i40e_txrx.c 95.6 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
G
Greg Rose 已提交
15 16
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
17 18 19 20 21 22 23 24 25 26
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

M
Mitch Williams 已提交
27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29
#include <linux/bpf_trace.h>
30
#include "i40e.h"
S
Scott Peterson 已提交
31
#include "i40e_trace.h"
32
#include "i40e_prototype.h"
33 34 35 36 37 38 39 40 41 42 43

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

44
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/**
 * i40e_fdir - Generate a Flow Director descriptor based on fdata
 * @tx_ring: Tx ring to send buffer on
 * @fdata: Flow director filter data
 * @add: Indicate if we are adding a rule or deleting one
 *
 **/
static void i40e_fdir(struct i40e_ring *tx_ring,
		      struct i40e_fdir_filter *fdata, bool add)
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	u32 flex_ptype, dtype_cmd;
	u16 i;

	/* grab the next descriptor */
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

76 77 78
	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	/* Use LAN VSI Id if not programmed by user */
	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

	dtype_cmd |= add ?
		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;

	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);

	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);

	if (fdata->cnt_index) {
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
			     ((u32)fdata->cnt_index <<
			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
	}

	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
	fdir_desc->rsvd = cpu_to_le32(0);
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
}

111
#define I40E_FD_CLEAN_DELAY 10
112 113
/**
 * i40e_program_fdir_filter - Program a Flow Director filter
114 115
 * @fdir_data: Packet data that will be filter parameters
 * @raw_packet: the pre-allocated packet buffer for FDir
116
 * @pf: The PF pointer
117 118
 * @add: True for add/update, False for remove
 **/
119 120 121
static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
				    u8 *raw_packet, struct i40e_pf *pf,
				    bool add)
122
{
123
	struct i40e_tx_buffer *tx_buf, *first;
124 125 126 127 128 129 130 131 132
	struct i40e_tx_desc *tx_desc;
	struct i40e_ring *tx_ring;
	struct i40e_vsi *vsi;
	struct device *dev;
	dma_addr_t dma;
	u32 td_cmd = 0;
	u16 i;

	/* find existing FDIR VSI */
133
	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
134 135 136
	if (!vsi)
		return -ENOENT;

137
	tx_ring = vsi->tx_rings[0];
138 139
	dev = tx_ring->dev;

140
	/* we need two descriptors to add/del a filter and we can wait */
141 142 143
	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
		if (!i)
			return -EAGAIN;
144
		msleep_interruptible(1);
145
	}
146

147 148
	dma = dma_map_single(dev, raw_packet,
			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
149 150 151 152
	if (dma_mapping_error(dev, dma))
		goto dma_fail;

	/* grab the next descriptor */
153
	i = tx_ring->next_to_use;
154
	first = &tx_ring->tx_bi[i];
155
	i40e_fdir(tx_ring, fdir_data, add);
156 157

	/* Now program a dummy descriptor */
158 159
	i = tx_ring->next_to_use;
	tx_desc = I40E_TX_DESC(tx_ring, i);
160
	tx_buf = &tx_ring->tx_bi[i];
161

162 163 164
	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;

	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
165

166
	/* record length, and DMA address */
167
	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
168 169
	dma_unmap_addr_set(tx_buf, dma, dma);

170
	tx_desc->buffer_addr = cpu_to_le64(dma);
171
	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
172

173 174 175
	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
	tx_buf->raw_buf = (void *)raw_packet;

176
	tx_desc->cmd_type_offset_bsz =
177
		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
178 179

	/* Force memory writes to complete before letting h/w
180
	 * know there are new descriptors to fetch.
181 182 183
	 */
	wmb();

184
	/* Mark the data descriptor to be watched */
185
	first->next_to_watch = tx_desc;
186

187 188 189 190 191 192 193
	writel(tx_ring->next_to_use, tx_ring->tail);
	return 0;

dma_fail:
	return -1;
}

194 195 196 197 198 199 200 201 202 203 204 205
#define IP_HEADER_OFFSET 14
#define I40E_UDPIP_DUMMY_PACKET_LEN 42
/**
 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
206
				   bool add)
207 208 209 210
{
	struct i40e_pf *pf = vsi->back;
	struct udphdr *udp;
	struct iphdr *ip;
211
	u8 *raw_packet;
212 213 214 215 216
	int ret;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

217 218 219
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
220 221 222 223 224 225
	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

226
	ip->daddr = fd_data->dst_ip;
227
	udp->dest = fd_data->dst_port;
228
	ip->saddr = fd_data->src_ip;
229 230
	udp->source = fd_data->src_port;

231 232 233 234 235 236 237 238
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

239 240 241 242
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
243 244
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
245 246 247
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
248
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
249 250 251 252 253 254 255 256
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
257
	}
258

259 260 261 262 263
	if (add)
		pf->fd_udp4_filter_cnt++;
	else
		pf->fd_udp4_filter_cnt--;

264
	return 0;
265 266 267 268 269 270 271 272 273 274 275 276 277
}

#define I40E_TCPIP_DUMMY_PACKET_LEN 54
/**
 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
278
				   bool add)
279 280 281 282
{
	struct i40e_pf *pf = vsi->back;
	struct tcphdr *tcp;
	struct iphdr *ip;
283
	u8 *raw_packet;
284 285 286 287 288 289 290
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
		0x0, 0x72, 0, 0, 0, 0};

291 292 293
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
294 295 296 297 298 299
	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

300
	ip->daddr = fd_data->dst_ip;
301
	tcp->dest = fd_data->dst_port;
302
	ip->saddr = fd_data->src_ip;
303 304
	tcp->source = fd_data->src_port;

305 306 307 308 309 310 311 312
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

313
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
314 315 316
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
317 318
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
319 320 321
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
322
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
323 324 325 326 327 328 329
		if (add)
			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
330 331
	}

332
	if (add) {
333
		pf->fd_tcp4_filter_cnt++;
334 335 336
		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
		    I40E_DEBUG_FD & pf->hw.debug_mask)
			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
337
		pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
338
	} else {
339
		pf->fd_tcp4_filter_cnt--;
340 341
	}

342
	return 0;
343 344
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
/**
 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
				    struct i40e_fdir_filter *fd_data,
				    bool add)
{
	struct i40e_pf *pf = vsi->back;
	struct sctphdr *sctp;
	struct iphdr *ip;
	u8 *raw_packet;
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

	ip->daddr = fd_data->dst_ip;
	sctp->dest = fd_data->dst_port;
	ip->saddr = fd_data->src_ip;
	sctp->source = fd_data->src_port;

	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
	}

	if (add)
		pf->fd_sctp4_filter_cnt++;
	else
		pf->fd_sctp4_filter_cnt--;

	return 0;
}

419 420 421 422 423 424 425 426 427 428 429 430
#define I40E_IP_DUMMY_PACKET_LEN 34
/**
 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
				  struct i40e_fdir_filter *fd_data,
431
				  bool add)
432 433 434
{
	struct i40e_pf *pf = vsi->back;
	struct iphdr *ip;
435
	u8 *raw_packet;
436 437 438 439 440 441 442 443
	int ret;
	int i;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0};

	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
444 445 446 447 448 449
		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
		if (!raw_packet)
			return -ENOMEM;
		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);

450 451
		ip->saddr = fd_data->src_ip;
		ip->daddr = fd_data->dst_ip;
452 453
		ip->protocol = 0;

454 455 456 457 458 459 460 461
		if (fd_data->flex_filter) {
			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
			__be16 pattern = fd_data->flex_word;
			u16 off = fd_data->flex_offset;

