i40e_txrx.c 104.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/* Copyright(c) 2013 - 2018 Intel Corporation. */
3

M
Mitch Williams 已提交
4
#include <linux/prefetch.h>
5
#include <net/busy_poll.h>
6
#include <linux/bpf_trace.h>
7
#include <net/xdp.h>
8
#include "i40e.h"
S
Scott Peterson 已提交
9
#include "i40e_trace.h"
10
#include "i40e_prototype.h"
11 12 13 14 15 16 17 18 19 20 21

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

22
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
/**
 * i40e_fdir - Generate a Flow Director descriptor based on fdata
 * @tx_ring: Tx ring to send buffer on
 * @fdata: Flow director filter data
 * @add: Indicate if we are adding a rule or deleting one
 *
 **/
static void i40e_fdir(struct i40e_ring *tx_ring,
		      struct i40e_fdir_filter *fdata, bool add)
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	u32 flex_ptype, dtype_cmd;
	u16 i;

	/* grab the next descriptor */
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

54 55 56
	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
	/* Use LAN VSI Id if not programmed by user */
	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

	dtype_cmd |= add ?
		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;

	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);

	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);

	if (fdata->cnt_index) {
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
			     ((u32)fdata->cnt_index <<
			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
	}

	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
	fdir_desc->rsvd = cpu_to_le32(0);
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
}

89
#define I40E_FD_CLEAN_DELAY 10
90 91
/**
 * i40e_program_fdir_filter - Program a Flow Director filter
92 93
 * @fdir_data: Packet data that will be filter parameters
 * @raw_packet: the pre-allocated packet buffer for FDir
94
 * @pf: The PF pointer
95 96
 * @add: True for add/update, False for remove
 **/
97 98 99
static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
				    u8 *raw_packet, struct i40e_pf *pf,
				    bool add)
100
{
101
	struct i40e_tx_buffer *tx_buf, *first;
102 103 104 105 106 107 108 109 110
	struct i40e_tx_desc *tx_desc;
	struct i40e_ring *tx_ring;
	struct i40e_vsi *vsi;
	struct device *dev;
	dma_addr_t dma;
	u32 td_cmd = 0;
	u16 i;

	/* find existing FDIR VSI */
111
	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
112 113 114
	if (!vsi)
		return -ENOENT;

115
	tx_ring = vsi->tx_rings[0];
116 117
	dev = tx_ring->dev;

118
	/* we need two descriptors to add/del a filter and we can wait */
119 120 121
	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
		if (!i)
			return -EAGAIN;
122
		msleep_interruptible(1);
123
	}
124

125 126
	dma = dma_map_single(dev, raw_packet,
			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
127 128 129 130
	if (dma_mapping_error(dev, dma))
		goto dma_fail;

	/* grab the next descriptor */
131
	i = tx_ring->next_to_use;
132
	first = &tx_ring->tx_bi[i];
133
	i40e_fdir(tx_ring, fdir_data, add);
134 135

	/* Now program a dummy descriptor */
136 137
	i = tx_ring->next_to_use;
	tx_desc = I40E_TX_DESC(tx_ring, i);
138
	tx_buf = &tx_ring->tx_bi[i];
139

140 141 142
	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;

	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
143

144
	/* record length, and DMA address */
145
	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
146 147
	dma_unmap_addr_set(tx_buf, dma, dma);

148
	tx_desc->buffer_addr = cpu_to_le64(dma);
149
	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
150

151 152 153
	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
	tx_buf->raw_buf = (void *)raw_packet;

154
	tx_desc->cmd_type_offset_bsz =
155
		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
156 157

	/* Force memory writes to complete before letting h/w
158
	 * know there are new descriptors to fetch.
159 160 161
	 */
	wmb();

162
	/* Mark the data descriptor to be watched */
163
	first->next_to_watch = tx_desc;
164

165 166 167 168 169 170 171
	writel(tx_ring->next_to_use, tx_ring->tail);
	return 0;

dma_fail:
	return -1;
}

172 173 174 175 176 177 178 179 180 181 182 183
#define IP_HEADER_OFFSET 14
#define I40E_UDPIP_DUMMY_PACKET_LEN 42
/**
 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
184
				   bool add)
185 186 187 188
{
	struct i40e_pf *pf = vsi->back;
	struct udphdr *udp;
	struct iphdr *ip;
189
	u8 *raw_packet;
190 191 192 193 194
	int ret;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

195 196 197
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
198 199 200 201 202 203
	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

204
	ip->daddr = fd_data->dst_ip;
205
	udp->dest = fd_data->dst_port;
206
	ip->saddr = fd_data->src_ip;
207 208
	udp->source = fd_data->src_port;

209 210 211 212 213 214 215 216
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

217 218 219 220
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
221 222
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
223 224 225
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
226
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
227 228 229 230 231 232 233 234
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
235
	}
236

237 238 239 240 241
	if (add)
		pf->fd_udp4_filter_cnt++;
	else
		pf->fd_udp4_filter_cnt--;

242
	return 0;
243 244 245 246 247 248 249 250 251 252 253 254 255
}

#define I40E_TCPIP_DUMMY_PACKET_LEN 54
/**
 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
256
				   bool add)
257 258 259 260
{
	struct i40e_pf *pf = vsi->back;
	struct tcphdr *tcp;
	struct iphdr *ip;
261
	u8 *raw_packet;
262 263 264 265 266 267 268
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
		0x0, 0x72, 0, 0, 0, 0};

269 270 271
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
272 273 274 275 276 277
	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

278
	ip->daddr = fd_data->dst_ip;
279
	tcp->dest = fd_data->dst_port;
280
	ip->saddr = fd_data->src_ip;
281 282
	tcp->source = fd_data->src_port;

283 284 285 286 287 288 289 290
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

291
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
292 293 294
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
295 296
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
297 298 299
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
300
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
301 302 303 304 305 306 307
		if (add)
			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
308 309
	}

310
	if (add) {
311
		pf->fd_tcp4_filter_cnt++;
312 313 314
		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
		    I40E_DEBUG_FD & pf->hw.debug_mask)
			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
315
		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
316
	} else {
317
		pf->fd_tcp4_filter_cnt--;
318 319
	}

320
	return 0;
321 322
}

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
/**
 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
				    struct i40e_fdir_filter *fd_data,
				    bool add)
{
	struct i40e_pf *pf = vsi->back;
	struct sctphdr *sctp;
	struct iphdr *ip;
	u8 *raw_packet;
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

	ip->daddr = fd_data->dst_ip;
	sctp->dest = fd_data->dst_port;
	ip->saddr = fd_data->src_ip;
	sctp->source = fd_data->src_port;

	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
	}

	if (add)
		pf->fd_sctp4_filter_cnt++;
	else
		pf->fd_sctp4_filter_cnt--;

	return 0;
}

397 398 399 400 401 402 403 404 405 406 407 408
#define I40E_IP_DUMMY_PACKET_LEN 34
/**
 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
				  struct i40e_fdir_filter *fd_data,
409
				  bool add)
410 411 412
{
	struct i40e_pf *pf = vsi->back;
	struct iphdr *ip;
413
	u8 *raw_packet;
414 415 416 417 418 419 420 421
	int ret;
	int i;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0};

	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
422 423 424 425 426 427
		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
		if (!raw_packet)
			return -ENOMEM;
		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);

428 429
		ip->saddr = fd_data->src_ip;
		ip->daddr = fd_data->dst_ip;
430 431
		ip->protocol = 0;

432 433 434 435 436 437 438 439
		if (fd_data->flex_filter) {
			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
			__be16 pattern = fd_data->flex_word;
			u16 off = fd_data->flex_offset;

			*((__force __be16 *)(payload + off)) = pattern;
		}

440 441 442 443
		fd_data->pctype = i;
		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
		if (ret) {
			dev_info(&pf->pdev->dev,
444 445
				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
				 fd_data->pctype, fd_data->fd_id, ret);
446 447 448 449 450
			/* The packet buffer wasn't added to the ring so we
			 * need to free it now.
			 */
			kfree(raw_packet);
			return -EOPNOTSUPP;
451
		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
452 453 454 455 456 457 458 459
			if (add)
				dev_info(&pf->pdev->dev,
					 "Filter OK for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
			else
				dev_info(&pf->pdev->dev,
					 "Filter deleted for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
460 461 462
		}
	}

463 464 465 466 467
	if (add)
		pf->fd_ip4_filter_cnt++;
	else
		pf->fd_ip4_filter_cnt--;

468
	return 0;
469 470 471 472 473
}

/**
 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 * @vsi: pointer to the targeted VSI
474
 * @input: filter to add or delete
475 476 477 478 479 480 481 482 483 484 485
 * @add: true adds a filter, false removes it
 *
 **/
int i40e_add_del_fdir(struct i40e_vsi *vsi,
		      struct i40e_fdir_filter *input, bool add)
{
	struct i40e_pf *pf = vsi->back;
	int ret;

	switch (input->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
486
		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
487 488
		break;
	case UDP_V4_FLOW:
489
		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
490
		break;
491 492 493
	case SCTP_V4_FLOW:
		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
		break;
494 495 496
	case IP_USER_FLOW:
		switch (input->ip4_proto) {
		case IPPROTO_TCP:
497
			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
498 499
			break;
		case IPPROTO_UDP:
500
			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
501
			break;
502 503 504
		case IPPROTO_SCTP:
			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
			break;
505
		case IPPROTO_IP:
506
			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
507
			break;
508 509
		default:
			/* We cannot support masking based on protocol */
510 511 512
			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
				 input->ip4_proto);
			return -EINVAL;
513 514 515
		}
		break;
	default:
516
		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
517
			 input->flow_type);
518
		return -EINVAL;
519 520
	}

