i40e_txrx.c 105.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/* Copyright(c) 2013 - 2018 Intel Corporation. */
3

M
Mitch Williams 已提交
4
#include <linux/prefetch.h>
5
#include <linux/bpf_trace.h>
6
#include <net/xdp.h>
7
#include "i40e.h"
S
Scott Peterson 已提交
8
#include "i40e_trace.h"
9
#include "i40e_prototype.h"
10
#include "i40e_txrx_common.h"
11
#include "i40e_xsk.h"
12

13
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/**
 * i40e_fdir - Generate a Flow Director descriptor based on fdata
 * @tx_ring: Tx ring to send buffer on
 * @fdata: Flow director filter data
 * @add: Indicate if we are adding a rule or deleting one
 *
 **/
static void i40e_fdir(struct i40e_ring *tx_ring,
		      struct i40e_fdir_filter *fdata, bool add)
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	u32 flex_ptype, dtype_cmd;
	u16 i;

	/* grab the next descriptor */
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

45 46 47
	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
	/* Use LAN VSI Id if not programmed by user */
	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

	dtype_cmd |= add ?
		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;

	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);

	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);

	if (fdata->cnt_index) {
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
			     ((u32)fdata->cnt_index <<
			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
	}

	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
	fdir_desc->rsvd = cpu_to_le32(0);
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
}

80
#define I40E_FD_CLEAN_DELAY 10
81 82
/**
 * i40e_program_fdir_filter - Program a Flow Director filter
83 84
 * @fdir_data: Packet data that will be filter parameters
 * @raw_packet: the pre-allocated packet buffer for FDir
85
 * @pf: The PF pointer
86 87
 * @add: True for add/update, False for remove
 **/
88 89 90
static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
				    u8 *raw_packet, struct i40e_pf *pf,
				    bool add)
91
{
92
	struct i40e_tx_buffer *tx_buf, *first;
93 94 95 96 97 98 99 100 101
	struct i40e_tx_desc *tx_desc;
	struct i40e_ring *tx_ring;
	struct i40e_vsi *vsi;
	struct device *dev;
	dma_addr_t dma;
	u32 td_cmd = 0;
	u16 i;

	/* find existing FDIR VSI */
102
	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
103 104 105
	if (!vsi)
		return -ENOENT;

106
	tx_ring = vsi->tx_rings[0];
107 108
	dev = tx_ring->dev;

109
	/* we need two descriptors to add/del a filter and we can wait */
110 111 112
	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
		if (!i)
			return -EAGAIN;
113
		msleep_interruptible(1);
114
	}
115

116 117
	dma = dma_map_single(dev, raw_packet,
			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
118 119 120 121
	if (dma_mapping_error(dev, dma))
		goto dma_fail;

	/* grab the next descriptor */
122
	i = tx_ring->next_to_use;
123
	first = &tx_ring->tx_bi[i];
124
	i40e_fdir(tx_ring, fdir_data, add);
125 126

	/* Now program a dummy descriptor */
127 128
	i = tx_ring->next_to_use;
	tx_desc = I40E_TX_DESC(tx_ring, i);
129
	tx_buf = &tx_ring->tx_bi[i];
130

131 132 133
	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;

	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
134

135
	/* record length, and DMA address */
136
	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
137 138
	dma_unmap_addr_set(tx_buf, dma, dma);

139
	tx_desc->buffer_addr = cpu_to_le64(dma);
140
	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
141

142 143 144
	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
	tx_buf->raw_buf = (void *)raw_packet;

145
	tx_desc->cmd_type_offset_bsz =
146
		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
147 148

	/* Force memory writes to complete before letting h/w
149
	 * know there are new descriptors to fetch.
150 151 152
	 */
	wmb();

153
	/* Mark the data descriptor to be watched */
154
	first->next_to_watch = tx_desc;
155

156 157 158 159 160 161 162
	writel(tx_ring->next_to_use, tx_ring->tail);
	return 0;

dma_fail:
	return -1;
}

163 164 165 166 167 168 169 170 171 172 173 174
#define IP_HEADER_OFFSET 14
#define I40E_UDPIP_DUMMY_PACKET_LEN 42
/**
 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
175
				   bool add)
176 177 178 179
{
	struct i40e_pf *pf = vsi->back;
	struct udphdr *udp;
	struct iphdr *ip;
180
	u8 *raw_packet;
181 182 183 184 185
	int ret;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

186 187 188
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
189 190 191 192 193 194
	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

195
	ip->daddr = fd_data->dst_ip;
196
	udp->dest = fd_data->dst_port;
197
	ip->saddr = fd_data->src_ip;
198 199
	udp->source = fd_data->src_port;

200 201 202 203 204 205 206 207
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

208 209 210 211
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
212 213
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
214 215 216
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
217
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
218 219 220 221 222 223 224 225
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
226
	}
227

228 229 230 231 232
	if (add)
		pf->fd_udp4_filter_cnt++;
	else
		pf->fd_udp4_filter_cnt--;

233
	return 0;
234 235 236 237 238 239 240 241 242 243 244 245 246
}

#define I40E_TCPIP_DUMMY_PACKET_LEN 54
/**
 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
247
				   bool add)
248 249 250 251
{
	struct i40e_pf *pf = vsi->back;
	struct tcphdr *tcp;
	struct iphdr *ip;
252
	u8 *raw_packet;
253 254 255 256 257 258 259
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
		0x0, 0x72, 0, 0, 0, 0};

260 261 262
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
263 264 265 266 267 268
	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

269
	ip->daddr = fd_data->dst_ip;
270
	tcp->dest = fd_data->dst_port;
271
	ip->saddr = fd_data->src_ip;
272 273
	tcp->source = fd_data->src_port;

274 275 276 277 278 279 280 281
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

282
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
283 284 285
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
286 287
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
288 289 290
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
291
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
292 293 294 295 296 297 298
		if (add)
			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
299 300
	}

301
	if (add) {
302
		pf->fd_tcp4_filter_cnt++;
303 304 305
		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
		    I40E_DEBUG_FD & pf->hw.debug_mask)
			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
306
		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
307
	} else {
308
		pf->fd_tcp4_filter_cnt--;
309 310
	}

311
	return 0;
312 313
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
/**
 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
				    struct i40e_fdir_filter *fd_data,
				    bool add)
{
	struct i40e_pf *pf = vsi->back;
	struct sctphdr *sctp;
	struct iphdr *ip;
	u8 *raw_packet;
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

	ip->daddr = fd_data->dst_ip;
	sctp->dest = fd_data->dst_port;
	ip->saddr = fd_data->src_ip;
	sctp->source = fd_data->src_port;

	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
	}

	if (add)
		pf->fd_sctp4_filter_cnt++;
	else
		pf->fd_sctp4_filter_cnt--;

	return 0;
}

388 389 390 391 392 393 394 395 396 397 398 399
#define I40E_IP_DUMMY_PACKET_LEN 34
/**
 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
				  struct i40e_fdir_filter *fd_data,
400
				  bool add)
401 402 403
{
	struct i40e_pf *pf = vsi->back;
	struct iphdr *ip;
404
	u8 *raw_packet;
405 406 407 408 409 410 411 412
	int ret;
	int i;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0};

	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
413 414 415 416 417 418
		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
		if (!raw_packet)
			return -ENOMEM;
		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);

419 420
		ip->saddr = fd_data->src_ip;
		ip->daddr = fd_data->dst_ip;
421 422
		ip->protocol = 0;

423 424 425 426 427 428 429 430
		if (fd_data->flex_filter) {
			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
			__be16 pattern = fd_data->flex_word;
			u16 off = fd_data->flex_offset;

			*((__force __be16 *)(payload + off)) = pattern;
		}

431 432 433 434
		fd_data->pctype = i;
		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
		if (ret) {
			dev_info(&pf->pdev->dev,
435 436
				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
				 fd_data->pctype, fd_data->fd_id, ret);
437 438 439 440 441
			/* The packet buffer wasn't added to the ring so we
			 * need to free it now.
			 */
			kfree(raw_packet);
			return -EOPNOTSUPP;
442
		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
443 444 445 446 447 448 449 450
			if (add)
				dev_info(&pf->pdev->dev,
					 "Filter OK for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
			else
				dev_info(&pf->pdev->dev,
					 "Filter deleted for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
451 452 453
		}
	}

454 455 456 457 458
	if (add)
		pf->fd_ip4_filter_cnt++;
	else
		pf->fd_ip4_filter_cnt--;

459
	return 0;
460 461 462 463 464
}

/**
 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 * @vsi: pointer to the targeted VSI
465
 * @input: filter to add or delete
466 467 468 469 470 471 472 473 474 475 476
 * @add: true adds a filter, false removes it
 *
 **/
int i40e_add_del_fdir(struct i40e_vsi *vsi,
		      struct i40e_fdir_filter *input, bool add)
{
	struct i40e_pf *pf = vsi->back;
	int ret;

	switch (input->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
477
		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
478 479
		break;
	case UDP_V4_FLOW:
480
		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
481
		break;
482 483 484
	case SCTP_V4_FLOW:
		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
		break;
485 486 487
	case IP_USER_FLOW:
		switch (input->ip4_proto) {
		case IPPROTO_TCP:
488
			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
489 490
			break;
		case IPPROTO_UDP:
491
			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
492
			break;
493 494 495
		case IPPROTO_SCTP:
			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
			break;
496
		case IPPROTO_IP:
497
			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
498
			break;
499 500
		default:
			/* We cannot support masking based on protocol */
501 502 503
			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
				 input->ip4_proto);
			return -EINVAL;
504 505 506
		}
		break;
	default:
507
		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
508
			 input->flow_type);
509
		return -EINVAL;
510 511
	}

512 513 514 515 516 517
	/* The buffer allocated here will be normally be freed by
	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
	 * completion. In the event of an error adding the buffer to the FDIR
	 * ring, it will immediately be freed. It may also be freed by
	 * i40e_clean_tx_ring() when closing the VSI.
	 */
518 519 520
	return ret;
}