			*((__force __be16 *)(payload + off)) = pattern;
		}

462 463 464 465
		fd_data->pctype = i;
		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
		if (ret) {
			dev_info(&pf->pdev->dev,
466 467
				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
				 fd_data->pctype, fd_data->fd_id, ret);
468 469 470 471 472
			/* The packet buffer wasn't added to the ring so we
			 * need to free it now.
			 */
			kfree(raw_packet);
			return -EOPNOTSUPP;
473
		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
474 475 476 477 478 479 480 481
			if (add)
				dev_info(&pf->pdev->dev,
					 "Filter OK for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
			else
				dev_info(&pf->pdev->dev,
					 "Filter deleted for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
482 483 484
		}
	}

485 486 487 488 489
	if (add)
		pf->fd_ip4_filter_cnt++;
	else
		pf->fd_ip4_filter_cnt--;

490
	return 0;
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
}

/**
 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 * @vsi: pointer to the targeted VSI
 * @cmd: command to get or set RX flow classification rules
 * @add: true adds a filter, false removes it
 *
 **/
int i40e_add_del_fdir(struct i40e_vsi *vsi,
		      struct i40e_fdir_filter *input, bool add)
{
	struct i40e_pf *pf = vsi->back;
	int ret;

	switch (input->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
508
		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
509 510
		break;
	case UDP_V4_FLOW:
511
		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
512
		break;
513 514 515
	case SCTP_V4_FLOW:
		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
		break;
516 517 518
	case IP_USER_FLOW:
		switch (input->ip4_proto) {
		case IPPROTO_TCP:
519
			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
520 521
			break;
		case IPPROTO_UDP:
522
			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
523
			break;
524 525 526
		case IPPROTO_SCTP:
			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
			break;
527
		case IPPROTO_IP:
528
			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
529
			break;
530 531
		default:
			/* We cannot support masking based on protocol */
532 533 534
			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
				 input->ip4_proto);
			return -EINVAL;
535 536 537
		}
		break;
	default:
538
		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
539
			 input->flow_type);
540
		return -EINVAL;
541 542
	}

543 544 545 546 547 548
	/* The buffer allocated here will be normally be freed by
	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
	 * completion. In the event of an error adding the buffer to the FDIR
	 * ring, it will immediately be freed. It may also be freed by
	 * i40e_clean_tx_ring() when closing the VSI.
	 */
549 550 551
	return ret;
}

552 553 554
/**
 * i40e_fd_handle_status - check the Programming Status for FD
 * @rx_ring: the Rx ring for this descriptor
555
 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
556 557 558 559 560
 * @prog_id: the id originally used for programming
 *
 * This is used to verify if the FD programming or invalidation
 * requested by SW to the HW is successful or not and take actions accordingly.
 **/
561 562
static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
				  union i40e_rx_desc *rx_desc, u8 prog_id)
563
{
564 565 566
	struct i40e_pf *pf = rx_ring->vsi->back;
	struct pci_dev *pdev = pf->pdev;
	u32 fcnt_prog, fcnt_avail;
567
	u32 error;
568
	u64 qw;
569

570
	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
571 572 573
	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;

574
	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
575
		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
576 577 578
		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
		    (I40E_DEBUG_FD & pf->hw.debug_mask))
			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
579
				 pf->fd_inv);
580

581 582 583 584 585 586
		/* Check if the programming error is for ATR.
		 * If so, auto disable ATR and set a state for
		 * flush in progress. Next time we come here if flush is in
		 * progress do nothing, once flush is complete the state will
		 * be cleared.
		 */
587
		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
588 589
			return;

590 591 592 593
		pf->fd_add_err++;
		/* store the current atr filter count */
		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);

594
		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
595 596
		    pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) {
			pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
597
			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
598 599
		}

600
		/* filter programming failed most likely due to table full */
601
		fcnt_prog = i40e_get_global_fd_count(pf);
602
		fcnt_avail = pf->fdir_pf_filter_count;
603 604 605 606 607
		/* If ATR is running fcnt_prog can quickly change,
		 * if we are very close to full, it makes sense to disable
		 * FD ATR/SB and then re-enable it when there is room.
		 */
		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
608
			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
609 610
			    !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED)) {
				pf->flags |= I40E_FLAG_FD_SB_AUTO_DISABLED;
611 612
				if (I40E_DEBUG_FD & pf->hw.debug_mask)
					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
613 614
			}
		}
615
	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
616
		if (I40E_DEBUG_FD & pf->hw.debug_mask)
617
			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
618
				 rx_desc->wb.qword0.hi_dword.fd_id);
619
	}
620 621 622
}

/**
A
Alexander Duyck 已提交
623
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
624 625 626
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
A
Alexander Duyck 已提交
627 628
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
629
{
A
Alexander Duyck 已提交
630
	if (tx_buffer->skb) {
631 632
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
633 634
		else if (ring_is_xdp(ring))
			page_frag_free(tx_buffer->raw_buf);
635 636
		else
			dev_kfree_skb_any(tx_buffer->skb);
A
Alexander Duyck 已提交
637
		if (dma_unmap_len(tx_buffer, len))
638
			dma_unmap_single(ring->dev,
639 640
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
641
					 DMA_TO_DEVICE);
A
Alexander Duyck 已提交
642 643 644 645 646
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
647
	}
648

A
Alexander Duyck 已提交
649 650
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
651
	dma_unmap_len_set(tx_buffer, len, 0);
A
Alexander Duyck 已提交
652
	/* tx_buffer must be completely set up in the transmit path */
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
}

/**
 * i40e_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
A
Alexander Duyck 已提交
669 670
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
671 672 673 674 675 676 677 678 679

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
680 681 682 683 684

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
685
	netdev_tx_reset_queue(txring_txq(tx_ring));
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
}

/**
 * i40e_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40e_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40e_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

/**
 * i40e_get_tx_pending - how many tx descriptors not processed
 * @tx_ring: the ring of descriptors
 *
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
 **/
714
u32 i40e_get_tx_pending(struct i40e_ring *ring)
715
{
J
Jesse Brandeburg 已提交
716 717
	u32 head, tail;

718
	head = i40e_get_head(ring);
J
Jesse Brandeburg 已提交
719 720 721 722 723 724 725
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
726 727
}

728
#define WB_STRIDE 4
729

730 731
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
732 733 734
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
735 736 737
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
738 739
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
740 741 742
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
743
	struct i40e_tx_desc *tx_head;
744
	struct i40e_tx_desc *tx_desc;
745 746
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
747 748 749

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
750
	i -= tx_ring->count;
751

752 753
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

A
Alexander Duyck 已提交
754 755
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
756 757 758 759 760

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

A
Alexander Duyck 已提交
761 762 763
		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

S
Scott Peterson 已提交
764
		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
765 766
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
767 768
			break;

A
Alexander Duyck 已提交
769
		/* clear next_to_watch to prevent false hangs */
770 771
		tx_buf->next_to_watch = NULL;

A
Alexander Duyck 已提交
772 773 774
		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;
775

776 777 778 779 780
		/* free the skb/XDP data */
		if (ring_is_xdp(tx_ring))
			page_frag_free(tx_buf->raw_buf);
		else
			napi_consume_skb(tx_buf->skb, napi_budget);
781

A
Alexander Duyck 已提交
782 783 784 785 786
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);
787

A
Alexander Duyck 已提交
788 789 790
		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);
791

A
Alexander Duyck 已提交
792 793
		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
S
Scott Peterson 已提交
794 795
			i40e_trace(clean_tx_irq_unmap,
				   tx_ring, tx_desc, tx_buf);
796 797 798 799

			tx_buf++;
			tx_desc++;
			i++;
A
Alexander Duyck 已提交
800 801
			if (unlikely(!i)) {
				i -= tx_ring->count;
802 803 804 805
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