521 522 523 524 525 526
	/* The buffer allocated here will be normally be freed by
	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
	 * completion. In the event of an error adding the buffer to the FDIR
	 * ring, it will immediately be freed. It may also be freed by
	 * i40e_clean_tx_ring() when closing the VSI.
	 */
527 528 529
	return ret;
}

530 531 532
/**
 * i40e_fd_handle_status - check the Programming Status for FD
 * @rx_ring: the Rx ring for this descriptor
533
 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
534 535 536 537 538
 * @prog_id: the id originally used for programming
 *
 * This is used to verify if the FD programming or invalidation
 * requested by SW to the HW is successful or not and take actions accordingly.
 **/
539 540
static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
				  union i40e_rx_desc *rx_desc, u8 prog_id)
541
{
542 543 544
	struct i40e_pf *pf = rx_ring->vsi->back;
	struct pci_dev *pdev = pf->pdev;
	u32 fcnt_prog, fcnt_avail;
545
	u32 error;
546
	u64 qw;
547

548
	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
549 550 551
	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;

552
	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
553
		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
554 555 556
		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
		    (I40E_DEBUG_FD & pf->hw.debug_mask))
			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
557
				 pf->fd_inv);
558

559 560 561 562 563 564
		/* Check if the programming error is for ATR.
		 * If so, auto disable ATR and set a state for
		 * flush in progress. Next time we come here if flush is in
		 * progress do nothing, once flush is complete the state will
		 * be cleared.
		 */
565
		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
566 567
			return;

568 569 570 571
		pf->fd_add_err++;
		/* store the current atr filter count */
		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);

572
		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
573 574 575 576 577 578 579 580
		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
			/* These set_bit() calls aren't atomic with the
			 * test_bit() here, but worse case we potentially
			 * disable ATR and queue a flush right after SB
			 * support is re-enabled. That shouldn't cause an
			 * issue in practice
			 */
			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
581
			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
582 583
		}

584
		/* filter programming failed most likely due to table full */
585
		fcnt_prog = i40e_get_global_fd_count(pf);
586
		fcnt_avail = pf->fdir_pf_filter_count;
587 588 589 590 591
		/* If ATR is running fcnt_prog can quickly change,
		 * if we are very close to full, it makes sense to disable
		 * FD ATR/SB and then re-enable it when there is room.
		 */
		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
592
			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
593 594
			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
					      pf->state))
595 596
				if (I40E_DEBUG_FD & pf->hw.debug_mask)
					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
597
		}
598
	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
599
		if (I40E_DEBUG_FD & pf->hw.debug_mask)
600
			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
601
				 rx_desc->wb.qword0.hi_dword.fd_id);
602
	}
603 604 605
}

/**
A
Alexander Duyck 已提交
606
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
607 608 609
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
A
Alexander Duyck 已提交
610 611
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
612
{
A
Alexander Duyck 已提交
613
	if (tx_buffer->skb) {
614 615
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
616
		else if (ring_is_xdp(ring))
617
			xdp_return_frame(tx_buffer->xdpf);
618 619
		else
			dev_kfree_skb_any(tx_buffer->skb);
A
Alexander Duyck 已提交
620
		if (dma_unmap_len(tx_buffer, len))
621
			dma_unmap_single(ring->dev,
622 623
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
624
					 DMA_TO_DEVICE);
A
Alexander Duyck 已提交
625 626 627 628 629
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
630
	}
631

A
Alexander Duyck 已提交
632 633
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
634
	dma_unmap_len_set(tx_buffer, len, 0);
A
Alexander Duyck 已提交
635
	/* tx_buffer must be completely set up in the transmit path */
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
}

/**
 * i40e_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
A
Alexander Duyck 已提交
652 653
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
654 655 656 657 658 659 660 661 662

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
663 664 665 666 667

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
668
	netdev_tx_reset_queue(txring_txq(tx_ring));
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
}

/**
 * i40e_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40e_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40e_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

/**
 * i40e_get_tx_pending - how many tx descriptors not processed
692
 * @ring: the ring of descriptors
693
 * @in_sw: use SW variables
694 695 696 697
 *
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
 **/
698
u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
699
{
J
Jesse Brandeburg 已提交
700 701
	u32 head, tail;

702 703 704 705 706 707 708
	if (!in_sw) {
		head = i40e_get_head(ring);
		tail = readl(ring->tail);
	} else {
		head = ring->next_to_clean;
		tail = ring->next_to_use;
	}
J
Jesse Brandeburg 已提交
709 710 711 712 713 714

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
715 716
}

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
/**
 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 * @vsi:  pointer to vsi struct with tx queues
 *
 * VSI has netdev and netdev has TX queues. This function is to check each of
 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 **/
void i40e_detect_recover_hung(struct i40e_vsi *vsi)
{
	struct i40e_ring *tx_ring = NULL;
	struct net_device *netdev;
	unsigned int i;
	int packets;

	if (!vsi)
		return;

	if (test_bit(__I40E_VSI_DOWN, vsi->state))
		return;

	netdev = vsi->netdev;
	if (!netdev)
		return;

	if (!netif_carrier_ok(netdev))
		return;

	for (i = 0; i < vsi->num_queue_pairs; i++) {
		tx_ring = vsi->tx_rings[i];
		if (tx_ring && tx_ring->desc) {
			/* If packet counter has not changed the queue is
			 * likely stalled, so force an interrupt for this
			 * queue.
			 *
			 * prev_pkt_ctr would be negative if there was no
			 * pending work.
			 */
			packets = tx_ring->stats.packets & INT_MAX;
			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
				i40e_force_wb(vsi, tx_ring->q_vector);
				continue;
			}

			/* Memory barrier between read of packet count and call
			 * to i40e_get_tx_pending()
			 */
			smp_rmb();
			tx_ring->tx_stats.prev_pkt_ctr =
765
			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
766 767 768 769
		}
	}
}

770
#define WB_STRIDE 4
771

772 773
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
774 775 776
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
777 778 779
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
780 781
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
782 783 784
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
785
	struct i40e_tx_desc *tx_head;
786
	struct i40e_tx_desc *tx_desc;
787 788
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
789 790 791

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
792
	i -= tx_ring->count;
793

794 795
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

A
Alexander Duyck 已提交
796 797
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
798 799 800 801 802

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

A
Alexander Duyck 已提交
803
		/* prevent any other reads prior to eop_desc */
804
		smp_rmb();
A
Alexander Duyck 已提交
805

S
Scott Peterson 已提交
806
		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
807 808
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
809 810
			break;

A
Alexander Duyck 已提交
811
		/* clear next_to_watch to prevent false hangs */
812 813
		tx_buf->next_to_watch = NULL;

A
Alexander Duyck 已提交
814 815 816
		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;
817

818 819
		/* free the skb/XDP data */
		if (ring_is_xdp(tx_ring))
820
			xdp_return_frame(tx_buf->xdpf);
821 822
		else
			napi_consume_skb(tx_buf->skb, napi_budget);
823

A
Alexander Duyck 已提交
824 825 826 827 828
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);
829

A
Alexander Duyck 已提交
830 831 832
		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);
833

A
Alexander Duyck 已提交
834 835
		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
S
Scott Peterson 已提交
836 837
			i40e_trace(clean_tx_irq_unmap,
				   tx_ring, tx_desc, tx_buf);
838 839 840 841

			tx_buf++;
			tx_desc++;
			i++;
A
Alexander Duyck 已提交
842 843
			if (unlikely(!i)) {
				i -= tx_ring->count;
844 845 846 847
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

A
Alexander Duyck 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

868 869
		prefetch(tx_desc);

A
Alexander Duyck 已提交
870 871 872 873 874
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
875
	tx_ring->next_to_clean = i;
876
	u64_stats_update_begin(&tx_ring->syncp);
877 878
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
879
	u64_stats_update_end(&tx_ring->syncp);
880 881
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;
A
Alexander Duyck 已提交
882

883 884 885 886 887 888
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
889
		unsigned int j = i40e_get_tx_pending(tx_ring, false);
890 891

		if (budget &&
892
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
893
		    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
894 895 896
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}
897

898 899 900
	if (ring_is_xdp(tx_ring))
		return !!budget;

901 902
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
903 904
				  total_packets, total_bytes);

905
#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
906 907 908 909 910 911 912 913
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
914
		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
915 916 917 918 919 920
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

921 922 923 924
	return !!budget;
}

/**
925
 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
926
 * @vsi: the VSI we care about
927
 * @q_vector: the vector on which to enable writeback
928 929
 *
 **/
930 931
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
932
{
933
	u16 flags = q_vector->tx.ring[0].flags;
934
	u32 val;
935

936 937
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;
938

939 940
	if (q_vector->arm_wb_state)
		return;
941

942 943 944
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
945

946
		wr32(&vsi->back->hw,
947
		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
948 949 950 951
		     val);
	} else {
		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
952

953 954 955 956 957 958 959 960 961 962 963 964 965 966
		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
	q_vector->arm_wb_state = true;
}

/**
 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
967 968 969 970 971 972 973
		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
			  /* allow 00 to be written to the index */

		wr32(&vsi->back->hw,
974
		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
975 976 977 978 979 980 981 982 983
	} else {
		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
			/* allow 00 to be written to the index */

