i40e_txrx.c 94.9 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
G
Greg Rose 已提交
15 16
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
17 18 19 20 21 22 23 24 25 26
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

M
Mitch Williams 已提交
27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29
#include <linux/bpf_trace.h>
30
#include "i40e.h"
S
Scott Peterson 已提交
31
#include "i40e_trace.h"
32
#include "i40e_prototype.h"
33 34 35 36 37 38 39 40 41 42 43

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

44
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/**
 * i40e_fdir - Generate a Flow Director descriptor based on fdata
 * @tx_ring: Tx ring to send buffer on
 * @fdata: Flow director filter data
 * @add: Indicate if we are adding a rule or deleting one
 *
 **/
static void i40e_fdir(struct i40e_ring *tx_ring,
		      struct i40e_fdir_filter *fdata, bool add)
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	u32 flex_ptype, dtype_cmd;
	u16 i;

	/* grab the next descriptor */
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

76 77 78
	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	/* Use LAN VSI Id if not programmed by user */
	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

	dtype_cmd |= add ?
		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;

	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);

	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);

	if (fdata->cnt_index) {
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
			     ((u32)fdata->cnt_index <<
			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
	}

	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
	fdir_desc->rsvd = cpu_to_le32(0);
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
}

111
#define I40E_FD_CLEAN_DELAY 10
112 113
/**
 * i40e_program_fdir_filter - Program a Flow Director filter
114 115
 * @fdir_data: Packet data that will be filter parameters
 * @raw_packet: the pre-allocated packet buffer for FDir
116
 * @pf: The PF pointer
117 118
 * @add: True for add/update, False for remove
 **/
119 120 121
static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
				    u8 *raw_packet, struct i40e_pf *pf,
				    bool add)
122
{
123
	struct i40e_tx_buffer *tx_buf, *first;
124 125 126 127 128 129 130 131 132
	struct i40e_tx_desc *tx_desc;
	struct i40e_ring *tx_ring;
	struct i40e_vsi *vsi;
	struct device *dev;
	dma_addr_t dma;
	u32 td_cmd = 0;
	u16 i;

	/* find existing FDIR VSI */
133
	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
134 135 136
	if (!vsi)
		return -ENOENT;

137
	tx_ring = vsi->tx_rings[0];
138 139
	dev = tx_ring->dev;

140
	/* we need two descriptors to add/del a filter and we can wait */
141 142 143
	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
		if (!i)
			return -EAGAIN;
144
		msleep_interruptible(1);
145
	}
146

147 148
	dma = dma_map_single(dev, raw_packet,
			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
149 150 151 152
	if (dma_mapping_error(dev, dma))
		goto dma_fail;

	/* grab the next descriptor */
153
	i = tx_ring->next_to_use;
154
	first = &tx_ring->tx_bi[i];
155
	i40e_fdir(tx_ring, fdir_data, add);
156 157

	/* Now program a dummy descriptor */
158 159
	i = tx_ring->next_to_use;
	tx_desc = I40E_TX_DESC(tx_ring, i);
160
	tx_buf = &tx_ring->tx_bi[i];
161

162 163 164
	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;

	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
165

166
	/* record length, and DMA address */
167
	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
168 169
	dma_unmap_addr_set(tx_buf, dma, dma);

170
	tx_desc->buffer_addr = cpu_to_le64(dma);
171
	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
172

173 174 175
	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
	tx_buf->raw_buf = (void *)raw_packet;

176
	tx_desc->cmd_type_offset_bsz =
177
		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
178 179

	/* Force memory writes to complete before letting h/w
180
	 * know there are new descriptors to fetch.
181 182 183
	 */
	wmb();

184
	/* Mark the data descriptor to be watched */
185
	first->next_to_watch = tx_desc;
186

187 188 189 190 191 192 193
	writel(tx_ring->next_to_use, tx_ring->tail);
	return 0;

dma_fail:
	return -1;
}

194 195 196 197 198 199 200 201 202 203 204 205
#define IP_HEADER_OFFSET 14
#define I40E_UDPIP_DUMMY_PACKET_LEN 42
/**
 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
206
				   bool add)
207 208 209 210
{
	struct i40e_pf *pf = vsi->back;
	struct udphdr *udp;
	struct iphdr *ip;
211
	u8 *raw_packet;
212 213 214 215 216
	int ret;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

217 218 219
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
220 221 222 223 224 225
	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

226
	ip->daddr = fd_data->dst_ip;
227
	udp->dest = fd_data->dst_port;
228
	ip->saddr = fd_data->src_ip;
229 230
	udp->source = fd_data->src_port;

231 232 233 234 235 236 237 238
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

239 240 241 242
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
243 244
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
245 246 247
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
248
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
249 250 251 252 253 254 255 256
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
257
	}
258

259 260 261 262 263
	if (add)
		pf->fd_udp4_filter_cnt++;
	else
		pf->fd_udp4_filter_cnt--;

264
	return 0;
265 266 267 268 269 270 271 272 273 274 275 276 277
}

#define I40E_TCPIP_DUMMY_PACKET_LEN 54
/**
 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
278
				   bool add)
279 280 281 282
{
	struct i40e_pf *pf = vsi->back;
	struct tcphdr *tcp;
	struct iphdr *ip;
283
	u8 *raw_packet;
284 285 286 287 288 289 290
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
		0x0, 0x72, 0, 0, 0, 0};

291 292 293
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
294 295 296 297 298 299
	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

300
	ip->daddr = fd_data->dst_ip;
301
	tcp->dest = fd_data->dst_port;
302
	ip->saddr = fd_data->src_ip;
303 304
	tcp->source = fd_data->src_port;

305 306 307 308 309 310 311 312
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

313
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
314 315 316
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
317 318
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
319 320 321
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
322
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
323 324 325 326 327 328 329
		if (add)
			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
330 331
	}

332
	if (add) {
333
		pf->fd_tcp4_filter_cnt++;
334 335 336
		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
		    I40E_DEBUG_FD & pf->hw.debug_mask)
			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
337
		pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
338
	} else {
339
		pf->fd_tcp4_filter_cnt--;
340 341
	}

342
	return 0;
343 344
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
/**
 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
				    struct i40e_fdir_filter *fd_data,
				    bool add)
{
	struct i40e_pf *pf = vsi->back;
	struct sctphdr *sctp;
	struct iphdr *ip;
	u8 *raw_packet;
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

	ip->daddr = fd_data->dst_ip;
	sctp->dest = fd_data->dst_port;
	ip->saddr = fd_data->src_ip;
	sctp->source = fd_data->src_port;

	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
	}

	if (add)
		pf->fd_sctp4_filter_cnt++;
	else
		pf->fd_sctp4_filter_cnt--;

	return 0;
}

419 420 421 422 423 424 425 426 427 428 429 430
#define I40E_IP_DUMMY_PACKET_LEN 34
/**
 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
				  struct i40e_fdir_filter *fd_data,
431
				  bool add)
432 433 434
{
	struct i40e_pf *pf = vsi->back;
	struct iphdr *ip;
435
	u8 *raw_packet;
436 437 438 439 440 441 442 443
	int ret;
	int i;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0};

	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
444 445 446 447 448 449
		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
		if (!raw_packet)
			return -ENOMEM;
		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);

450 451
		ip->saddr = fd_data->src_ip;
		ip->daddr = fd_data->dst_ip;
452 453
		ip->protocol = 0;

454 455 456 457 458 459 460 461
		if (fd_data->flex_filter) {
			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
			__be16 pattern = fd_data->flex_word;
			u16 off = fd_data->flex_offset;