A
Alexander Duyck 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

826 827
		prefetch(tx_desc);

A
Alexander Duyck 已提交
828 829 830 831 832
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
833
	tx_ring->next_to_clean = i;
834
	u64_stats_update_begin(&tx_ring->syncp);
835 836
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
837
	u64_stats_update_end(&tx_ring->syncp);
838 839
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;
A
Alexander Duyck 已提交
840

841 842 843 844 845 846
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
847
		unsigned int j = i40e_get_tx_pending(tx_ring);
848 849

		if (budget &&
850
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
851
		    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
852 853 854
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}
855

856 857 858
	if (ring_is_xdp(tx_ring))
		return !!budget;

859 860
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
861 862
				  total_packets, total_bytes);

863
#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
864 865 866 867 868 869 870 871
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
872
		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
873 874 875 876 877 878
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

879 880 881 882
	return !!budget;
}

/**
883
 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
884
 * @vsi: the VSI we care about
885
 * @q_vector: the vector on which to enable writeback
886 887
 *
 **/
888 889
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
890
{
891
	u16 flags = q_vector->tx.ring[0].flags;
892
	u32 val;
893

894 895
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;
896

897 898
	if (q_vector->arm_wb_state)
		return;
899

900 901 902
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
903

904 905 906 907 908 909
		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
		     val);
	} else {
		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
910

911 912 913 914 915 916 917 918 919 920 921 922 923 924
		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
	q_vector->arm_wb_state = true;
}

/**
 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
			  /* allow 00 to be written to the index */

		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
					 vsi->base_vector - 1), val);
	} else {
		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
			/* allow 00 to be written to the index */

		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
943 944 945 946 947 948
}

/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
949 950
 * Returns true if ITR changed, false if not
 *
951 952 953 954 955 956 957 958
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
959
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
960 961
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
962
	struct i40e_q_vector *qv = rc->ring->q_vector;
963 964
	u32 new_itr = rc->itr;
	int bytes_per_int;
965
	int usecs;
966 967

	if (rc->total_packets == 0 || !rc->itr)
968
		return false;
969 970

	/* simple throttlerate management
971
	 *   0-10MB/s   lowest (50000 ints/s)
972
	 *  10-20MB/s   low    (20000 ints/s)
973 974
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
975 976 977 978
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
979 980
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
981
	 */
982
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
983
	bytes_per_int = rc->total_bytes / usecs;
984

985
	switch (new_latency_range) {
986 987 988 989 990 991 992 993 994 995 996
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
997
	case I40E_ULTRA_LATENCY:
998 999 1000
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
1001 1002
		break;
	}
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

1015
	rc->latency_range = new_latency_range;
1016 1017 1018

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
1019
		new_itr = I40E_ITR_50K;
1020 1021 1022 1023 1024
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
1025 1026 1027
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
1028 1029 1030 1031 1032 1033 1034 1035
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
1036 1037 1038 1039 1040 1041 1042

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
1043 1044
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
/**
 * i40e_rx_is_programming_status - check for programming status descriptor
 * @qw: qword representing status_error_len in CPU ordering
 *
 * The value of in the descriptor length field indicate if this
 * is a programming status descriptor for flow director or FCoE
 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
 * it is a packet descriptor.
 **/
static inline bool i40e_rx_is_programming_status(u64 qw)
{
	/* The Rx filter programming status and SPH bit occupy the same
	 * spot in the descriptor. Since we don't support packet split we
	 * can just reuse the bit as an indication that this is a
	 * programming status descriptor.
	 */
	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
}

1064 1065 1066 1067
/**
 * i40e_clean_programming_status - clean the programming status descriptor
 * @rx_ring: the rx ring that has this descriptor
 * @rx_desc: the rx descriptor written back by HW
1068
 * @qw: qword representing status_error_len in CPU ordering
1069 1070 1071 1072 1073 1074 1075
 *
 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 * status being successful or not and take actions accordingly. FCoE should
 * handle its context/filter programming/invalidation status and take actions.
 *
 **/
static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1076 1077
					  union i40e_rx_desc *rx_desc,
					  u64 qw)
1078
{
1079
	u32 ntc = rx_ring->next_to_clean + 1;
1080 1081
	u8 id;

1082 1083 1084 1085 1086 1087
	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

1088 1089 1090 1091
	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;

	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1092
		i40e_fd_handle_status(rx_ring, rx_desc, id);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
}

/**
 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

J
Jesse Brandeburg 已提交
1109 1110
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
1111 1112 1113 1114 1115
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

1116 1117
	u64_stats_init(&tx_ring->syncp);

1118 1119
	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1120 1121 1122 1123
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

1156 1157 1158 1159 1160
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

1161 1162
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
1163 1164 1165 1166 1167
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

1168 1169 1170 1171 1172 1173
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
1174
					      rx_ring->rx_buf_len,
1175 1176 1177 1178
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1179
				     i40e_rx_pg_size(rx_ring),
1180 1181
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
1182

1183
		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1184 1185 1186

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
1187 1188 1189 1190 1191 1192 1193 1194
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

1195
	rx_ring->next_to_alloc = 0;
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40e_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40e_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40e_clean_rx_ring(rx_ring);
1209
	rx_ring->xdp_prog = NULL;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40e_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

J
Jesse Brandeburg 已提交
1231 1232
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
1233 1234 1235 1236 1237
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

1238
	u64_stats_init(&rx_ring->syncp);
1239

1240
	/* Round up to nearest 4K */
1241
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

1252
	rx_ring->next_to_alloc = 0;
1253 1254 1255
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

1256 1257
	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
1273 1274 1275 1276

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

1277 1278 1279 1280 1281 1282 1283 1284 1285
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
/**
 * i40e_rx_offset - Return expected offset into page to access data
 * @rx_ring: Ring we are requesting offset of
 *
 * Returns the offset value for ring into the data buffer.
 */
static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
{
	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
}

1297
/**
1298 1299 1300
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
1301
 *
1302 1303
 * Returns true if the page was successfully allocated or
 * reused.
1304
 **/
1305 1306
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
1307
{
1308 1309
	struct page *page = bi->page;
	dma_addr_t dma;
1310

1311 1312 1313 1314 1315
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
1316

1317
	/* alloc new page for storage */
1318
	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1319 1320 1321 1322
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
1323

1324
	/* map page for use */
1325
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1326
				 i40e_rx_pg_size(rx_ring),
1327 1328
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
1329

1330 1331
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
1332
	 */
1333
	if (dma_mapping_error(rx_ring->dev, dma)) {
1334
		__free_pages(page, i40e_rx_pg_order(rx_ring));
1335 1336
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
1337 1338
	}

1339 1340
	bi->dma = dma;
	bi->page = page;
1341
	bi->page_offset = i40e_rx_offset(rx_ring);
1342 1343

	/* initialize pagecnt_bias to 1 representing we fully own page */
1344
	bi->pagecnt_bias = 1;
1345

1346 1347
	return true;
}
1348

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1359

1360 1361 1362 1363 1364
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
1365 1366 1367
}

/**
1368
 * i40e_alloc_rx_buffers - Replace used receive buffers
1369 1370
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
1371
 *
1372
 * Returns false if all allocations were successful, true if any fail
1373
 **/
1374
bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1375
{
1376
	u16 ntu = rx_ring->next_to_use;
1377 1378 1379 1380 1381
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
1382
		return false;
1383

1384 1385
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
1386

1387 1388 1389
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
1390

1391 1392 1393
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
1394
						 rx_ring->rx_buf_len,
1395 1396
						 DMA_FROM_DEVICE);

1397 1398 1399 1400
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1401

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1419 1420 1421

	return false;

1422
no_buffers:
1423 1424
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1425 1426 1427 1428 1429