		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
984 985
}

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
					struct i40e_ring_container *rc)
{
	return &q_vector->rx == rc;
}

static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
{
	unsigned int divisor;

	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
	case I40E_LINK_SPEED_40GB:
		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
		break;
	case I40E_LINK_SPEED_25GB:
	case I40E_LINK_SPEED_20GB:
		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
		break;
	default:
	case I40E_LINK_SPEED_10GB:
		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
		break;
	case I40E_LINK_SPEED_1GB:
	case I40E_LINK_SPEED_100MB:
		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
		break;
	}

	return divisor;
}

1017
/**
1018 1019
 * i40e_update_itr - update the dynamic ITR value based on statistics
 * @q_vector: structure containing interrupt and ring information
1020 1021
 * @rc: structure containing ring performance data
 *
1022 1023 1024 1025 1026 1027
 * Stores a new ITR value based on packets and byte
 * counts during the last interrupt.  The advantage of per interrupt
 * computation is faster updates and more accurate ITR for the current
 * traffic pattern.  Constants in this function were computed
 * based on theoretical maximum wire speed and thresholds were set based
 * on testing data as well as attempting to minimize response time
1028 1029
 * while increasing bulk throughput.
 **/
1030 1031
static void i40e_update_itr(struct i40e_q_vector *q_vector,
			    struct i40e_ring_container *rc)
1032
{
1033 1034
	unsigned int avg_wire_size, packets, bytes, itr;
	unsigned long next_update = jiffies;
1035

1036 1037 1038
	/* If we don't have any rings just leave ourselves set for maximum
	 * possible latency so we take ourselves out of the equation.
	 */
1039
	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1040
		return;
1041

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	/* For Rx we want to push the delay up and default to low latency.
	 * for Tx we want to pull the delay down and default to high latency.
	 */
	itr = i40e_container_is_rx(q_vector, rc) ?
	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;

	/* If we didn't update within up to 1 - 2 jiffies we can assume
	 * that either packets are coming in so slow there hasn't been
	 * any work, or that there is so much work that NAPI is dealing
	 * with interrupt moderation and we don't need to do anything.
	 */
	if (time_after(next_update, rc->next_update))
		goto clear_counts;

	/* If itr_countdown is set it means we programmed an ITR within
	 * the last 4 interrupt cycles. This has a side effect of us
	 * potentially firing an early interrupt. In order to work around
	 * this we need to throw out any data received for a few
	 * interrupts following the update.
	 */
	if (q_vector->itr_countdown) {
		itr = rc->target_itr;
		goto clear_counts;
	}
1067

1068 1069
	packets = rc->total_packets;
	bytes = rc->total_bytes;
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	if (i40e_container_is_rx(q_vector, rc)) {
		/* If Rx there are 1 to 4 packets and bytes are less than
		 * 9000 assume insufficient data to use bulk rate limiting
		 * approach unless Tx is already in bulk rate limiting. We
		 * are likely latency driven.
		 */
		if (packets && packets < 4 && bytes < 9000 &&
		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
			itr = I40E_ITR_ADAPTIVE_LATENCY;
			goto adjust_by_size;
		}
	} else if (packets < 4) {
		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
		 * bulk mode and we are receiving 4 or fewer packets just
		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
		 * that the Rx can relax.
		 */
		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
		     I40E_ITR_ADAPTIVE_MAX_USECS)
			goto clear_counts;
	} else if (packets > 32) {
		/* If we have processed over 32 packets in a single interrupt
		 * for Tx assume we need to switch over to "bulk" mode.
		 */
		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
	}

	/* We have no packets to actually measure against. This means
	 * either one of the other queues on this vector is active or
	 * we are a Tx queue doing TSO with too high of an interrupt rate.
	 *
	 * Between 4 and 56 we can assume that our current interrupt delay
	 * is only slightly too low. As such we should increase it by a small
	 * fixed amount.
1106
	 */
1107 1108 1109 1110 1111 1112 1113
	if (packets < 56) {
		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
			itr &= I40E_ITR_ADAPTIVE_LATENCY;
			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
		}
		goto clear_counts;
1114 1115
	}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	if (packets <= 256) {
		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
		itr &= I40E_ITR_MASK;

		/* Between 56 and 112 is our "goldilocks" zone where we are
		 * working out "just right". Just report that our current
		 * ITR is good for us.
		 */
		if (packets <= 112)
			goto clear_counts;

		/* If packet count is 128 or greater we are likely looking
		 * at a slight overrun of the delay we want. Try halving
		 * our delay to see if that will cut the number of packets
		 * in half per interrupt.
		 */
		itr /= 2;
		itr &= I40E_ITR_MASK;
		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
			itr = I40E_ITR_ADAPTIVE_MIN_USECS;

		goto clear_counts;
	}

	/* The paths below assume we are dealing with a bulk ITR since
	 * number of packets is greater than 256. We are just going to have
	 * to compute a value and try to bring the count under control,
	 * though for smaller packet sizes there isn't much we can do as
	 * NAPI polling will likely be kicking in sooner rather than later.
	 */
	itr = I40E_ITR_ADAPTIVE_BULK;

adjust_by_size:
	/* If packet counts are 256 or greater we can assume we have a gross
	 * overestimation of what the rate should be. Instead of trying to fine
	 * tune it just use the formula below to try and dial in an exact value
	 * give the current packet size of the frame.
	 */
	avg_wire_size = bytes / packets;

	/* The following is a crude approximation of:
	 *  wmem_default / (size + overhead) = desired_pkts_per_int
	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1160
	 *
1161 1162 1163 1164 1165 1166 1167 1168 1169
	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
	 * formula down to
	 *
	 *  (170 * (size + 24)) / (size + 640) = ITR
	 *
	 * We first do some math on the packet size and then finally bitshift
	 * by 8 after rounding up. We also have to account for PCIe link speed
	 * difference as ITR scales based on this.
1170
	 */
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	if (avg_wire_size <= 60) {
		/* Start at 250k ints/sec */
		avg_wire_size = 4096;
	} else if (avg_wire_size <= 380) {
		/* 250K ints/sec to 60K ints/sec */
		avg_wire_size *= 40;
		avg_wire_size += 1696;
	} else if (avg_wire_size <= 1084) {
		/* 60K ints/sec to 36K ints/sec */
		avg_wire_size *= 15;
		avg_wire_size += 11452;
	} else if (avg_wire_size <= 1980) {
		/* 36K ints/sec to 30K ints/sec */
		avg_wire_size *= 5;
		avg_wire_size += 22420;
	} else {
		/* plateau at a limit of 30K ints/sec */
		avg_wire_size = 32256;
1189
	}
1190

1191 1192 1193 1194 1195
	/* If we are in low latency mode halve our delay which doubles the
	 * rate to somewhere between 100K to 16K ints/sec
	 */
	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
		avg_wire_size /= 2;
1196

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	/* Resultant value is 256 times larger than it needs to be. This
	 * gives us room to adjust the value as needed to either increase
	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
	 *
	 * Use addition as we have already recorded the new latency flag
	 * for the ITR value.
	 */
	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
	       I40E_ITR_ADAPTIVE_MIN_INC;

	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
		itr &= I40E_ITR_ADAPTIVE_LATENCY;
		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1210 1211
	}

1212 1213 1214 1215 1216 1217 1218
clear_counts:
	/* write back value */
	rc->target_itr = itr;

	/* next update should occur within next jiffy */
	rc->next_update = next_update + 1;

1219 1220 1221 1222
	rc->total_bytes = 0;
	rc->total_packets = 0;
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_bi[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	new_buff->dma		= old_buff->dma;
	new_buff->page		= old_buff->page;
	new_buff->page_offset	= old_buff->page_offset;
	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
}

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
/**
 * i40e_rx_is_programming_status - check for programming status descriptor
 * @qw: qword representing status_error_len in CPU ordering
 *
 * The value of in the descriptor length field indicate if this
 * is a programming status descriptor for flow director or FCoE
 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
 * it is a packet descriptor.
 **/
static inline bool i40e_rx_is_programming_status(u64 qw)
{
	/* The Rx filter programming status and SPH bit occupy the same
	 * spot in the descriptor. Since we don't support packet split we
	 * can just reuse the bit as an indication that this is a
	 * programming status descriptor.
	 */
	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
}

1268 1269 1270 1271
/**
 * i40e_clean_programming_status - clean the programming status descriptor
 * @rx_ring: the rx ring that has this descriptor
 * @rx_desc: the rx descriptor written back by HW
1272
 * @qw: qword representing status_error_len in CPU ordering
1273 1274 1275 1276 1277 1278 1279
 *
 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 * status being successful or not and take actions accordingly. FCoE should
 * handle its context/filter programming/invalidation status and take actions.
 *
 **/
static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1280 1281
					  union i40e_rx_desc *rx_desc,
					  u64 qw)
1282
{
1283 1284
	struct i40e_rx_buffer *rx_buffer;
	u32 ntc = rx_ring->next_to_clean;
1285 1286
	u8 id;

1287
	/* fetch, update, and store next to clean */
1288
	rx_buffer = &rx_ring->rx_bi[ntc++];
1289 1290 1291 1292 1293
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

1294 1295 1296 1297 1298 1299 1300
	/* place unused page back on the ring */
	i40e_reuse_rx_page(rx_ring, rx_buffer);
	rx_ring->rx_stats.page_reuse_count++;