521 522 523
/**
 * i40e_fd_handle_status - check the Programming Status for FD
 * @rx_ring: the Rx ring for this descriptor
524 525
 * @qword0_raw: qword0
 * @qword1: qword1 after le_to_cpu
526 527 528 529 530
 * @prog_id: the id originally used for programming
 *
 * This is used to verify if the FD programming or invalidation
 * requested by SW to the HW is successful or not and take actions accordingly.
 **/
531 532
static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
				  u64 qword1, u8 prog_id)
533
{
534 535
	struct i40e_pf *pf = rx_ring->vsi->back;
	struct pci_dev *pdev = pf->pdev;
536
	struct i40e_16b_rx_wb_qw0 *qw0;
537
	u32 fcnt_prog, fcnt_avail;
538 539
	u32 error;

540
	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
541
	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
542 543
		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;

544
	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
545 546
		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
		if (qw0->hi_dword.fd_id != 0 ||
547 548
		    (I40E_DEBUG_FD & pf->hw.debug_mask))
			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
549
				 pf->fd_inv);
550

551 552 553 554 555 556
		/* Check if the programming error is for ATR.
		 * If so, auto disable ATR and set a state for
		 * flush in progress. Next time we come here if flush is in
		 * progress do nothing, once flush is complete the state will
		 * be cleared.
		 */
557
		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
558 559
			return;

560 561 562 563
		pf->fd_add_err++;
		/* store the current atr filter count */
		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);

564
		if (qw0->hi_dword.fd_id == 0 &&
565 566 567 568 569 570 571 572
		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
			/* These set_bit() calls aren't atomic with the
			 * test_bit() here, but worse case we potentially
			 * disable ATR and queue a flush right after SB
			 * support is re-enabled. That shouldn't cause an
			 * issue in practice
			 */
			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
573
			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
574 575
		}

576
		/* filter programming failed most likely due to table full */
577
		fcnt_prog = i40e_get_global_fd_count(pf);
578
		fcnt_avail = pf->fdir_pf_filter_count;
579 580 581 582 583
		/* If ATR is running fcnt_prog can quickly change,
		 * if we are very close to full, it makes sense to disable
		 * FD ATR/SB and then re-enable it when there is room.
		 */
		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
584
			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
585 586
			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
					      pf->state))
587 588
				if (I40E_DEBUG_FD & pf->hw.debug_mask)
					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
589
		}
590
	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
591
		if (I40E_DEBUG_FD & pf->hw.debug_mask)
592
			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
593
				 qw0->hi_dword.fd_id);
594
	}
595 596 597
}

/**
A
Alexander Duyck 已提交
598
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
599 600 601
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
A
Alexander Duyck 已提交
602 603
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
604
{
A
Alexander Duyck 已提交
605
	if (tx_buffer->skb) {
606 607
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
608
		else if (ring_is_xdp(ring))
609
			xdp_return_frame(tx_buffer->xdpf);
610 611
		else
			dev_kfree_skb_any(tx_buffer->skb);
A
Alexander Duyck 已提交
612
		if (dma_unmap_len(tx_buffer, len))
613
			dma_unmap_single(ring->dev,
614 615
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
616
					 DMA_TO_DEVICE);
A
Alexander Duyck 已提交
617 618 619 620 621
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
622
	}
623

A
Alexander Duyck 已提交
624 625
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
626
	dma_unmap_len_set(tx_buffer, len, 0);
A
Alexander Duyck 已提交
627
	/* tx_buffer must be completely set up in the transmit path */
628 629 630 631 632 633 634 635 636 637 638
}

/**
 * i40e_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

639
	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
640 641 642 643 644
		i40e_xsk_clean_tx_ring(tx_ring);
	} else {
		/* ring already cleared, nothing to do */
		if (!tx_ring->tx_bi)
			return;
645

646 647 648 649 650
		/* Free all the Tx ring sk_buffs */
		for (i = 0; i < tx_ring->count; i++)
			i40e_unmap_and_free_tx_resource(tx_ring,
							&tx_ring->tx_bi[i]);
	}
651 652 653 654 655 656 657 658 659

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
660 661 662 663 664

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
665
	netdev_tx_reset_queue(txring_txq(tx_ring));
666 667 668 669 670 671 672 673 674 675 676 677 678
}

/**
 * i40e_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40e_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40e_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
679 680
	kfree(tx_ring->xsk_descs);
	tx_ring->xsk_descs = NULL;
681 682 683 684 685 686 687 688 689 690

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

/**
 * i40e_get_tx_pending - how many tx descriptors not processed
691
 * @ring: the ring of descriptors
692
 * @in_sw: use SW variables
693 694 695 696
 *
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
 **/
697
u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
698
{
J
Jesse Brandeburg 已提交
699 700
	u32 head, tail;

701 702 703 704 705 706 707
	if (!in_sw) {
		head = i40e_get_head(ring);
		tail = readl(ring->tail);
	} else {
		head = ring->next_to_clean;
		tail = ring->next_to_use;
	}
J
Jesse Brandeburg 已提交
708 709 710 711 712 713

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
714 715
}

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
/**
 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 * @vsi:  pointer to vsi struct with tx queues
 *
 * VSI has netdev and netdev has TX queues. This function is to check each of
 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 **/
void i40e_detect_recover_hung(struct i40e_vsi *vsi)
{
	struct i40e_ring *tx_ring = NULL;
	struct net_device *netdev;
	unsigned int i;
	int packets;

	if (!vsi)
		return;

	if (test_bit(__I40E_VSI_DOWN, vsi->state))
		return;

	netdev = vsi->netdev;
	if (!netdev)
		return;

	if (!netif_carrier_ok(netdev))
		return;

	for (i = 0; i < vsi->num_queue_pairs; i++) {
		tx_ring = vsi->tx_rings[i];
		if (tx_ring && tx_ring->desc) {
			/* If packet counter has not changed the queue is
			 * likely stalled, so force an interrupt for this
			 * queue.
			 *
			 * prev_pkt_ctr would be negative if there was no
			 * pending work.
			 */
			packets = tx_ring->stats.packets & INT_MAX;
			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
				i40e_force_wb(vsi, tx_ring->q_vector);
				continue;
			}

			/* Memory barrier between read of packet count and call
			 * to i40e_get_tx_pending()
			 */
			smp_rmb();
			tx_ring->tx_stats.prev_pkt_ctr =
764
			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
765 766 767 768
		}
	}
}

769 770
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
771 772 773
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
774 775 776
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
777 778
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
779
{
M
Mitch Williams 已提交
780
	int i = tx_ring->next_to_clean;
781
	struct i40e_tx_buffer *tx_buf;
782
	struct i40e_tx_desc *tx_head;
783
	struct i40e_tx_desc *tx_desc;
784 785
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
786 787 788

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
789
	i -= tx_ring->count;
790

791 792
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

A
Alexander Duyck 已提交
793 794
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
795 796 797 798 799

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

A
Alexander Duyck 已提交
800
		/* prevent any other reads prior to eop_desc */
801
		smp_rmb();
A
Alexander Duyck 已提交
802

S
Scott Peterson 已提交
803
		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
804 805
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
806 807
			break;

A
Alexander Duyck 已提交
808
		/* clear next_to_watch to prevent false hangs */
809 810
		tx_buf->next_to_watch = NULL;

A
Alexander Duyck 已提交
811 812 813
		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;
814

815 816
		/* free the skb/XDP data */
		if (ring_is_xdp(tx_ring))
817
			xdp_return_frame(tx_buf->xdpf);
818 819
		else
			napi_consume_skb(tx_buf->skb, napi_budget);
820

A
Alexander Duyck 已提交
821 822 823 824 825
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);
826

A
Alexander Duyck 已提交
827 828 829
		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);
830

A
Alexander Duyck 已提交
831 832
		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
S
Scott Peterson 已提交
833 834
			i40e_trace(clean_tx_irq_unmap,
				   tx_ring, tx_desc, tx_buf);
835 836 837 838

			tx_buf++;
			tx_desc++;
			i++;
A
Alexander Duyck 已提交
839 840
			if (unlikely(!i)) {
				i -= tx_ring->count;
841 842 843 844
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

A
Alexander Duyck 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

865 866
		prefetch(tx_desc);

A
Alexander Duyck 已提交
867 868 869 870 871
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
872
	tx_ring->next_to_clean = i;
873 874
	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
	i40e_arm_wb(tx_ring, vsi, budget);
875

876 877 878
	if (ring_is_xdp(tx_ring))
		return !!budget;

879 880
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
881 882
				  total_packets, total_bytes);

883
#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
884 885 886 887 888 889 890 891
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
892
		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
893 894 895 896 897 898
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

899 900 901 902
	return !!budget;
}

/**
903
 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
904
 * @vsi: the VSI we care about
905
 * @q_vector: the vector on which to enable writeback
906 907
 *
 **/
908 909
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
910
{
911
	u16 flags = q_vector->tx.ring[0].flags;
912
	u32 val;
913

914 915
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;
916

917 918
	if (q_vector->arm_wb_state)
		return;
919

920 921 922
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
923

924
		wr32(&vsi->back->hw,
925
		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
926 927 928 929
		     val);
	} else {
		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
930

931 932 933 934 935 936 937 938 939 940 941 942 943 944
		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
	q_vector->arm_wb_state = true;
}

/**
 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
945 946 947 948 949 950 951
		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
			  /* allow 00 to be written to the index */

		wr32(&vsi->back->hw,
952
		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
953 954 955 956 957 958 959 960 961
	} else {
		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
			/* allow 00 to be written to the index */

		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
962 963
}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
					struct i40e_ring_container *rc)
{
	return &q_vector->rx == rc;
}

static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
{
	unsigned int divisor;