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
1430 1431 1432 1433 1434 1435
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
1436
 * @rx_desc: the receive descriptor
1437 1438 1439
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
1440
				    union i40e_rx_desc *rx_desc)
1441
{
1442 1443
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
1444
	bool ipv4, ipv6;
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
1455

1456 1457
	skb->ip_summed = CHECKSUM_NONE;

1458 1459
	skb_checksum_none_assert(skb);

1460
	/* Rx csum enabled and ip headers found? */
1461 1462 1463 1464
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
1465
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1466 1467 1468 1469
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
1470 1471
		return;

1472 1473 1474 1475
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1476 1477

	if (ipv4 &&
1478 1479
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1480 1481
		goto checksum_fail;

J
Jesse Brandeburg 已提交
1482
	/* likely incorrect csum if alternate IP extension headers found */
1483
	if (ipv6 &&
1484
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1485
		/* don't increment checksum err here, non-fatal err */
1486 1487
		return;

1488
	/* there was some L4 error, count error and punt packet to the stack */
1489
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1490 1491 1492 1493 1494 1495
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
1496
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1497 1498
		return;

1499 1500 1501
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
1502
	 */
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
1516 1517 1518 1519 1520

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
1521 1522 1523
}

/**
1524
 * i40e_ptype_to_htype - get a hash type
1525 1526 1527 1528
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
1529
static inline int i40e_ptype_to_htype(u8 ptype)
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
1557
	const __le64 rss_mask =
1558 1559 1560
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

1561
	if (!(ring->netdev->features & NETIF_F_RXHASH))
1562 1563 1564 1565 1566 1567 1568 1569
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

1570
/**
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 **/
static inline
void i40e_process_skb_fields(struct i40e_ring *rx_ring,
			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			     u8 rx_ptype)
{
	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;
1589 1590
	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1591 1592
		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;

1593
	if (unlikely(tsynvalid))
1594
		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1595 1596 1597 1598 1599 1600

	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);

	skb_record_rx_queue(skb, rx_ring->queue_index);
1601 1602 1603

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1604 1605 1606 1607 1608 1609
}

/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
1610
 * @rx_desc: pointer to the EOP Rx descriptor
1611 1612 1613 1614 1615 1616 1617 1618 1619
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
1620 1621 1622
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
				 union i40e_rx_desc *rx_desc)

1623
{
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	/* XDP packets use error pointer so abort at this point */
	if (IS_ERR(skb))
		return true;

	/* ERR_MASK will only have valid bits if EOP set, and
	 * what we are doing here is actually checking
	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
	 * the error field
	 */
	if (unlikely(i40e_test_staterr(rx_desc,
				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
		dev_kfree_skb_any(skb);
		return true;
	}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_bi[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
1666 1667 1668 1669
	new_buff->dma		= old_buff->dma;
	new_buff->page		= old_buff->page;
	new_buff->page_offset	= old_buff->page_offset;
	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1670 1671 1672
}

/**
1673
 * i40e_page_is_reusable - check if any reuse is possible
1674
 * @page: page struct to check
1675 1676 1677
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
1678
 */
1679
static inline bool i40e_page_is_reusable(struct page *page)
1680
{
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
1712
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1713
{
1714 1715
	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
	struct page *page = rx_buffer->page;
1716 1717 1718 1719 1720 1721 1722

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
1723
	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1724 1725
		return false;
#else
1726 1727 1728
#define I40E_LAST_OFFSET \
	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1729 1730 1731
		return false;
#endif

1732 1733 1734 1735
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
	 */
1736
	if (unlikely(!pagecnt_bias)) {
1737 1738 1739
		page_ref_add(page, USHRT_MAX);
		rx_buffer->pagecnt_bias = USHRT_MAX;
	}
1740

1741
	return true;
1742 1743 1744 1745 1746 1747 1748
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @skb: sk_buff to place the data into
1749
 * @size: packet length from rx_desc
1750 1751
 *
 * This function will add the data contained in rx_buffer->page to the skb.
1752
 * It will just attach the page as a frag to the skb.
1753
 *
1754
 * The function will then update the page offset.
1755
 **/
1756
static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1757
			     struct i40e_rx_buffer *rx_buffer,
1758 1759
			     struct sk_buff *skb,
			     unsigned int size)
1760 1761
{
#if (PAGE_SIZE < 8192)
1762
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1763
#else
1764
	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1765 1766
#endif

1767 1768
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
			rx_buffer->page_offset, size, truesize);
1769

1770 1771 1772 1773 1774 1775
	/* page is being used so we must update the page offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
1776 1777
}

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
/**
 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
 * @rx_ring: rx descriptor ring to transact packets on
 * @size: size of buffer to add to skb
 *
 * This function will pull an Rx buffer from the ring and synchronize it
 * for use by the CPU.
 */
static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
						 const unsigned int size)
{
	struct i40e_rx_buffer *rx_buffer;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	prefetchw(rx_buffer->page);

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      size,
				      DMA_FROM_DEVICE);

1801 1802 1803
	/* We have pulled a buffer for use, so decrement pagecnt_bias */
	rx_buffer->pagecnt_bias--;

1804 1805 1806
	return rx_buffer;
}

1807
/**
1808
 * i40e_construct_skb - Allocate skb and populate it
1809
 * @rx_ring: rx descriptor ring to transact packets on
1810
 * @rx_buffer: rx buffer to pull data from
1811
 * @xdp: xdp_buff pointing to the data
1812
 *
1813 1814 1815
 * This function allocates an skb.  It then populates it with the page
 * data from the current receive descriptor, taking care to set up the
 * skb correctly.
1816
 */
1817 1818
static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
					  struct i40e_rx_buffer *rx_buffer,
1819
					  struct xdp_buff *xdp)
1820
{
1821
	unsigned int size = xdp->data_end - xdp->data;
1822
#if (PAGE_SIZE < 8192)
1823
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1824 1825 1826 1827 1828
#else
	unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
	unsigned int headlen;
	struct sk_buff *skb;
1829

1830
	/* prefetch first cache line of first page */
1831
	prefetch(xdp->data);
1832
#if L1_CACHE_BYTES < 128
1833
	prefetch(xdp->data + L1_CACHE_BYTES);
1834 1835
#endif

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	/* allocate a skb to store the frags */
	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
			       I40E_RX_HDR_SIZE,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;

	/* Determine available headroom for copy */
	headlen = size;
	if (headlen > I40E_RX_HDR_SIZE)
1846
		headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
1847

1848
	/* align pull length to size of long to optimize memcpy performance */
1849 1850
	memcpy(__skb_put(skb, headlen), xdp->data,
	       ALIGN(headlen, sizeof(long)));
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

	/* update all of the pointers */
	size -= headlen;
	if (size) {
		skb_add_rx_frag(skb, 0, rx_buffer->page,
				rx_buffer->page_offset + headlen,
				size, truesize);

		/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
		rx_buffer->page_offset ^= truesize;
#else
		rx_buffer->page_offset += truesize;
#endif
	} else {
		/* buffer is unused, reset bias back to rx_buffer */
		rx_buffer->pagecnt_bias++;
	}
1869 1870 1871 1872

	return skb;
}

1873 1874 1875 1876
/**
 * i40e_build_skb - Build skb around an existing buffer
 * @rx_ring: Rx descriptor ring to transact packets on
 * @rx_buffer: Rx buffer to pull data from
1877
 * @xdp: xdp_buff pointing to the data
1878 1879 1880 1881 1882 1883
 *
 * This function builds an skb around an existing Rx buffer, taking care
 * to set up the skb correctly and avoid any memcpy overhead.
 */
static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
				      struct i40e_rx_buffer *rx_buffer,
1884
				      struct xdp_buff *xdp)
1885
{
1886
	unsigned int size = xdp->data_end - xdp->data;
1887 1888 1889
#if (PAGE_SIZE < 8192)
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
#else
1890 1891
	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
				SKB_DATA_ALIGN(I40E_SKB_PAD + size);
1892 1893 1894 1895
#endif
	struct sk_buff *skb;

