i40e_txrx.c 90.6 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
G
Greg Rose 已提交
15 16
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
17 18 19 20 21 22 23 24 25 26
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

M
Mitch Williams 已提交
27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29
#include "i40e.h"
30
#include "i40e_prototype.h"
31 32 33 34 35 36 37 38 39 40 41

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

42
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/**
 * i40e_fdir - Generate a Flow Director descriptor based on fdata
 * @tx_ring: Tx ring to send buffer on
 * @fdata: Flow director filter data
 * @add: Indicate if we are adding a rule or deleting one
 *
 **/
static void i40e_fdir(struct i40e_ring *tx_ring,
		      struct i40e_fdir_filter *fdata, bool add)
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	u32 flex_ptype, dtype_cmd;
	u16 i;

	/* grab the next descriptor */
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

74 75 76
	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	/* Use LAN VSI Id if not programmed by user */
	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

	dtype_cmd |= add ?
		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;

	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);

	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);

	if (fdata->cnt_index) {
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
			     ((u32)fdata->cnt_index <<
			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
	}

	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
	fdir_desc->rsvd = cpu_to_le32(0);
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
}

109
#define I40E_FD_CLEAN_DELAY 10
110 111
/**
 * i40e_program_fdir_filter - Program a Flow Director filter
112 113
 * @fdir_data: Packet data that will be filter parameters
 * @raw_packet: the pre-allocated packet buffer for FDir
114
 * @pf: The PF pointer
115 116
 * @add: True for add/update, False for remove
 **/
117 118 119
static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
				    u8 *raw_packet, struct i40e_pf *pf,
				    bool add)
120
{
121
	struct i40e_tx_buffer *tx_buf, *first;
122 123 124 125 126 127 128 129 130
	struct i40e_tx_desc *tx_desc;
	struct i40e_ring *tx_ring;
	struct i40e_vsi *vsi;
	struct device *dev;
	dma_addr_t dma;
	u32 td_cmd = 0;
	u16 i;

	/* find existing FDIR VSI */
131
	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
132 133 134
	if (!vsi)
		return -ENOENT;

135
	tx_ring = vsi->tx_rings[0];
136 137
	dev = tx_ring->dev;

138
	/* we need two descriptors to add/del a filter and we can wait */
139 140 141
	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
		if (!i)
			return -EAGAIN;
142
		msleep_interruptible(1);
143
	}
144

145 146
	dma = dma_map_single(dev, raw_packet,
			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
147 148 149 150
	if (dma_mapping_error(dev, dma))
		goto dma_fail;

	/* grab the next descriptor */
151
	i = tx_ring->next_to_use;
152
	first = &tx_ring->tx_bi[i];
153
	i40e_fdir(tx_ring, fdir_data, add);
154 155

	/* Now program a dummy descriptor */
156 157
	i = tx_ring->next_to_use;
	tx_desc = I40E_TX_DESC(tx_ring, i);
158
	tx_buf = &tx_ring->tx_bi[i];
159

160 161 162
	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;

	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
163

164
	/* record length, and DMA address */
165
	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
166 167
	dma_unmap_addr_set(tx_buf, dma, dma);

168
	tx_desc->buffer_addr = cpu_to_le64(dma);
169
	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
170

171 172 173
	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
	tx_buf->raw_buf = (void *)raw_packet;

174
	tx_desc->cmd_type_offset_bsz =
175
		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
176 177

	/* Force memory writes to complete before letting h/w
178
	 * know there are new descriptors to fetch.
179 180 181
	 */
	wmb();

182
	/* Mark the data descriptor to be watched */
183
	first->next_to_watch = tx_desc;
184

185 186 187 188 189 190 191
	writel(tx_ring->next_to_use, tx_ring->tail);
	return 0;

dma_fail:
	return -1;
}

192 193 194 195 196 197 198 199 200 201 202 203
#define IP_HEADER_OFFSET 14
#define I40E_UDPIP_DUMMY_PACKET_LEN 42
/**
 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
204
				   bool add)
205 206 207 208
{
	struct i40e_pf *pf = vsi->back;
	struct udphdr *udp;
	struct iphdr *ip;
209
	u8 *raw_packet;
210 211 212 213 214
	int ret;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

215 216 217
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
218 219 220 221 222 223
	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

224
	ip->daddr = fd_data->dst_ip;
225
	udp->dest = fd_data->dst_port;
226
	ip->saddr = fd_data->src_ip;
227 228
	udp->source = fd_data->src_port;

