 * @rx_ring: the Rx ring for this descriptor
447
 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
448 449 450 451 452
 * @prog_id: the id originally used for programming
 *
 * This is used to verify if the FD programming or invalidation
 * requested by SW to the HW is successful or not and take actions accordingly.
 **/
453 454
static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
				  union i40e_rx_desc *rx_desc, u8 prog_id)
455
{
456 457 458
	struct i40e_pf *pf = rx_ring->vsi->back;
	struct pci_dev *pdev = pf->pdev;
	u32 fcnt_prog, fcnt_avail;
459
	u32 error;
460
	u64 qw;
461

462
	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
463 464 465
	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;

466
	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
467
		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
468 469 470
		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
		    (I40E_DEBUG_FD & pf->hw.debug_mask))
			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
471
				 pf->fd_inv);
472

473 474 475 476 477 478 479 480 481
		/* Check if the programming error is for ATR.
		 * If so, auto disable ATR and set a state for
		 * flush in progress. Next time we come here if flush is in
		 * progress do nothing, once flush is complete the state will
		 * be cleared.
		 */
		if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
			return;

482 483 484 485
		pf->fd_add_err++;
		/* store the current atr filter count */
		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);

486 487 488 489 490 491
		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
		    (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
			pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
			set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
		}

492
		/* filter programming failed most likely due to table full */
493
		fcnt_prog = i40e_get_global_fd_count(pf);
494
		fcnt_avail = pf->fdir_pf_filter_count;
495 496 497 498 499
		/* If ATR is running fcnt_prog can quickly change,
		 * if we are very close to full, it makes sense to disable
		 * FD ATR/SB and then re-enable it when there is room.
		 */
		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
500
			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
501 502
			    !(pf->auto_disable_flags &
				     I40E_FLAG_FD_SB_ENABLED)) {
503 504
				if (I40E_DEBUG_FD & pf->hw.debug_mask)
					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
505 506 507 508
				pf->auto_disable_flags |=
							I40E_FLAG_FD_SB_ENABLED;
			}
		}
509
	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
510
		if (I40E_DEBUG_FD & pf->hw.debug_mask)
511
			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
512
				 rx_desc->wb.qword0.hi_dword.fd_id);
513
	}
514 515 516
}

/**
A
Alexander Duyck 已提交
517
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
518 519 520
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
A
Alexander Duyck 已提交
521 522
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
523
{
A
Alexander Duyck 已提交
524
	if (tx_buffer->skb) {
525 526 527 528
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
		else
			dev_kfree_skb_any(tx_buffer->skb);
A
Alexander Duyck 已提交
529
		if (dma_unmap_len(tx_buffer, len))
530
			dma_unmap_single(ring->dev,
531 532
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
533
					 DMA_TO_DEVICE);
A
Alexander Duyck 已提交
534 535 536 537 538
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
539
	}
540

A
Alexander Duyck 已提交
541 542
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
543
	dma_unmap_len_set(tx_buffer, len, 0);
A
Alexander Duyck 已提交
544
	/* tx_buffer must be completely set up in the transmit path */
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
}

/**
 * i40e_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
A
Alexander Duyck 已提交
561 562
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
563 564 565 566 567 568 569 570 571

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
572 573 574 575 576

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
577
	netdev_tx_reset_queue(txring_txq(tx_ring));
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
}

/**
 * i40e_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40e_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40e_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

/**
 * i40e_get_tx_pending - how many tx descriptors not processed
 * @tx_ring: the ring of descriptors
602
 * @in_sw: is tx_pending being checked in SW or HW
603 604 605 606
 *
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
 **/
607
u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
608
{
J
Jesse Brandeburg 已提交
609 610
	u32 head, tail;

611 612 613 614
	if (!in_sw)
		head = i40e_get_head(ring);
	else
		head = ring->next_to_clean;
J
Jesse Brandeburg 已提交
615 616 617 618 619 620 621
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
622 623
}

624
#define WB_STRIDE 4
625

626 627
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
628 629 630
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
631 632 633
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
634 635
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
636 637 638
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
639
	struct i40e_tx_desc *tx_head;
640
	struct i40e_tx_desc *tx_desc;
641 642
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
643 644 645

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
646
	i -= tx_ring->count;
647

648 649
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

A
Alexander Duyck 已提交
650 651
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
652 653 654 655 656

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

A
Alexander Duyck 已提交
657 658 659
		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

660 661
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
662 663
			break;

A
Alexander Duyck 已提交
664
		/* clear next_to_watch to prevent false hangs */
665 666
		tx_buf->next_to_watch = NULL;

A
Alexander Duyck 已提交
667 668 669
		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;
670

A
Alexander Duyck 已提交
671
		/* free the skb */
672
		napi_consume_skb(tx_buf->skb, napi_budget);
673

A
Alexander Duyck 已提交
674 675 676 677 678
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);
679

A
Alexander Duyck 已提交
680 681 682
		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);
683

A
Alexander Duyck 已提交
684 685
		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
686 687 688 689

			tx_buf++;
			tx_desc++;
			i++;
A
Alexander Duyck 已提交
690 691
			if (unlikely(!i)) {
				i -= tx_ring->count;
692 693 694 695
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