			*((__force __be16 *)(payload + off)) = pattern;
		}

462 463 464 465
		fd_data->pctype = i;
		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
		if (ret) {
			dev_info(&pf->pdev->dev,
466 467
				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
				 fd_data->pctype, fd_data->fd_id, ret);
468 469 470 471 472
			/* The packet buffer wasn't added to the ring so we
			 * need to free it now.
			 */
			kfree(raw_packet);
			return -EOPNOTSUPP;
473
		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
474 475 476 477 478 479 480 481
			if (add)
				dev_info(&pf->pdev->dev,
					 "Filter OK for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
			else
				dev_info(&pf->pdev->dev,
					 "Filter deleted for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
482 483 484
		}
	}

485 486 487 488 489
	if (add)
		pf->fd_ip4_filter_cnt++;
	else
		pf->fd_ip4_filter_cnt--;

490
	return 0;
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
}

/**
 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 * @vsi: pointer to the targeted VSI
 * @cmd: command to get or set RX flow classification rules
 * @add: true adds a filter, false removes it
 *
 **/
int i40e_add_del_fdir(struct i40e_vsi *vsi,
		      struct i40e_fdir_filter *input, bool add)
{
	struct i40e_pf *pf = vsi->back;
	int ret;

	switch (input->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
508
		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
509 510
		break;
	case UDP_V4_FLOW:
511
		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
512
		break;
513 514 515
	case SCTP_V4_FLOW:
		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
		break;
516 517 518
	case IP_USER_FLOW:
		switch (input->ip4_proto) {
		case IPPROTO_TCP:
519
			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
520 521
			break;
		case IPPROTO_UDP:
522
			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
523
			break;
524 525 526
		case IPPROTO_SCTP:
			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
			break;
527
		case IPPROTO_IP:
528
			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
529
			break;
530 531
		default:
			/* We cannot support masking based on protocol */
532 533 534
			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
				 input->ip4_proto);
			return -EINVAL;
535 536 537
		}
		break;
	default:
538
		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
539
			 input->flow_type);
540
		return -EINVAL;
541 542
	}

543 544 545 546 547 548
	/* The buffer allocated here will be normally be freed by
	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
	 * completion. In the event of an error adding the buffer to the FDIR
	 * ring, it will immediately be freed. It may also be freed by
	 * i40e_clean_tx_ring() when closing the VSI.
	 */
549 550 551
	return ret;
}

552 553 554
/**
 * i40e_fd_handle_status - check the Programming Status for FD
 * @rx_ring: the Rx ring for this descriptor
555
 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
556 557 558 559 560
 * @prog_id: the id originally used for programming
 *
 * This is used to verify if the FD programming or invalidation
 * requested by SW to the HW is successful or not and take actions accordingly.
 **/
561 562
static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
				  union i40e_rx_desc *rx_desc, u8 prog_id)
563
{
564 565 566
	struct i40e_pf *pf = rx_ring->vsi->back;
	struct pci_dev *pdev = pf->pdev;
	u32 fcnt_prog, fcnt_avail;
567
	u32 error;
568
	u64 qw;
569

570
	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
571 572 573
	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;

574
	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
575
		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
576 577 578
		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
		    (I40E_DEBUG_FD & pf->hw.debug_mask))
			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
579
				 pf->fd_inv);
580

581 582 583 584 585 586
		/* Check if the programming error is for ATR.
		 * If so, auto disable ATR and set a state for
		 * flush in progress. Next time we come here if flush is in
		 * progress do nothing, once flush is complete the state will
		 * be cleared.
		 */
587
		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
588 589
			return;

590 591 592 593
		pf->fd_add_err++;
		/* store the current atr filter count */
		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);

594
		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
595 596
		    pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) {
			pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
597
			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
598 599
		}

600
		/* filter programming failed most likely due to table full */
601
		fcnt_prog = i40e_get_global_fd_count(pf);
602
		fcnt_avail = pf->fdir_pf_filter_count;
603 604 605 606 607
		/* If ATR is running fcnt_prog can quickly change,
		 * if we are very close to full, it makes sense to disable
		 * FD ATR/SB and then re-enable it when there is room.
		 */
		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
608
			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
609 610
			    !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED)) {
				pf->flags |= I40E_FLAG_FD_SB_AUTO_DISABLED;
611 612
				if (I40E_DEBUG_FD & pf->hw.debug_mask)
					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
613 614
			}
		}
615
	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
616
		if (I40E_DEBUG_FD & pf->hw.debug_mask)
617
			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
618
				 rx_desc->wb.qword0.hi_dword.fd_id);
619
	}
620 621 622
}

/**
A
Alexander Duyck 已提交
623
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
624 625 626
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
A
Alexander Duyck 已提交
627 628
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
629
{
A
Alexander Duyck 已提交
630
	if (tx_buffer->skb) {
631 632
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
633 634
		else if (ring_is_xdp(ring))
			page_frag_free(tx_buffer->raw_buf);
635 636
		else
			dev_kfree_skb_any(tx_buffer->skb);
A
Alexander Duyck 已提交
637
		if (dma_unmap_len(tx_buffer, len))
638
			dma_unmap_single(ring->dev,
639 640
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
641
					 DMA_TO_DEVICE);
A
Alexander Duyck 已提交
642 643 644 645 646
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
647
	}
648

A
Alexander Duyck 已提交
649 650
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
651
	dma_unmap_len_set(tx_buffer, len, 0);
A
Alexander Duyck 已提交
652
	/* tx_buffer must be completely set up in the transmit path */
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
}

/**
 * i40e_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
A
Alexander Duyck 已提交
669 670
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
671 672 673 674 675 676 677 678 679

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
680 681 682 683 684

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
685
	netdev_tx_reset_queue(txring_txq(tx_ring));
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
}

/**
 * i40e_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40e_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40e_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

/**
 * i40e_get_tx_pending - how many tx descriptors not processed
 * @tx_ring: the ring of descriptors
 *
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
 **/
714
u32 i40e_get_tx_pending(struct i40e_ring *ring)
715
{
J
Jesse Brandeburg 已提交
716 717
	u32 head, tail;

718
	head = i40e_get_head(ring);
J
Jesse Brandeburg 已提交
719 720 721 722 723 724 725
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
726 727
}

728
#define WB_STRIDE 4
729

730 731
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
732 733 734
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
735 736 737
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
738 739
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
740 741 742
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
743
	struct i40e_tx_desc *tx_head;
744
	struct i40e_tx_desc *tx_desc;
745 746
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
747 748 749

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
750
	i -= tx_ring->count;
751

752 753
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

A
Alexander Duyck 已提交
754 755
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
756 757 758 759 760

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

A
Alexander Duyck 已提交
761 762 763
		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

S
Scott Peterson 已提交
764
		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
765 766
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
767 768
			break;

A
Alexander Duyck 已提交
769
		/* clear next_to_watch to prevent false hangs */
770 771
		tx_buf->next_to_watch = NULL;

A
Alexander Duyck 已提交
772 773 774
		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;
775

776 777 778 779 780
		/* free the skb/XDP data */
		if (ring_is_xdp(tx_ring))
			page_frag_free(tx_buf->raw_buf);
		else
			napi_consume_skb(tx_buf->skb, napi_budget);
781

A
Alexander Duyck 已提交
782 783 784 785 786
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);
787

A
Alexander Duyck 已提交
788 789 790
		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);
791

A
Alexander Duyck 已提交
792 793
		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
S
Scott Peterson 已提交
794 795
			i40e_trace(clean_tx_irq_unmap,
				   tx_ring, tx_desc, tx_buf);
796 797 798 799

			tx_buf++;
			tx_desc++;
			i++;
A
Alexander Duyck 已提交
800 801
			if (unlikely(!i)) {
				i -= tx_ring->count;
802 803 804 805
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

A
Alexander Duyck 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

826 827
		prefetch(tx_desc);