	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
	case I40E_LINK_SPEED_40GB:
		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
		break;
	case I40E_LINK_SPEED_25GB:
	case I40E_LINK_SPEED_20GB:
		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
		break;
	default:
	case I40E_LINK_SPEED_10GB:
		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
		break;
	case I40E_LINK_SPEED_1GB:
	case I40E_LINK_SPEED_100MB:
		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
		break;
	}

	return divisor;
}

995
/**
996 997
 * i40e_update_itr - update the dynamic ITR value based on statistics
 * @q_vector: structure containing interrupt and ring information
998 999
 * @rc: structure containing ring performance data
 *
1000 1001 1002 1003 1004 1005
 * Stores a new ITR value based on packets and byte
 * counts during the last interrupt.  The advantage of per interrupt
 * computation is faster updates and more accurate ITR for the current
 * traffic pattern.  Constants in this function were computed
 * based on theoretical maximum wire speed and thresholds were set based
 * on testing data as well as attempting to minimize response time
1006 1007
 * while increasing bulk throughput.
 **/
1008 1009
static void i40e_update_itr(struct i40e_q_vector *q_vector,
			    struct i40e_ring_container *rc)
1010
{
1011 1012
	unsigned int avg_wire_size, packets, bytes, itr;
	unsigned long next_update = jiffies;
1013

1014 1015 1016
	/* If we don't have any rings just leave ourselves set for maximum
	 * possible latency so we take ourselves out of the equation.
	 */
1017
	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1018
		return;
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	/* For Rx we want to push the delay up and default to low latency.
	 * for Tx we want to pull the delay down and default to high latency.
	 */
	itr = i40e_container_is_rx(q_vector, rc) ?
	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;

	/* If we didn't update within up to 1 - 2 jiffies we can assume
	 * that either packets are coming in so slow there hasn't been
	 * any work, or that there is so much work that NAPI is dealing
	 * with interrupt moderation and we don't need to do anything.
	 */
	if (time_after(next_update, rc->next_update))
		goto clear_counts;

	/* If itr_countdown is set it means we programmed an ITR within
	 * the last 4 interrupt cycles. This has a side effect of us
	 * potentially firing an early interrupt. In order to work around
	 * this we need to throw out any data received for a few
	 * interrupts following the update.
	 */
	if (q_vector->itr_countdown) {
		itr = rc->target_itr;
		goto clear_counts;
	}
1045

1046 1047
	packets = rc->total_packets;
	bytes = rc->total_bytes;
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	if (i40e_container_is_rx(q_vector, rc)) {
		/* If Rx there are 1 to 4 packets and bytes are less than
		 * 9000 assume insufficient data to use bulk rate limiting
		 * approach unless Tx is already in bulk rate limiting. We
		 * are likely latency driven.
		 */
		if (packets && packets < 4 && bytes < 9000 &&
		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
			itr = I40E_ITR_ADAPTIVE_LATENCY;
			goto adjust_by_size;
		}
	} else if (packets < 4) {
		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
		 * bulk mode and we are receiving 4 or fewer packets just
		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
		 * that the Rx can relax.
		 */
		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
		     I40E_ITR_ADAPTIVE_MAX_USECS)
			goto clear_counts;
	} else if (packets > 32) {
		/* If we have processed over 32 packets in a single interrupt
		 * for Tx assume we need to switch over to "bulk" mode.
		 */
		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
	}

	/* We have no packets to actually measure against. This means
	 * either one of the other queues on this vector is active or
	 * we are a Tx queue doing TSO with too high of an interrupt rate.
	 *
	 * Between 4 and 56 we can assume that our current interrupt delay
	 * is only slightly too low. As such we should increase it by a small
	 * fixed amount.
1084
	 */
1085 1086 1087 1088 1089 1090 1091
	if (packets < 56) {
		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
			itr &= I40E_ITR_ADAPTIVE_LATENCY;
			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
		}
		goto clear_counts;
1092 1093
	}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	if (packets <= 256) {
		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
		itr &= I40E_ITR_MASK;

		/* Between 56 and 112 is our "goldilocks" zone where we are
		 * working out "just right". Just report that our current
		 * ITR is good for us.
		 */
		if (packets <= 112)
			goto clear_counts;

		/* If packet count is 128 or greater we are likely looking
		 * at a slight overrun of the delay we want. Try halving
		 * our delay to see if that will cut the number of packets
		 * in half per interrupt.
		 */
		itr /= 2;
		itr &= I40E_ITR_MASK;
		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
			itr = I40E_ITR_ADAPTIVE_MIN_USECS;

		goto clear_counts;
	}

	/* The paths below assume we are dealing with a bulk ITR since
	 * number of packets is greater than 256. We are just going to have
	 * to compute a value and try to bring the count under control,
	 * though for smaller packet sizes there isn't much we can do as
	 * NAPI polling will likely be kicking in sooner rather than later.
	 */
	itr = I40E_ITR_ADAPTIVE_BULK;

adjust_by_size:
	/* If packet counts are 256 or greater we can assume we have a gross
	 * overestimation of what the rate should be. Instead of trying to fine
	 * tune it just use the formula below to try and dial in an exact value
	 * give the current packet size of the frame.
	 */
	avg_wire_size = bytes / packets;

	/* The following is a crude approximation of:
	 *  wmem_default / (size + overhead) = desired_pkts_per_int
	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1138
	 *
1139 1140 1141 1142 1143 1144 1145 1146 1147
	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
	 * formula down to
	 *
	 *  (170 * (size + 24)) / (size + 640) = ITR
	 *
	 * We first do some math on the packet size and then finally bitshift
	 * by 8 after rounding up. We also have to account for PCIe link speed
	 * difference as ITR scales based on this.
1148
	 */
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	if (avg_wire_size <= 60) {
		/* Start at 250k ints/sec */
		avg_wire_size = 4096;
	} else if (avg_wire_size <= 380) {
		/* 250K ints/sec to 60K ints/sec */
		avg_wire_size *= 40;
		avg_wire_size += 1696;
	} else if (avg_wire_size <= 1084) {
		/* 60K ints/sec to 36K ints/sec */
		avg_wire_size *= 15;
		avg_wire_size += 11452;
	} else if (avg_wire_size <= 1980) {
		/* 36K ints/sec to 30K ints/sec */
		avg_wire_size *= 5;
		avg_wire_size += 22420;
	} else {
		/* plateau at a limit of 30K ints/sec */
		avg_wire_size = 32256;
1167
	}
1168

1169 1170 1171 1172 1173
	/* If we are in low latency mode halve our delay which doubles the
	 * rate to somewhere between 100K to 16K ints/sec
	 */
	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
		avg_wire_size /= 2;
1174

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	/* Resultant value is 256 times larger than it needs to be. This
	 * gives us room to adjust the value as needed to either increase
	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
	 *
	 * Use addition as we have already recorded the new latency flag
	 * for the ITR value.
	 */
	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
	       I40E_ITR_ADAPTIVE_MIN_INC;

	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
		itr &= I40E_ITR_ADAPTIVE_LATENCY;
		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1188 1189
	}

1190 1191 1192 1193 1194 1195 1196
clear_counts:
	/* write back value */
	rc->target_itr = itr;

	/* next update should occur within next jiffy */
	rc->next_update = next_update + 1;

1197 1198 1199 1200
	rc->total_bytes = 0;
	rc->total_packets = 0;
}

B
Björn Töpel 已提交
1201 1202 1203 1204 1205
static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
{
	return &rx_ring->rx_bi[idx];
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

B
Björn Töpel 已提交
1219
	new_buff = i40e_rx_bi(rx_ring, nta);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	new_buff->dma		= old_buff->dma;
	new_buff->page		= old_buff->page;
	new_buff->page_offset	= old_buff->page_offset;
	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1230 1231 1232 1233 1234

	rx_ring->rx_stats.page_reuse_count++;

	/* clear contents of buffer_info */
	old_buff->page = NULL;
1235 1236
}

1237
/**
1238
 * i40e_clean_programming_status - clean the programming status descriptor
1239
 * @rx_ring: the rx ring that has this descriptor
1240 1241
 * @qword0_raw: qword0
 * @qword1: qword1 representing status_error_len in CPU ordering
1242 1243 1244 1245 1246
 *
 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 * status being successful or not and take actions accordingly. FCoE should
 * handle its context/filter programming/invalidation status and take actions.
 *
1247
 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1248
 **/
1249 1250
void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
				   u64 qword1)
1251 1252 1253
{
	u8 id;

1254
	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1255 1256 1257
		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;

	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1258
		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
}

/**
 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

J
Jesse Brandeburg 已提交
1275 1276
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
1277 1278 1279 1280 1281
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

1282 1283 1284 1285 1286 1287 1288
	if (ring_is_xdp(tx_ring)) {
		tx_ring->xsk_descs = kcalloc(I40E_MAX_NUM_DESCRIPTORS, sizeof(*tx_ring->xsk_descs),
					     GFP_KERNEL);
		if (!tx_ring->xsk_descs)
			goto err;
	}

1289 1290
	u64_stats_init(&tx_ring->syncp);

1291 1292
	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1293 1294 1295 1296
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
1308
	tx_ring->tx_stats.prev_pkt_ctr = -1;
1309 1310 1311
	return 0;

err:
1312 1313
	kfree(tx_ring->xsk_descs);
	tx_ring->xsk_descs = NULL;
1314 1315 1316 1317 1318
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
{
	unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;

	rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
	return rx_ring->rx_bi ? 0 : -ENOMEM;
}

static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
{
	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
/**
 * i40e_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
{
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

1344 1345 1346 1347 1348
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

1349
	if (rx_ring->xsk_pool) {
1350
		i40e_xsk_clean_rx_ring(rx_ring);
1351
		goto skip_free;
1352
	}
1353

1354 1355
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
B
Björn Töpel 已提交
1356
		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1357 1358 1359 1360

		if (!rx_bi->page)
			continue;

1361 1362 1363 1364 1365 1366
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
1367
					      rx_ring->rx_buf_len,
1368 1369 1370 1371
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1372
				     i40e_rx_pg_size(rx_ring),
1373 1374
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
1375

1376
		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1377 1378 1379

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
1380 1381
	}

1382
skip_free:
1383
	if (rx_ring->xsk_pool)
1384 1385 1386
		i40e_clear_rx_bi_zc(rx_ring);
	else
		i40e_clear_rx_bi(rx_ring);
1387 1388 1389 1390