A
Alexander Duyck 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

716 717
		prefetch(tx_desc);

A
Alexander Duyck 已提交
718 719 720 721 722
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
723
	tx_ring->next_to_clean = i;
724
	u64_stats_update_begin(&tx_ring->syncp);
725 726
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
727
	u64_stats_update_end(&tx_ring->syncp);
728 729
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;
A
Alexander Duyck 已提交
730

731 732 733 734 735 736
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
737
		unsigned int j = i40e_get_tx_pending(tx_ring, false);
738 739

		if (budget &&
740
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
741
		    !test_bit(__I40E_DOWN, &vsi->state) &&
742 743 744
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}
745

746 747
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
748 749
				  total_packets, total_bytes);

750 751 752 753 754 755 756 757 758
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
759
		   !test_bit(__I40E_DOWN, &vsi->state)) {
760 761 762 763 764 765
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

766 767 768 769
	return !!budget;
}

/**
770
 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
771
 * @vsi: the VSI we care about
772
 * @q_vector: the vector on which to enable writeback
773 774
 *
 **/
775 776
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
777
{
778
	u16 flags = q_vector->tx.ring[0].flags;
779
	u32 val;
780

781 782
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;
783

784 785
	if (q_vector->arm_wb_state)
		return;
786

787 788 789
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
790

791 792 793 794 795 796
		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
		     val);
	} else {
		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
797

798 799 800 801 802 803 804 805 806 807 808 809 810 811
		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
	q_vector->arm_wb_state = true;
}

/**
 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
			  /* allow 00 to be written to the index */

		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
					 vsi->base_vector - 1), val);
	} else {
		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
			/* allow 00 to be written to the index */

		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
830 831 832 833 834 835
}

/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
836 837
 * Returns true if ITR changed, false if not
 *
838 839 840 841 842 843 844 845
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
846
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
847 848
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
849
	struct i40e_q_vector *qv = rc->ring->q_vector;
850 851
	u32 new_itr = rc->itr;
	int bytes_per_int;
852
	int usecs;
853 854

	if (rc->total_packets == 0 || !rc->itr)
855
		return false;
856 857

	/* simple throttlerate management
858
	 *   0-10MB/s   lowest (50000 ints/s)
859
	 *  10-20MB/s   low    (20000 ints/s)
860 861
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
862 863 864 865
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
866 867
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
868
	 */
869
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
870
	bytes_per_int = rc->total_bytes / usecs;
871

872
	switch (new_latency_range) {
873 874 875 876 877 878 879 880 881 882 883
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
884
	case I40E_ULTRA_LATENCY:
885 886 887
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
888 889
		break;
	}
890 891 892 893 894 895 896 897 898 899 900 901

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

902
	rc->latency_range = new_latency_range;
903 904 905

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
906
		new_itr = I40E_ITR_50K;
907 908 909 910 911
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
912 913 914
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
915 916 917 918 919 920 921 922
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
923 924 925 926 927 928 929

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
}

/**
 * i40e_clean_programming_status - clean the programming status descriptor
 * @rx_ring: the rx ring that has this descriptor
 * @rx_desc: the rx descriptor written back by HW
 *
 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 * status being successful or not and take actions accordingly. FCoE should
 * handle its context/filter programming/invalidation status and take actions.
 *
 **/
static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
					  union i40e_rx_desc *rx_desc)
{
	u64 qw;
	u8 id;

	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;

	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
953
		i40e_fd_handle_status(rx_ring, rx_desc, id);
954 955 956 957 958
#ifdef I40E_FCOE
	else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
		 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
		i40e_fcoe_handle_status(rx_ring, rx_desc, id);
#endif
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
}

/**
 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

J
Jesse Brandeburg 已提交
975 976
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
977 978 979 980 981 982 983
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
984 985 986 987
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

1021 1022 1023 1024 1025
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

1026 1027
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

		dma_unmap_page(dev, rx_bi->dma, PAGE_SIZE, DMA_FROM_DEVICE);
		__free_pages(rx_bi->page, 0);

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
1038 1039 1040 1041 1042 1043 1044 1045
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

1046
	rx_ring->next_to_alloc = 0;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40e_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40e_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40e_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40e_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

J
Jesse Brandeburg 已提交
1081 1082
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
1083 1084 1085 1086 1087
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

1088
	u64_stats_init(&rx_ring->syncp);
1089

1090
	/* Round up to nearest 4K */
1091
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

1102
	rx_ring->next_to_alloc = 0;
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
1121 1122 1123 1124

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

/**
1135 1136 1137
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
1138
 *
1139 1140
 * Returns true if the page was successfully allocated or
 * reused.
1141
 **/
1142 1143
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
1144
{
1145 1146
	struct page *page = bi->page;
	dma_addr_t dma;
1147

1148 1149 1150 1151 1152
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
1153

1154 1155 1156 1157 1158 1159
	/* alloc new page for storage */
	page = dev_alloc_page();
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
1160

1161 1162
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1163

1164 1165
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
1166
	 */
1167 1168 1169 1170
	if (dma_mapping_error(rx_ring->dev, dma)) {
		__free_pages(page, 0);
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
1171 1172
	}