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;

1301 1302 1303 1304
	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;

	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1305
		i40e_fd_handle_status(rx_ring, rx_desc, id);
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
}

/**
 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

J
Jesse Brandeburg 已提交
1322 1323
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
1324 1325 1326 1327 1328
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

1329 1330
	u64_stats_init(&tx_ring->syncp);

1331 1332
	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1333 1334 1335 1336
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
1348
	tx_ring->tx_stats.prev_pkt_ctr = -1;
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

1370 1371 1372 1373 1374
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

1375 1376
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
1377 1378 1379 1380 1381
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

1382 1383 1384 1385 1386 1387
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
1388
					      rx_ring->rx_buf_len,
1389 1390 1391 1392
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1393
				     i40e_rx_pg_size(rx_ring),
1394 1395
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
1396

1397
		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1398 1399 1400

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
1401 1402 1403 1404 1405 1406 1407 1408
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

1409
	rx_ring->next_to_alloc = 0;
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40e_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40e_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40e_clean_rx_ring(rx_ring);
1423 1424
	if (rx_ring->vsi->type == I40E_VSI_MAIN)
		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1425
	rx_ring->xdp_prog = NULL;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40e_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
1445
	int err = -ENOMEM;
1446 1447
	int bi_size;

J
Jesse Brandeburg 已提交
1448 1449
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
1450 1451 1452 1453 1454
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

1455
	u64_stats_init(&rx_ring->syncp);
1456

1457
	/* Round up to nearest 4K */
1458
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

1469
	rx_ring->next_to_alloc = 0;
1470 1471 1472
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

1473 1474 1475 1476 1477 1478 1479 1480
	/* XDP RX-queue info only needed for RX rings exposed to XDP */
	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
				       rx_ring->queue_index);
		if (err < 0)
			goto err;
	}

1481 1482
	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;

1483 1484 1485 1486
	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
1487
	return err;
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
1498 1499 1500 1501

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

1502 1503 1504 1505 1506 1507 1508 1509 1510
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
/**
 * i40e_rx_offset - Return expected offset into page to access data
 * @rx_ring: Ring we are requesting offset of
 *
 * Returns the offset value for ring into the data buffer.
 */
static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
{
	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
}

1522
/**
1523 1524 1525
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
1526
 *
1527 1528
 * Returns true if the page was successfully allocated or
 * reused.
1529
 **/
1530 1531
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
1532
{
1533 1534
	struct page *page = bi->page;
	dma_addr_t dma;
1535

1536 1537 1538 1539 1540
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
1541

1542
	/* alloc new page for storage */
1543
	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1544 1545 1546 1547
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
1548

1549
	/* map page for use */
1550
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1551
				 i40e_rx_pg_size(rx_ring),
1552 1553
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
1554

1555 1556
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
1557
	 */
1558
	if (dma_mapping_error(rx_ring->dev, dma)) {
1559
		__free_pages(page, i40e_rx_pg_order(rx_ring));
1560 1561
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
1562 1563
	}

1564 1565
	bi->dma = dma;
	bi->page = page;
1566
	bi->page_offset = i40e_rx_offset(rx_ring);
1567 1568
	page_ref_add(page, USHRT_MAX - 1);
	bi->pagecnt_bias = USHRT_MAX;
1569

1570 1571
	return true;
}
1572

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1583

1584 1585 1586 1587 1588
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
1589 1590 1591
}

/**
1592
 * i40e_alloc_rx_buffers - Replace used receive buffers
1593 1594
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
1595
 *
1596
 * Returns false if all allocations were successful, true if any fail
1597
 **/
1598
bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1599
{
1600
	u16 ntu = rx_ring->next_to_use;
1601 1602 1603 1604 1605
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
1606
		return false;
1607

1608 1609
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
1610

1611 1612 1613
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
1614

1615 1616 1617
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
1618
						 rx_ring->rx_buf_len,
1619 1620
						 DMA_FROM_DEVICE);

1621 1622 1623 1624
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1625

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1643 1644 1645

	return false;

1646
no_buffers:
1647 1648
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1649 1650 1651 1652 1653

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
1654 1655 1656 1657 1658 1659
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
1660
 * @rx_desc: the receive descriptor
1661 1662 1663
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
1664
				    union i40e_rx_desc *rx_desc)
1665
{
1666 1667
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
1668
	bool ipv4, ipv6;
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
1679

1680 1681
	skb->ip_summed = CHECKSUM_NONE;

1682 1683
	skb_checksum_none_assert(skb);

1684
	/* Rx csum enabled and ip headers found? */
1685 1686 1687 1688
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
1689
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1690 1691 1692 1693
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
1694 1695
		return;

1696 1697 1698 1699
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1700 1701

	if (ipv4 &&
1702 1703
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1704 1705
		goto checksum_fail;

J
Jesse Brandeburg 已提交
1706
	/* likely incorrect csum if alternate IP extension headers found */
1707
	if (ipv6 &&
1708
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1709
		/* don't increment checksum err here, non-fatal err */
1710 1711
		return;

1712
	/* there was some L4 error, count error and punt packet to the stack */
1713
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1714 1715 1716 1717 1718 1719
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
1720
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1721 1722
		return;

1723 1724 1725
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
1726
	 */
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
1740 1741 1742 1743 1744

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
1745 1746 1747
}

/**
1748
 * i40e_ptype_to_htype - get a hash type
1749 1750 1751 1752
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
1753
static inline int i40e_ptype_to_htype(u8 ptype)
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

1770 1771 1772 1773
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
1774 1775
 * @skb: skb currently being received and modified
 * @rx_ptype: Rx packet type
1776 1777 1778 1779 1780 1781 1782
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
1783
	const __le64 rss_mask =
1784 1785 1786
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

1787
	if (!(ring->netdev->features & NETIF_F_RXHASH))
1788 1789 1790 1791 1792 1793 1794 1795
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

1796
/**
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 **/
static inline
void i40e_process_skb_fields(struct i40e_ring *rx_ring,
			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			     u8 rx_ptype)
{
	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;
1815 1816
	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1817 1818
		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;

1819
	if (unlikely(tsynvalid))
1820
		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1821 1822 1823 1824 1825 1826

	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);

	skb_record_rx_queue(skb, rx_ring->queue_index);
1827 1828 1829

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1830 1831 1832 1833 1834 1835
}

/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
1836
 * @rx_desc: pointer to the EOP Rx descriptor
1837 1838 1839 1840 1841 1842 1843 1844 1845
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
1846 1847 1848
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
				 union i40e_rx_desc *rx_desc)

1849
{
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	/* XDP packets use error pointer so abort at this point */
	if (IS_ERR(skb))
		return true;

	/* ERR_MASK will only have valid bits if EOP set, and
	 * what we are doing here is actually checking
	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
	 * the error field
	 */
	if (unlikely(i40e_test_staterr(rx_desc,
				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
		dev_kfree_skb_any(skb);
		return true;
	}

1865 1866 1867 1868 1869 1870 1871 1872
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
1873
 * i40e_page_is_reusable - check if any reuse is possible
1874
 * @page: page struct to check
1875 1876 1877
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
1878
 */
1879
static inline bool i40e_page_is_reusable(struct page *page)
1880
{
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
1912
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1913
{
1914 1915
	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
	struct page *page = rx_buffer->page;
1916 1917 1918 1919 1920 1921 1922

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
1923
	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1924 1925
		return false;
#else
1926 1927 1928
#define I40E_LAST_OFFSET \
	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1929 1930 1931
		return false;
#endif

1932 1933 1934 1935
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
	 */
1936 1937
	if (unlikely(pagecnt_bias == 1)) {
		page_ref_add(page, USHRT_MAX - 1);
1938 1939
		rx_buffer->pagecnt_bias = USHRT_MAX;
	}
1940

1941
	return true;
1942 1943 1944 1945 1946 1947 1948
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @skb: sk_buff to place the data into
1949
 * @size: packet length from rx_desc
1950 1951
 *
 * This function will add the data contained in rx_buffer->page to the skb.
1952
 * It will just attach the page as a frag to the skb.
1953
 *
1954
 * The function will then update the page offset.
1955
 **/
1956
static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1957
			     struct i40e_rx_buffer *rx_buffer,
1958 1959
			     struct sk_buff *skb,
			     unsigned int size)
1960 1961
{
#if (PAGE_SIZE < 8192)
1962
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1963
#else
1964
	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1965 1966
#endif

1967 1968
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
			rx_buffer->page_offset, size, truesize);
1969

1970 1971 1972 1973 1974 1975
	/* page is being used so we must update the page offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
1976 1977
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
/**
 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
 * @rx_ring: rx descriptor ring to transact packets on
 * @size: size of buffer to add to skb
 *
 * This function will pull an Rx buffer from the ring and synchronize it
 * for use by the CPU.
 */
static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
						 const unsigned int size)
{
	struct i40e_rx_buffer *rx_buffer;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	prefetchw(rx_buffer->page);

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      size,
				      DMA_FROM_DEVICE);

2001 2002 2003
	/* We have pulled a buffer for use, so decrement pagecnt_bias */
	rx_buffer->pagecnt_bias--;