A
Alexander Duyck 已提交
828 829 830 831 832
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
833
	tx_ring->next_to_clean = i;
834
	u64_stats_update_begin(&tx_ring->syncp);
835 836
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
837
	u64_stats_update_end(&tx_ring->syncp);
838 839
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;
A
Alexander Duyck 已提交
840

841 842 843 844 845 846
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
847
		unsigned int j = i40e_get_tx_pending(tx_ring);
848 849

		if (budget &&
850
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
851
		    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
852 853 854
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}
855

856 857 858
	if (ring_is_xdp(tx_ring))
		return !!budget;

859 860
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
861 862
				  total_packets, total_bytes);

863
#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
864 865 866 867 868 869 870 871
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
872
		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
873 874 875 876 877 878
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

879 880 881 882
	return !!budget;
}

/**
883
 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
884
 * @vsi: the VSI we care about
885
 * @q_vector: the vector on which to enable writeback
886 887
 *
 **/
888 889
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
890
{
891
	u16 flags = q_vector->tx.ring[0].flags;
892
	u32 val;
893

894 895
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;
896

897 898
	if (q_vector->arm_wb_state)
		return;
899

900 901 902
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
903

904 905 906 907 908 909
		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
		     val);
	} else {
		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
910

911 912 913 914 915 916 917 918 919 920 921 922 923 924
		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
	q_vector->arm_wb_state = true;
}

/**
 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
			  /* allow 00 to be written to the index */

		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
					 vsi->base_vector - 1), val);
	} else {
		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
			/* allow 00 to be written to the index */

		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
943 944 945 946 947 948
}

/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
949 950
 * Returns true if ITR changed, false if not
 *
951 952 953 954 955 956 957 958
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
959
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
960 961 962
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
	u32 new_itr = rc->itr;
963
	int bytes_per_usec;
964
	unsigned int usecs, estimated_usecs;
965 966

	if (rc->total_packets == 0 || !rc->itr)
967
		return false;
968

969
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
970
	bytes_per_usec = rc->total_bytes / usecs;
971 972 973 974 975 976 977 978 979 980 981 982

	/* The calculations in this algorithm depend on interrupts actually
	 * firing at the ITR rate. This may not happen if the packet rate is
	 * really low, or if we've been napi polling. Check to make sure
	 * that's not the case before we continue.
	 */
	estimated_usecs = jiffies_to_usecs(jiffies - rc->last_itr_update);
	if (estimated_usecs > usecs) {
		new_latency_range = I40E_LOW_LATENCY;
		goto reset_latency;
	}

983
	/* simple throttlerate management
984
	 *   0-10MB/s   lowest (50000 ints/s)
985
	 *  10-20MB/s   low    (20000 ints/s)
986
	 *  20-1249MB/s bulk   (18000 ints/s)
987 988 989 990
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
991 992
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
993
	 */
994
	switch (new_latency_range) {
995
	case I40E_LOWEST_LATENCY:
996
		if (bytes_per_usec > 10)
997 998 999
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
1000
		if (bytes_per_usec > 20)
1001
			new_latency_range = I40E_BULK_LATENCY;
1002
		else if (bytes_per_usec <= 10)
1003 1004 1005
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
1006
	default:
1007
		if (bytes_per_usec <= 20)
1008
			new_latency_range = I40E_LOW_LATENCY;
1009 1010
		break;
	}
1011

1012
reset_latency:
1013
	rc->latency_range = new_latency_range;
1014 1015 1016

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
1017
		new_itr = I40E_ITR_50K;
1018 1019 1020 1021 1022
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
1023 1024
		new_itr = I40E_ITR_18K;
		break;
1025 1026 1027 1028 1029 1030
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
1031
	rc->last_itr_update = jiffies;
1032 1033 1034 1035 1036 1037

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}
	return false;
1038 1039
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_bi[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	new_buff->dma		= old_buff->dma;
	new_buff->page		= old_buff->page;
	new_buff->page_offset	= old_buff->page_offset;
	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
/**
 * i40e_rx_is_programming_status - check for programming status descriptor
 * @qw: qword representing status_error_len in CPU ordering
 *
 * The value of in the descriptor length field indicate if this
 * is a programming status descriptor for flow director or FCoE
 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
 * it is a packet descriptor.
 **/
static inline bool i40e_rx_is_programming_status(u64 qw)
{
	/* The Rx filter programming status and SPH bit occupy the same
	 * spot in the descriptor. Since we don't support packet split we
	 * can just reuse the bit as an indication that this is a
	 * programming status descriptor.
	 */
	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
}

1085 1086 1087 1088
/**
 * i40e_clean_programming_status - clean the programming status descriptor
 * @rx_ring: the rx ring that has this descriptor
 * @rx_desc: the rx descriptor written back by HW
1089
 * @qw: qword representing status_error_len in CPU ordering
1090 1091 1092 1093 1094 1095 1096
 *
 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 * status being successful or not and take actions accordingly. FCoE should
 * handle its context/filter programming/invalidation status and take actions.
 *
 **/
static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1097 1098
					  union i40e_rx_desc *rx_desc,
					  u64 qw)
1099
{
1100 1101
	struct i40e_rx_buffer *rx_buffer;
	u32 ntc = rx_ring->next_to_clean;
1102 1103
	u8 id;

1104
	/* fetch, update, and store next to clean */
1105
	rx_buffer = &rx_ring->rx_bi[ntc++];
1106 1107 1108 1109 1110
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

1111 1112 1113 1114 1115 1116 1117
	/* place unused page back on the ring */
	i40e_reuse_rx_page(rx_ring, rx_buffer);
	rx_ring->rx_stats.page_reuse_count++;

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;

1118 1119 1120 1121
	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;

	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1122
		i40e_fd_handle_status(rx_ring, rx_desc, id);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
}

/**
 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

J
Jesse Brandeburg 已提交
1139 1140
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
1141 1142 1143 1144 1145
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

1146 1147
	u64_stats_init(&tx_ring->syncp);

1148 1149
	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1150 1151 1152 1153
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

1186 1187 1188 1189 1190
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

1191 1192
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
1193 1194 1195 1196 1197
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

1198 1199 1200 1201 1202 1203
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
1204
					      rx_ring->rx_buf_len,
1205 1206 1207 1208
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1209
				     i40e_rx_pg_size(rx_ring),
1210 1211
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
1212

1213
		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1214 1215 1216

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
1217 1218 1219 1220 1221 1222 1223 1224
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

1225
	rx_ring->next_to_alloc = 0;
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40e_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40e_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40e_clean_rx_ring(rx_ring);
1239
	rx_ring->xdp_prog = NULL;
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40e_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

J
Jesse Brandeburg 已提交
1261 1262
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
1263 1264 1265 1266 1267
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

1268
	u64_stats_init(&rx_ring->syncp);
1269

1270
	/* Round up to nearest 4K */
1271
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

1282
	rx_ring->next_to_alloc = 0;
1283 1284 1285
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

1286 1287
	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
1303 1304 1305 1306

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

1307 1308 1309 1310 1311 1312 1313 1314 1315
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
/**
 * i40e_rx_offset - Return expected offset into page to access data
 * @rx_ring: Ring we are requesting offset of
 *
 * Returns the offset value for ring into the data buffer.
 */
static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
{
	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
}

1327
/**
1328 1329 1330
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
1331
 *
1332 1333
 * Returns true if the page was successfully allocated or
 * reused.
1334
 **/
1335 1336
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
1337
{
1338 1339
	struct page *page = bi->page;
	dma_addr_t dma;
1340

1341 1342 1343 1344 1345
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
1346

1347
	/* alloc new page for storage */
1348
	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1349 1350 1351 1352
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
1353

1354
	/* map page for use */
1355
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1356
				 i40e_rx_pg_size(rx_ring),
1357 1358
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
1359