1173 1174 1175
	bi->dma = dma;
	bi->page = page;
	bi->page_offset = 0;
1176

1177 1178
	return true;
}
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1190

1191 1192 1193 1194 1195
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
1196 1197 1198
}

/**
1199
 * i40e_alloc_rx_buffers - Replace used receive buffers
1200 1201
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
1202
 *
1203
 * Returns false if all allocations were successful, true if any fail
1204
 **/
1205
bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1206
{
1207
	u16 ntu = rx_ring->next_to_use;
1208 1209 1210 1211 1212
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
1213
		return false;
1214

1215 1216
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
1217

1218 1219 1220
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
1221

1222 1223 1224 1225
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1244 1245 1246

	return false;

1247
no_buffers:
1248 1249
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1250 1251 1252 1253 1254

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
1255 1256 1257 1258 1259 1260
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
1261 1262 1263
 * @rx_desc: the receive descriptor
 *
 * skb->protocol must be set before this function is called
1264 1265 1266
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
1267
				    union i40e_rx_desc *rx_desc)
1268
{
1269 1270
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
1271
	bool ipv4, ipv6;
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
1282

1283 1284
	skb->ip_summed = CHECKSUM_NONE;

1285 1286
	skb_checksum_none_assert(skb);

1287
	/* Rx csum enabled and ip headers found? */
1288 1289 1290 1291
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
1292
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1293 1294 1295 1296
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
1297 1298
		return;

1299 1300 1301 1302
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1303 1304

	if (ipv4 &&
1305 1306
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1307 1308
		goto checksum_fail;

J
Jesse Brandeburg 已提交
1309
	/* likely incorrect csum if alternate IP extension headers found */
1310
	if (ipv6 &&
1311
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1312
		/* don't increment checksum err here, non-fatal err */
1313 1314
		return;

1315
	/* there was some L4 error, count error and punt packet to the stack */
1316
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1317 1318 1319 1320 1321 1322
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
1323
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1324 1325
		return;

1326 1327 1328
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
1329
	 */
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
1343 1344 1345 1346 1347

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
1348 1349 1350
}

/**
1351
 * i40e_ptype_to_htype - get a hash type
1352 1353 1354 1355
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
1356
static inline int i40e_ptype_to_htype(u8 ptype)
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
1384
	const __le64 rss_mask =
1385 1386 1387
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

1388
	if (!(ring->netdev->features & NETIF_F_RXHASH))
1389 1390 1391 1392 1393 1394 1395 1396
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

1397
/**
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 **/
static inline
void i40e_process_skb_fields(struct i40e_ring *rx_ring,
			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			     u8 rx_ptype)
{
	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;
1416 1417
	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1418 1419
		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;

1420
	if (unlikely(tsynvalid))
1421
		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);

	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);

	skb_record_rx_queue(skb, rx_ring->queue_index);
}

/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_bi[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	*new_buff = *old_buff;
}

/**
1479
 * i40e_page_is_reusable - check if any reuse is possible
1480
 * @page: page struct to check
1481 1482 1483
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
1484
 */
1485
static inline bool i40e_page_is_reusable(struct page *page)
1486
{
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 * @page: page address from rx_buffer
 * @truesize: actual size of the buffer in this page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
				   struct page *page,
				   const unsigned int truesize)
{
#if (PAGE_SIZE >= 8192)
	unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
#endif

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= truesize;
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > last_offset)
		return false;
#endif

	/* Inc ref count on page before passing it up to the stack */
	get_page(page);

	return true;
1551 1552 1553 1554 1555 1556
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
1557
 * @size: packet length from rx_desc
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
 * @skb: sk_buff to place the data into
 *
 * This function will add the data contained in rx_buffer->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the adapter.
 **/
static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
			     struct i40e_rx_buffer *rx_buffer,
1570
			     unsigned int size,
1571 1572 1573
			     struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
1574
	unsigned char *va = page_address(page) + rx_buffer->page_offset;
1575 1576 1577 1578 1579
#if (PAGE_SIZE < 8192)
	unsigned int truesize = I40E_RXBUFFER_2048;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
1580 1581 1582 1583
	unsigned int pull_len;

	if (unlikely(skb_is_nonlinear(skb)))
		goto add_tail_frag;
1584 1585 1586 1587

	/* will the data fit in the skb we allocated? if so, just
	 * copy it as it is pretty small anyway
	 */
1588
	if (size <= I40E_RX_HDR_SIZE) {
1589 1590
		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

1591 1592
		/* page is reusable, we can reuse buffer as-is */
		if (likely(i40e_page_is_reusable(page)))
1593 1594 1595 1596 1597 1598 1599
			return true;

		/* this page cannot be reused so discard it */
		__free_pages(page, 0);
		return false;
	}

1600 1601 1602 1603 1604
	/* we need the header to contain the greater of either
	 * ETH_HLEN or 60 bytes if the skb->len is less than
	 * 60 for skb_pad.
	 */
	pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1605

1606 1607 1608 1609
	/* align pull length to size of long to optimize
	 * memcpy performance
	 */
	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
1610