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

1391
	rx_ring->next_to_alloc = 0;
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40e_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40e_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40e_clean_rx_ring(rx_ring);
1405 1406
	if (rx_ring->vsi->type == I40E_VSI_MAIN)
		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1407
	rx_ring->xdp_prog = NULL;
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40e_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
1427
	int err;
1428

1429
	u64_stats_init(&rx_ring->syncp);
1430

1431
	/* Round up to nearest 4K */
1432
	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1433 1434 1435 1436 1437 1438 1439
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
1440
		return -ENOMEM;
1441 1442
	}

1443
	rx_ring->next_to_alloc = 0;
1444 1445 1446
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

1447 1448 1449
	/* XDP RX-queue info only needed for RX rings exposed to XDP */
	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1450
				       rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1451
		if (err < 0)
1452
			return err;
1453 1454
	}

1455 1456
	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;

1457 1458 1459 1460 1461 1462 1463 1464
	return 0;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
1465
void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1466 1467
{
	rx_ring->next_to_use = val;
1468 1469 1470 1471

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

1472 1473 1474 1475 1476 1477 1478 1479 1480
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
/**
 * i40e_rx_offset - Return expected offset into page to access data
 * @rx_ring: Ring we are requesting offset of
 *
 * Returns the offset value for ring into the data buffer.
 */
static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
{
	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
}

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
					   unsigned int size)
{
	unsigned int truesize;

#if (PAGE_SIZE < 8192)
	truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
#else
	truesize = i40e_rx_offset(rx_ring) ?
		SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) +
		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
		SKB_DATA_ALIGN(size);
#endif
	return truesize;
}

1508
/**
1509 1510 1511
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
1512
 *
1513 1514
 * Returns true if the page was successfully allocated or
 * reused.
1515
 **/
1516 1517
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
1518
{
1519 1520
	struct page *page = bi->page;
	dma_addr_t dma;
1521

1522 1523 1524 1525 1526
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
1527

1528
	/* alloc new page for storage */
1529
	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1530 1531 1532 1533
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
1534

1535
	/* map page for use */
1536
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1537
				 i40e_rx_pg_size(rx_ring),
1538 1539
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
1540

1541 1542
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
1543
	 */
1544
	if (dma_mapping_error(rx_ring->dev, dma)) {
1545
		__free_pages(page, i40e_rx_pg_order(rx_ring));
1546 1547
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
1548 1549
	}

1550 1551
	bi->dma = dma;
	bi->page = page;
1552
	bi->page_offset = i40e_rx_offset(rx_ring);
1553 1554
	page_ref_add(page, USHRT_MAX - 1);
	bi->pagecnt_bias = USHRT_MAX;
1555

1556 1557
	return true;
}
1558

1559
/**
1560
 * i40e_alloc_rx_buffers - Replace used receive buffers
1561 1562
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
1563
 *
1564
 * Returns false if all allocations were successful, true if any fail
1565
 **/
1566
bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1567
{
1568
	u16 ntu = rx_ring->next_to_use;
1569 1570 1571 1572 1573
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
1574
		return false;
1575

1576
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
B
Björn Töpel 已提交
1577
	bi = i40e_rx_bi(rx_ring, ntu);
1578

1579 1580 1581
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
1582

1583 1584 1585
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
1586
						 rx_ring->rx_buf_len,
1587 1588
						 DMA_FROM_DEVICE);

1589 1590 1591 1592
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1593

1594 1595 1596 1597 1598
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
B
Björn Töpel 已提交
1599
			bi = i40e_rx_bi(rx_ring, 0);
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1611 1612 1613

	return false;

1614
no_buffers:
1615 1616
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1617 1618 1619 1620 1621

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
1622 1623 1624 1625 1626 1627
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
1628
 * @rx_desc: the receive descriptor
1629 1630 1631
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
1632
				    union i40e_rx_desc *rx_desc)
1633
{
1634 1635
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
1636
	bool ipv4, ipv6;
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
1647

1648 1649
	skb->ip_summed = CHECKSUM_NONE;

1650 1651
	skb_checksum_none_assert(skb);

1652
	/* Rx csum enabled and ip headers found? */
1653 1654 1655 1656
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
1657
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1658 1659 1660 1661
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
1662 1663
		return;

1664 1665 1666 1667
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1668 1669

	if (ipv4 &&
1670 1671
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1672 1673
		goto checksum_fail;

J
Jesse Brandeburg 已提交
1674
	/* likely incorrect csum if alternate IP extension headers found */
1675
	if (ipv6 &&
1676
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1677
		/* don't increment checksum err here, non-fatal err */
1678 1679
		return;

1680
	/* there was some L4 error, count error and punt packet to the stack */
1681
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1682 1683 1684 1685 1686 1687
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
1688
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1689 1690
		return;

1691 1692 1693
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
1694
	 */
1695 1696 1697 1698 1699 1700 1701 1702 1703
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
1704
		fallthrough;
1705 1706 1707
	default:
		break;
	}
1708 1709 1710 1711 1712

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
1713 1714 1715
}

/**
1716
 * i40e_ptype_to_htype - get a hash type
1717 1718 1719 1720
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
1721
static inline int i40e_ptype_to_htype(u8 ptype)
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

1738 1739 1740 1741
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
1742 1743
 * @skb: skb currently being received and modified
 * @rx_ptype: Rx packet type
1744 1745 1746 1747 1748 1749 1750
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
1751
	const __le64 rss_mask =
1752 1753 1754
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

1755
	if (!(ring->netdev->features & NETIF_F_RXHASH))
1756 1757 1758 1759 1760 1761 1762 1763
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

1764
/**
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 **/
void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1775
			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1776 1777 1778 1779
{
	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;
1780 1781
	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1782
		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1783 1784
	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
		      I40E_RXD_QW1_PTYPE_SHIFT;
1785

1786
	if (unlikely(tsynvalid))
1787
		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1788 1789 1790 1791 1792 1793

	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);

	skb_record_rx_queue(skb, rx_ring->queue_index);
1794

1795 1796 1797 1798 1799 1800 1801
	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
		u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;

		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
				       le16_to_cpu(vlan_tag));
	}

1802 1803
	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1804 1805 1806 1807 1808 1809
}

/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
1810
 * @rx_desc: pointer to the EOP Rx descriptor
1811 1812 1813 1814 1815 1816 1817 1818 1819
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
1820 1821 1822
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
				 union i40e_rx_desc *rx_desc)

1823
{
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	/* XDP packets use error pointer so abort at this point */
	if (IS_ERR(skb))
		return true;

	/* ERR_MASK will only have valid bits if EOP set, and
	 * what we are doing here is actually checking
	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
	 * the error field
	 */
	if (unlikely(i40e_test_staterr(rx_desc,
				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
		dev_kfree_skb_any(skb);
		return true;
	}

1839 1840 1841 1842 1843 1844 1845
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

1846 1847 1848 1849 1850
/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
1851
 * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
1874 1875
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
				   int rx_buffer_pgcnt)
1876
{
1877 1878
	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
	struct page *page = rx_buffer->page;
1879 1880

	/* Is any reuse possible? */
1881
	if (!dev_page_is_reusable(page))
1882 1883 1884 1885
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
1886
	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1887 1888
		return false;
#else
1889 1890 1891
#define I40E_LAST_OFFSET \
	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1892 1893 1894
		return false;
#endif

1895 1896 1897 1898
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
	 */
1899 1900
	if (unlikely(pagecnt_bias == 1)) {
		page_ref_add(page, USHRT_MAX - 1);
1901 1902
		rx_buffer->pagecnt_bias = USHRT_MAX;
	}
1903

1904
	return true;
1905 1906 1907 1908 1909 1910 1911
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @skb: sk_buff to place the data into
1912
 * @size: packet length from rx_desc
1913 1914
 *
 * This function will add the data contained in rx_buffer->page to the skb.
1915
 * It will just attach the page as a frag to the skb.
1916
 *
1917
 * The function will then update the page offset.
1918
 **/
1919
static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1920
			     struct i40e_rx_buffer *rx_buffer,
1921 1922
			     struct sk_buff *skb,
			     unsigned int size)
1923 1924
{
#if (PAGE_SIZE < 8192)
1925
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1926
#else
1927
	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1928 1929
#endif

1930 1931
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
			rx_buffer->page_offset, size, truesize);
1932

1933 1934 1935 1936 1937 1938
	/* page is being used so we must update the page offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
1939 1940
}

1941 1942 1943 1944
/**
 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
 * @rx_ring: rx descriptor ring to transact packets on
 * @size: size of buffer to add to skb
1945
 * @rx_buffer_pgcnt: buffer page refcount
1946 1947 1948 1949 1950
 *
 * This function will pull an Rx buffer from the ring and synchronize it
 * for use by the CPU.
 */
static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1951 1952
						 const unsigned int size,
						 int *rx_buffer_pgcnt)
1953 1954 1955
{
	struct i40e_rx_buffer *rx_buffer;

B
Björn Töpel 已提交
1956
	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
1957 1958 1959 1960 1961 1962
	*rx_buffer_pgcnt =
#if (PAGE_SIZE < 8192)
		page_count(rx_buffer->page);
#else
		0;
#endif
1963
	prefetch_page_address(rx_buffer->page);
1964 1965 1966 1967 1968 1969 1970 1971

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      size,
				      DMA_FROM_DEVICE);

1972 1973 1974
	/* We have pulled a buffer for use, so decrement pagecnt_bias */
	rx_buffer->pagecnt_bias--;

1975 1976 1977
	return rx_buffer;
}

1978
/**
1979
 * i40e_construct_skb - Allocate skb and populate it
1980
 * @rx_ring: rx descriptor ring to transact packets on
1981
 * @rx_buffer: rx buffer to pull data from
1982
 * @xdp: xdp_buff pointing to the data
1983
 *
1984 1985 1986
 * This function allocates an skb.  It then populates it with the page
 * data from the current receive descriptor, taking care to set up the
 * skb correctly.
1987
 */
1988 1989
static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
					  struct i40e_rx_buffer *rx_buffer,
1990
					  struct xdp_buff *xdp)
1991
{
1992
	unsigned int size = xdp->data_end - xdp->data;
1993
#if (PAGE_SIZE < 8192)
1994
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1995 1996 1997 1998 1999
#else
	unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
	unsigned int headlen;
	struct sk_buff *skb;
2000