1360 1361
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
1362
	 */
1363
	if (dma_mapping_error(rx_ring->dev, dma)) {
1364
		__free_pages(page, i40e_rx_pg_order(rx_ring));
1365 1366
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
1367 1368
	}

1369 1370
	bi->dma = dma;
	bi->page = page;
1371
	bi->page_offset = i40e_rx_offset(rx_ring);
1372 1373

	/* initialize pagecnt_bias to 1 representing we fully own page */
1374
	bi->pagecnt_bias = 1;
1375

1376 1377
	return true;
}
1378

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1389

1390 1391 1392 1393 1394
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
1395 1396 1397
}

/**
1398
 * i40e_alloc_rx_buffers - Replace used receive buffers
1399 1400
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
1401
 *
1402
 * Returns false if all allocations were successful, true if any fail
1403
 **/
1404
bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1405
{
1406
	u16 ntu = rx_ring->next_to_use;
1407 1408 1409 1410 1411
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
1412
		return false;
1413

1414 1415
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
1416

1417 1418 1419
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
1420

1421 1422 1423
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
1424
						 rx_ring->rx_buf_len,
1425 1426
						 DMA_FROM_DEVICE);

1427 1428 1429 1430
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1449 1450 1451

	return false;

1452
no_buffers:
1453 1454
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1455 1456 1457 1458 1459

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
1460 1461 1462 1463 1464 1465
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
1466
 * @rx_desc: the receive descriptor
1467 1468 1469
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
1470
				    union i40e_rx_desc *rx_desc)
1471
{
1472 1473
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
1474
	bool ipv4, ipv6;
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
1485

1486 1487
	skb->ip_summed = CHECKSUM_NONE;

1488 1489
	skb_checksum_none_assert(skb);

1490
	/* Rx csum enabled and ip headers found? */
1491 1492 1493 1494
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
1495
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1496 1497 1498 1499
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
1500 1501
		return;

1502 1503 1504 1505
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1506 1507

	if (ipv4 &&
1508 1509
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1510 1511
		goto checksum_fail;

J
Jesse Brandeburg 已提交
1512
	/* likely incorrect csum if alternate IP extension headers found */
1513
	if (ipv6 &&
1514
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1515
		/* don't increment checksum err here, non-fatal err */
1516 1517
		return;

1518
	/* there was some L4 error, count error and punt packet to the stack */
1519
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1520 1521 1522 1523 1524 1525
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
1526
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1527 1528
		return;

1529 1530 1531
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
1532
	 */
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
1546 1547 1548 1549 1550

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
1551 1552 1553
}

/**
1554
 * i40e_ptype_to_htype - get a hash type
1555 1556 1557 1558
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
1559
static inline int i40e_ptype_to_htype(u8 ptype)
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
1587
	const __le64 rss_mask =
1588 1589 1590
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

1591
	if (!(ring->netdev->features & NETIF_F_RXHASH))
1592 1593 1594 1595 1596 1597 1598 1599
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

1600
/**
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 **/
static inline
void i40e_process_skb_fields(struct i40e_ring *rx_ring,
			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			     u8 rx_ptype)
{
	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;
1619 1620
	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1621 1622
		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;

1623
	if (unlikely(tsynvalid))
1624
		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1625 1626 1627 1628 1629 1630

	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);

	skb_record_rx_queue(skb, rx_ring->queue_index);
1631 1632 1633

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1634 1635 1636 1637 1638 1639
}

/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
1640
 * @rx_desc: pointer to the EOP Rx descriptor
1641 1642 1643 1644 1645 1646 1647 1648 1649
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
1650 1651 1652
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
				 union i40e_rx_desc *rx_desc)

1653
{
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	/* XDP packets use error pointer so abort at this point */
	if (IS_ERR(skb))
		return true;

	/* ERR_MASK will only have valid bits if EOP set, and
	 * what we are doing here is actually checking
	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
	 * the error field
	 */
	if (unlikely(i40e_test_staterr(rx_desc,
				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
		dev_kfree_skb_any(skb);
		return true;
	}

1669 1670 1671 1672 1673 1674 1675 1676
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
1677
 * i40e_page_is_reusable - check if any reuse is possible
1678
 * @page: page struct to check
1679 1680 1681
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
1682
 */
1683
static inline bool i40e_page_is_reusable(struct page *page)
1684
{
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
1716
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1717
{
1718 1719
	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
	struct page *page = rx_buffer->page;
1720 1721 1722 1723 1724 1725 1726

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
1727
	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1728 1729
		return false;
#else
1730 1731 1732
#define I40E_LAST_OFFSET \
	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1733 1734 1735
		return false;
#endif

1736 1737 1738 1739
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
	 */
1740
	if (unlikely(!pagecnt_bias)) {
1741 1742 1743
		page_ref_add(page, USHRT_MAX);
		rx_buffer->pagecnt_bias = USHRT_MAX;
	}
1744

1745
	return true;
1746 1747 1748 1749 1750 1751 1752
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @skb: sk_buff to place the data into
1753
 * @size: packet length from rx_desc
1754 1755
 *
 * This function will add the data contained in rx_buffer->page to the skb.
1756
 * It will just attach the page as a frag to the skb.
1757
 *
1758
 * The function will then update the page offset.
1759
 **/
1760
static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1761
			     struct i40e_rx_buffer *rx_buffer,
1762 1763
			     struct sk_buff *skb,
			     unsigned int size)
1764 1765
{
#if (PAGE_SIZE < 8192)
1766
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1767
#else
1768
	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1769 1770
#endif

1771 1772
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
			rx_buffer->page_offset, size, truesize);
1773

1774 1775 1776 1777 1778 1779
	/* page is being used so we must update the page offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
1780 1781
}

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
/**
 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
 * @rx_ring: rx descriptor ring to transact packets on
 * @size: size of buffer to add to skb
 *
 * This function will pull an Rx buffer from the ring and synchronize it
 * for use by the CPU.
 */
static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
						 const unsigned int size)
{
	struct i40e_rx_buffer *rx_buffer;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	prefetchw(rx_buffer->page);

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      size,
				      DMA_FROM_DEVICE);

1805 1806 1807
	/* We have pulled a buffer for use, so decrement pagecnt_bias */
	rx_buffer->pagecnt_bias--;

1808 1809 1810
	return rx_buffer;
}

1811
/**
1812
 * i40e_construct_skb - Allocate skb and populate it
1813
 * @rx_ring: rx descriptor ring to transact packets on
1814
 * @rx_buffer: rx buffer to pull data from
1815
 * @xdp: xdp_buff pointing to the data
1816
 *
1817 1818 1819
 * This function allocates an skb.  It then populates it with the page
 * data from the current receive descriptor, taking care to set up the
 * skb correctly.
1820
 */
1821 1822
static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
					  struct i40e_rx_buffer *rx_buffer,
1823
					  struct xdp_buff *xdp)
1824
{
1825
	unsigned int size = xdp->data_end - xdp->data;
1826
#if (PAGE_SIZE < 8192)
1827
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1828 1829 1830 1831 1832
#else
	unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
	unsigned int headlen;
	struct sk_buff *skb;
1833

1834
	/* prefetch first cache line of first page */
1835
	prefetch(xdp->data);
1836
#if L1_CACHE_BYTES < 128
1837
	prefetch(xdp->data + L1_CACHE_BYTES);
1838 1839
#endif

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	/* allocate a skb to store the frags */
	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
			       I40E_RX_HDR_SIZE,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;

	/* Determine available headroom for copy */
	headlen = size;
	if (headlen > I40E_RX_HDR_SIZE)
1850
		headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
1851

1852
	/* align pull length to size of long to optimize memcpy performance */
1853 1854
	memcpy(__skb_put(skb, headlen), xdp->data,
	       ALIGN(headlen, sizeof(long)));
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