1611 1612 1613
	/* update all of the pointers */
	va += pull_len;
	size -= pull_len;
1614

1615 1616 1617
add_tail_frag:
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
			(unsigned long)va & ~PAGE_MASK, size, truesize);
1618

1619
	return i40e_can_reuse_rx_page(rx_buffer, page, truesize);
1620 1621 1622 1623 1624 1625
}

/**
 * i40e_fetch_rx_buffer - Allocate skb and populate it
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_desc: descriptor containing info written by hardware
1626
 *
1627 1628 1629 1630 1631 1632 1633
 * This function allocates an skb on the fly, and populates it with the page
 * data from the current receive descriptor, taking care to set up the skb
 * correctly, as well as handling calling the page recycle function if
 * necessary.
 */
static inline
struct sk_buff *i40e_fetch_rx_buffer(struct i40e_ring *rx_ring,
1634 1635
				     union i40e_rx_desc *rx_desc,
				     struct sk_buff *skb)
1636
{
1637 1638 1639 1640 1641
	u64 local_status_error_len =
		le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	unsigned int size =
		(local_status_error_len & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	struct i40e_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) + rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
				       I40E_RX_HDR_SIZE,
				       GFP_ATOMIC | __GFP_NOWARN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_buff_failed++;
			return NULL;
		}

		/* we will be copying header into skb->data in
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
1678
				      size,
1679 1680 1681
				      DMA_FROM_DEVICE);

	/* pull page into skb */
1682
	if (i40e_add_rx_frag(rx_ring, rx_buffer, size, skb)) {
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;

	return skb;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
1708
 **/
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

#define staterrlen rx_desc->wb.qword1.status_error_len
	if (unlikely(i40e_rx_is_programming_status(le64_to_cpu(staterrlen)))) {
		i40e_clean_programming_status(rx_ring, rx_desc);
		return true;
	}
	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

/**
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 **/
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1749 1750
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1751
	struct sk_buff *skb = rx_ring->skb;
1752
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1753
	bool failure = false;
1754

1755 1756
	while (likely(total_rx_packets < budget)) {
		union i40e_rx_desc *rx_desc;
1757
		u16 vlan_tag;
1758 1759 1760
		u8 rx_ptype;
		u64 qword;

1761 1762
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1763
			failure = failure ||
1764
				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1765 1766 1767
			cleaned_count = 0;
		}

1768 1769 1770 1771 1772 1773 1774
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
		 * hardware wrote DD then it will be non-zero
		 */
1775 1776
		if (!i40e_test_staterr(rx_desc,
				       BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1777 1778
			break;

1779 1780 1781 1782
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
1783
		dma_rmb();
1784

1785
		skb = i40e_fetch_rx_buffer(rx_ring, rx_desc, skb);
1786 1787
		if (!skb)
			break;
1788 1789 1790

		cleaned_count++;

1791
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1792 1793
			continue;

1794 1795 1796 1797 1798 1799
		/* ERR_MASK will only have valid bits if EOP set, and
		 * what we are doing here is actually checking
		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
		 * the error field
		 */
		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1800 1801 1802 1803
			dev_kfree_skb_any(skb);
			continue;
		}

1804 1805
		if (i40e_cleanup_headers(rx_ring, skb)) {
			skb = NULL;
1806
			continue;
1807
		}
1808 1809 1810 1811

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

1812 1813 1814 1815
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

1816 1817
		/* populate checksum, VLAN, and protocol */
		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1818 1819

#ifdef I40E_FCOE
1820 1821 1822
		if (unlikely(
		    i40e_rx_is_fcoe(rx_ptype) &&
		    !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
1823 1824 1825 1826
			dev_kfree_skb_any(skb);
			continue;
		}
#endif
1827 1828 1829 1830

		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

1831
		i40e_receive_skb(rx_ring, skb, vlan_tag);
1832
		skb = NULL;
1833

1834 1835 1836
		/* update budget accounting */
		total_rx_packets++;
	}
1837

1838 1839
	rx_ring->skb = skb;

1840
	u64_stats_update_begin(&rx_ring->syncp);
1841 1842
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
1843
	u64_stats_update_end(&rx_ring->syncp);
1844 1845 1846
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1847
	/* guarantee a trip back through this routine if there was a failure */
1848
	return failure ? budget : total_rx_packets;
1849 1850
}

1851 1852 1853 1854 1855
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1856 1857 1858
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
1859 1860 1861 1862 1863 1864 1865 1866
	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_PFINT_DYN_CTLN
1867
static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
1868
{
1869
	return vsi->rx_rings[idx]->rx_itr_setting;
1870 1871
}

1872
static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
1873
{
1874
	return vsi->tx_rings[idx]->tx_itr_setting;
1875
}
1876

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
1887 1888
	bool rx = false, tx = false;
	u32 rxval, txval;
1889
	int vector;
1890
	int idx = q_vector->v_idx;
1891
	int rx_itr_setting, tx_itr_setting;
1892 1893

	vector = (q_vector->v_idx + vsi->base_vector);
1894

1895 1896 1897
	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
1898 1899
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

1900 1901
	rx_itr_setting = get_rx_itr(vsi, idx);
	tx_itr_setting = get_tx_itr(vsi, idx);
1902