2001
	/* prefetch first cache line of first page */
2002 2003
	net_prefetch(xdp->data);

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	/* Note, we get here by enabling legacy-rx via:
	 *
	 *    ethtool --set-priv-flags <dev> legacy-rx on
	 *
	 * In this mode, we currently get 0 extra XDP headroom as
	 * opposed to having legacy-rx off, where we process XDP
	 * packets going to stack via i40e_build_skb(). The latter
	 * provides us currently with 192 bytes of headroom.
	 *
	 * For i40e_construct_skb() mode it means that the
	 * xdp->data_meta will always point to xdp->data, since
	 * the helper cannot expand the head. Should this ever
	 * change in future for legacy-rx mode on, then lets also
	 * add xdp->data_meta handling here.
	 */
2019

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
	/* allocate a skb to store the frags */
	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
			       I40E_RX_HDR_SIZE,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;

	/* Determine available headroom for copy */
	headlen = size;
	if (headlen > I40E_RX_HDR_SIZE)
2030 2031
		headlen = eth_get_headlen(skb->dev, xdp->data,
					  I40E_RX_HDR_SIZE);
2032

2033
	/* align pull length to size of long to optimize memcpy performance */
2034 2035
	memcpy(__skb_put(skb, headlen), xdp->data,
	       ALIGN(headlen, sizeof(long)));
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

	/* update all of the pointers */
	size -= headlen;
	if (size) {
		skb_add_rx_frag(skb, 0, rx_buffer->page,
				rx_buffer->page_offset + headlen,
				size, truesize);

		/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
		rx_buffer->page_offset ^= truesize;
#else
		rx_buffer->page_offset += truesize;
#endif
	} else {
		/* buffer is unused, reset bias back to rx_buffer */
		rx_buffer->pagecnt_bias++;
	}
2054 2055 2056 2057

	return skb;
}

2058 2059 2060 2061
/**
 * i40e_build_skb - Build skb around an existing buffer
 * @rx_ring: Rx descriptor ring to transact packets on
 * @rx_buffer: Rx buffer to pull data from
2062
 * @xdp: xdp_buff pointing to the data
2063 2064 2065 2066 2067 2068
 *
 * This function builds an skb around an existing Rx buffer, taking care
 * to set up the skb correctly and avoid any memcpy overhead.
 */
static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
				      struct i40e_rx_buffer *rx_buffer,
2069
				      struct xdp_buff *xdp)
2070
{
2071
	unsigned int metasize = xdp->data - xdp->data_meta;
2072 2073 2074
#if (PAGE_SIZE < 8192)
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
#else
2075
	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2076 2077
				SKB_DATA_ALIGN(xdp->data_end -
					       xdp->data_hard_start);
2078 2079 2080
#endif
	struct sk_buff *skb;

2081 2082 2083 2084 2085
	/* Prefetch first cache line of first page. If xdp->data_meta
	 * is unused, this points exactly as xdp->data, otherwise we
	 * likely have a consumer accessing first few bytes of meta
	 * data, and then actual data.
	 */
2086 2087
	net_prefetch(xdp->data_meta);

2088
	/* build an skb around the page buffer */
2089
	skb = build_skb(xdp->data_hard_start, truesize);
2090 2091 2092 2093
	if (unlikely(!skb))
		return NULL;

	/* update pointers within the skb to store the data */
2094
	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2095 2096 2097
	__skb_put(skb, xdp->data_end - xdp->data);
	if (metasize)
		skb_metadata_set(skb, metasize);
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

	/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif

	return skb;
}

2109 2110 2111 2112
/**
 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: rx buffer to pull data from
2113
 * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2114 2115
 *
 * This function will clean up the contents of the rx_buffer.  It will
2116
 * either recycle the buffer or unmap it and free the associated resources.
2117 2118
 */
static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2119 2120
			       struct i40e_rx_buffer *rx_buffer,
			       int rx_buffer_pgcnt)
2121
{
2122
	if (i40e_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2123 2124 2125 2126
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
2127 2128
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
				     i40e_rx_pg_size(rx_ring),
2129
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2130 2131
		__page_frag_cache_drain(rx_buffer->page,
					rx_buffer->pagecnt_bias);
2132 2133
		/* clear contents of buffer_info */
		rx_buffer->page = NULL;
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	}
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
2147
 **/
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

2170
static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2171
			      struct i40e_ring *xdp_ring);
2172

2173
int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2174
{
2175
	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2176 2177 2178 2179 2180 2181 2182

	if (unlikely(!xdpf))
		return I40E_XDP_CONSUMED;

	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
}

2183 2184 2185 2186 2187 2188 2189 2190
/**
 * i40e_run_xdp - run an XDP program
 * @rx_ring: Rx ring being processed
 * @xdp: XDP buffer containing the frame
 **/
static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
				    struct xdp_buff *xdp)
{
2191
	int err, result = I40E_XDP_PASS;
2192
	struct i40e_ring *xdp_ring;
2193 2194 2195 2196 2197 2198 2199 2200 2201
	struct bpf_prog *xdp_prog;
	u32 act;

	rcu_read_lock();
	xdp_prog = READ_ONCE(rx_ring->xdp_prog);

	if (!xdp_prog)
		goto xdp_out;

2202 2203
	prefetchw(xdp->data_hard_start); /* xdp_frame write */

2204 2205 2206 2207
	act = bpf_prog_run_xdp(xdp_prog, xdp);
	switch (act) {
	case XDP_PASS:
		break;
2208 2209
	case XDP_TX:
		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2210
		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2211
		break;
2212 2213
	case XDP_REDIRECT:
		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2214
		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
2215
		break;
2216 2217
	default:
		bpf_warn_invalid_xdp_action(act);
2218
		fallthrough;
2219 2220
	case XDP_ABORTED:
		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2221
		fallthrough; /* handle aborts by dropping packet */
2222 2223 2224 2225 2226 2227 2228 2229 2230
	case XDP_DROP:
		result = I40E_XDP_CONSUMED;
		break;
	}
xdp_out:
	rcu_read_unlock();
	return ERR_PTR(-result);
}

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
/**
 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
 * @rx_ring: Rx ring
 * @rx_buffer: Rx buffer to adjust
 * @size: Size of adjustment
 **/
static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
				struct i40e_rx_buffer *rx_buffer,
				unsigned int size)
{
2241
	unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2242

2243
#if (PAGE_SIZE < 8192)
2244 2245 2246 2247 2248 2249
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
}

2250 2251 2252 2253 2254 2255
/**
 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
 * @xdp_ring: XDP Tx ring
 *
 * This function updates the XDP Tx ring tail register.
 **/
2256
void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2257 2258 2259 2260 2261 2262 2263 2264
{
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.
	 */
	wmb();
	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
}

2265 2266 2267 2268 2269 2270 2271 2272
/**
 * i40e_update_rx_stats - Update Rx ring statistics
 * @rx_ring: rx descriptor ring
 * @total_rx_bytes: number of bytes received
 * @total_rx_packets: number of packets received
 *
 * This function updates the Rx ring statistics.
 **/
2273 2274 2275
void i40e_update_rx_stats(struct i40e_ring *rx_ring,
			  unsigned int total_rx_bytes,
			  unsigned int total_rx_packets)
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
{
	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
}

/**
 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
 * @rx_ring: Rx ring
 * @xdp_res: Result of the receive batch
 *
 * This function bumps XDP Tx tail and/or flush redirect map, and
 * should be called when a batch of packets has been processed in the
 * napi loop.
 **/
2294
void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
{
	if (xdp_res & I40E_XDP_REDIR)
		xdp_do_flush_map();

	if (xdp_res & I40E_XDP_TX) {
		struct i40e_ring *xdp_ring =
			rx_ring->vsi->xdp_rings[rx_ring->queue_index];

		i40e_xdp_ring_update_tail(xdp_ring);
	}
}

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
/**
 * i40e_inc_ntc: Advance the next_to_clean index
 * @rx_ring: Rx ring
 **/
static void i40e_inc_ntc(struct i40e_ring *rx_ring)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;
	prefetch(I40E_RX_DESC(rx_ring, ntc));
}

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
/**
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 **/
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2333
{
2334
	unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
2335
	struct sk_buff *skb = rx_ring->skb;
2336
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2337 2338
	unsigned int xdp_xmit = 0;
	bool failure = false;
2339 2340
	struct xdp_buff xdp;

2341
#if (PAGE_SIZE < 8192)
2342
	frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2343
#endif
2344
	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
2345

2346
	while (likely(total_rx_packets < (unsigned int)budget)) {
2347
		struct i40e_rx_buffer *rx_buffer;
2348
		union i40e_rx_desc *rx_desc;
2349
		int rx_buffer_pgcnt;
2350
		unsigned int size;
2351 2352
		u64 qword;

2353 2354
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2355
			failure = failure ||
2356
				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2357 2358 2359
			cleaned_count = 0;
		}

2360 2361 2362 2363 2364
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
2365
		 * hardware wrote DD then the length will be non-zero
2366
		 */
2367
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2368

2369
		/* This memory barrier is needed to keep us from reading
2370 2371
		 * any other fields out of the rx_desc until we have
		 * verified the descriptor has been written back.
2372
		 */
2373
		dma_rmb();
2374

2375 2376 2377 2378 2379 2380
		if (i40e_rx_is_programming_status(qword)) {
			i40e_clean_programming_status(rx_ring,
						      rx_desc->raw.qword[0],
						      qword);
			rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
			i40e_inc_ntc(rx_ring);
2381
			i40e_reuse_rx_page(rx_ring, rx_buffer);
2382
			cleaned_count++;
2383 2384
			continue;
		}
2385

2386 2387 2388 2389 2390
		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		if (!size)
			break;

S
Scott Peterson 已提交
2391
		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2392
		rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2393