	/* update all of the pointers */
	size -= headlen;
	if (size) {
		skb_add_rx_frag(skb, 0, rx_buffer->page,
				rx_buffer->page_offset + headlen,
				size, truesize);

		/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
		rx_buffer->page_offset ^= truesize;
#else
		rx_buffer->page_offset += truesize;
#endif
	} else {
		/* buffer is unused, reset bias back to rx_buffer */
		rx_buffer->pagecnt_bias++;
	}
1873 1874 1875 1876

	return skb;
}

1877 1878 1879 1880
/**
 * i40e_build_skb - Build skb around an existing buffer
 * @rx_ring: Rx descriptor ring to transact packets on
 * @rx_buffer: Rx buffer to pull data from
1881
 * @xdp: xdp_buff pointing to the data
1882 1883 1884 1885 1886 1887
 *
 * This function builds an skb around an existing Rx buffer, taking care
 * to set up the skb correctly and avoid any memcpy overhead.
 */
static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
				      struct i40e_rx_buffer *rx_buffer,
1888
				      struct xdp_buff *xdp)
1889
{
1890
	unsigned int size = xdp->data_end - xdp->data;
1891 1892 1893
#if (PAGE_SIZE < 8192)
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
#else
1894 1895
	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
				SKB_DATA_ALIGN(I40E_SKB_PAD + size);
1896 1897 1898 1899
#endif
	struct sk_buff *skb;

	/* prefetch first cache line of first page */
1900
	prefetch(xdp->data);
1901
#if L1_CACHE_BYTES < 128
1902
	prefetch(xdp->data + L1_CACHE_BYTES);
1903 1904
#endif
	/* build an skb around the page buffer */
1905
	skb = build_skb(xdp->data_hard_start, truesize);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	if (unlikely(!skb))
		return NULL;

	/* update pointers within the skb to store the data */
	skb_reserve(skb, I40E_SKB_PAD);
	__skb_put(skb, size);

	/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif

	return skb;
}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
/**
 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: rx buffer to pull data from
 *
 * This function will clean up the contents of the rx_buffer.  It will
 * either recycle the bufer or unmap it and free the associated resources.
 */
static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *rx_buffer)
{
	if (i40e_can_reuse_rx_page(rx_buffer)) {
1935 1936 1937 1938 1939
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
1940 1941
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
				     i40e_rx_pg_size(rx_ring),
1942
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1943 1944
		__page_frag_cache_drain(rx_buffer->page,
					rx_buffer->pagecnt_bias);
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
1961
 **/
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

1984 1985
#define I40E_XDP_PASS 0
#define I40E_XDP_CONSUMED 1
1986 1987 1988 1989
#define I40E_XDP_TX 2

static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
			      struct i40e_ring *xdp_ring);
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

/**
 * i40e_run_xdp - run an XDP program
 * @rx_ring: Rx ring being processed
 * @xdp: XDP buffer containing the frame
 **/
static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
				    struct xdp_buff *xdp)
{
	int result = I40E_XDP_PASS;
2000
	struct i40e_ring *xdp_ring;
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
	struct bpf_prog *xdp_prog;
	u32 act;

	rcu_read_lock();
	xdp_prog = READ_ONCE(rx_ring->xdp_prog);

	if (!xdp_prog)
		goto xdp_out;

	act = bpf_prog_run_xdp(xdp_prog, xdp);
	switch (act) {
	case XDP_PASS:
		break;
2014 2015 2016 2017
	case XDP_TX:
		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
		result = i40e_xmit_xdp_ring(xdp, xdp_ring);
		break;
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	default:
		bpf_warn_invalid_xdp_action(act);
	case XDP_ABORTED:
		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
		/* fallthrough -- handle aborts by dropping packet */
	case XDP_DROP:
		result = I40E_XDP_CONSUMED;
		break;
	}
xdp_out:
	rcu_read_unlock();
	return ERR_PTR(-result);
}

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
/**
 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
 * @rx_ring: Rx ring
 * @rx_buffer: Rx buffer to adjust
 * @size: Size of adjustment
 **/
static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
				struct i40e_rx_buffer *rx_buffer,
				unsigned int size)
{
#if (PAGE_SIZE < 8192)
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;

	rx_buffer->page_offset ^= truesize;
#else
	unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);

	rx_buffer->page_offset += truesize;
#endif
}

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
/**
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 **/
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2066 2067
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2068
	struct sk_buff *skb = rx_ring->skb;
2069
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2070
	bool failure = false, xdp_xmit = false;
2071

2072
	while (likely(total_rx_packets < (unsigned int)budget)) {
2073
		struct i40e_rx_buffer *rx_buffer;
2074
		union i40e_rx_desc *rx_desc;
2075
		struct xdp_buff xdp;
2076
		unsigned int size;
2077
		u16 vlan_tag;
2078 2079 2080
		u8 rx_ptype;
		u64 qword;

2081 2082
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2083
			failure = failure ||
2084
				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2085 2086 2087
			cleaned_count = 0;
		}

2088 2089 2090 2091 2092
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
2093
		 * hardware wrote DD then the length will be non-zero
2094
		 */
2095
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2096

2097
		/* This memory barrier is needed to keep us from reading
2098 2099
		 * any other fields out of the rx_desc until we have
		 * verified the descriptor has been written back.
2100
		 */
2101
		dma_rmb();
2102

2103 2104
		if (unlikely(i40e_rx_is_programming_status(qword))) {
			i40e_clean_programming_status(rx_ring, rx_desc, qword);
2105
			cleaned_count++;
2106 2107 2108 2109 2110 2111 2112
			continue;
		}
		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		if (!size)
			break;

S
Scott Peterson 已提交
2113
		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2114 2115
		rx_buffer = i40e_get_rx_buffer(rx_ring, size);

2116
		/* retrieve a buffer from the ring */
2117 2118 2119
		if (!skb) {
			xdp.data = page_address(rx_buffer->page) +
				   rx_buffer->page_offset;
2120
			xdp_set_data_meta_invalid(&xdp);
2121 2122 2123 2124 2125 2126 2127 2128
			xdp.data_hard_start = xdp.data -
					      i40e_rx_offset(rx_ring);
			xdp.data_end = xdp.data + size;

			skb = i40e_run_xdp(rx_ring, &xdp);
		}

		if (IS_ERR(skb)) {
2129 2130 2131 2132 2133 2134
			if (PTR_ERR(skb) == -I40E_XDP_TX) {
				xdp_xmit = true;
				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
			} else {
				rx_buffer->pagecnt_bias++;
			}
2135 2136 2137
			total_rx_bytes += size;
			total_rx_packets++;
		} else if (skb) {
2138
			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2139 2140 2141 2142 2143
		} else if (ring_uses_build_skb(rx_ring)) {
			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
		} else {
			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
		}
2144 2145 2146 2147 2148

		/* exit if we failed to retrieve a buffer */
		if (!skb) {
			rx_ring->rx_stats.alloc_buff_failed++;
			rx_buffer->pagecnt_bias++;
2149
			break;
2150
		}
2151

2152
		i40e_put_rx_buffer(rx_ring, rx_buffer);
2153 2154
		cleaned_count++;

2155
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2156 2157
			continue;

2158
		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2159
			skb = NULL;
2160
			continue;
2161
		}
2162 2163 2164 2165

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

2166 2167 2168 2169
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

2170 2171
		/* populate checksum, VLAN, and protocol */
		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2172

2173 2174 2175
		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

S
Scott Peterson 已提交
2176
		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2177
		i40e_receive_skb(rx_ring, skb, vlan_tag);
2178
		skb = NULL;
2179

2180 2181 2182
		/* update budget accounting */
		total_rx_packets++;
	}
2183

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	if (xdp_xmit) {
		struct i40e_ring *xdp_ring;