	/* prefetch first cache line of first page */
1896
	prefetch(xdp->data);
1897
#if L1_CACHE_BYTES < 128
1898
	prefetch(xdp->data + L1_CACHE_BYTES);
1899 1900
#endif
	/* build an skb around the page buffer */
1901
	skb = build_skb(xdp->data_hard_start, truesize);
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	if (unlikely(!skb))
		return NULL;

	/* update pointers within the skb to store the data */
	skb_reserve(skb, I40E_SKB_PAD);
	__skb_put(skb, size);

	/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif

	return skb;
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
/**
 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: rx buffer to pull data from
 *
 * This function will clean up the contents of the rx_buffer.  It will
 * either recycle the bufer or unmap it and free the associated resources.
 */
static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *rx_buffer)
{
	if (i40e_can_reuse_rx_page(rx_buffer)) {
1931 1932 1933 1934 1935
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
1936 1937
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
				     i40e_rx_pg_size(rx_ring),
1938
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1939 1940
		__page_frag_cache_drain(rx_buffer->page,
					rx_buffer->pagecnt_bias);
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
1957
 **/
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

1980 1981
#define I40E_XDP_PASS 0
#define I40E_XDP_CONSUMED 1
1982 1983 1984 1985
#define I40E_XDP_TX 2

static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
			      struct i40e_ring *xdp_ring);
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

/**
 * i40e_run_xdp - run an XDP program
 * @rx_ring: Rx ring being processed
 * @xdp: XDP buffer containing the frame
 **/
static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
				    struct xdp_buff *xdp)
{
	int result = I40E_XDP_PASS;
1996
	struct i40e_ring *xdp_ring;
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	struct bpf_prog *xdp_prog;
	u32 act;

	rcu_read_lock();
	xdp_prog = READ_ONCE(rx_ring->xdp_prog);

	if (!xdp_prog)
		goto xdp_out;

	act = bpf_prog_run_xdp(xdp_prog, xdp);
	switch (act) {
	case XDP_PASS:
		break;
2010 2011 2012 2013
	case XDP_TX:
		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
		result = i40e_xmit_xdp_ring(xdp, xdp_ring);
		break;
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
	default:
		bpf_warn_invalid_xdp_action(act);
	case XDP_ABORTED:
		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
		/* fallthrough -- handle aborts by dropping packet */
	case XDP_DROP:
		result = I40E_XDP_CONSUMED;
		break;
	}
xdp_out:
	rcu_read_unlock();
	return ERR_PTR(-result);
}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
/**
 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
 * @rx_ring: Rx ring
 * @rx_buffer: Rx buffer to adjust
 * @size: Size of adjustment
 **/
static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
				struct i40e_rx_buffer *rx_buffer,
				unsigned int size)
{
#if (PAGE_SIZE < 8192)
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;

	rx_buffer->page_offset ^= truesize;
#else
	unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);

	rx_buffer->page_offset += truesize;
#endif
}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
/**
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 **/
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2062 2063
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2064
	struct sk_buff *skb = rx_ring->skb;
2065
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2066
	bool failure = false, xdp_xmit = false;
2067

2068
	while (likely(total_rx_packets < (unsigned int)budget)) {
2069
		struct i40e_rx_buffer *rx_buffer;
2070
		union i40e_rx_desc *rx_desc;
2071
		struct xdp_buff xdp;
2072
		unsigned int size;
2073
		u16 vlan_tag;
2074 2075 2076
		u8 rx_ptype;
		u64 qword;

2077 2078
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2079
			failure = failure ||
2080
				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2081 2082 2083
			cleaned_count = 0;
		}

2084 2085 2086 2087 2088
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
2089
		 * hardware wrote DD then the length will be non-zero
2090
		 */
2091
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2092

2093
		/* This memory barrier is needed to keep us from reading
2094 2095
		 * any other fields out of the rx_desc until we have
		 * verified the descriptor has been written back.
2096
		 */
2097
		dma_rmb();
2098

2099 2100 2101 2102 2103 2104 2105 2106 2107
		if (unlikely(i40e_rx_is_programming_status(qword))) {
			i40e_clean_programming_status(rx_ring, rx_desc, qword);
			continue;
		}
		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		if (!size)
			break;

S
Scott Peterson 已提交
2108
		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2109 2110
		rx_buffer = i40e_get_rx_buffer(rx_ring, size);

2111
		/* retrieve a buffer from the ring */
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
		if (!skb) {
			xdp.data = page_address(rx_buffer->page) +
				   rx_buffer->page_offset;
			xdp.data_hard_start = xdp.data -
					      i40e_rx_offset(rx_ring);
			xdp.data_end = xdp.data + size;

			skb = i40e_run_xdp(rx_ring, &xdp);
		}

		if (IS_ERR(skb)) {
2123 2124 2125 2126 2127 2128
			if (PTR_ERR(skb) == -I40E_XDP_TX) {
				xdp_xmit = true;
				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
			} else {
				rx_buffer->pagecnt_bias++;
			}
2129 2130 2131
			total_rx_bytes += size;
			total_rx_packets++;
		} else if (skb) {
2132
			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2133 2134 2135 2136 2137
		} else if (ring_uses_build_skb(rx_ring)) {
			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
		} else {
			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
		}
2138 2139 2140 2141 2142

		/* exit if we failed to retrieve a buffer */
		if (!skb) {
			rx_ring->rx_stats.alloc_buff_failed++;
			rx_buffer->pagecnt_bias++;
2143
			break;
2144
		}
2145

2146
		i40e_put_rx_buffer(rx_ring, rx_buffer);
2147 2148
		cleaned_count++;

2149
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2150 2151
			continue;

2152
		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2153
			skb = NULL;
2154
			continue;
2155
		}
2156 2157 2158 2159

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

2160 2161 2162 2163
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

2164 2165
		/* populate checksum, VLAN, and protocol */
		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2166

2167 2168 2169
		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

S
Scott Peterson 已提交
2170
		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2171
		i40e_receive_skb(rx_ring, skb, vlan_tag);
2172
		skb = NULL;
2173

2174 2175 2176
		/* update budget accounting */
		total_rx_packets++;
	}
2177

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	if (xdp_xmit) {
		struct i40e_ring *xdp_ring;

		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.
		 */
		wmb();

		writel(xdp_ring->next_to_use, xdp_ring->tail);
	}

2191 2192
	rx_ring->skb = skb;

2193
	u64_stats_update_begin(&rx_ring->syncp);
2194 2195
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
2196
	u64_stats_update_end(&rx_ring->syncp);
2197 2198 2199
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

2200
	/* guarantee a trip back through this routine if there was a failure */
2201
	return failure ? budget : (int)total_rx_packets;
2202 2203
}

2204 2205 2206 2207 2208
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2209 2210 2211
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
2212 2213 2214 2215 2216 2217 2218 2219
	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_PFINT_DYN_CTLN
2220
static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
2221
{
2222
	return vsi->rx_rings[idx]->rx_itr_setting;
2223 2224
}

2225
static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
2226
{
2227
	return vsi->tx_rings[idx]->tx_itr_setting;
2228
}
2229

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
2240 2241
	bool rx = false, tx = false;
	u32 rxval, txval;
2242
	int vector;
2243
	int idx = q_vector->v_idx;
2244
	int rx_itr_setting, tx_itr_setting;
2245