1903
	if (q_vector->itr_countdown > 0 ||
1904 1905
	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
1906 1907 1908
		goto enable_int;
	}

1909
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1910 1911
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1912
	}
1913

1914
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1915 1916
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1917
	}
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945

	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
	}

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

1946
enable_int:
1947 1948
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
1949 1950 1951 1952 1953

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1954 1955
}

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
/**
 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40e_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
1970
	struct i40e_ring *ring;
1971
	bool clean_complete = true;
1972
	bool arm_wb = false;
1973
	int budget_per_ring;
1974
	int work_done = 0;
1975 1976 1977 1978 1979 1980

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

1981 1982
	/* Clear hung_detected bit */
	clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1983 1984 1985
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
1986
	i40e_for_each_ring(ring, q_vector->tx) {
1987
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1988 1989 1990 1991
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
1992
		ring->arm_wb = false;
1993
	}
1994

1995 1996 1997 1998
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

1999 2000 2001 2002
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2003

2004
	i40e_for_each_ring(ring, q_vector->rx) {
2005
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2006 2007

		work_done += cleaned;
2008 2009 2010
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
2011
	}
2012 2013

	/* If work not completed, return budget and polling will return */
2014
	if (!clean_complete) {
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
		const cpumask_t *aff_mask = &q_vector->affinity_mask;
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
		if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
			   !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
2027
tx_only:
2028 2029 2030 2031 2032
			if (arm_wb) {
				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
				i40e_enable_wb_on_itr(vsi, q_vector);
			}
			return budget;
2033
		}
2034
	}
2035

2036 2037 2038
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

2039
	/* Work is done so exit the polling mode and re-enable the interrupt */
2040
	napi_complete_done(napi, work_done);
2041 2042 2043 2044 2045 2046 2047 2048

	/* If we're prematurely stopping polling to fix the interrupt
	 * affinity we want to make sure polling starts back up so we
	 * issue a call to i40e_force_wb which triggers a SW interrupt.
	 */
	if (!clean_complete)
		i40e_force_wb(vsi, q_vector);
	else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
2049
		i40e_irq_dynamic_enable_icr0(vsi->back, false);
2050 2051 2052
	else
		i40e_update_enable_itr(vsi, q_vector);

2053
	return min(work_done, budget - 1);
2054 2055 2056 2057 2058 2059
}

/**
 * i40e_atr - Add a Flow Director ATR filter
 * @tx_ring:  ring to add programming descriptor to
 * @skb:      send buffer
2060
 * @tx_flags: send tx flags
2061 2062
 **/
static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2063
		     u32 tx_flags)
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	union {
		unsigned char *network;
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	struct tcphdr *th;
	unsigned int hlen;
	u32 flex_ptype, dtype_cmd;
2075
	int l4_proto;
2076
	u16 i;
2077 2078

	/* make sure ATR is enabled */
J
Jesse Brandeburg 已提交
2079
	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2080 2081
		return;

2082 2083 2084
	if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
		return;

2085 2086 2087 2088
	/* if sampling is disabled do nothing */
	if (!tx_ring->atr_sample_rate)
		return;

2089
	/* Currently only IPv4/IPv6 with TCP is supported */
2090 2091
	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
		return;
2092

2093 2094 2095
	/* snag network header to get L4 type and address */
	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
		      skb_inner_network_header(skb) : skb_network_header(skb);
2096

2097 2098 2099 2100
	/* Note: tx_flags gets modified to reflect inner protocols in
	 * tx_enable_csum function if encap is enabled.
	 */
	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2101
		/* access ihl as u8 to avoid unaligned access on ia64 */
2102 2103
		hlen = (hdr.network[0] & 0x0F) << 2;
		l4_proto = hdr.ipv4->protocol;
2104
	} else {
2105 2106 2107
		hlen = hdr.network - skb->data;
		l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
		hlen -= hdr.network - skb->data;
2108 2109
	}

2110
	if (l4_proto != IPPROTO_TCP)
2111 2112
		return;

2113 2114
	th = (struct tcphdr *)(hdr.network + hlen);

2115 2116 2117
	/* Due to lack of space, no more new filters can be programmed */
	if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
		return;
2118 2119
	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2120 2121 2122 2123 2124 2125
		/* HW ATR eviction will take care of removing filters on FIN
		 * and RST packets.
		 */
		if (th->fin || th->rst)
			return;
	}
2126 2127 2128

	tx_ring->atr_count++;

2129 2130 2131 2132 2133
	/* sample on all syn/fin/rst packets or once every atr sample rate */
	if (!th->fin &&
	    !th->syn &&
	    !th->rst &&
	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2134 2135 2136 2137 2138
		return;

	tx_ring->atr_count = 0;

	/* grab the next descriptor */
2139 2140 2141 2142 2143
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2144 2145 2146

	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2147
	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2148 2149 2150 2151 2152 2153 2154 2155 2156
		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

2157
	dtype_cmd |= (th->fin || th->rst) ?
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
		     I40E_TXD_FLTR_QW1_DEST_SHIFT;

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;