		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.
		 */
		wmb();

		writel(xdp_ring->next_to_use, xdp_ring->tail);
	}

2197 2198
	rx_ring->skb = skb;

2199
	u64_stats_update_begin(&rx_ring->syncp);
2200 2201
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
2202
	u64_stats_update_end(&rx_ring->syncp);
2203 2204 2205
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

2206
	/* guarantee a trip back through this routine if there was a failure */
2207
	return failure ? budget : (int)total_rx_packets;
2208 2209
}

2210 2211 2212 2213 2214
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2215
	      I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
2216 2217 2218 2219 2220 2221 2222 2223
	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_PFINT_DYN_CTLN
2224
static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
2225
{
2226
	return vsi->rx_rings[idx]->rx_itr_setting;
2227 2228
}

2229
static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
2230
{
2231
	return vsi->tx_rings[idx]->tx_itr_setting;
2232
}
2233

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
2244 2245
	bool rx = false, tx = false;
	u32 rxval, txval;
2246
	int vector;
2247
	int idx = q_vector->v_idx;
2248
	int rx_itr_setting, tx_itr_setting;
2249

2250 2251
	/* If we don't have MSIX, then we only need to re-enable icr0 */
	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2252
		i40e_irq_dynamic_enable_icr0(vsi->back);
2253 2254 2255
		return;
	}

2256
	vector = (q_vector->v_idx + vsi->base_vector);
2257

2258 2259 2260
	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
2261 2262
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

2263 2264
	rx_itr_setting = get_rx_itr(vsi, idx);
	tx_itr_setting = get_tx_itr(vsi, idx);
2265

2266
	if (q_vector->itr_countdown > 0 ||
2267 2268
	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
2269 2270 2271
		goto enable_int;
	}

2272
	if (ITR_IS_DYNAMIC(rx_itr_setting)) {
2273 2274
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
2275
	}
2276

2277
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2278 2279
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
2280
	}
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
	}

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

2309
enable_int:
2310
	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2311
		wr32(hw, INTREG(vector - 1), txval);
2312 2313 2314 2315 2316

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2317 2318
}

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
/**
 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40e_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
2333
	struct i40e_ring *ring;
2334
	bool clean_complete = true;
2335
	bool arm_wb = false;
2336
	int budget_per_ring;
2337
	int work_done = 0;
2338

2339
	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2340 2341 2342 2343
		napi_complete(napi);
		return 0;
	}

2344 2345 2346
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
2347
	i40e_for_each_ring(ring, q_vector->tx) {
2348
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2349 2350 2351 2352
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
2353
		ring->arm_wb = false;
2354
	}
2355

2356 2357 2358 2359
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

2360 2361 2362 2363
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2364

2365
	i40e_for_each_ring(ring, q_vector->rx) {
2366
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2367 2368

		work_done += cleaned;
2369 2370 2371
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
2372
	}
2373 2374

	/* If work not completed, return budget and polling will return */
2375
	if (!clean_complete) {
2376 2377 2378 2379 2380 2381 2382 2383 2384
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
			/* Tell napi that we are done polling */
			napi_complete_done(napi, work_done);

			/* Force an interrupt */
			i40e_force_wb(vsi, q_vector);

			/* Return budget-1 so that polling stops */
			return budget - 1;
		}
2395
tx_only:
2396 2397 2398
		if (arm_wb) {
			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
			i40e_enable_wb_on_itr(vsi, q_vector);
2399
		}
2400
		return budget;
2401
	}
2402

2403 2404 2405
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

2406
	/* Work is done so exit the polling mode and re-enable the interrupt */
2407
	napi_complete_done(napi, work_done);
2408

2409
	i40e_update_enable_itr(vsi, q_vector);
2410

2411
	return min(work_done, budget - 1);
2412 2413 2414 2415 2416 2417
}

/**
 * i40e_atr - Add a Flow Director ATR filter
 * @tx_ring:  ring to add programming descriptor to
 * @skb:      send buffer
2418
 * @tx_flags: send tx flags
2419 2420
 **/
static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2421
		     u32 tx_flags)
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	union {
		unsigned char *network;
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	struct tcphdr *th;
	unsigned int hlen;
	u32 flex_ptype, dtype_cmd;
2433
	int l4_proto;
2434
	u16 i;
2435 2436

	/* make sure ATR is enabled */
J
Jesse Brandeburg 已提交
2437
	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2438 2439
		return;

2440
	if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED)
2441 2442
		return;

2443 2444 2445 2446
	/* if sampling is disabled do nothing */
	if (!tx_ring->atr_sample_rate)
		return;

2447
	/* Currently only IPv4/IPv6 with TCP is supported */
2448 2449
	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
		return;
2450

2451 2452 2453
	/* snag network header to get L4 type and address */
	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
		      skb_inner_network_header(skb) : skb_network_header(skb);
2454

2455 2456 2457 2458
	/* Note: tx_flags gets modified to reflect inner protocols in
	 * tx_enable_csum function if encap is enabled.
	 */
	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2459
		/* access ihl as u8 to avoid unaligned access on ia64 */
2460 2461
		hlen = (hdr.network[0] & 0x0F) << 2;
		l4_proto = hdr.ipv4->protocol;
2462
	} else {
2463 2464 2465 2466 2467 2468 2469 2470 2471
		/* find the start of the innermost ipv6 header */
		unsigned int inner_hlen = hdr.network - skb->data;
		unsigned int h_offset = inner_hlen;

		/* this function updates h_offset to the end of the header */
		l4_proto =
		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
		/* hlen will contain our best estimate of the tcp header */
		hlen = h_offset - inner_hlen;
2472 2473
	}

2474
	if (l4_proto != IPPROTO_TCP)
2475 2476
		return;

2477 2478
	th = (struct tcphdr *)(hdr.network + hlen);

2479
	/* Due to lack of space, no more new filters can be programmed */
2480
	if (th->syn && (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED))
2481
		return;
2482
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2483 2484 2485 2486 2487 2488
		/* HW ATR eviction will take care of removing filters on FIN
		 * and RST packets.
		 */
		if (th->fin || th->rst)
			return;
	}
2489 2490 2491

	tx_ring->atr_count++;

2492 2493 2494 2495 2496
	/* sample on all syn/fin/rst packets or once every atr sample rate */
	if (!th->fin &&
	    !th->syn &&
	    !th->rst &&
	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2497 2498 2499 2500 2501
		return;

	tx_ring->atr_count = 0;

	/* grab the next descriptor */
2502 2503 2504 2505 2506
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2507 2508 2509

	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2510
	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2511 2512 2513 2514 2515 2516 2517 2518 2519
		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

2520
	dtype_cmd |= (th->fin || th->rst) ?
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
		     I40E_TXD_FLTR_QW1_DEST_SHIFT;

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;

2532
	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2533
	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2534 2535 2536 2537 2538 2539 2540 2541 2542
		dtype_cmd |=
			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
	else
		dtype_cmd |=
			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2543

2544
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2545 2546
		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;

2547
	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
J
Jesse Brandeburg 已提交
2548
	fdir_desc->rsvd = cpu_to_le32(0);
2549
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
J
Jesse Brandeburg 已提交
2550
	fdir_desc->fd_id = cpu_to_le32(0);
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
}

/**
 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
2565 2566 2567
static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
					     struct i40e_ring *tx_ring,
					     u32 *flags)
2568 2569 2570 2571
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

2585
	/* if we have a HW VLAN tag being added, default to the HW one */
2586 2587
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2588 2589
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
2590
	} else if (protocol == htons(ETH_P_8021Q)) {
2591
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
2592

2593 2594 2595 2596 2597 2598 2599 2600 2601
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

2602 2603 2604
	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
		goto out;