229 230 231 232 233 234 235 236
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

237 238 239 240
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
241 242
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
243 244 245
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
246
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
247 248 249 250 251 252 253 254
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
255
	}
256

257 258 259 260 261
	if (add)
		pf->fd_udp4_filter_cnt++;
	else
		pf->fd_udp4_filter_cnt--;

262
	return 0;
263 264 265 266 267 268 269 270 271 272 273 274 275
}

#define I40E_TCPIP_DUMMY_PACKET_LEN 54
/**
 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
276
				   bool add)
277 278 279 280
{
	struct i40e_pf *pf = vsi->back;
	struct tcphdr *tcp;
	struct iphdr *ip;
281
	u8 *raw_packet;
282 283 284 285 286 287 288
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
		0x0, 0x72, 0, 0, 0, 0};

289 290 291
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
292 293 294 295 296 297
	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

298
	ip->daddr = fd_data->dst_ip;
299
	tcp->dest = fd_data->dst_port;
300
	ip->saddr = fd_data->src_ip;
301 302
	tcp->source = fd_data->src_port;

303 304 305 306 307 308 309 310
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

311
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
312 313 314
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
315 316
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
317 318 319
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
320
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
321 322 323 324 325 326 327
		if (add)
			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
328 329
	}

330
	if (add) {
331
		pf->fd_tcp4_filter_cnt++;
332 333 334 335 336
		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
		    I40E_DEBUG_FD & pf->hw.debug_mask)
			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
		pf->hw_disabled_flags |= I40E_FLAG_FD_ATR_ENABLED;
	} else {
337 338
		pf->fd_tcp4_filter_cnt--;
		if (pf->fd_tcp4_filter_cnt == 0) {
339 340 341 342 343 344 345
			if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
			    I40E_DEBUG_FD & pf->hw.debug_mask)
				dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
			pf->hw_disabled_flags &= ~I40E_FLAG_FD_ATR_ENABLED;
		}
	}

346
	return 0;
347 348
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
/**
 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
				    struct i40e_fdir_filter *fd_data,
				    bool add)
{
	struct i40e_pf *pf = vsi->back;
	struct sctphdr *sctp;
	struct iphdr *ip;
	u8 *raw_packet;
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

	ip->daddr = fd_data->dst_ip;
	sctp->dest = fd_data->dst_port;
	ip->saddr = fd_data->src_ip;
	sctp->source = fd_data->src_port;

	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
	}

	if (add)
		pf->fd_sctp4_filter_cnt++;
	else
		pf->fd_sctp4_filter_cnt--;

	return 0;
}

423 424 425 426 427 428 429 430 431 432 433 434
#define I40E_IP_DUMMY_PACKET_LEN 34
/**
 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
				  struct i40e_fdir_filter *fd_data,
435
				  bool add)
436 437 438
{
	struct i40e_pf *pf = vsi->back;
	struct iphdr *ip;
439
	u8 *raw_packet;
440 441 442 443 444 445 446 447
	int ret;
	int i;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0};

	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
448 449 450 451 452 453
		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
		if (!raw_packet)
			return -ENOMEM;
		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);

454 455
		ip->saddr = fd_data->src_ip;
		ip->daddr = fd_data->dst_ip;
456 457
		ip->protocol = 0;

458 459 460 461 462 463 464 465
		if (fd_data->flex_filter) {
			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
			__be16 pattern = fd_data->flex_word;
			u16 off = fd_data->flex_offset;

			*((__force __be16 *)(payload + off)) = pattern;
		}

466 467 468 469
		fd_data->pctype = i;
		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
		if (ret) {
			dev_info(&pf->pdev->dev,
470 471
				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
				 fd_data->pctype, fd_data->fd_id, ret);
472 473 474 475 476
			/* The packet buffer wasn't added to the ring so we
			 * need to free it now.
			 */
			kfree(raw_packet);
			return -EOPNOTSUPP;
477
		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
478 479 480 481 482 483 484 485
			if (add)
				dev_info(&pf->pdev->dev,
					 "Filter OK for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
			else
				dev_info(&pf->pdev->dev,
					 "Filter deleted for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
486 487 488
		}
	}

489 490 491 492 493
	if (add)
		pf->fd_ip4_filter_cnt++;
	else
		pf->fd_ip4_filter_cnt--;