2169
	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2170
	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2171 2172 2173 2174 2175 2176 2177 2178 2179
		dtype_cmd |=
			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
	else
		dtype_cmd |=
			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2180

2181 2182
	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2183 2184
		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;

2185
	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
J
Jesse Brandeburg 已提交
2186
	fdir_desc->rsvd = cpu_to_le32(0);
2187
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
J
Jesse Brandeburg 已提交
2188
	fdir_desc->fd_id = cpu_to_le32(0);
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
}

/**
 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
2203
#ifdef I40E_FCOE
2204
inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2205 2206
				      struct i40e_ring *tx_ring,
				      u32 *flags)
2207 2208 2209 2210
#else
static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
					     struct i40e_ring *tx_ring,
					     u32 *flags)
2211
#endif
2212 2213 2214 2215
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

2229
	/* if we have a HW VLAN tag being added, default to the HW one */
2230 2231
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2232 2233
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
2234
	} else if (protocol == htons(ETH_P_8021Q)) {
2235
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
2236

2237 2238 2239 2240 2241 2242 2243 2244 2245
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

2246 2247 2248
	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
		goto out;

2249
	/* Insert 802.1p priority into VLAN header */
2250 2251
	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
	    (skb->priority != TC_PRIO_CONTROL)) {
2252 2253 2254 2255 2256
		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
		tx_flags |= (skb->priority & 0x7) <<
				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
			struct vlan_ethhdr *vhdr;
2257 2258 2259 2260 2261
			int rc;

			rc = skb_cow_head(skb, 0);
			if (rc < 0)
				return rc;
2262 2263 2264 2265 2266 2267 2268
			vhdr = (struct vlan_ethhdr *)skb->data;
			vhdr->h_vlan_TCI = htons(tx_flags >>
						 I40E_TX_FLAGS_VLAN_SHIFT);
		} else {
			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
		}
	}
2269 2270

out:
2271 2272 2273 2274 2275 2276
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
2277
 * @first:    pointer to first Tx buffer for xmit
2278
 * @hdr_len:  ptr to the size of the packet header
2279
 * @cd_type_cmd_tso_mss: Quad Word 1
2280 2281 2282
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
2283 2284
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
2285
{
2286
	struct sk_buff *skb = first->skb;
2287
	u64 cd_cmd, cd_tso_len, cd_mss;
2288 2289 2290 2291 2292
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
2293 2294
	union {
		struct tcphdr *tcp;
2295
		struct udphdr *udp;
2296 2297 2298
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
2299
	u16 gso_segs, gso_size;
2300 2301
	int err;

2302 2303 2304
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2305 2306 2307
	if (!skb_is_gso(skb))
		return 0;

2308 2309 2310
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
2311

2312 2313
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2314

2315 2316 2317 2318
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
2319
	} else {
2320 2321 2322
		ip.v6->payload_len = 0;
	}

2323
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2324
					 SKB_GSO_GRE_CSUM |
2325
					 SKB_GSO_IPXIP4 |
2326
					 SKB_GSO_IPXIP6 |
2327
					 SKB_GSO_UDP_TUNNEL |
2328
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2329 2330 2331 2332
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

2333 2334 2335 2336
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
2337
			paylen = skb->len - l4_offset;
2338 2339
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
2340 2341
		}

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
2353 2354
	}

2355 2356 2357 2358
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
2359
	paylen = skb->len - l4_offset;
2360
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2361 2362 2363

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2364

2365 2366 2367 2368 2369 2370 2371 2372
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

2373 2374 2375
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
2376
	cd_mss = gso_size;
2377 2378 2379
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2380 2381 2382
	return 1;
}

J
Jacob Keller 已提交
2383 2384 2385 2386 2387
/**
 * i40e_tsyn - set up the tsyn context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @tx_flags: the collected send information
2388
 * @cd_type_cmd_tso_mss: Quad Word 1
J
Jacob Keller 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
 *
 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
 **/
static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
{
	struct i40e_pf *pf;

	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
		return 0;

	/* Tx timestamps cannot be sampled when doing TSO */
	if (tx_flags & I40E_TX_FLAGS_TSO)
		return 0;

	/* only timestamp the outbound packet if the user has requested it and
	 * we are not already transmitting a packet to be timestamped
	 */
	pf = i40e_netdev_to_pf(tx_ring->netdev);
2408 2409 2410
	if (!(pf->flags & I40E_FLAG_PTP))
		return 0;

2411 2412
	if (pf->ptp_tx &&
	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
J
Jacob Keller 已提交
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
		pf->ptp_tx_skb = skb_get(skb);
	} else {
		return 0;
	}

	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
				I40E_TXD_CTX_QW1_CMD_SHIFT;

	return 1;
}

2425 2426 2427
/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
2428
 * @tx_flags: pointer to Tx flags currently set
2429 2430
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
2431
 * @tx_ring: Tx descriptor ring
2432 2433
 * @cd_tunneling: ptr to context desc bits
 **/
2434 2435 2436 2437
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
2438
{
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
2449
	unsigned char *exthdr;
2450
	u32 offset, cmd = 0;
2451
	__be16 frag_off;
2452 2453
	u8 l4_proto = 0;

2454 2455 2456
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2457 2458
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2459