2605
	/* Insert 802.1p priority into VLAN header */
2606 2607
	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
	    (skb->priority != TC_PRIO_CONTROL)) {
2608 2609 2610 2611 2612
		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
		tx_flags |= (skb->priority & 0x7) <<
				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
			struct vlan_ethhdr *vhdr;
2613 2614 2615 2616 2617
			int rc;

			rc = skb_cow_head(skb, 0);
			if (rc < 0)
				return rc;
2618 2619 2620 2621 2622 2623 2624
			vhdr = (struct vlan_ethhdr *)skb->data;
			vhdr->h_vlan_TCI = htons(tx_flags >>
						 I40E_TX_FLAGS_VLAN_SHIFT);
		} else {
			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
		}
	}
2625 2626

out:
2627 2628 2629 2630 2631 2632
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
2633
 * @first:    pointer to first Tx buffer for xmit
2634
 * @hdr_len:  ptr to the size of the packet header
2635
 * @cd_type_cmd_tso_mss: Quad Word 1
2636 2637 2638
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
2639 2640
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
2641
{
2642
	struct sk_buff *skb = first->skb;
2643
	u64 cd_cmd, cd_tso_len, cd_mss;
2644 2645 2646 2647 2648
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
2649 2650
	union {
		struct tcphdr *tcp;
2651
		struct udphdr *udp;
2652 2653 2654
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
2655
	u16 gso_segs, gso_size;
2656 2657
	int err;

2658 2659 2660
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2661 2662 2663
	if (!skb_is_gso(skb))
		return 0;

2664 2665 2666
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
2667

2668 2669
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2670

2671 2672 2673 2674
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
2675
	} else {
2676 2677 2678
		ip.v6->payload_len = 0;
	}

2679
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2680
					 SKB_GSO_GRE_CSUM |
2681
					 SKB_GSO_IPXIP4 |
2682
					 SKB_GSO_IPXIP6 |
2683
					 SKB_GSO_UDP_TUNNEL |
2684
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2685 2686 2687 2688
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

2689 2690 2691 2692
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
2693
			paylen = skb->len - l4_offset;
2694 2695
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
2696 2697
		}

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
2709 2710
	}

2711 2712 2713 2714
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
2715
	paylen = skb->len - l4_offset;
2716
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2717 2718 2719

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2720

2721 2722 2723 2724 2725 2726 2727 2728
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

2729 2730 2731
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
2732
	cd_mss = gso_size;
2733 2734 2735
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2736 2737 2738
	return 1;
}

J
Jacob Keller 已提交
2739 2740 2741 2742 2743
/**
 * i40e_tsyn - set up the tsyn context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @tx_flags: the collected send information
2744
 * @cd_type_cmd_tso_mss: Quad Word 1
J
Jacob Keller 已提交
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
 *
 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
 **/
static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
{
	struct i40e_pf *pf;

	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
		return 0;

	/* Tx timestamps cannot be sampled when doing TSO */
	if (tx_flags & I40E_TX_FLAGS_TSO)
		return 0;

	/* only timestamp the outbound packet if the user has requested it and
	 * we are not already transmitting a packet to be timestamped
	 */
	pf = i40e_netdev_to_pf(tx_ring->netdev);
2764 2765 2766
	if (!(pf->flags & I40E_FLAG_PTP))
		return 0;

2767
	if (pf->ptp_tx &&
2768
	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
J
Jacob Keller 已提交
2769
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2770
		pf->ptp_tx_start = jiffies;
J
Jacob Keller 已提交
2771 2772
		pf->ptp_tx_skb = skb_get(skb);
	} else {
2773
		pf->tx_hwtstamp_skipped++;
J
Jacob Keller 已提交
2774 2775 2776 2777 2778 2779 2780 2781 2782
		return 0;
	}

	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
				I40E_TXD_CTX_QW1_CMD_SHIFT;

	return 1;
}

2783 2784 2785
/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
2786
 * @tx_flags: pointer to Tx flags currently set
2787 2788
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
2789
 * @tx_ring: Tx descriptor ring
2790 2791
 * @cd_tunneling: ptr to context desc bits
 **/
2792 2793 2794 2795
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
2796
{
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
2807
	unsigned char *exthdr;
2808
	u32 offset, cmd = 0;
2809
	__be16 frag_off;
2810 2811
	u8 l4_proto = 0;

2812 2813 2814
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2815 2816
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2817

2818 2819 2820
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

2821
	if (skb->encapsulation) {
2822
		u32 tunnel = 0;
2823 2824
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2825 2826 2827 2828
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

2829 2830
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2831
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2832 2833

			exthdr = ip.hdr + sizeof(*ip.v6);
2834
			l4_proto = ip.v6->nexthdr;
2835 2836 2837
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
2838 2839 2840 2841
		}

		/* define outer transport */
		switch (l4_proto) {
2842
		case IPPROTO_UDP:
2843
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2844
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2845
			break;
2846
		case IPPROTO_GRE:
2847
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2848
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2849
			break;
2850 2851 2852 2853 2854
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
2855
		default:
2856 2857 2858 2859 2860
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
2861
		}
2862

2863 2864 2865 2866 2867 2868 2869
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

2870 2871 2872 2873
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

2874 2875
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2876
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2877 2878 2879
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

2880 2881 2882
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

2883 2884
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
2885
		l4_proto = 0;
2886

2887 2888 2889 2890 2891
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
2892
			*tx_flags |= I40E_TX_FLAGS_IPV6;
2893 2894 2895
	}

	/* Enable IP checksum offloads */
2896
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2897
		l4_proto = ip.v4->protocol;
2898 2899 2900
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
2901 2902 2903
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
2904
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2905
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2906 2907 2908 2909 2910 2911

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
2912
	}
2913

2914 2915
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2916 2917

	/* Enable L4 checksum offloads */
2918
	switch (l4_proto) {
2919 2920
	case IPPROTO_TCP:
		/* enable checksum offloads */
2921 2922
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2923 2924 2925
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
2926 2927 2928
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2929 2930 2931
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
2932 2933 2934
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2935 2936
		break;
	default:
2937 2938 2939 2940
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
2941
	}
2942 2943 2944

	*td_cmd |= cmd;
	*td_offset |= offset;
2945 2946

	return 1;
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
2961
	int i = tx_ring->next_to_use;
2962

2963 2964
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
2965 2966 2967
		return;

	/* grab the next descriptor */
2968 2969 2970 2971
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2972 2973 2974 2975

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2976
	context_desc->rsvd = cpu_to_le16(0);
2977 2978 2979
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

E
Eric Dumazet 已提交
2980 2981 2982 2983 2984 2985 2986
/**
 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
2987
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
E
Eric Dumazet 已提交
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

3003
/**
3004
 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3005 3006
 * @skb:      send buffer
 *
3007 3008 3009 3010 3011 3012 3013 3014
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
3015
 **/
3016
bool __i40e_chk_linearize(struct sk_buff *skb)
3017
{
3018
	const struct skb_frag_struct *frag, *stale;
3019
	int nr_frags, sum;
3020

3021
	/* no need to check if number of frags is less than 7 */
3022
	nr_frags = skb_shinfo(skb)->nr_frags;
3023
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3024
		return false;
3025

3026
	/* We need to walk through the list and validate that each group
3027
	 * of 6 fragments totals at least gso_size.
3028
	 */
3029
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3030 3031 3032 3033 3034 3035 3036 3037
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
3038
	sum = 1 - skb_shinfo(skb)->gso_size;
3039

3040 3041 3042 3043 3044 3045
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
3046 3047 3048 3049 3050 3051

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
3052
		sum += skb_frag_size(frag++);
3053 3054 3055 3056 3057

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

3058
		if (!nr_frags--)
3059 3060
			break;