2004 2005 2006
	return rx_buffer;
}

2007
/**
2008
 * i40e_construct_skb - Allocate skb and populate it
2009
 * @rx_ring: rx descriptor ring to transact packets on
2010
 * @rx_buffer: rx buffer to pull data from
2011
 * @xdp: xdp_buff pointing to the data
2012
 *
2013 2014 2015
 * This function allocates an skb.  It then populates it with the page
 * data from the current receive descriptor, taking care to set up the
 * skb correctly.
2016
 */
2017 2018
static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
					  struct i40e_rx_buffer *rx_buffer,
2019
					  struct xdp_buff *xdp)
2020
{
2021
	unsigned int size = xdp->data_end - xdp->data;
2022
#if (PAGE_SIZE < 8192)
2023
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2024 2025 2026 2027 2028
#else
	unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
	unsigned int headlen;
	struct sk_buff *skb;
2029

2030
	/* prefetch first cache line of first page */
2031
	prefetch(xdp->data);
2032
#if L1_CACHE_BYTES < 128
2033
	prefetch(xdp->data + L1_CACHE_BYTES);
2034 2035
#endif

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	/* allocate a skb to store the frags */
	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
			       I40E_RX_HDR_SIZE,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;

	/* Determine available headroom for copy */
	headlen = size;
	if (headlen > I40E_RX_HDR_SIZE)
2046
		headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
2047

2048
	/* align pull length to size of long to optimize memcpy performance */
2049 2050
	memcpy(__skb_put(skb, headlen), xdp->data,
	       ALIGN(headlen, sizeof(long)));
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068

	/* update all of the pointers */
	size -= headlen;
	if (size) {
		skb_add_rx_frag(skb, 0, rx_buffer->page,
				rx_buffer->page_offset + headlen,
				size, truesize);

		/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
		rx_buffer->page_offset ^= truesize;
#else
		rx_buffer->page_offset += truesize;
#endif
	} else {
		/* buffer is unused, reset bias back to rx_buffer */
		rx_buffer->pagecnt_bias++;
	}
2069 2070 2071 2072

	return skb;
}

2073 2074 2075 2076
/**
 * i40e_build_skb - Build skb around an existing buffer
 * @rx_ring: Rx descriptor ring to transact packets on
 * @rx_buffer: Rx buffer to pull data from
2077
 * @xdp: xdp_buff pointing to the data
2078 2079 2080 2081 2082 2083
 *
 * This function builds an skb around an existing Rx buffer, taking care
 * to set up the skb correctly and avoid any memcpy overhead.
 */
static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
				      struct i40e_rx_buffer *rx_buffer,
2084
				      struct xdp_buff *xdp)
2085
{
2086
	unsigned int size = xdp->data_end - xdp->data;
2087 2088 2089
#if (PAGE_SIZE < 8192)
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
#else
2090 2091
	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
				SKB_DATA_ALIGN(I40E_SKB_PAD + size);
2092 2093 2094 2095
#endif
	struct sk_buff *skb;

	/* prefetch first cache line of first page */
2096
	prefetch(xdp->data);
2097
#if L1_CACHE_BYTES < 128
2098
	prefetch(xdp->data + L1_CACHE_BYTES);
2099 2100
#endif
	/* build an skb around the page buffer */
2101
	skb = build_skb(xdp->data_hard_start, truesize);
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	if (unlikely(!skb))
		return NULL;

	/* update pointers within the skb to store the data */
	skb_reserve(skb, I40E_SKB_PAD);
	__skb_put(skb, size);

	/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif

	return skb;
}

2119 2120 2121 2122 2123 2124
/**
 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: rx buffer to pull data from
 *
 * This function will clean up the contents of the rx_buffer.  It will
2125
 * either recycle the buffer or unmap it and free the associated resources.
2126 2127 2128 2129 2130
 */
static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *rx_buffer)
{
	if (i40e_can_reuse_rx_page(rx_buffer)) {
2131 2132 2133 2134 2135
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
2136 2137
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
				     i40e_rx_pg_size(rx_ring),
2138
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2139 2140
		__page_frag_cache_drain(rx_buffer->page,
					rx_buffer->pagecnt_bias);
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
2157
 **/
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

2180 2181
#define I40E_XDP_PASS 0
#define I40E_XDP_CONSUMED 1
2182 2183
#define I40E_XDP_TX 2

2184
static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2185
			      struct i40e_ring *xdp_ring);
2186

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
static int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp,
				 struct i40e_ring *xdp_ring)
{
	struct xdp_frame *xdpf = convert_to_xdp_frame(xdp);

	if (unlikely(!xdpf))
		return I40E_XDP_CONSUMED;

	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
}

2198 2199 2200 2201 2202 2203 2204 2205
/**
 * i40e_run_xdp - run an XDP program
 * @rx_ring: Rx ring being processed
 * @xdp: XDP buffer containing the frame
 **/
static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
				    struct xdp_buff *xdp)
{
2206
	int err, result = I40E_XDP_PASS;
2207
	struct i40e_ring *xdp_ring;
2208 2209 2210 2211 2212 2213 2214 2215 2216
	struct bpf_prog *xdp_prog;
	u32 act;

	rcu_read_lock();
	xdp_prog = READ_ONCE(rx_ring->xdp_prog);

	if (!xdp_prog)
		goto xdp_out;

2217 2218
	prefetchw(xdp->data_hard_start); /* xdp_frame write */

2219 2220 2221 2222
	act = bpf_prog_run_xdp(xdp_prog, xdp);
	switch (act) {
	case XDP_PASS:
		break;
2223 2224
	case XDP_TX:
		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2225
		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2226
		break;
2227 2228 2229 2230
	case XDP_REDIRECT:
		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
		result = !err ? I40E_XDP_TX : I40E_XDP_CONSUMED;
		break;
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	default:
		bpf_warn_invalid_xdp_action(act);
	case XDP_ABORTED:
		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
		/* fallthrough -- handle aborts by dropping packet */
	case XDP_DROP:
		result = I40E_XDP_CONSUMED;
		break;
	}
xdp_out:
	rcu_read_unlock();
	return ERR_PTR(-result);
}

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
/**
 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
 * @rx_ring: Rx ring
 * @rx_buffer: Rx buffer to adjust
 * @size: Size of adjustment
 **/
static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
				struct i40e_rx_buffer *rx_buffer,
				unsigned int size)
{
#if (PAGE_SIZE < 8192)
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;

	rx_buffer->page_offset ^= truesize;
#else
	unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);

	rx_buffer->page_offset += truesize;
#endif
}

2266 2267 2268 2269 2270 2271 2272 2273 2274
static inline void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
{
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.
	 */
	wmb();
	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
/**
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 **/
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2288 2289
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2290
	struct sk_buff *skb = rx_ring->skb;
2291
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2292
	bool failure = false, xdp_xmit = false;
2293 2294 2295
	struct xdp_buff xdp;

	xdp.rxq = &rx_ring->xdp_rxq;
2296

2297
	while (likely(total_rx_packets < (unsigned int)budget)) {
2298
		struct i40e_rx_buffer *rx_buffer;
2299
		union i40e_rx_desc *rx_desc;
2300
		unsigned int size;
2301
		u16 vlan_tag;
2302 2303 2304
		u8 rx_ptype;
		u64 qword;

2305 2306
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2307
			failure = failure ||
2308
				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2309 2310 2311
			cleaned_count = 0;
		}

2312 2313 2314 2315 2316
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
2317
		 * hardware wrote DD then the length will be non-zero
2318
		 */
2319
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2320

2321
		/* This memory barrier is needed to keep us from reading
2322 2323
		 * any other fields out of the rx_desc until we have
		 * verified the descriptor has been written back.
2324
		 */
2325
		dma_rmb();
2326

2327 2328
		if (unlikely(i40e_rx_is_programming_status(qword))) {
			i40e_clean_programming_status(rx_ring, rx_desc, qword);
2329
			cleaned_count++;
2330 2331 2332 2333 2334 2335 2336
			continue;
		}
		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		if (!size)
			break;

S
Scott Peterson 已提交
2337
		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2338 2339
		rx_buffer = i40e_get_rx_buffer(rx_ring, size);

2340
		/* retrieve a buffer from the ring */
2341 2342 2343
		if (!skb) {
			xdp.data = page_address(rx_buffer->page) +
				   rx_buffer->page_offset;
2344
			xdp_set_data_meta_invalid(&xdp);
2345 2346 2347 2348 2349 2350 2351 2352
			xdp.data_hard_start = xdp.data -
					      i40e_rx_offset(rx_ring);
			xdp.data_end = xdp.data + size;

			skb = i40e_run_xdp(rx_ring, &xdp);
		}

		if (IS_ERR(skb)) {
2353 2354 2355 2356 2357 2358
			if (PTR_ERR(skb) == -I40E_XDP_TX) {
				xdp_xmit = true;
				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
			} else {
				rx_buffer->pagecnt_bias++;
			}
2359 2360 2361
			total_rx_bytes += size;
			total_rx_packets++;
		} else if (skb) {
2362
			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2363 2364 2365 2366 2367
		} else if (ring_uses_build_skb(rx_ring)) {
			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
		} else {
			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
		}
2368 2369 2370 2371 2372

		/* exit if we failed to retrieve a buffer */
		if (!skb) {
			rx_ring->rx_stats.alloc_buff_failed++;
			rx_buffer->pagecnt_bias++;
2373
			break;
2374
		}
2375

2376
		i40e_put_rx_buffer(rx_ring, rx_buffer);
2377 2378
		cleaned_count++;

2379
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2380 2381
			continue;

2382
		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2383
			skb = NULL;
2384
			continue;
2385
		}
2386 2387 2388 2389