2394
		/* retrieve a buffer from the ring */
2395
		if (!skb) {
2396 2397 2398 2399 2400 2401
			unsigned int offset = i40e_rx_offset(rx_ring);
			unsigned char *hard_start;

			hard_start = page_address(rx_buffer->page) +
				     rx_buffer->page_offset - offset;
			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
2402 2403 2404 2405
#if (PAGE_SIZE > 4096)
			/* At larger PAGE_SIZE, frame_sz depend on len size */
			xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
#endif
2406 2407 2408 2409
			skb = i40e_run_xdp(rx_ring, &xdp);
		}

		if (IS_ERR(skb)) {
2410 2411 2412 2413
			unsigned int xdp_res = -PTR_ERR(skb);

			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
				xdp_xmit |= xdp_res;
2414 2415 2416 2417
				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
			} else {
				rx_buffer->pagecnt_bias++;
			}
2418 2419 2420
			total_rx_bytes += size;
			total_rx_packets++;
		} else if (skb) {
2421
			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2422 2423 2424 2425 2426
		} else if (ring_uses_build_skb(rx_ring)) {
			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
		} else {
			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
		}
2427 2428 2429 2430 2431

		/* exit if we failed to retrieve a buffer */
		if (!skb) {
			rx_ring->rx_stats.alloc_buff_failed++;
			rx_buffer->pagecnt_bias++;
2432
			break;
2433
		}
2434

2435
		i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2436 2437
		cleaned_count++;

2438
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2439 2440
			continue;

2441
		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2442
			skb = NULL;
2443
			continue;
2444
		}
2445 2446 2447 2448

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

2449
		/* populate checksum, VLAN, and protocol */
2450
		i40e_process_skb_fields(rx_ring, rx_desc, skb);
2451

S
Scott Peterson 已提交
2452
		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2453
		napi_gro_receive(&rx_ring->q_vector->napi, skb);
2454
		skb = NULL;
2455

2456 2457 2458
		/* update budget accounting */
		total_rx_packets++;
	}
2459

2460
	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2461 2462
	rx_ring->skb = skb;

2463
	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2464

2465
	/* guarantee a trip back through this routine if there was a failure */
2466
	return failure ? budget : (int)total_rx_packets;
2467 2468
}

2469
static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2470 2471 2472
{
	u32 val;

2473 2474 2475 2476 2477 2478 2479 2480 2481
	/* We don't bother with setting the CLEARPBA bit as the data sheet
	 * points out doing so is "meaningless since it was already
	 * auto-cleared". The auto-clearing happens when the interrupt is
	 * asserted.
	 *
	 * Hardware errata 28 for also indicates that writing to a
	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
	 * an event in the PBA anyway so we need to rely on the automask
	 * to hold pending events for us until the interrupt is re-enabled
2482 2483 2484 2485 2486
	 *
	 * The itr value is reported in microseconds, and the register
	 * value is recorded in 2 microsecond units. For this reason we
	 * only need to shift by the interval shift - 1 instead of the
	 * full value.
2487
	 */
2488 2489
	itr &= I40E_ITR_MASK;

2490 2491
	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2492
	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2493 2494 2495 2496 2497 2498 2499

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_PFINT_DYN_CTLN

2500 2501 2502 2503 2504 2505 2506 2507 2508
/* The act of updating the ITR will cause it to immediately trigger. In order
 * to prevent this from throwing off adaptive update statistics we defer the
 * update so that it can only happen so often. So after either Tx or Rx are
 * updated we make the adaptive scheme wait until either the ITR completely
 * expires via the next_update expiration or we have been through at least
 * 3 interrupts.
 */
#define ITR_COUNTDOWN_START 3

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
2519
	u32 intval;
2520

2521 2522
	/* If we don't have MSIX, then we only need to re-enable icr0 */
	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2523
		i40e_irq_dynamic_enable_icr0(vsi->back);
2524 2525 2526
		return;
	}

2527 2528 2529
	/* These will do nothing if dynamic updates are not enabled */
	i40e_update_itr(q_vector, &q_vector->tx);
	i40e_update_itr(q_vector, &q_vector->rx);
2530

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
	/* This block of logic allows us to get away with only updating
	 * one ITR value with each interrupt. The idea is to perform a
	 * pseudo-lazy update with the following criteria.
	 *
	 * 1. Rx is given higher priority than Tx if both are in same state
	 * 2. If we must reduce an ITR that is given highest priority.
	 * 3. We then give priority to increasing ITR based on amount.
	 */
	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
		/* Rx ITR needs to be reduced, this is highest priority */
2541 2542 2543
		intval = i40e_buildreg_itr(I40E_RX_ITR,
					   q_vector->rx.target_itr);
		q_vector->rx.current_itr = q_vector->rx.target_itr;
2544 2545 2546 2547 2548 2549 2550
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
		/* Tx ITR needs to be reduced, this is second priority
		 * Tx ITR needs to be increased more than Rx, fourth priority
		 */
2551 2552 2553
		intval = i40e_buildreg_itr(I40E_TX_ITR,
					   q_vector->tx.target_itr);
		q_vector->tx.current_itr = q_vector->tx.target_itr;
2554 2555 2556 2557 2558 2559 2560
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
		/* Rx ITR needs to be increased, third priority */
		intval = i40e_buildreg_itr(I40E_RX_ITR,
					   q_vector->rx.target_itr);
		q_vector->rx.current_itr = q_vector->rx.target_itr;
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2561
	} else {
2562
		/* No ITR update, lowest priority */
2563
		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2564 2565
		if (q_vector->itr_countdown)
			q_vector->itr_countdown--;
2566 2567
	}

2568
	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2569
		wr32(hw, INTREG(q_vector->reg_idx), intval);
2570 2571
}

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
/**
 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40e_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
2586
	struct i40e_ring *ring;
2587
	bool clean_complete = true;
2588
	bool arm_wb = false;
2589
	int budget_per_ring;
2590
	int work_done = 0;
2591

2592
	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2593 2594 2595 2596
		napi_complete(napi);
		return 0;
	}

2597 2598 2599
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
2600
	i40e_for_each_ring(ring, q_vector->tx) {
2601
		bool wd = ring->xsk_pool ?
2602
			  i40e_clean_xdp_tx_irq(vsi, ring) :
2603 2604 2605
			  i40e_clean_tx_irq(vsi, ring, budget);

		if (!wd) {
2606 2607 2608 2609
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
2610
		ring->arm_wb = false;
2611
	}
2612

2613 2614 2615 2616
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
	/* normally we have 1 Rx ring per q_vector */
	if (unlikely(q_vector->num_ringpairs > 1))
		/* We attempt to distribute budget to each Rx queue fairly, but
		 * don't allow the budget to go below 1 because that would exit
		 * polling early.
		 */
		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
	else
		/* Max of 1 Rx ring in this q_vector so give it the budget */
		budget_per_ring = budget;
2627

2628
	i40e_for_each_ring(ring, q_vector->rx) {
2629
		int cleaned = ring->xsk_pool ?
2630 2631
			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
			      i40e_clean_rx_irq(ring, budget_per_ring);
2632 2633

		work_done += cleaned;
2634 2635 2636
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
2637
	}
2638 2639

	/* If work not completed, return budget and polling will return */
2640
	if (!clean_complete) {
2641 2642 2643 2644 2645 2646 2647 2648 2649
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
			/* Tell napi that we are done polling */
			napi_complete_done(napi, work_done);

			/* Force an interrupt */
			i40e_force_wb(vsi, q_vector);

			/* Return budget-1 so that polling stops */
			return budget - 1;
		}
2660
tx_only:
2661 2662 2663
		if (arm_wb) {
			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
			i40e_enable_wb_on_itr(vsi, q_vector);
2664
		}
2665
		return budget;
2666
	}
2667

2668 2669 2670
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

2671 2672 2673 2674 2675
	/* Exit the polling mode, but don't re-enable interrupts if stack might
	 * poll us due to busy-polling
	 */
	if (likely(napi_complete_done(napi, work_done)))
		i40e_update_enable_itr(vsi, q_vector);
2676

2677
	return min(work_done, budget - 1);
2678 2679 2680 2681 2682 2683
}

/**
 * i40e_atr - Add a Flow Director ATR filter
 * @tx_ring:  ring to add programming descriptor to
 * @skb:      send buffer
2684
 * @tx_flags: send tx flags
2685 2686
 **/
static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2687
		     u32 tx_flags)
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	union {
		unsigned char *network;
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	struct tcphdr *th;
	unsigned int hlen;
	u32 flex_ptype, dtype_cmd;
2699
	int l4_proto;
2700
	u16 i;
2701 2702

	/* make sure ATR is enabled */
J
Jesse Brandeburg 已提交
2703
	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2704 2705
		return;

2706
	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2707 2708
		return;

2709 2710 2711 2712
	/* if sampling is disabled do nothing */
	if (!tx_ring->atr_sample_rate)
		return;

2713
	/* Currently only IPv4/IPv6 with TCP is supported */
2714 2715
	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
		return;
2716

2717 2718 2719
	/* snag network header to get L4 type and address */
	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
		      skb_inner_network_header(skb) : skb_network_header(skb);
2720

2721 2722 2723 2724
	/* Note: tx_flags gets modified to reflect inner protocols in
	 * tx_enable_csum function if encap is enabled.
	 */
	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2725
		/* access ihl as u8 to avoid unaligned access on ia64 */
2726 2727
		hlen = (hdr.network[0] & 0x0F) << 2;
		l4_proto = hdr.ipv4->protocol;
2728
	} else {
2729 2730 2731 2732 2733 2734 2735 2736 2737
		/* find the start of the innermost ipv6 header */
		unsigned int inner_hlen = hdr.network - skb->data;
		unsigned int h_offset = inner_hlen;

		/* this function updates h_offset to the end of the header */
		l4_proto =
		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
		/* hlen will contain our best estimate of the tcp header */
		hlen = h_offset - inner_hlen;
2738 2739
	}

2740
	if (l4_proto != IPPROTO_TCP)
2741 2742
		return;

2743 2744
	th = (struct tcphdr *)(hdr.network + hlen);