2246 2247 2248 2249 2250 2251
	/* If we don't have MSIX, then we only need to re-enable icr0 */
	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
		i40e_irq_dynamic_enable_icr0(vsi->back, false);
		return;
	}

2252
	vector = (q_vector->v_idx + vsi->base_vector);
2253

2254 2255 2256
	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
2257 2258
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

2259 2260
	rx_itr_setting = get_rx_itr(vsi, idx);
	tx_itr_setting = get_tx_itr(vsi, idx);
2261

2262
	if (q_vector->itr_countdown > 0 ||
2263 2264
	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
2265 2266 2267
		goto enable_int;
	}

2268
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2269 2270
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
2271
	}
2272

2273
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2274 2275
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
2276
	}
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304

	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
	}

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

2305
enable_int:
2306
	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2307
		wr32(hw, INTREG(vector - 1), txval);
2308 2309 2310 2311 2312

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2313 2314
}

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
/**
 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40e_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
2329
	struct i40e_ring *ring;
2330
	bool clean_complete = true;
2331
	bool arm_wb = false;
2332
	int budget_per_ring;
2333
	int work_done = 0;
2334

2335
	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2336 2337 2338 2339
		napi_complete(napi);
		return 0;
	}

2340 2341 2342
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
2343
	i40e_for_each_ring(ring, q_vector->tx) {
2344
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2345 2346 2347 2348
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
2349
		ring->arm_wb = false;
2350
	}
2351

2352 2353 2354 2355
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

2356 2357 2358 2359
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2360

2361
	i40e_for_each_ring(ring, q_vector->rx) {
2362
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2363 2364

		work_done += cleaned;
2365 2366 2367
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
2368
	}
2369 2370

	/* If work not completed, return budget and polling will return */
2371
	if (!clean_complete) {
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
		const cpumask_t *aff_mask = &q_vector->affinity_mask;
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
		if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
			   !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
2384
tx_only:
2385 2386 2387 2388 2389
			if (arm_wb) {
				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
				i40e_enable_wb_on_itr(vsi, q_vector);
			}
			return budget;
2390
		}
2391
	}
2392

2393 2394 2395
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

2396
	/* Work is done so exit the polling mode and re-enable the interrupt */
2397
	napi_complete_done(napi, work_done);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407

	/* If we're prematurely stopping polling to fix the interrupt
	 * affinity we want to make sure polling starts back up so we
	 * issue a call to i40e_force_wb which triggers a SW interrupt.
	 */
	if (!clean_complete)
		i40e_force_wb(vsi, q_vector);
	else
		i40e_update_enable_itr(vsi, q_vector);

2408
	return min(work_done, budget - 1);
2409 2410 2411 2412 2413 2414
}

/**
 * i40e_atr - Add a Flow Director ATR filter
 * @tx_ring:  ring to add programming descriptor to
 * @skb:      send buffer
2415
 * @tx_flags: send tx flags
2416 2417
 **/
static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2418
		     u32 tx_flags)
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	union {
		unsigned char *network;
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	struct tcphdr *th;
	unsigned int hlen;
	u32 flex_ptype, dtype_cmd;
2430
	int l4_proto;
2431
	u16 i;
2432 2433

	/* make sure ATR is enabled */
J
Jesse Brandeburg 已提交
2434
	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2435 2436
		return;

2437
	if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED)
2438 2439
		return;

2440 2441 2442 2443
	/* if sampling is disabled do nothing */
	if (!tx_ring->atr_sample_rate)
		return;

2444
	/* Currently only IPv4/IPv6 with TCP is supported */
2445 2446
	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
		return;
2447

2448 2449 2450
	/* snag network header to get L4 type and address */
	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
		      skb_inner_network_header(skb) : skb_network_header(skb);
2451

2452 2453 2454 2455
	/* Note: tx_flags gets modified to reflect inner protocols in
	 * tx_enable_csum function if encap is enabled.
	 */
	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2456
		/* access ihl as u8 to avoid unaligned access on ia64 */
2457 2458
		hlen = (hdr.network[0] & 0x0F) << 2;
		l4_proto = hdr.ipv4->protocol;
2459
	} else {
2460 2461 2462 2463 2464 2465 2466 2467 2468
		/* find the start of the innermost ipv6 header */
		unsigned int inner_hlen = hdr.network - skb->data;
		unsigned int h_offset = inner_hlen;

		/* this function updates h_offset to the end of the header */
		l4_proto =
		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
		/* hlen will contain our best estimate of the tcp header */
		hlen = h_offset - inner_hlen;
2469 2470
	}

2471
	if (l4_proto != IPPROTO_TCP)
2472 2473
		return;

2474 2475
	th = (struct tcphdr *)(hdr.network + hlen);

2476
	/* Due to lack of space, no more new filters can be programmed */
2477
	if (th->syn && (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED))
2478
		return;
2479
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2480 2481 2482 2483 2484 2485
		/* HW ATR eviction will take care of removing filters on FIN
		 * and RST packets.
		 */
		if (th->fin || th->rst)
			return;
	}
2486 2487 2488

	tx_ring->atr_count++;

2489 2490 2491 2492 2493
	/* sample on all syn/fin/rst packets or once every atr sample rate */
	if (!th->fin &&
	    !th->syn &&
	    !th->rst &&
	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2494 2495 2496 2497 2498
		return;

	tx_ring->atr_count = 0;

	/* grab the next descriptor */
2499 2500 2501 2502 2503
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2504 2505 2506

	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2507
	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2508 2509 2510 2511 2512 2513 2514 2515 2516
		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

2517
	dtype_cmd |= (th->fin || th->rst) ?
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
		     I40E_TXD_FLTR_QW1_DEST_SHIFT;

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;

2529
	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2530
	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2531 2532 2533 2534 2535 2536 2537 2538 2539
		dtype_cmd |=
			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
	else
		dtype_cmd |=
			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2540

2541
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2542 2543
		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;

2544
	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
J
Jesse Brandeburg 已提交
2545
	fdir_desc->rsvd = cpu_to_le32(0);
2546
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
J
Jesse Brandeburg 已提交
2547
	fdir_desc->fd_id = cpu_to_le32(0);
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
}

/**
 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
2562 2563 2564
static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
					     struct i40e_ring *tx_ring,
					     u32 *flags)
2565 2566 2567 2568
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

2582
	/* if we have a HW VLAN tag being added, default to the HW one */
2583 2584
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2585 2586
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
2587
	} else if (protocol == htons(ETH_P_8021Q)) {
2588
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
2589

2590 2591 2592 2593 2594 2595 2596 2597 2598
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

2599 2600 2601
	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
		goto out;

2602
	/* Insert 802.1p priority into VLAN header */
2603 2604
	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
	    (skb->priority != TC_PRIO_CONTROL)) {
2605 2606 2607 2608 2609
		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
		tx_flags |= (skb->priority & 0x7) <<
				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
			struct vlan_ethhdr *vhdr;
2610 2611 2612 2613 2614
			int rc;

			rc = skb_cow_head(skb, 0);
			if (rc < 0)
				return rc;
2615 2616 2617 2618 2619 2620 2621
			vhdr = (struct vlan_ethhdr *)skb->data;
			vhdr->h_vlan_TCI = htons(tx_flags >>
						 I40E_TX_FLAGS_VLAN_SHIFT);
		} else {
			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
		}
	}
2622 2623

out:
2624 2625 2626 2627 2628 2629
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
2630
 * @first:    pointer to first Tx buffer for xmit
2631
 * @hdr_len:  ptr to the size of the packet header
2632
 * @cd_type_cmd_tso_mss: Quad Word 1
2633 2634 2635
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
2636 2637
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
2638
{
2639
	struct sk_buff *skb = first->skb;
2640
	u64 cd_cmd, cd_tso_len, cd_mss;
2641 2642 2643 2644 2645
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
2646 2647
	union {
		struct tcphdr *tcp;
2648
		struct udphdr *udp;
2649 2650 2651
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
2652
	u16 gso_segs, gso_size;
2653 2654
	int err;