494
	return 0;
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

/**
 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 * @vsi: pointer to the targeted VSI
 * @cmd: command to get or set RX flow classification rules
 * @add: true adds a filter, false removes it
 *
 **/
int i40e_add_del_fdir(struct i40e_vsi *vsi,
		      struct i40e_fdir_filter *input, bool add)
{
	struct i40e_pf *pf = vsi->back;
	int ret;

	switch (input->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
512
		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
513 514
		break;
	case UDP_V4_FLOW:
515
		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
516
		break;
517 518 519
	case SCTP_V4_FLOW:
		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
		break;
520 521 522
	case IP_USER_FLOW:
		switch (input->ip4_proto) {
		case IPPROTO_TCP:
523
			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
524 525
			break;
		case IPPROTO_UDP:
526
			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
527
			break;
528 529 530
		case IPPROTO_SCTP:
			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
			break;
531
		case IPPROTO_IP:
532
			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
533
			break;
534 535
		default:
			/* We cannot support masking based on protocol */
536 537 538
			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
				 input->ip4_proto);
			return -EINVAL;
539 540 541
		}
		break;
	default:
542
		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
543
			 input->flow_type);
544
		return -EINVAL;
545 546
	}

547 548 549 550 551 552
	/* The buffer allocated here will be normally be freed by
	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
	 * completion. In the event of an error adding the buffer to the FDIR
	 * ring, it will immediately be freed. It may also be freed by
	 * i40e_clean_tx_ring() when closing the VSI.
	 */
553 554 555
	return ret;
}

556 557 558
/**
 * i40e_fd_handle_status - check the Programming Status for FD
 * @rx_ring: the Rx ring for this descriptor
559
 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
560 561 562 563 564
 * @prog_id: the id originally used for programming
 *
 * This is used to verify if the FD programming or invalidation
 * requested by SW to the HW is successful or not and take actions accordingly.
 **/
565 566
static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
				  union i40e_rx_desc *rx_desc, u8 prog_id)
567
{
568 569 570
	struct i40e_pf *pf = rx_ring->vsi->back;
	struct pci_dev *pdev = pf->pdev;
	u32 fcnt_prog, fcnt_avail;
571
	u32 error;
572
	u64 qw;
573

574
	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
575 576 577
	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;

578
	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
579
		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
580 581 582
		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
		    (I40E_DEBUG_FD & pf->hw.debug_mask))
			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
583
				 pf->fd_inv);
584

585 586 587 588 589 590 591 592 593
		/* Check if the programming error is for ATR.
		 * If so, auto disable ATR and set a state for
		 * flush in progress. Next time we come here if flush is in
		 * progress do nothing, once flush is complete the state will
		 * be cleared.
		 */
		if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
			return;

594 595 596 597
		pf->fd_add_err++;
		/* store the current atr filter count */
		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);

598
		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
599 600
		    (pf->hw_disabled_flags & I40E_FLAG_FD_SB_ENABLED)) {
			pf->hw_disabled_flags |= I40E_FLAG_FD_ATR_ENABLED;
601 602 603
			set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
		}

604
		/* filter programming failed most likely due to table full */
605
		fcnt_prog = i40e_get_global_fd_count(pf);
606
		fcnt_avail = pf->fdir_pf_filter_count;
607 608 609 610 611
		/* If ATR is running fcnt_prog can quickly change,
		 * if we are very close to full, it makes sense to disable
		 * FD ATR/SB and then re-enable it when there is room.
		 */
		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
612
			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
613
			    !(pf->hw_disabled_flags &
614
				     I40E_FLAG_FD_SB_ENABLED)) {
615 616
				if (I40E_DEBUG_FD & pf->hw.debug_mask)
					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
617
				pf->hw_disabled_flags |=
618 619 620
							I40E_FLAG_FD_SB_ENABLED;
			}
		}
621
	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
622
		if (I40E_DEBUG_FD & pf->hw.debug_mask)
623
			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
624
				 rx_desc->wb.qword0.hi_dword.fd_id);
625
	}
626 627 628
}

/**
A
Alexander Duyck 已提交
629
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
630 631 632
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
A
Alexander Duyck 已提交
633 634
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
635
{
A
Alexander Duyck 已提交
636
	if (tx_buffer->skb) {
637 638 639 640
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
		else
			dev_kfree_skb_any(tx_buffer->skb);
A
Alexander Duyck 已提交
641
		if (dma_unmap_len(tx_buffer, len))
642
			dma_unmap_single(ring->dev,
643 644
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
645
					 DMA_TO_DEVICE);
A
Alexander Duyck 已提交
646 647 648 649 650
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
651
	}
652