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

2390 2391 2392 2393
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

2394 2395
		/* populate checksum, VLAN, and protocol */
		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2396

2397 2398 2399
		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

S
Scott Peterson 已提交
2400
		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2401
		i40e_receive_skb(rx_ring, skb, vlan_tag);
2402
		skb = NULL;
2403

2404 2405 2406
		/* update budget accounting */
		total_rx_packets++;
	}
2407

2408
	if (xdp_xmit) {
2409 2410
		struct i40e_ring *xdp_ring =
			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2411

2412 2413
		i40e_xdp_ring_update_tail(xdp_ring);
		xdp_do_flush_map();
2414 2415
	}

2416 2417
	rx_ring->skb = skb;

2418
	u64_stats_update_begin(&rx_ring->syncp);
2419 2420
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
2421
	u64_stats_update_end(&rx_ring->syncp);
2422 2423 2424
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

2425
	/* guarantee a trip back through this routine if there was a failure */
2426
	return failure ? budget : (int)total_rx_packets;
2427 2428
}

2429
static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2430 2431 2432
{
	u32 val;

2433 2434 2435 2436 2437 2438 2439 2440 2441
	/* We don't bother with setting the CLEARPBA bit as the data sheet
	 * points out doing so is "meaningless since it was already
	 * auto-cleared". The auto-clearing happens when the interrupt is
	 * asserted.
	 *
	 * Hardware errata 28 for also indicates that writing to a
	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
	 * an event in the PBA anyway so we need to rely on the automask
	 * to hold pending events for us until the interrupt is re-enabled
2442 2443 2444 2445 2446
	 *
	 * The itr value is reported in microseconds, and the register
	 * value is recorded in 2 microsecond units. For this reason we
	 * only need to shift by the interval shift - 1 instead of the
	 * full value.
2447
	 */
2448 2449
	itr &= I40E_ITR_MASK;

2450 2451
	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2452
	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2453 2454 2455 2456 2457 2458 2459

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_PFINT_DYN_CTLN

2460 2461 2462 2463 2464 2465 2466 2467 2468
/* The act of updating the ITR will cause it to immediately trigger. In order
 * to prevent this from throwing off adaptive update statistics we defer the
 * update so that it can only happen so often. So after either Tx or Rx are
 * updated we make the adaptive scheme wait until either the ITR completely
 * expires via the next_update expiration or we have been through at least
 * 3 interrupts.
 */
#define ITR_COUNTDOWN_START 3

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
2479
	u32 intval;
2480

2481 2482
	/* If we don't have MSIX, then we only need to re-enable icr0 */
	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2483
		i40e_irq_dynamic_enable_icr0(vsi->back);
2484 2485 2486
		return;
	}

2487 2488 2489
	/* These will do nothing if dynamic updates are not enabled */
	i40e_update_itr(q_vector, &q_vector->tx);
	i40e_update_itr(q_vector, &q_vector->rx);
2490

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
	/* This block of logic allows us to get away with only updating
	 * one ITR value with each interrupt. The idea is to perform a
	 * pseudo-lazy update with the following criteria.
	 *
	 * 1. Rx is given higher priority than Tx if both are in same state
	 * 2. If we must reduce an ITR that is given highest priority.
	 * 3. We then give priority to increasing ITR based on amount.
	 */
	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
		/* Rx ITR needs to be reduced, this is highest priority */
2501 2502 2503
		intval = i40e_buildreg_itr(I40E_RX_ITR,
					   q_vector->rx.target_itr);
		q_vector->rx.current_itr = q_vector->rx.target_itr;
2504 2505 2506 2507 2508 2509 2510
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
		/* Tx ITR needs to be reduced, this is second priority
		 * Tx ITR needs to be increased more than Rx, fourth priority
		 */
2511 2512 2513
		intval = i40e_buildreg_itr(I40E_TX_ITR,
					   q_vector->tx.target_itr);
		q_vector->tx.current_itr = q_vector->tx.target_itr;
2514 2515 2516 2517 2518 2519 2520
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
		/* Rx ITR needs to be increased, third priority */
		intval = i40e_buildreg_itr(I40E_RX_ITR,
					   q_vector->rx.target_itr);
		q_vector->rx.current_itr = q_vector->rx.target_itr;
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2521
	} else {
2522
		/* No ITR update, lowest priority */
2523
		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2524 2525
		if (q_vector->itr_countdown)
			q_vector->itr_countdown--;
2526 2527
	}

2528
	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2529
		wr32(hw, INTREG(q_vector->reg_idx), intval);
2530 2531
}

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
/**
 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40e_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
2546
	struct i40e_ring *ring;
2547
	bool clean_complete = true;
2548
	bool arm_wb = false;
2549
	int budget_per_ring;
2550
	int work_done = 0;
2551

2552
	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2553 2554 2555 2556
		napi_complete(napi);
		return 0;
	}

2557 2558 2559
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
2560
	i40e_for_each_ring(ring, q_vector->tx) {
2561
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2562 2563 2564 2565
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
2566
		ring->arm_wb = false;
2567
	}
2568

2569 2570 2571 2572
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

2573 2574 2575 2576
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2577

2578
	i40e_for_each_ring(ring, q_vector->rx) {
2579
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2580 2581

		work_done += cleaned;
2582 2583 2584
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
2585
	}
2586 2587

	/* If work not completed, return budget and polling will return */
2588
	if (!clean_complete) {
2589 2590 2591 2592 2593 2594 2595 2596 2597
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
			/* Tell napi that we are done polling */
			napi_complete_done(napi, work_done);

			/* Force an interrupt */
			i40e_force_wb(vsi, q_vector);

			/* Return budget-1 so that polling stops */
			return budget - 1;
		}
2608
tx_only:
2609 2610 2611
		if (arm_wb) {
			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
			i40e_enable_wb_on_itr(vsi, q_vector);
2612
		}
2613
		return budget;
2614
	}
2615

2616 2617 2618
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

2619
	/* Work is done so exit the polling mode and re-enable the interrupt */
2620
	napi_complete_done(napi, work_done);
2621

2622
	i40e_update_enable_itr(vsi, q_vector);
2623

2624
	return min(work_done, budget - 1);
2625 2626 2627 2628 2629 2630
}

/**
 * i40e_atr - Add a Flow Director ATR filter
 * @tx_ring:  ring to add programming descriptor to
 * @skb:      send buffer
2631
 * @tx_flags: send tx flags
2632 2633
 **/
static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2634
		     u32 tx_flags)
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	union {
		unsigned char *network;
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	struct tcphdr *th;
	unsigned int hlen;
	u32 flex_ptype, dtype_cmd;
2646
	int l4_proto;
2647
	u16 i;
2648 2649

	/* make sure ATR is enabled */
J
Jesse Brandeburg 已提交
2650
	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2651 2652
		return;

2653
	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2654 2655
		return;

2656 2657 2658 2659
	/* if sampling is disabled do nothing */
	if (!tx_ring->atr_sample_rate)
		return;

2660
	/* Currently only IPv4/IPv6 with TCP is supported */
2661 2662
	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
		return;
2663

2664 2665 2666
	/* snag network header to get L4 type and address */
	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
		      skb_inner_network_header(skb) : skb_network_header(skb);
2667

2668 2669 2670 2671
	/* Note: tx_flags gets modified to reflect inner protocols in
	 * tx_enable_csum function if encap is enabled.
	 */
	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2672
		/* access ihl as u8 to avoid unaligned access on ia64 */
2673 2674
		hlen = (hdr.network[0] & 0x0F) << 2;
		l4_proto = hdr.ipv4->protocol;
2675
	} else {
2676 2677 2678 2679 2680 2681 2682 2683 2684
		/* find the start of the innermost ipv6 header */
		unsigned int inner_hlen = hdr.network - skb->data;
		unsigned int h_offset = inner_hlen;

		/* this function updates h_offset to the end of the header */
		l4_proto =
		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
		/* hlen will contain our best estimate of the tcp header */
		hlen = h_offset - inner_hlen;
2685 2686
	}

2687
	if (l4_proto != IPPROTO_TCP)
2688 2689
		return;

2690 2691
	th = (struct tcphdr *)(hdr.network + hlen);

2692
	/* Due to lack of space, no more new filters can be programmed */
2693
	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2694
		return;
2695
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2696 2697 2698 2699 2700 2701
		/* HW ATR eviction will take care of removing filters on FIN
		 * and RST packets.
		 */
		if (th->fin || th->rst)
			return;
	}
2702 2703 2704

	tx_ring->atr_count++;

2705 2706 2707 2708 2709
	/* sample on all syn/fin/rst packets or once every atr sample rate */
	if (!th->fin &&
	    !th->syn &&
	    !th->rst &&
	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2710 2711 2712 2713 2714
		return;

	tx_ring->atr_count = 0;

	/* grab the next descriptor */
2715 2716 2717 2718 2719
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2720 2721 2722

	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2723
	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2724 2725 2726 2727 2728 2729 2730 2731 2732
		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

2733
	dtype_cmd |= (th->fin || th->rst) ?
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
		     I40E_TXD_FLTR_QW1_DEST_SHIFT;

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;

2745
	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2746
	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2747 2748 2749 2750 2751 2752 2753 2754 2755
		dtype_cmd |=
			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
	else
		dtype_cmd |=
			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2756

2757
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2758 2759
		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;