2745
	/* Due to lack of space, no more new filters can be programmed */
2746
	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2747
		return;
2748
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2749 2750 2751 2752 2753 2754
		/* HW ATR eviction will take care of removing filters on FIN
		 * and RST packets.
		 */
		if (th->fin || th->rst)
			return;
	}
2755 2756 2757

	tx_ring->atr_count++;

2758 2759 2760 2761 2762
	/* sample on all syn/fin/rst packets or once every atr sample rate */
	if (!th->fin &&
	    !th->syn &&
	    !th->rst &&
	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2763 2764 2765 2766 2767
		return;

	tx_ring->atr_count = 0;

	/* grab the next descriptor */
2768 2769 2770 2771 2772
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2773 2774 2775

	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2776
	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2777 2778 2779 2780 2781 2782 2783 2784 2785
		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

2786
	dtype_cmd |= (th->fin || th->rst) ?
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
		     I40E_TXD_FLTR_QW1_DEST_SHIFT;

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;

2798
	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2799
	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2800 2801 2802 2803 2804 2805 2806 2807 2808
		dtype_cmd |=
			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
	else
		dtype_cmd |=
			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2809

2810
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2811 2812
		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;

2813
	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
J
Jesse Brandeburg 已提交
2814
	fdir_desc->rsvd = cpu_to_le32(0);
2815
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
J
Jesse Brandeburg 已提交
2816
	fdir_desc->fd_id = cpu_to_le32(0);
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
}

/**
 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
2831 2832 2833
static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
					     struct i40e_ring *tx_ring,
					     u32 *flags)
2834 2835 2836 2837
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

2851
	/* if we have a HW VLAN tag being added, default to the HW one */
2852 2853
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2854 2855
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
2856
	} else if (protocol == htons(ETH_P_8021Q)) {
2857
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
2858

2859 2860 2861 2862 2863 2864 2865 2866 2867
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

2868 2869 2870
	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
		goto out;

2871
	/* Insert 802.1p priority into VLAN header */
2872 2873
	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
	    (skb->priority != TC_PRIO_CONTROL)) {
2874 2875 2876 2877 2878
		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
		tx_flags |= (skb->priority & 0x7) <<
				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
			struct vlan_ethhdr *vhdr;
2879 2880 2881 2882 2883
			int rc;

			rc = skb_cow_head(skb, 0);
			if (rc < 0)
				return rc;
2884 2885 2886 2887 2888 2889 2890
			vhdr = (struct vlan_ethhdr *)skb->data;
			vhdr->h_vlan_TCI = htons(tx_flags >>
						 I40E_TX_FLAGS_VLAN_SHIFT);
		} else {
			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
		}
	}
2891 2892

out:
2893 2894 2895 2896 2897 2898
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
2899
 * @first:    pointer to first Tx buffer for xmit
2900
 * @hdr_len:  ptr to the size of the packet header
2901
 * @cd_type_cmd_tso_mss: Quad Word 1
2902 2903 2904
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
2905 2906
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
2907
{
2908
	struct sk_buff *skb = first->skb;
2909
	u64 cd_cmd, cd_tso_len, cd_mss;
2910 2911 2912 2913 2914
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
2915 2916
	union {
		struct tcphdr *tcp;
2917
		struct udphdr *udp;
2918 2919 2920
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
2921
	u16 gso_segs, gso_size;
2922 2923
	int err;

2924 2925 2926
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2927 2928 2929
	if (!skb_is_gso(skb))
		return 0;

2930 2931 2932
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
2933

2934 2935
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2936

2937 2938 2939 2940
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
2941
	} else {
2942 2943 2944
		ip.v6->payload_len = 0;
	}

2945
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2946
					 SKB_GSO_GRE_CSUM |
2947
					 SKB_GSO_IPXIP4 |
2948
					 SKB_GSO_IPXIP6 |
2949
					 SKB_GSO_UDP_TUNNEL |
2950
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2951 2952 2953 2954
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

2955 2956 2957 2958
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
2959
			paylen = skb->len - l4_offset;
2960 2961
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
2962 2963
		}

2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
2975 2976
	}

2977 2978 2979 2980
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
2981
	paylen = skb->len - l4_offset;
2982

2983 2984 2985 2986 2987 2988 2989 2990 2991
	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
		/* compute length of segmentation header */
		*hdr_len = sizeof(*l4.udp) + l4_offset;
	} else {
		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
		/* compute length of segmentation header */
		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
	}
2992

2993 2994 2995 2996 2997 2998 2999 3000
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

3001 3002 3003
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
3004
	cd_mss = gso_size;
3005 3006 3007
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3008 3009 3010
	return 1;
}

J
Jacob Keller 已提交
3011 3012 3013 3014 3015
/**
 * i40e_tsyn - set up the tsyn context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @tx_flags: the collected send information
3016
 * @cd_type_cmd_tso_mss: Quad Word 1
J
Jacob Keller 已提交
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
 *
 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
 **/
static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
{
	struct i40e_pf *pf;

	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
		return 0;

	/* Tx timestamps cannot be sampled when doing TSO */
	if (tx_flags & I40E_TX_FLAGS_TSO)
		return 0;

	/* only timestamp the outbound packet if the user has requested it and
	 * we are not already transmitting a packet to be timestamped
	 */
	pf = i40e_netdev_to_pf(tx_ring->netdev);
3036 3037 3038
	if (!(pf->flags & I40E_FLAG_PTP))
		return 0;

3039
	if (pf->ptp_tx &&
3040
	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
J
Jacob Keller 已提交
3041
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3042
		pf->ptp_tx_start = jiffies;
J
Jacob Keller 已提交
3043 3044
		pf->ptp_tx_skb = skb_get(skb);
	} else {
3045
		pf->tx_hwtstamp_skipped++;
J
Jacob Keller 已提交
3046 3047 3048 3049 3050 3051 3052 3053 3054
		return 0;
	}

	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
				I40E_TXD_CTX_QW1_CMD_SHIFT;

	return 1;
}

3055 3056 3057
/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
3058
 * @tx_flags: pointer to Tx flags currently set
3059 3060
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
3061
 * @tx_ring: Tx descriptor ring
3062 3063
 * @cd_tunneling: ptr to context desc bits
 **/
3064 3065 3066 3067
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
3068
{
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
3079
	unsigned char *exthdr;
3080
	u32 offset, cmd = 0;
3081
	__be16 frag_off;
3082 3083
	u8 l4_proto = 0;

3084 3085 3086
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

3087 3088
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
3089

3090 3091 3092
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

3093
	if (skb->encapsulation) {
3094
		u32 tunnel = 0;
3095 3096
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3097 3098 3099 3100
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

3101 3102
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3103
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3104 3105

			exthdr = ip.hdr + sizeof(*ip.v6);
3106
			l4_proto = ip.v6->nexthdr;
3107 3108 3109
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
3110 3111 3112 3113
		}

		/* define outer transport */
		switch (l4_proto) {
3114
		case IPPROTO_UDP:
3115
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3116
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3117
			break;
3118
		case IPPROTO_GRE:
3119
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3120
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3121
			break;
3122 3123 3124 3125 3126
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
3127
		default:
3128 3129 3130 3131 3132
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
3133
		}
3134

3135 3136 3137 3138 3139 3140 3141
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

3142 3143 3144 3145
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

3146 3147
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3148
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3149 3150 3151
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

3152 3153 3154
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

3155 3156
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
3157
		l4_proto = 0;
3158

3159 3160 3161 3162 3163
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
3164
			*tx_flags |= I40E_TX_FLAGS_IPV6;
3165 3166 3167
	}

	/* Enable IP checksum offloads */
3168
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3169
		l4_proto = ip.v4->protocol;
3170 3171 3172
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
3173 3174 3175
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
3176
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3177
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3178 3179 3180 3181 3182 3183

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
3184
	}
3185

3186 3187
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3188 3189

	/* Enable L4 checksum offloads */
3190
	switch (l4_proto) {
3191 3192
	case IPPROTO_TCP:
		/* enable checksum offloads */
3193 3194
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3195 3196 3197
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
3198 3199 3200
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3201 3202 3203
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
3204 3205 3206
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3207 3208
		break;
	default:
3209 3210 3211 3212
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
3213
	}
3214 3215 3216

	*td_cmd |= cmd;
	*td_offset |= offset;
3217 3218

	return 1;
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
3233
	int i = tx_ring->next_to_use;
3234

3235 3236
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
3237 3238 3239
		return;

	/* grab the next descriptor */
3240 3241 3242 3243
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3244 3245 3246 3247

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3248
	context_desc->rsvd = cpu_to_le16(0);
3249 3250 3251
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

E
Eric Dumazet 已提交
3252 3253 3254 3255 3256 3257 3258
/**
 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
3259
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
E
Eric Dumazet 已提交
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

3275
/**
3276
 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3277 3278
 * @skb:      send buffer
 *
3279 3280 3281 3282 3283 3284 3285 3286
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
3287
 **/
3288
bool __i40e_chk_linearize(struct sk_buff *skb)
3289
{
3290
	const skb_frag_t *frag, *stale;
3291
	int nr_frags, sum;
3292

3293
	/* no need to check if number of frags is less than 7 */
3294
	nr_frags = skb_shinfo(skb)->nr_frags;
3295
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3296
		return false;
3297

3298
	/* We need to walk through the list and validate that each group
3299
	 * of 6 fragments totals at least gso_size.
3300
	 */
3301
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3302 3303 3304 3305 3306 3307 3308 3309
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
3310
	sum = 1 - skb_shinfo(skb)->gso_size;
3311

3312 3313 3314 3315 3316 3317
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
3318 3319 3320 3321

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
3322 3323 3324
	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
		int stale_size = skb_frag_size(stale);

3325
		sum += skb_frag_size(frag++);
3326

3327 3328 3329 3330 3331 3332 3333
		/* The stale fragment may present us with a smaller
		 * descriptor than the actual fragment size. To account
		 * for that we need to remove all the data on the front and
		 * figure out what the remainder would be in the last
		 * descriptor associated with the fragment.
		 */
		if (stale_size > I40E_MAX_DATA_PER_TXD) {
J
Jonathan Lemon 已提交
3334
			int align_pad = -(skb_frag_off(stale)) &
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
					(I40E_MAX_READ_REQ_SIZE - 1);

			sum -= align_pad;
			stale_size -= align_pad;

			do {
				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
			} while (stale_size > I40E_MAX_DATA_PER_TXD);
		}