2460 2461 2462
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

2463
	if (skb->encapsulation) {
2464
		u32 tunnel = 0;
2465 2466
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2467 2468 2469 2470
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

2471 2472
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2473
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2474 2475

			exthdr = ip.hdr + sizeof(*ip.v6);
2476
			l4_proto = ip.v6->nexthdr;
2477 2478 2479
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
2480 2481 2482 2483
		}

		/* define outer transport */
		switch (l4_proto) {
2484
		case IPPROTO_UDP:
2485
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2486
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2487
			break;
2488
		case IPPROTO_GRE:
2489
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2490
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2491
			break;
2492 2493 2494 2495 2496
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
2497
		default:
2498 2499 2500 2501 2502
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
2503
		}
2504

2505 2506 2507 2508 2509 2510 2511
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

2512 2513 2514 2515
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

2516 2517
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2518
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2519 2520 2521
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

2522 2523 2524
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

2525 2526
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
2527
		l4_proto = 0;
2528

2529 2530 2531 2532 2533
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
2534
			*tx_flags |= I40E_TX_FLAGS_IPV6;
2535 2536 2537
	}

	/* Enable IP checksum offloads */
2538
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2539
		l4_proto = ip.v4->protocol;
2540 2541 2542
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
2543 2544 2545
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
2546
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2547
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2548 2549 2550 2551 2552 2553

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
2554
	}
2555

2556 2557
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2558 2559

	/* Enable L4 checksum offloads */
2560
	switch (l4_proto) {
2561 2562
	case IPPROTO_TCP:
		/* enable checksum offloads */
2563 2564
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2565 2566 2567
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
2568 2569 2570
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2571 2572 2573
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
2574 2575 2576
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2577 2578
		break;
	default:
2579 2580 2581 2582
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
2583
	}
2584 2585 2586

	*td_cmd |= cmd;
	*td_offset |= offset;
2587 2588

	return 1;
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
2603
	int i = tx_ring->next_to_use;
2604

2605 2606
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
2607 2608 2609
		return;

	/* grab the next descriptor */
2610 2611 2612 2613
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2614 2615 2616 2617

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2618
	context_desc->rsvd = cpu_to_le16(0);
2619 2620 2621
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

E
Eric Dumazet 已提交
2622 2623 2624 2625 2626 2627 2628
/**
 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
2629
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
E
Eric Dumazet 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

2645
/**
2646
 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2647 2648
 * @skb:      send buffer
 *
2649 2650 2651 2652 2653 2654 2655 2656
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
2657
 **/
2658
bool __i40e_chk_linearize(struct sk_buff *skb)
2659
{
2660
	const struct skb_frag_struct *frag, *stale;
2661
	int nr_frags, sum;
2662

2663
	/* no need to check if number of frags is less than 7 */
2664
	nr_frags = skb_shinfo(skb)->nr_frags;
2665
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2666
		return false;
2667

2668
	/* We need to walk through the list and validate that each group
2669
	 * of 6 fragments totals at least gso_size.
2670
	 */
2671
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2672 2673 2674 2675 2676 2677 2678 2679
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
2680
	sum = 1 - skb_shinfo(skb)->gso_size;
2681

2682 2683 2684 2685 2686 2687
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
2688 2689 2690 2691 2692 2693

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
2694
		sum += skb_frag_size(frag++);
2695 2696 2697 2698 2699

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

2700
		if (!nr_frags--)
2701 2702
			break;

2703
		sum -= skb_frag_size(stale++);
2704 2705
	}

2706
	return false;
2707 2708
}

2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
/**
 * i40e_tx_map - Build the Tx descriptor
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
2719
#ifdef I40E_FCOE
2720
inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2721 2722
			struct i40e_tx_buffer *first, u32 tx_flags,
			const u8 hdr_len, u32 td_cmd, u32 td_offset)
2723 2724 2725 2726
#else
static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
			       struct i40e_tx_buffer *first, u32 tx_flags,
			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2727
#endif
2728 2729 2730
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
A
Alexander Duyck 已提交
2731
	struct skb_frag_struct *frag;
2732 2733
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
A
Alexander Duyck 已提交
2734
	u16 i = tx_ring->next_to_use;
2735 2736
	u32 td_tag = 0;
	dma_addr_t dma;
2737
	u16 desc_count = 1;
2738 2739 2740 2741 2742 2743 2744

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

A
Alexander Duyck 已提交
2745 2746 2747 2748
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

2749
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
2750 2751 2752
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2753 2754
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

A
Alexander Duyck 已提交
2755 2756 2757 2758 2759 2760 2761
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

2762 2763
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
A
Alexander Duyck 已提交
2764 2765 2766
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2767 2768
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
2769
					   max_data, td_tag);
2770 2771 2772

			tx_desc++;
			i++;
2773 2774
			desc_count++;

2775 2776 2777 2778 2779
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

2780 2781
			dma += max_data;
			size -= max_data;
2782

2783
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
A
Alexander Duyck 已提交
2784 2785
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}
2786 2787 2788 2789

		if (likely(!data_len))
			break;

A
Alexander Duyck 已提交
2790 2791
		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);
2792 2793 2794

		tx_desc++;
		i++;
2795 2796
		desc_count++;