A
Alexander Duyck 已提交
653 654
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
655
	dma_unmap_len_set(tx_buffer, len, 0);
A
Alexander Duyck 已提交
656
	/* tx_buffer must be completely set up in the transmit path */
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
}

/**
 * i40e_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
A
Alexander Duyck 已提交
673 674
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
675 676 677 678 679 680 681 682 683

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
684 685 686 687 688

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
689
	netdev_tx_reset_queue(txring_txq(tx_ring));
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
}

/**
 * i40e_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40e_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40e_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

/**
 * i40e_get_tx_pending - how many tx descriptors not processed
 * @tx_ring: the ring of descriptors
 *
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
 **/
718
u32 i40e_get_tx_pending(struct i40e_ring *ring)
719
{
J
Jesse Brandeburg 已提交
720 721
	u32 head, tail;

722
	head = i40e_get_head(ring);
J
Jesse Brandeburg 已提交
723 724 725 726 727 728 729
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
730 731
}

732
#define WB_STRIDE 4
733

734 735
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
736 737 738
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
739 740 741
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
742 743
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
744 745 746
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
747
	struct i40e_tx_desc *tx_head;
748
	struct i40e_tx_desc *tx_desc;
749 750
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
751 752 753

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
754
	i -= tx_ring->count;
755

756 757
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

A
Alexander Duyck 已提交
758 759
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
760 761 762 763 764

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

A
Alexander Duyck 已提交
765 766 767
		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

768 769
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
770 771
			break;

A
Alexander Duyck 已提交
772
		/* clear next_to_watch to prevent false hangs */
773 774
		tx_buf->next_to_watch = NULL;

A
Alexander Duyck 已提交
775 776 777
		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;
778

A
Alexander Duyck 已提交
779
		/* free the skb */
780
		napi_consume_skb(tx_buf->skb, napi_budget);
781

A
Alexander Duyck 已提交
782 783 784 785 786
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);
787

A
Alexander Duyck 已提交
788 789 790
		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);
791

A
Alexander Duyck 已提交
792 793
		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
794 795 796 797

			tx_buf++;
			tx_desc++;
			i++;
A
Alexander Duyck 已提交
798 799
			if (unlikely(!i)) {
				i -= tx_ring->count;
800 801 802 803
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

A
Alexander Duyck 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

824 825
		prefetch(tx_desc);

A
Alexander Duyck 已提交
826 827 828 829 830
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
831
	tx_ring->next_to_clean = i;
832
	u64_stats_update_begin(&tx_ring->syncp);
833 834
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
835
	u64_stats_update_end(&tx_ring->syncp);
836 837
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;
A
Alexander Duyck 已提交
838

839 840 841 842 843 844
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
845
		unsigned int j = i40e_get_tx_pending(tx_ring);
846 847

		if (budget &&
848
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
849
		    !test_bit(__I40E_DOWN, &vsi->state) &&
850 851 852
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}
853

854 855
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
856 857
				  total_packets, total_bytes);

858 859 860 861 862 863 864 865 866
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
867
		   !test_bit(__I40E_DOWN, &vsi->state)) {
868 869 870 871 872 873
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

874 875 876 877
	return !!budget;
}

/**
878
 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
879
 * @vsi: the VSI we care about
880
 * @q_vector: the vector on which to enable writeback
881 882
 *
 **/
883 884
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
885
{
886
	u16 flags = q_vector->tx.ring[0].flags;
887
	u32 val;
888

889 890
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;
891

892 893
	if (q_vector->arm_wb_state)
		return;
894

895 896 897
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
898

899 900 901 902 903 904
		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
		     val);
	} else {
		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
905

906 907 908 909 910 911 912 913 914 915 916 917 918 919
		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
	q_vector->arm_wb_state = true;
}

/**
 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
			  /* allow 00 to be written to the index */

		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
					 vsi->base_vector - 1), val);
	} else {
		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
			/* allow 00 to be written to the index */