2760
	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
J
Jesse Brandeburg 已提交
2761
	fdir_desc->rsvd = cpu_to_le32(0);
2762
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
J
Jesse Brandeburg 已提交
2763
	fdir_desc->fd_id = cpu_to_le32(0);
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
}

/**
 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
2778 2779 2780
static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
					     struct i40e_ring *tx_ring,
					     u32 *flags)
2781 2782 2783 2784
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

2798
	/* if we have a HW VLAN tag being added, default to the HW one */
2799 2800
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2801 2802
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
2803
	} else if (protocol == htons(ETH_P_8021Q)) {
2804
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
2805

2806 2807 2808 2809 2810 2811 2812 2813 2814
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

2815 2816 2817
	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
		goto out;

2818
	/* Insert 802.1p priority into VLAN header */
2819 2820
	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
	    (skb->priority != TC_PRIO_CONTROL)) {
2821 2822 2823 2824 2825
		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
		tx_flags |= (skb->priority & 0x7) <<
				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
			struct vlan_ethhdr *vhdr;
2826 2827 2828 2829 2830
			int rc;

			rc = skb_cow_head(skb, 0);
			if (rc < 0)
				return rc;
2831 2832 2833 2834 2835 2836 2837
			vhdr = (struct vlan_ethhdr *)skb->data;
			vhdr->h_vlan_TCI = htons(tx_flags >>
						 I40E_TX_FLAGS_VLAN_SHIFT);
		} else {
			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
		}
	}
2838 2839

out:
2840 2841 2842 2843 2844 2845
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
2846
 * @first:    pointer to first Tx buffer for xmit
2847
 * @hdr_len:  ptr to the size of the packet header
2848
 * @cd_type_cmd_tso_mss: Quad Word 1
2849 2850 2851
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
2852 2853
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
2854
{
2855
	struct sk_buff *skb = first->skb;
2856
	u64 cd_cmd, cd_tso_len, cd_mss;
2857 2858 2859 2860 2861
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
2862 2863
	union {
		struct tcphdr *tcp;
2864
		struct udphdr *udp;
2865 2866 2867
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
2868
	u16 gso_segs, gso_size;
2869 2870
	int err;

2871 2872 2873
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2874 2875 2876
	if (!skb_is_gso(skb))
		return 0;

2877 2878 2879
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
2880

2881 2882
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2883

2884 2885 2886 2887
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
2888
	} else {
2889 2890 2891
		ip.v6->payload_len = 0;
	}

2892
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2893
					 SKB_GSO_GRE_CSUM |
2894
					 SKB_GSO_IPXIP4 |
2895
					 SKB_GSO_IPXIP6 |
2896
					 SKB_GSO_UDP_TUNNEL |
2897
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2898 2899 2900 2901
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

2902 2903 2904 2905
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
2906
			paylen = skb->len - l4_offset;
2907 2908
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
2909 2910
		}

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
2922 2923
	}

2924 2925 2926 2927
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
2928
	paylen = skb->len - l4_offset;
2929
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2930 2931 2932

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2933

2934 2935 2936 2937 2938 2939 2940 2941
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

2942 2943 2944
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
2945
	cd_mss = gso_size;
2946 2947 2948
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2949 2950 2951
	return 1;
}

J
Jacob Keller 已提交
2952 2953 2954 2955 2956
/**
 * i40e_tsyn - set up the tsyn context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @tx_flags: the collected send information
2957
 * @cd_type_cmd_tso_mss: Quad Word 1
J
Jacob Keller 已提交
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
 *
 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
 **/
static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
{
	struct i40e_pf *pf;

	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
		return 0;

	/* Tx timestamps cannot be sampled when doing TSO */
	if (tx_flags & I40E_TX_FLAGS_TSO)
		return 0;

	/* only timestamp the outbound packet if the user has requested it and
	 * we are not already transmitting a packet to be timestamped
	 */
	pf = i40e_netdev_to_pf(tx_ring->netdev);
2977 2978 2979
	if (!(pf->flags & I40E_FLAG_PTP))
		return 0;

2980
	if (pf->ptp_tx &&
2981
	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
J
Jacob Keller 已提交
2982
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2983
		pf->ptp_tx_start = jiffies;
J
Jacob Keller 已提交
2984 2985
		pf->ptp_tx_skb = skb_get(skb);
	} else {
2986
		pf->tx_hwtstamp_skipped++;
J
Jacob Keller 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995
		return 0;
	}

	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
				I40E_TXD_CTX_QW1_CMD_SHIFT;

	return 1;
}

2996 2997 2998
/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
2999
 * @tx_flags: pointer to Tx flags currently set
3000 3001
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
3002
 * @tx_ring: Tx descriptor ring
3003 3004
 * @cd_tunneling: ptr to context desc bits
 **/
3005 3006 3007 3008
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
3009
{
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
3020
	unsigned char *exthdr;
3021
	u32 offset, cmd = 0;
3022
	__be16 frag_off;
3023 3024
	u8 l4_proto = 0;

3025 3026 3027
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

3028 3029
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
3030

3031 3032 3033
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

3034
	if (skb->encapsulation) {
3035
		u32 tunnel = 0;
3036 3037
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3038 3039 3040 3041
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

3042 3043
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3044
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3045 3046

			exthdr = ip.hdr + sizeof(*ip.v6);
3047
			l4_proto = ip.v6->nexthdr;
3048 3049 3050
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
3051 3052 3053 3054
		}

		/* define outer transport */
		switch (l4_proto) {
3055
		case IPPROTO_UDP:
3056
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3057
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3058
			break;
3059
		case IPPROTO_GRE:
3060
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3061
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3062
			break;
3063 3064 3065 3066 3067
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
3068
		default:
3069 3070 3071 3072 3073
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
3074
		}
3075

3076 3077 3078 3079 3080 3081 3082
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

3083 3084 3085 3086
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

3087 3088
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3089
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3090 3091 3092
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

3093 3094 3095
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

3096 3097
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
3098
		l4_proto = 0;
3099

3100 3101 3102 3103 3104
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
3105
			*tx_flags |= I40E_TX_FLAGS_IPV6;
3106 3107 3108
	}

	/* Enable IP checksum offloads */
3109
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3110
		l4_proto = ip.v4->protocol;
3111 3112 3113
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
3114 3115 3116
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
3117
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3118
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3119 3120 3121 3122 3123 3124

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
3125
	}
3126

3127 3128
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3129 3130

	/* Enable L4 checksum offloads */
3131
	switch (l4_proto) {
3132 3133
	case IPPROTO_TCP:
		/* enable checksum offloads */
3134 3135
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3136 3137 3138
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
3139 3140 3141
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3142 3143 3144
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
3145 3146 3147
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3148 3149
		break;
	default:
3150 3151 3152 3153
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
3154
	}
3155 3156 3157

	*td_cmd |= cmd;
	*td_offset |= offset;
3158 3159

	return 1;
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
3174
	int i = tx_ring->next_to_use;
3175

3176 3177
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
3178 3179 3180
		return;

	/* grab the next descriptor */
3181 3182 3183 3184
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3185 3186 3187 3188

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3189
	context_desc->rsvd = cpu_to_le16(0);
3190 3191 3192
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

E
Eric Dumazet 已提交
3193 3194 3195 3196 3197 3198 3199
/**
 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
3200
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
E
Eric Dumazet 已提交
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

3216
/**
3217
 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3218 3219
 * @skb:      send buffer
 *
3220 3221 3222 3223 3224 3225 3226 3227
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
3228
 **/
3229
bool __i40e_chk_linearize(struct sk_buff *skb)
3230
{
3231
	const struct skb_frag_struct *frag, *stale;
3232
	int nr_frags, sum;
3233

3234
	/* no need to check if number of frags is less than 7 */
3235
	nr_frags = skb_shinfo(skb)->nr_frags;
3236
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3237
		return false;
3238

3239
	/* We need to walk through the list and validate that each group
3240
	 * of 6 fragments totals at least gso_size.
3241
	 */
3242
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3243 3244 3245 3246 3247 3248 3249 3250
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
3251
	sum = 1 - skb_shinfo(skb)->gso_size;
3252

3253 3254 3255 3256 3257 3258
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
3259 3260 3261 3262

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
3263 3264 3265
	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
		int stale_size = skb_frag_size(stale);

3266
		sum += skb_frag_size(frag++);
3267

3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
		/* The stale fragment may present us with a smaller
		 * descriptor than the actual fragment size. To account
		 * for that we need to remove all the data on the front and
		 * figure out what the remainder would be in the last
		 * descriptor associated with the fragment.
		 */
		if (stale_size > I40E_MAX_DATA_PER_TXD) {
			int align_pad = -(stale->page_offset) &
					(I40E_MAX_READ_REQ_SIZE - 1);

			sum -= align_pad;
			stale_size -= align_pad;

			do {
				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
			} while (stale_size > I40E_MAX_DATA_PER_TXD);
		}

3287 3288 3289 3290
		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

3291
		if (!nr_frags--)
3292 3293
			break;

3294
		sum -= stale_size;
3295 3296
	}

3297
	return false;
3298 3299
}

3300 3301 3302 3303 3304 3305 3306 3307 3308
/**
 * i40e_tx_map - Build the Tx descriptor
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
3309 3310
 *
 * Returns 0 on success, -1 on failure to DMA
3311
 **/
3312 3313 3314
static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
			      struct i40e_tx_buffer *first, u32 tx_flags,
			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3315 3316 3317
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
A
Alexander Duyck 已提交
3318
	struct skb_frag_struct *frag;
3319 3320
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
A
Alexander Duyck 已提交
3321
	u16 i = tx_ring->next_to_use;
3322 3323
	u32 td_tag = 0;
	dma_addr_t dma;
3324
	u16 desc_count = 1;
3325 3326 3327 3328 3329 3330 3331