2655 2656 2657
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2658 2659 2660
	if (!skb_is_gso(skb))
		return 0;

2661 2662 2663
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
2664

2665 2666
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2667

2668 2669 2670 2671
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
2672
	} else {
2673 2674 2675
		ip.v6->payload_len = 0;
	}

2676
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2677
					 SKB_GSO_GRE_CSUM |
2678
					 SKB_GSO_IPXIP4 |
2679
					 SKB_GSO_IPXIP6 |
2680
					 SKB_GSO_UDP_TUNNEL |
2681
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2682 2683 2684 2685
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

2686 2687 2688 2689
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
2690
			paylen = skb->len - l4_offset;
2691 2692
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
2693 2694
		}

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
2706 2707
	}

2708 2709 2710 2711
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
2712
	paylen = skb->len - l4_offset;
2713
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2714 2715 2716

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2717

2718 2719 2720 2721 2722 2723 2724 2725
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

2726 2727 2728
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
2729
	cd_mss = gso_size;
2730 2731 2732
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2733 2734 2735
	return 1;
}

J
Jacob Keller 已提交
2736 2737 2738 2739 2740
/**
 * i40e_tsyn - set up the tsyn context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @tx_flags: the collected send information
2741
 * @cd_type_cmd_tso_mss: Quad Word 1
J
Jacob Keller 已提交
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
 *
 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
 **/
static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
{
	struct i40e_pf *pf;

	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
		return 0;

	/* Tx timestamps cannot be sampled when doing TSO */
	if (tx_flags & I40E_TX_FLAGS_TSO)
		return 0;

	/* only timestamp the outbound packet if the user has requested it and
	 * we are not already transmitting a packet to be timestamped
	 */
	pf = i40e_netdev_to_pf(tx_ring->netdev);
2761 2762 2763
	if (!(pf->flags & I40E_FLAG_PTP))
		return 0;

2764
	if (pf->ptp_tx &&
2765
	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
J
Jacob Keller 已提交
2766
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2767
		pf->ptp_tx_start = jiffies;
J
Jacob Keller 已提交
2768 2769
		pf->ptp_tx_skb = skb_get(skb);
	} else {
2770
		pf->tx_hwtstamp_skipped++;
J
Jacob Keller 已提交
2771 2772 2773 2774 2775 2776 2777 2778 2779
		return 0;
	}

	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
				I40E_TXD_CTX_QW1_CMD_SHIFT;

	return 1;
}

2780 2781 2782
/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
2783
 * @tx_flags: pointer to Tx flags currently set
2784 2785
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
2786
 * @tx_ring: Tx descriptor ring
2787 2788
 * @cd_tunneling: ptr to context desc bits
 **/
2789 2790 2791 2792
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
2793
{
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
2804
	unsigned char *exthdr;
2805
	u32 offset, cmd = 0;
2806
	__be16 frag_off;
2807 2808
	u8 l4_proto = 0;

2809 2810 2811
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2812 2813
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2814

2815 2816 2817
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

2818
	if (skb->encapsulation) {
2819
		u32 tunnel = 0;
2820 2821
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2822 2823 2824 2825
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

2826 2827
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2828
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2829 2830

			exthdr = ip.hdr + sizeof(*ip.v6);
2831
			l4_proto = ip.v6->nexthdr;
2832 2833 2834
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
2835 2836 2837 2838
		}

		/* define outer transport */
		switch (l4_proto) {
2839
		case IPPROTO_UDP:
2840
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2841
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2842
			break;
2843
		case IPPROTO_GRE:
2844
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2845
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2846
			break;
2847 2848 2849 2850 2851
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
2852
		default:
2853 2854 2855 2856 2857
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
2858
		}
2859

2860 2861 2862 2863 2864 2865 2866
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

2867 2868 2869 2870
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

2871 2872
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2873
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2874 2875 2876
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

2877 2878 2879
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

2880 2881
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
2882
		l4_proto = 0;
2883

2884 2885 2886 2887 2888
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
2889
			*tx_flags |= I40E_TX_FLAGS_IPV6;
2890 2891 2892
	}

	/* Enable IP checksum offloads */
2893
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2894
		l4_proto = ip.v4->protocol;
2895 2896 2897
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
2898 2899 2900
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
2901
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2902
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2903 2904 2905 2906 2907 2908

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
2909
	}
2910

2911 2912
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2913 2914

	/* Enable L4 checksum offloads */
2915
	switch (l4_proto) {
2916 2917
	case IPPROTO_TCP:
		/* enable checksum offloads */
2918 2919
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2920 2921 2922
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
2923 2924 2925
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2926 2927 2928
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
2929 2930 2931
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2932 2933
		break;
	default:
2934 2935 2936 2937
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
2938
	}
2939 2940 2941

	*td_cmd |= cmd;
	*td_offset |= offset;
2942 2943

	return 1;
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
2958
	int i = tx_ring->next_to_use;
2959

2960 2961
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
2962 2963 2964
		return;

	/* grab the next descriptor */
2965 2966 2967 2968
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2969 2970 2971 2972

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2973
	context_desc->rsvd = cpu_to_le16(0);
2974 2975 2976
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

E
Eric Dumazet 已提交
2977 2978 2979 2980 2981 2982 2983
/**
 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
2984
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
E
Eric Dumazet 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

3000
/**
3001
 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3002 3003
 * @skb:      send buffer
 *
3004 3005 3006 3007 3008 3009 3010 3011
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
3012
 **/
3013
bool __i40e_chk_linearize(struct sk_buff *skb)
3014
{
3015
	const struct skb_frag_struct *frag, *stale;
3016
	int nr_frags, sum;
3017

3018
	/* no need to check if number of frags is less than 7 */
3019
	nr_frags = skb_shinfo(skb)->nr_frags;
3020
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3021
		return false;
3022

3023
	/* We need to walk through the list and validate that each group
3024
	 * of 6 fragments totals at least gso_size.
3025
	 */
3026
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3027 3028 3029 3030 3031 3032 3033 3034
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
3035
	sum = 1 - skb_shinfo(skb)->gso_size;
3036

3037 3038 3039 3040 3041 3042
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
3043 3044 3045 3046 3047 3048

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
3049
		sum += skb_frag_size(frag++);
3050 3051 3052 3053 3054

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

3055
		if (!nr_frags--)
3056 3057
			break;

3058
		sum -= skb_frag_size(stale++);
3059 3060
	}

3061
	return false;
3062 3063
}

3064 3065 3066 3067 3068 3069 3070 3071 3072
/**
 * i40e_tx_map - Build the Tx descriptor
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
3073 3074
 *
 * Returns 0 on success, -1 on failure to DMA
3075
 **/
3076 3077 3078
static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
			      struct i40e_tx_buffer *first, u32 tx_flags,
			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3079 3080 3081
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
A
Alexander Duyck 已提交
3082
	struct skb_frag_struct *frag;
3083 3084
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
A
Alexander Duyck 已提交
3085
	u16 i = tx_ring->next_to_use;
3086 3087
	u32 td_tag = 0;
	dma_addr_t dma;
3088
	u16 desc_count = 1;
3089 3090 3091 3092 3093 3094 3095

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

A
Alexander Duyck 已提交
3096 3097 3098 3099
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

3100
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
3101 3102 3103
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3104 3105
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

A
Alexander Duyck 已提交
3106 3107 3108 3109 3110 3111 3112
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