		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
938 939 940 941 942 943
}

/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
944 945
 * Returns true if ITR changed, false if not
 *
946 947 948 949 950 951 952 953
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
954
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
955 956
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
957
	struct i40e_q_vector *qv = rc->ring->q_vector;
958 959
	u32 new_itr = rc->itr;
	int bytes_per_int;
960
	int usecs;
961 962

	if (rc->total_packets == 0 || !rc->itr)
963
		return false;
964 965

	/* simple throttlerate management
966
	 *   0-10MB/s   lowest (50000 ints/s)
967
	 *  10-20MB/s   low    (20000 ints/s)
968 969
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
970 971 972 973
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
974 975
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
976
	 */
977
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
978
	bytes_per_int = rc->total_bytes / usecs;
979

980
	switch (new_latency_range) {
981 982 983 984 985 986 987 988 989 990 991
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
992
	case I40E_ULTRA_LATENCY:
993 994 995
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
996 997
		break;
	}
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

1010
	rc->latency_range = new_latency_range;
1011 1012 1013

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
1014
		new_itr = I40E_ITR_50K;
1015 1016 1017 1018 1019
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
1020 1021 1022
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
1023 1024 1025 1026 1027 1028 1029 1030
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
1031 1032 1033 1034 1035 1036 1037

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
1038 1039
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
/**
 * i40e_rx_is_programming_status - check for programming status descriptor
 * @qw: qword representing status_error_len in CPU ordering
 *
 * The value of in the descriptor length field indicate if this
 * is a programming status descriptor for flow director or FCoE
 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
 * it is a packet descriptor.
 **/
static inline bool i40e_rx_is_programming_status(u64 qw)
{
	/* The Rx filter programming status and SPH bit occupy the same
	 * spot in the descriptor. Since we don't support packet split we
	 * can just reuse the bit as an indication that this is a
	 * programming status descriptor.
	 */
	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
}

1059 1060 1061 1062
/**
 * i40e_clean_programming_status - clean the programming status descriptor
 * @rx_ring: the rx ring that has this descriptor
 * @rx_desc: the rx descriptor written back by HW
1063
 * @qw: qword representing status_error_len in CPU ordering
1064 1065 1066 1067 1068 1069 1070
 *
 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 * status being successful or not and take actions accordingly. FCoE should
 * handle its context/filter programming/invalidation status and take actions.
 *
 **/
static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1071 1072
					  union i40e_rx_desc *rx_desc,
					  u64 qw)
1073
{
1074
	u32 ntc = rx_ring->next_to_clean + 1;
1075 1076
	u8 id;

1077 1078 1079 1080 1081 1082
	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

1083 1084 1085 1086
	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;

	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1087
		i40e_fd_handle_status(rx_ring, rx_desc, id);
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
}

/**
 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

J
Jesse Brandeburg 已提交
1104 1105
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
1106 1107 1108 1109 1110 1111 1112
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1113 1114 1115 1116
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

1149 1150 1151 1152 1153
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

1154 1155
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
1156 1157 1158 1159 1160
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

1161 1162 1163 1164 1165 1166
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
1167
					      rx_ring->rx_buf_len,
1168 1169 1170 1171
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1172
				     i40e_rx_pg_size(rx_ring),
1173 1174
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
1175

1176
		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1177 1178 1179

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
1180 1181 1182 1183 1184 1185 1186 1187
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

1188
	rx_ring->next_to_alloc = 0;
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40e_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40e_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40e_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40e_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

J
Jesse Brandeburg 已提交
1223 1224
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
1225 1226 1227 1228 1229
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

1230
	u64_stats_init(&rx_ring->syncp);
1231

1232
	/* Round up to nearest 4K */
1233
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

1244
	rx_ring->next_to_alloc = 0;
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
1263 1264 1265 1266

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

1267 1268 1269 1270 1271 1272 1273 1274 1275
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
/**
 * i40e_rx_offset - Return expected offset into page to access data
 * @rx_ring: Ring we are requesting offset of
 *
 * Returns the offset value for ring into the data buffer.
 */
static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
{
	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
}

1287
/**
1288 1289 1290
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
1291
 *
1292 1293
 * Returns true if the page was successfully allocated or
 * reused.
1294
 **/
1295 1296
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
1297
{
1298 1299
	struct page *page = bi->page;
	dma_addr_t dma;
1300

1301 1302 1303 1304 1305
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
1306

1307
	/* alloc new page for storage */
1308
	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1309 1310 1311 1312
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
1313

1314
	/* map page for use */
1315
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1316
				 i40e_rx_pg_size(rx_ring),
1317 1318
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
1319