3061
		sum -= skb_frag_size(stale++);
3062 3063
	}

3064
	return false;
3065 3066
}

3067 3068 3069 3070 3071 3072 3073 3074 3075
/**
 * i40e_tx_map - Build the Tx descriptor
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
3076 3077
 *
 * Returns 0 on success, -1 on failure to DMA
3078
 **/
3079 3080 3081
static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
			      struct i40e_tx_buffer *first, u32 tx_flags,
			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3082 3083 3084
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
A
Alexander Duyck 已提交
3085
	struct skb_frag_struct *frag;
3086 3087
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
A
Alexander Duyck 已提交
3088
	u16 i = tx_ring->next_to_use;
3089 3090
	u32 td_tag = 0;
	dma_addr_t dma;
3091
	u16 desc_count = 1;
3092 3093 3094 3095 3096 3097 3098

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

A
Alexander Duyck 已提交
3099 3100 3101 3102
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

3103
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
3104 3105 3106
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3107 3108
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

A
Alexander Duyck 已提交
3109 3110 3111 3112 3113 3114 3115
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

3116 3117
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
A
Alexander Duyck 已提交
3118 3119 3120
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3121 3122
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
3123
					   max_data, td_tag);
3124 3125 3126

			tx_desc++;
			i++;
3127 3128
			desc_count++;

3129 3130 3131 3132 3133
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

3134 3135
			dma += max_data;
			size -= max_data;
3136

3137
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
A
Alexander Duyck 已提交
3138 3139
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}
3140 3141 3142 3143

		if (likely(!data_len))
			break;

A
Alexander Duyck 已提交
3144 3145
		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);
3146 3147 3148

		tx_desc++;
		i++;
3149 3150
		desc_count++;

3151 3152 3153 3154 3155
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

A
Alexander Duyck 已提交
3156 3157
		size = skb_frag_size(frag);
		data_len -= size;
3158

A
Alexander Duyck 已提交
3159 3160
		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);
3161

A
Alexander Duyck 已提交
3162 3163
		tx_bi = &tx_ring->tx_bi[i];
	}
3164

3165
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
A
Alexander Duyck 已提交
3166 3167 3168 3169 3170 3171 3172

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

E
Eric Dumazet 已提交
3173
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3174

3175 3176 3177
	/* write last descriptor with EOP bit */
	td_cmd |= I40E_TX_DESC_CMD_EOP;

3178 3179
	/* We OR these values together to check both against 4 (WB_STRIDE)
	 * below. This is safe since we don't re-use desc_count afterwards.
3180 3181 3182
	 */
	desc_count |= ++tx_ring->packet_stride;

3183
	if (desc_count >= WB_STRIDE) {
3184 3185
		/* write last descriptor with RS bit set */
		td_cmd |= I40E_TX_DESC_CMD_RS;
3186 3187 3188 3189
		tx_ring->packet_stride = 0;
	}

	tx_desc->cmd_type_offset_bsz =
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
3202

A
Alexander Duyck 已提交
3203
	/* notify HW of packet */
3204
	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
3205
		writel(i, tx_ring->tail);
3206 3207 3208 3209 3210

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
3211
	}
3212

3213
	return 0;
3214 3215

dma_error:
A
Alexander Duyck 已提交
3216
	dev_info(tx_ring->dev, "TX DMA map failed\n");
3217 3218 3219 3220

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
A
Alexander Duyck 已提交
3221
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3222 3223 3224 3225 3226 3227 3228 3229
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
3230 3231

	return -1;
3232 3233
}

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
/**
 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
 * @xdp: data to transmit
 * @xdp_ring: XDP Tx ring
 **/
static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
			      struct i40e_ring *xdp_ring)
{
	u32 size = xdp->data_end - xdp->data;
	u16 i = xdp_ring->next_to_use;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
	dma_addr_t dma;

	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
		xdp_ring->tx_stats.tx_busy++;
		return I40E_XDP_CONSUMED;
	}

	dma = dma_map_single(xdp_ring->dev, xdp->data, size, DMA_TO_DEVICE);
	if (dma_mapping_error(xdp_ring->dev, dma))
		return I40E_XDP_CONSUMED;

	tx_bi = &xdp_ring->tx_bi[i];
	tx_bi->bytecount = size;
	tx_bi->gso_segs = 1;
	tx_bi->raw_buf = xdp->data;

	/* record length, and DMA address */
	dma_unmap_len_set(tx_bi, len, size);
	dma_unmap_addr_set(tx_bi, dma, dma);

	tx_desc = I40E_TX_DESC(xdp_ring, i);
	tx_desc->buffer_addr = cpu_to_le64(dma);
	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
						  | I40E_TXD_CMD,
						  0, size, 0);

	/* Make certain all of the status bits have been updated
	 * before next_to_watch is written.
	 */
	smp_wmb();

	i++;
	if (i == xdp_ring->count)
		i = 0;

	tx_bi->next_to_watch = tx_desc;
	xdp_ring->next_to_use = i;

	return I40E_XDP_TX;
}

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
3305
	int tso, count;
J
Jacob Keller 已提交
3306
	int tsyn;
J
Jesse Brandeburg 已提交
3307

3308 3309 3310
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

S
Scott Peterson 已提交
3311 3312
	i40e_trace(xmit_frame_ring, skb, tx_ring);

3313
	count = i40e_xmit_descriptor_count(skb);
3314
	if (i40e_chk_linearize(skb, count)) {
3315 3316 3317 3318
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
3319
		count = i40e_txd_use_count(skb->len);
3320 3321
		tx_ring->tx_stats.tx_linearize++;
	}
3322 3323 3324 3325 3326 3327 3328 3329 3330

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
3331
		return NETDEV_TX_BUSY;
3332
	}
3333

3334 3335 3336 3337 3338 3339
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

3340 3341 3342 3343 3344
	/* prepare the xmit flags */
	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
		goto out_drop;

	/* obtain protocol of skb */
3345
	protocol = vlan_get_protocol(skb);
3346 3347

	/* setup IPv4/IPv6 offloads */
3348
	if (protocol == htons(ETH_P_IP))
3349
		tx_flags |= I40E_TX_FLAGS_IPV4;
3350
	else if (protocol == htons(ETH_P_IPV6))
3351 3352
		tx_flags |= I40E_TX_FLAGS_IPV6;

3353
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3354 3355 3356 3357 3358 3359

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

3360 3361 3362 3363 3364 3365
	/* Always offload the checksum, since it's in the data descriptor */
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;

J
Jacob Keller 已提交
3366 3367 3368 3369 3370
	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);

	if (tsyn)
		tx_flags |= I40E_TX_FLAGS_TSYN;

3371 3372
	skb_tx_timestamp(skb);

3373 3374 3375
	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

3376 3377 3378 3379 3380 3381 3382
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

	/* Add Flow Director ATR if it's enabled.
	 *
	 * NOTE: this must always be directly before the data descriptor.
	 */
3383
	i40e_atr(tx_ring, skb, tx_flags);
3384

3385 3386 3387
	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
			td_cmd, td_offset))
		goto cleanup_tx_tstamp;
3388 3389 3390 3391

	return NETDEV_TX_OK;

out_drop:
S
Scott Peterson 已提交
3392
	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3393 3394
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
3395 3396 3397 3398 3399 3400 3401 3402 3403
cleanup_tx_tstamp:
	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);

		dev_kfree_skb_any(pf->ptp_tx_skb);
		pf->ptp_tx_skb = NULL;
		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
	}

3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
	return NETDEV_TX_OK;
}

/**
 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40e_netdev_priv *np = netdev_priv(netdev);
	struct i40e_vsi *vsi = np->vsi;
3418
	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3419 3420 3421 3422

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
3423 3424
	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
		return NETDEV_TX_OK;
3425 3426 3427

	return i40e_xmit_frame_ring(skb, tx_ring);
}