3113 3114
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
A
Alexander Duyck 已提交
3115 3116 3117
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3118 3119
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
3120
					   max_data, td_tag);
3121 3122 3123

			tx_desc++;
			i++;
3124 3125
			desc_count++;

3126 3127 3128 3129 3130
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

3131 3132
			dma += max_data;
			size -= max_data;
3133

3134
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
A
Alexander Duyck 已提交
3135 3136
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}
3137 3138 3139 3140

		if (likely(!data_len))
			break;

A
Alexander Duyck 已提交
3141 3142
		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);
3143 3144 3145

		tx_desc++;
		i++;
3146 3147
		desc_count++;

3148 3149 3150 3151 3152
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

A
Alexander Duyck 已提交
3153 3154
		size = skb_frag_size(frag);
		data_len -= size;
3155

A
Alexander Duyck 已提交
3156 3157
		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);
3158

A
Alexander Duyck 已提交
3159 3160
		tx_bi = &tx_ring->tx_bi[i];
	}
3161

3162
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
A
Alexander Duyck 已提交
3163 3164 3165 3166 3167 3168 3169

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

E
Eric Dumazet 已提交
3170
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3171

3172 3173 3174 3175 3176 3177 3178 3179 3180
	/* write last descriptor with EOP bit */
	td_cmd |= I40E_TX_DESC_CMD_EOP;

	/* We can OR these values together as they both are checked against
	 * 4 below and at this point desc_count will be used as a boolean value
	 * after this if/else block.
	 */
	desc_count |= ++tx_ring->packet_stride;

3181
	/* Algorithm to optimize tail and RS bit setting:
3182 3183 3184 3185 3186 3187
	 * if queue is stopped
	 *	mark RS bit
	 *	reset packet counter
	 * else if xmit_more is supported and is true
	 *	advance packet counter to 4
	 *	reset desc_count to 0
3188
	 *
3189 3190 3191 3192 3193
	 * if desc_count >= 4
	 *	mark RS bit
	 *	reset packet counter
	 * if desc_count > 0
	 *	update tail
3194
	 *
3195
	 * Note: If there are less than 4 descriptors
3196 3197 3198
	 * pending and interrupts were disabled the service task will
	 * trigger a force WB.
	 */
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
	if (netif_xmit_stopped(txring_txq(tx_ring))) {
		goto do_rs;
	} else if (skb->xmit_more) {
		/* set stride to arm on next packet and reset desc_count */
		tx_ring->packet_stride = WB_STRIDE;
		desc_count = 0;
	} else if (desc_count >= WB_STRIDE) {
do_rs:
		/* write last descriptor with RS bit set */
		td_cmd |= I40E_TX_DESC_CMD_RS;
3209 3210 3211 3212
		tx_ring->packet_stride = 0;
	}

	tx_desc->cmd_type_offset_bsz =
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
3225

A
Alexander Duyck 已提交
3226
	/* notify HW of packet */
3227
	if (desc_count) {
3228
		writel(i, tx_ring->tail);
3229 3230 3231 3232 3233

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
3234
	}
3235

3236
	return 0;
3237 3238

dma_error:
A
Alexander Duyck 已提交
3239
	dev_info(tx_ring->dev, "TX DMA map failed\n");
3240 3241 3242 3243

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
A
Alexander Duyck 已提交
3244
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3245 3246 3247 3248 3249 3250 3251 3252
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
3253 3254

	return -1;
3255 3256
}

3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
/**
 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
 * @xdp: data to transmit
 * @xdp_ring: XDP Tx ring
 **/
static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
			      struct i40e_ring *xdp_ring)
{
	u32 size = xdp->data_end - xdp->data;
	u16 i = xdp_ring->next_to_use;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
	dma_addr_t dma;

	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
		xdp_ring->tx_stats.tx_busy++;
		return I40E_XDP_CONSUMED;
	}

	dma = dma_map_single(xdp_ring->dev, xdp->data, size, DMA_TO_DEVICE);
	if (dma_mapping_error(xdp_ring->dev, dma))
		return I40E_XDP_CONSUMED;

	tx_bi = &xdp_ring->tx_bi[i];
	tx_bi->bytecount = size;
	tx_bi->gso_segs = 1;
	tx_bi->raw_buf = xdp->data;

	/* record length, and DMA address */
	dma_unmap_len_set(tx_bi, len, size);
	dma_unmap_addr_set(tx_bi, dma, dma);

	tx_desc = I40E_TX_DESC(xdp_ring, i);
	tx_desc->buffer_addr = cpu_to_le64(dma);
	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
						  | I40E_TXD_CMD,
						  0, size, 0);

	/* Make certain all of the status bits have been updated
	 * before next_to_watch is written.
	 */
	smp_wmb();

	i++;
	if (i == xdp_ring->count)
		i = 0;

	tx_bi->next_to_watch = tx_desc;
	xdp_ring->next_to_use = i;

	return I40E_XDP_TX;
}

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
3328
	int tso, count;
J
Jacob Keller 已提交
3329
	int tsyn;
J
Jesse Brandeburg 已提交
3330

3331 3332 3333
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

S
Scott Peterson 已提交
3334 3335
	i40e_trace(xmit_frame_ring, skb, tx_ring);

3336
	count = i40e_xmit_descriptor_count(skb);
3337
	if (i40e_chk_linearize(skb, count)) {
3338 3339 3340 3341
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
3342
		count = i40e_txd_use_count(skb->len);
3343 3344
		tx_ring->tx_stats.tx_linearize++;
	}
3345 3346 3347 3348 3349 3350 3351 3352 3353

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
3354
		return NETDEV_TX_BUSY;
3355
	}
3356

3357 3358 3359 3360 3361 3362
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

3363 3364 3365 3366 3367
	/* prepare the xmit flags */
	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
		goto out_drop;

	/* obtain protocol of skb */
3368
	protocol = vlan_get_protocol(skb);
3369 3370

	/* setup IPv4/IPv6 offloads */
3371
	if (protocol == htons(ETH_P_IP))
3372
		tx_flags |= I40E_TX_FLAGS_IPV4;
3373
	else if (protocol == htons(ETH_P_IPV6))
3374 3375
		tx_flags |= I40E_TX_FLAGS_IPV6;

3376
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3377 3378 3379 3380 3381 3382

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

3383 3384 3385 3386 3387 3388
	/* Always offload the checksum, since it's in the data descriptor */
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;

J
Jacob Keller 已提交
3389 3390 3391 3392 3393
	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);

	if (tsyn)
		tx_flags |= I40E_TX_FLAGS_TSYN;

3394 3395
	skb_tx_timestamp(skb);

3396 3397 3398
	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

3399 3400 3401 3402 3403 3404 3405
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

	/* Add Flow Director ATR if it's enabled.
	 *
	 * NOTE: this must always be directly before the data descriptor.
	 */
3406
	i40e_atr(tx_ring, skb, tx_flags);
3407

3408 3409 3410
	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
			td_cmd, td_offset))
		goto cleanup_tx_tstamp;
3411 3412 3413 3414

	return NETDEV_TX_OK;

out_drop:
S
Scott Peterson 已提交
3415
	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3416 3417
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
3418 3419 3420 3421 3422 3423 3424 3425 3426
cleanup_tx_tstamp:
	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);

		dev_kfree_skb_any(pf->ptp_tx_skb);
		pf->ptp_tx_skb = NULL;
		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
	}

3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
	return NETDEV_TX_OK;
}

/**
 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40e_netdev_priv *np = netdev_priv(netdev);
	struct i40e_vsi *vsi = np->vsi;
3441
	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3442 3443 3444 3445

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
3446 3447
	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
		return NETDEV_TX_OK;
3448 3449 3450

	return i40e_xmit_frame_ring(skb, tx_ring);
}