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

A
Alexander Duyck 已提交
3332 3333 3334 3335
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

3336
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
3337 3338 3339
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3340 3341
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

A
Alexander Duyck 已提交
3342 3343 3344 3345 3346 3347 3348
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

3349 3350
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
A
Alexander Duyck 已提交
3351 3352 3353
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3354 3355
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
3356
					   max_data, td_tag);
3357 3358 3359

			tx_desc++;
			i++;
3360 3361
			desc_count++;

3362 3363 3364 3365 3366
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

3367 3368
			dma += max_data;
			size -= max_data;
3369

3370
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
A
Alexander Duyck 已提交
3371 3372
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}
3373 3374 3375 3376

		if (likely(!data_len))
			break;

A
Alexander Duyck 已提交
3377 3378
		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);
3379 3380 3381

		tx_desc++;
		i++;
3382 3383
		desc_count++;

3384 3385 3386 3387 3388
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

A
Alexander Duyck 已提交
3389 3390
		size = skb_frag_size(frag);
		data_len -= size;
3391

A
Alexander Duyck 已提交
3392 3393
		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);
3394

A
Alexander Duyck 已提交
3395 3396
		tx_bi = &tx_ring->tx_bi[i];
	}
3397

3398
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
A
Alexander Duyck 已提交
3399 3400 3401 3402 3403 3404 3405

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

E
Eric Dumazet 已提交
3406
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3407

3408 3409 3410
	/* write last descriptor with EOP bit */
	td_cmd |= I40E_TX_DESC_CMD_EOP;

3411 3412
	/* We OR these values together to check both against 4 (WB_STRIDE)
	 * below. This is safe since we don't re-use desc_count afterwards.
3413 3414 3415
	 */
	desc_count |= ++tx_ring->packet_stride;

3416
	if (desc_count >= WB_STRIDE) {
3417 3418
		/* write last descriptor with RS bit set */
		td_cmd |= I40E_TX_DESC_CMD_RS;
3419 3420 3421 3422
		tx_ring->packet_stride = 0;
	}

	tx_desc->cmd_type_offset_bsz =
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
3435

A
Alexander Duyck 已提交
3436
	/* notify HW of packet */
3437
	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
3438
		writel(i, tx_ring->tail);
3439 3440 3441 3442 3443

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
3444
	}
3445

3446
	return 0;
3447 3448

dma_error:
A
Alexander Duyck 已提交
3449
	dev_info(tx_ring->dev, "TX DMA map failed\n");
3450 3451 3452 3453

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
A
Alexander Duyck 已提交
3454
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3455 3456 3457 3458 3459 3460 3461 3462
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
3463 3464

	return -1;
3465 3466
}

3467 3468 3469 3470 3471
/**
 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
 * @xdp: data to transmit
 * @xdp_ring: XDP Tx ring
 **/
3472
static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3473 3474 3475 3476 3477
			      struct i40e_ring *xdp_ring)
{
	u16 i = xdp_ring->next_to_use;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
3478
	u32 size = xdpf->len;
3479 3480 3481 3482 3483 3484 3485
	dma_addr_t dma;

	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
		xdp_ring->tx_stats.tx_busy++;
		return I40E_XDP_CONSUMED;
	}

3486
	dma = dma_map_single(xdp_ring->dev, xdpf->data, size, DMA_TO_DEVICE);
3487 3488 3489 3490 3491 3492
	if (dma_mapping_error(xdp_ring->dev, dma))
		return I40E_XDP_CONSUMED;

	tx_bi = &xdp_ring->tx_bi[i];
	tx_bi->bytecount = size;
	tx_bi->gso_segs = 1;
3493
	tx_bi->xdpf = xdpf;
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

	/* record length, and DMA address */
	dma_unmap_len_set(tx_bi, len, size);
	dma_unmap_addr_set(tx_bi, dma, dma);

	tx_desc = I40E_TX_DESC(xdp_ring, i);
	tx_desc->buffer_addr = cpu_to_le64(dma);
	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
						  | I40E_TXD_CMD,
						  0, size, 0);

	/* Make certain all of the status bits have been updated
	 * before next_to_watch is written.
	 */
	smp_wmb();

	i++;
	if (i == xdp_ring->count)
		i = 0;

	tx_bi->next_to_watch = tx_desc;
	xdp_ring->next_to_use = i;

	return I40E_XDP_TX;
}

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
3538
	int tso, count;
J
Jacob Keller 已提交
3539
	int tsyn;
J
Jesse Brandeburg 已提交
3540

3541 3542 3543
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

S
Scott Peterson 已提交
3544 3545
	i40e_trace(xmit_frame_ring, skb, tx_ring);

3546
	count = i40e_xmit_descriptor_count(skb);
3547
	if (i40e_chk_linearize(skb, count)) {
3548 3549 3550 3551
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
3552
		count = i40e_txd_use_count(skb->len);
3553 3554
		tx_ring->tx_stats.tx_linearize++;
	}
3555 3556 3557 3558 3559 3560 3561 3562 3563

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
3564
		return NETDEV_TX_BUSY;
3565
	}
3566

3567 3568 3569 3570 3571 3572
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

3573 3574 3575 3576 3577
	/* prepare the xmit flags */
	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
		goto out_drop;

	/* obtain protocol of skb */
3578
	protocol = vlan_get_protocol(skb);
3579 3580

	/* setup IPv4/IPv6 offloads */
3581
	if (protocol == htons(ETH_P_IP))
3582
		tx_flags |= I40E_TX_FLAGS_IPV4;
3583
	else if (protocol == htons(ETH_P_IPV6))
3584 3585
		tx_flags |= I40E_TX_FLAGS_IPV6;

3586
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3587 3588 3589 3590 3591 3592

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

3593 3594 3595 3596 3597 3598
	/* Always offload the checksum, since it's in the data descriptor */
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;

J
Jacob Keller 已提交
3599 3600 3601 3602 3603
	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);

	if (tsyn)
		tx_flags |= I40E_TX_FLAGS_TSYN;

3604 3605
	skb_tx_timestamp(skb);

3606 3607 3608
	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

3609 3610 3611 3612 3613 3614 3615
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

	/* Add Flow Director ATR if it's enabled.
	 *
	 * NOTE: this must always be directly before the data descriptor.
	 */
3616
	i40e_atr(tx_ring, skb, tx_flags);
3617

3618 3619 3620
	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
			td_cmd, td_offset))
		goto cleanup_tx_tstamp;
3621 3622 3623 3624

	return NETDEV_TX_OK;

out_drop:
S
Scott Peterson 已提交
3625
	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3626 3627
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
3628 3629 3630 3631 3632 3633 3634 3635 3636
cleanup_tx_tstamp:
	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);

		dev_kfree_skb_any(pf->ptp_tx_skb);
		pf->ptp_tx_skb = NULL;
		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
	}

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
	return NETDEV_TX_OK;
}

/**
 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40e_netdev_priv *np = netdev_priv(netdev);
	struct i40e_vsi *vsi = np->vsi;
3651
	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3652 3653 3654 3655

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
3656 3657
	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
		return NETDEV_TX_OK;
3658 3659 3660

	return i40e_xmit_frame_ring(skb, tx_ring);
}
3661 3662 3663 3664 3665 3666

/**
 * i40e_xdp_xmit - Implements ndo_xdp_xmit
 * @dev: netdev
 * @xdp: XDP buffer
 *
3667 3668 3669 3670 3671
 * Returns number of frames successfully sent. Frames that fail are
 * free'ed via XDP return API.
 *
 * For error cases, a negative errno code is returned and no-frames
 * are transmitted (caller must handle freeing frames).
3672
 **/
3673
int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames)
3674 3675 3676 3677
{
	struct i40e_netdev_priv *np = netdev_priv(dev);
	unsigned int queue_index = smp_processor_id();
	struct i40e_vsi *vsi = np->vsi;
3678 3679
	int drops = 0;
	int i;
3680 3681 3682 3683 3684 3685 3686

	if (test_bit(__I40E_VSI_DOWN, vsi->state))
		return -ENETDOWN;

	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs)
		return -ENXIO;

3687 3688 3689
	for (i = 0; i < n; i++) {
		struct xdp_frame *xdpf = frames[i];
		int err;
3690

3691 3692 3693 3694 3695 3696 3697 3698
		err = i40e_xmit_xdp_ring(xdpf, vsi->xdp_rings[queue_index]);
		if (err != I40E_XDP_TX) {
			xdp_return_frame_rx_napi(xdpf);
			drops++;
		}
	}

	return n - drops;
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
}

/**
 * i40e_xdp_flush - Implements ndo_xdp_flush
 * @dev: netdev
 **/
void i40e_xdp_flush(struct net_device *dev)
{
	struct i40e_netdev_priv *np = netdev_priv(dev);
	unsigned int queue_index = smp_processor_id();
	struct i40e_vsi *vsi = np->vsi;

	if (test_bit(__I40E_VSI_DOWN, vsi->state))
		return;

	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs)
		return;

	i40e_xdp_ring_update_tail(vsi->xdp_rings[queue_index]);
}