1320 1321
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
1322
	 */
1323
	if (dma_mapping_error(rx_ring->dev, dma)) {
1324
		__free_pages(page, i40e_rx_pg_order(rx_ring));
1325 1326
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
1327 1328
	}

1329 1330
	bi->dma = dma;
	bi->page = page;
1331
	bi->page_offset = i40e_rx_offset(rx_ring);
1332 1333

	/* initialize pagecnt_bias to 1 representing we fully own page */
1334
	bi->pagecnt_bias = 1;
1335

1336 1337
	return true;
}
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1349

1350 1351 1352 1353 1354
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
1355 1356 1357
}

/**
1358
 * i40e_alloc_rx_buffers - Replace used receive buffers
1359 1360
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
1361
 *
1362
 * Returns false if all allocations were successful, true if any fail
1363
 **/
1364
bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1365
{
1366
	u16 ntu = rx_ring->next_to_use;
1367 1368 1369 1370 1371
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
1372
		return false;
1373

1374 1375
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
1376

1377 1378 1379
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
1380

1381 1382 1383
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
1384
						 rx_ring->rx_buf_len,
1385 1386
						 DMA_FROM_DEVICE);

1387 1388 1389 1390
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1409 1410 1411

	return false;

1412
no_buffers:
1413 1414
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1415 1416 1417 1418 1419

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
1420 1421 1422 1423 1424 1425
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
1426
 * @rx_desc: the receive descriptor
1427 1428 1429
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
1430
				    union i40e_rx_desc *rx_desc)
1431
{
1432 1433
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
1434
	bool ipv4, ipv6;
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
1445

1446 1447
	skb->ip_summed = CHECKSUM_NONE;

1448 1449
	skb_checksum_none_assert(skb);

1450
	/* Rx csum enabled and ip headers found? */
1451 1452 1453 1454
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
1455
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1456 1457 1458 1459
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
1460 1461
		return;

1462 1463 1464 1465
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1466 1467

	if (ipv4 &&
1468 1469
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1470 1471
		goto checksum_fail;

J
Jesse Brandeburg 已提交
1472
	/* likely incorrect csum if alternate IP extension headers found */
1473
	if (ipv6 &&
1474
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1475
		/* don't increment checksum err here, non-fatal err */
1476 1477
		return;

1478
	/* there was some L4 error, count error and punt packet to the stack */
1479
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1480 1481 1482 1483 1484 1485
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
1486
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1487 1488
		return;

1489 1490 1491
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
1492
	 */
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
1506 1507 1508 1509 1510

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
1511 1512 1513
}

/**
1514
 * i40e_ptype_to_htype - get a hash type
1515 1516 1517 1518
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
1519
static inline int i40e_ptype_to_htype(u8 ptype)
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
1547
	const __le64 rss_mask =
1548 1549 1550
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

1551
	if (!(ring->netdev->features & NETIF_F_RXHASH))
1552 1553 1554 1555 1556 1557 1558 1559
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

1560
/**
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 **/
static inline
void i40e_process_skb_fields(struct i40e_ring *rx_ring,
			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			     u8 rx_ptype)
{
	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;
1579 1580
	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1581 1582
		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;

1583
	if (unlikely(tsynvalid))
1584
		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1585 1586 1587 1588 1589 1590

	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);

	skb_record_rx_queue(skb, rx_ring->queue_index);
1591 1592 1593

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
}

/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_bi[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
1638 1639 1640 1641
	new_buff->dma		= old_buff->dma;
	new_buff->page		= old_buff->page;
	new_buff->page_offset	= old_buff->page_offset;
	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1642 1643 1644
}

/**
1645
 * i40e_page_is_reusable - check if any reuse is possible
1646
 * @page: page struct to check
1647 1648 1649
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
1650
 */
1651
static inline bool i40e_page_is_reusable(struct page *page)
1652
{
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
1684
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1685
{
1686 1687
	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
	struct page *page = rx_buffer->page;
1688 1689 1690 1691 1692 1693 1694

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
1695
	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1696 1697
		return false;
#else
1698 1699 1700
#define I40E_LAST_OFFSET \
	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1701 1702 1703
		return false;
#endif

1704 1705 1706 1707
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
	 */
1708
	if (unlikely(!pagecnt_bias)) {
1709 1710 1711
		page_ref_add(page, USHRT_MAX);
		rx_buffer->pagecnt_bias = USHRT_MAX;
	}
1712