2797 2798 2799 2800 2801
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

A
Alexander Duyck 已提交
2802 2803
		size = skb_frag_size(frag);
		data_len -= size;
2804

A
Alexander Duyck 已提交
2805 2806
		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);
2807

A
Alexander Duyck 已提交
2808 2809
		tx_bi = &tx_ring->tx_bi[i];
	}
2810

2811
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
A
Alexander Duyck 已提交
2812 2813 2814 2815 2816 2817 2818

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

E
Eric Dumazet 已提交
2819
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2820

2821 2822 2823 2824 2825 2826 2827 2828 2829
	/* write last descriptor with EOP bit */
	td_cmd |= I40E_TX_DESC_CMD_EOP;

	/* We can OR these values together as they both are checked against
	 * 4 below and at this point desc_count will be used as a boolean value
	 * after this if/else block.
	 */
	desc_count |= ++tx_ring->packet_stride;

2830
	/* Algorithm to optimize tail and RS bit setting:
2831 2832 2833 2834 2835 2836
	 * if queue is stopped
	 *	mark RS bit
	 *	reset packet counter
	 * else if xmit_more is supported and is true
	 *	advance packet counter to 4
	 *	reset desc_count to 0
2837
	 *
2838 2839 2840 2841 2842
	 * if desc_count >= 4
	 *	mark RS bit
	 *	reset packet counter
	 * if desc_count > 0
	 *	update tail
2843
	 *
2844
	 * Note: If there are less than 4 descriptors
2845 2846 2847
	 * pending and interrupts were disabled the service task will
	 * trigger a force WB.
	 */
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
	if (netif_xmit_stopped(txring_txq(tx_ring))) {
		goto do_rs;
	} else if (skb->xmit_more) {
		/* set stride to arm on next packet and reset desc_count */
		tx_ring->packet_stride = WB_STRIDE;
		desc_count = 0;
	} else if (desc_count >= WB_STRIDE) {
do_rs:
		/* write last descriptor with RS bit set */
		td_cmd |= I40E_TX_DESC_CMD_RS;
2858 2859 2860 2861
		tx_ring->packet_stride = 0;
	}

	tx_desc->cmd_type_offset_bsz =
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
2874

A
Alexander Duyck 已提交
2875
	/* notify HW of packet */
2876
	if (desc_count) {
2877
		writel(i, tx_ring->tail);
2878 2879 2880 2881 2882

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
2883
	}
2884

2885 2886 2887
	return;

dma_error:
A
Alexander Duyck 已提交
2888
	dev_info(tx_ring->dev, "TX DMA map failed\n");
2889 2890 2891 2892

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
A
Alexander Duyck 已提交
2893
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
2922
	int tso, count;
J
Jacob Keller 已提交
2923
	int tsyn;
J
Jesse Brandeburg 已提交
2924

2925 2926 2927
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

2928
	count = i40e_xmit_descriptor_count(skb);
2929
	if (i40e_chk_linearize(skb, count)) {
2930 2931 2932 2933
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
2934
		count = i40e_txd_use_count(skb->len);
2935 2936
		tx_ring->tx_stats.tx_linearize++;
	}
2937 2938 2939 2940 2941 2942 2943 2944 2945

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
2946
		return NETDEV_TX_BUSY;
2947
	}
2948

2949 2950 2951 2952 2953 2954
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

2955 2956 2957 2958 2959
	/* prepare the xmit flags */
	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
		goto out_drop;

	/* obtain protocol of skb */
2960
	protocol = vlan_get_protocol(skb);
2961 2962

	/* setup IPv4/IPv6 offloads */
2963
	if (protocol == htons(ETH_P_IP))
2964
		tx_flags |= I40E_TX_FLAGS_IPV4;
2965
	else if (protocol == htons(ETH_P_IPV6))
2966 2967
		tx_flags |= I40E_TX_FLAGS_IPV6;

2968
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2969 2970 2971 2972 2973 2974

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

2975 2976 2977 2978 2979 2980
	/* Always offload the checksum, since it's in the data descriptor */
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;

J
Jacob Keller 已提交
2981 2982 2983 2984 2985
	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);

	if (tsyn)
		tx_flags |= I40E_TX_FLAGS_TSYN;

2986 2987
	skb_tx_timestamp(skb);

2988 2989 2990
	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

2991 2992 2993 2994 2995 2996 2997
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

	/* Add Flow Director ATR if it's enabled.
	 *
	 * NOTE: this must always be directly before the data descriptor.
	 */
2998
	i40e_atr(tx_ring, skb, tx_flags);
2999 3000 3001 3002 3003 3004 3005

	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		    td_cmd, td_offset);

	return NETDEV_TX_OK;

out_drop:
3006 3007
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	return NETDEV_TX_OK;
}

/**
 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40e_netdev_priv *np = netdev_priv(netdev);
	struct i40e_vsi *vsi = np->vsi;
3022
	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3023 3024 3025 3026

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
3027 3028
	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
		return NETDEV_TX_OK;
3029 3030 3031

	return i40e_xmit_frame_ring(skb, tx_ring);
}