3346 3347 3348 3349
		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

3350
		if (!nr_frags--)
3351 3352
			break;

3353
		sum -= stale_size;
3354 3355
	}

3356
	return false;
3357 3358
}

3359 3360 3361 3362 3363 3364 3365 3366 3367
/**
 * i40e_tx_map - Build the Tx descriptor
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
3368 3369
 *
 * Returns 0 on success, -1 on failure to DMA
3370
 **/
3371 3372 3373
static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
			      struct i40e_tx_buffer *first, u32 tx_flags,
			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3374 3375 3376
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
3377
	skb_frag_t *frag;
3378 3379
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
A
Alexander Duyck 已提交
3380
	u16 i = tx_ring->next_to_use;
3381 3382
	u32 td_tag = 0;
	dma_addr_t dma;
3383
	u16 desc_count = 1;
3384 3385 3386 3387 3388 3389 3390

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

A
Alexander Duyck 已提交
3391 3392 3393 3394
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

3395
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
3396 3397 3398
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3399 3400
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

A
Alexander Duyck 已提交
3401 3402 3403 3404 3405 3406 3407
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

3408 3409
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
A
Alexander Duyck 已提交
3410 3411 3412
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3413 3414
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
3415
					   max_data, td_tag);
3416 3417 3418

			tx_desc++;
			i++;
3419 3420
			desc_count++;

3421 3422 3423 3424 3425
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

3426 3427
			dma += max_data;
			size -= max_data;
3428

3429
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
A
Alexander Duyck 已提交
3430 3431
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}
3432 3433 3434 3435

		if (likely(!data_len))
			break;

A
Alexander Duyck 已提交
3436 3437
		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);
3438 3439 3440

		tx_desc++;
		i++;
3441 3442
		desc_count++;

3443 3444 3445 3446 3447
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

A
Alexander Duyck 已提交
3448 3449
		size = skb_frag_size(frag);
		data_len -= size;
3450

A
Alexander Duyck 已提交
3451 3452
		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);
3453

A
Alexander Duyck 已提交
3454 3455
		tx_bi = &tx_ring->tx_bi[i];
	}
3456

3457
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
A
Alexander Duyck 已提交
3458 3459 3460 3461 3462 3463 3464

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

E
Eric Dumazet 已提交
3465
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3466

3467 3468 3469
	/* write last descriptor with EOP bit */
	td_cmd |= I40E_TX_DESC_CMD_EOP;

3470 3471
	/* We OR these values together to check both against 4 (WB_STRIDE)
	 * below. This is safe since we don't re-use desc_count afterwards.
3472 3473 3474
	 */
	desc_count |= ++tx_ring->packet_stride;

3475
	if (desc_count >= WB_STRIDE) {
3476 3477
		/* write last descriptor with RS bit set */
		td_cmd |= I40E_TX_DESC_CMD_RS;
3478 3479 3480 3481
		tx_ring->packet_stride = 0;
	}

	tx_desc->cmd_type_offset_bsz =
3482 3483
			build_ctob(td_cmd, td_offset, size, td_tag);

3484 3485
	skb_tx_timestamp(skb);

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
3496

A
Alexander Duyck 已提交
3497
	/* notify HW of packet */
3498
	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3499 3500
		writel(i, tx_ring->tail);
	}
3501

3502
	return 0;
3503 3504

dma_error:
A
Alexander Duyck 已提交
3505
	dev_info(tx_ring->dev, "TX DMA map failed\n");
3506 3507 3508 3509

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
A
Alexander Duyck 已提交
3510
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3511 3512 3513 3514 3515 3516 3517 3518
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
3519 3520

	return -1;
3521 3522
}

3523 3524
/**
 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3525
 * @xdpf: data to transmit
3526 3527
 * @xdp_ring: XDP Tx ring
 **/
3528
static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3529 3530 3531 3532 3533
			      struct i40e_ring *xdp_ring)
{
	u16 i = xdp_ring->next_to_use;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
3534
	void *data = xdpf->data;
3535
	u32 size = xdpf->len;
3536 3537 3538 3539 3540 3541
	dma_addr_t dma;

	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
		xdp_ring->tx_stats.tx_busy++;
		return I40E_XDP_CONSUMED;
	}
3542
	dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3543 3544 3545 3546 3547 3548
	if (dma_mapping_error(xdp_ring->dev, dma))
		return I40E_XDP_CONSUMED;

	tx_bi = &xdp_ring->tx_bi[i];
	tx_bi->bytecount = size;
	tx_bi->gso_segs = 1;
3549
	tx_bi->xdpf = xdpf;
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565

	/* record length, and DMA address */
	dma_unmap_len_set(tx_bi, len, size);
	dma_unmap_addr_set(tx_bi, dma, dma);

	tx_desc = I40E_TX_DESC(xdp_ring, i);
	tx_desc->buffer_addr = cpu_to_le64(dma);
	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
						  | I40E_TXD_CMD,
						  0, size, 0);

	/* Make certain all of the status bits have been updated
	 * before next_to_watch is written.
	 */
	smp_wmb();

3566
	xdp_ring->xdp_tx_active++;
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
	i++;
	if (i == xdp_ring->count)
		i = 0;

	tx_bi->next_to_watch = tx_desc;
	xdp_ring->next_to_use = i;

	return I40E_XDP_TX;
}

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
3595
	int tso, count;
J
Jacob Keller 已提交
3596
	int tsyn;
J
Jesse Brandeburg 已提交
3597

3598 3599 3600
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

S
Scott Peterson 已提交
3601 3602
	i40e_trace(xmit_frame_ring, skb, tx_ring);

3603
	count = i40e_xmit_descriptor_count(skb);
3604
	if (i40e_chk_linearize(skb, count)) {
3605 3606 3607 3608
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
3609
		count = i40e_txd_use_count(skb->len);
3610 3611
		tx_ring->tx_stats.tx_linearize++;
	}
3612 3613 3614 3615 3616 3617 3618 3619 3620

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
3621
		return NETDEV_TX_BUSY;
3622
	}
3623

3624 3625 3626 3627 3628 3629
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

3630 3631 3632 3633 3634
	/* prepare the xmit flags */
	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
		goto out_drop;

	/* obtain protocol of skb */
3635
	protocol = vlan_get_protocol(skb);
3636 3637

	/* setup IPv4/IPv6 offloads */
3638
	if (protocol == htons(ETH_P_IP))
3639
		tx_flags |= I40E_TX_FLAGS_IPV4;
3640
	else if (protocol == htons(ETH_P_IPV6))
3641 3642
		tx_flags |= I40E_TX_FLAGS_IPV6;

3643
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3644 3645 3646 3647 3648 3649

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

3650 3651 3652 3653 3654 3655
	/* Always offload the checksum, since it's in the data descriptor */
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;

J
Jacob Keller 已提交
3656 3657 3658 3659 3660
	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);

	if (tsyn)
		tx_flags |= I40E_TX_FLAGS_TSYN;

3661 3662 3663
	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

3664 3665 3666 3667 3668 3669 3670
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

	/* Add Flow Director ATR if it's enabled.
	 *
	 * NOTE: this must always be directly before the data descriptor.
	 */
3671
	i40e_atr(tx_ring, skb, tx_flags);
3672

3673 3674 3675
	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
			td_cmd, td_offset))
		goto cleanup_tx_tstamp;
3676 3677 3678 3679

	return NETDEV_TX_OK;

out_drop:
S
Scott Peterson 已提交
3680
	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3681 3682
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
3683 3684 3685 3686 3687 3688 3689 3690 3691
cleanup_tx_tstamp:
	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);

		dev_kfree_skb_any(pf->ptp_tx_skb);
		pf->ptp_tx_skb = NULL;
		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
	}

3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
	return NETDEV_TX_OK;
}

/**
 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40e_netdev_priv *np = netdev_priv(netdev);
	struct i40e_vsi *vsi = np->vsi;
3706
	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3707 3708 3709 3710

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
3711 3712
	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
		return NETDEV_TX_OK;
3713 3714 3715

	return i40e_xmit_frame_ring(skb, tx_ring);
}
3716 3717 3718 3719

/**
 * i40e_xdp_xmit - Implements ndo_xdp_xmit
 * @dev: netdev
3720 3721 3722
 * @n: number of frames
 * @frames: array of XDP buffer pointers
 * @flags: XDP extra info
3723
 *
3724 3725 3726 3727 3728
 * Returns number of frames successfully sent. Frames that fail are
 * free'ed via XDP return API.
 *
 * For error cases, a negative errno code is returned and no-frames
 * are transmitted (caller must handle freeing frames).
3729
 **/
3730 3731
int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
		  u32 flags)
3732 3733 3734 3735
{
	struct i40e_netdev_priv *np = netdev_priv(dev);
	unsigned int queue_index = smp_processor_id();
	struct i40e_vsi *vsi = np->vsi;
3736
	struct i40e_pf *pf = vsi->back;
3737
	struct i40e_ring *xdp_ring;
3738 3739
	int drops = 0;
	int i;
3740 3741 3742 3743

	if (test_bit(__I40E_VSI_DOWN, vsi->state))
		return -ENETDOWN;

3744 3745
	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
	    test_bit(__I40E_CONFIG_BUSY, pf->state))
3746 3747
		return -ENXIO;

3748
	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3749 3750
		return -EINVAL;

3751 3752
	xdp_ring = vsi->xdp_rings[queue_index];

3753 3754 3755
	for (i = 0; i < n; i++) {
		struct xdp_frame *xdpf = frames[i];
		int err;
3756

3757
		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3758 3759 3760 3761 3762 3763
		if (err != I40E_XDP_TX) {
			xdp_return_frame_rx_napi(xdpf);
			drops++;
		}
	}

3764 3765
	if (unlikely(flags & XDP_XMIT_FLUSH))
		i40e_xdp_ring_update_tail(xdp_ring);
3766

3767
	return n - drops;
3768
}