1713
	return true;
1714 1715 1716 1717 1718 1719 1720
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @skb: sk_buff to place the data into
1721
 * @size: packet length from rx_desc
1722 1723
 *
 * This function will add the data contained in rx_buffer->page to the skb.
1724
 * It will just attach the page as a frag to the skb.
1725
 *
1726
 * The function will then update the page offset.
1727
 **/
1728
static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1729
			     struct i40e_rx_buffer *rx_buffer,
1730 1731
			     struct sk_buff *skb,
			     unsigned int size)
1732 1733
{
#if (PAGE_SIZE < 8192)
1734
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1735
#else
1736
	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1737 1738
#endif

1739 1740
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
			rx_buffer->page_offset, size, truesize);
1741

1742 1743 1744 1745 1746 1747
	/* page is being used so we must update the page offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
1748 1749
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
/**
 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
 * @rx_ring: rx descriptor ring to transact packets on
 * @size: size of buffer to add to skb
 *
 * This function will pull an Rx buffer from the ring and synchronize it
 * for use by the CPU.
 */
static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
						 const unsigned int size)
{
	struct i40e_rx_buffer *rx_buffer;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	prefetchw(rx_buffer->page);

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      size,
				      DMA_FROM_DEVICE);

1773 1774 1775
	/* We have pulled a buffer for use, so decrement pagecnt_bias */
	rx_buffer->pagecnt_bias--;

1776 1777 1778
	return rx_buffer;
}

1779
/**
1780
 * i40e_construct_skb - Allocate skb and populate it
1781
 * @rx_ring: rx descriptor ring to transact packets on
1782
 * @rx_buffer: rx buffer to pull data from
1783
 * @size: size of buffer to add to skb
1784
 *
1785 1786 1787
 * This function allocates an skb.  It then populates it with the page
 * data from the current receive descriptor, taking care to set up the
 * skb correctly.
1788
 */
1789 1790 1791
static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
					  struct i40e_rx_buffer *rx_buffer,
					  unsigned int size)
1792
{
1793 1794
	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
#if (PAGE_SIZE < 8192)
1795
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1796 1797 1798 1799 1800
#else
	unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
	unsigned int headlen;
	struct sk_buff *skb;
1801

1802 1803
	/* prefetch first cache line of first page */
	prefetch(va);
1804
#if L1_CACHE_BYTES < 128
1805
	prefetch(va + L1_CACHE_BYTES);
1806 1807
#endif

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	/* allocate a skb to store the frags */
	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
			       I40E_RX_HDR_SIZE,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;

	/* Determine available headroom for copy */
	headlen = size;
	if (headlen > I40E_RX_HDR_SIZE)
		headlen = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1819

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
	/* align pull length to size of long to optimize memcpy performance */
	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));

	/* update all of the pointers */
	size -= headlen;
	if (size) {
		skb_add_rx_frag(skb, 0, rx_buffer->page,
				rx_buffer->page_offset + headlen,
				size, truesize);

		/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
		rx_buffer->page_offset ^= truesize;
#else
		rx_buffer->page_offset += truesize;
#endif
	} else {
		/* buffer is unused, reset bias back to rx_buffer */
		rx_buffer->pagecnt_bias++;
	}
1840 1841 1842 1843

	return skb;
}

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
/**
 * i40e_build_skb - Build skb around an existing buffer
 * @rx_ring: Rx descriptor ring to transact packets on
 * @rx_buffer: Rx buffer to pull data from
 * @size: size of buffer to add to skb
 *
 * This function builds an skb around an existing Rx buffer, taking care
 * to set up the skb correctly and avoid any memcpy overhead.
 */
static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
				      struct i40e_rx_buffer *rx_buffer,
				      unsigned int size)
{
	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
#if (PAGE_SIZE < 8192)
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
#else
	unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
	struct sk_buff *skb;

	/* prefetch first cache line of first page */
	prefetch(va);
#if L1_CACHE_BYTES < 128
	prefetch(va + L1_CACHE_BYTES);
#endif
	/* build an skb around the page buffer */
	skb = build_skb(va - I40E_SKB_PAD, truesize);
	if (unlikely(!skb))
		return NULL;

	/* update pointers within the skb to store the data */
	skb_reserve(skb, I40E_SKB_PAD);
	__skb_put(skb, size);

	/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif

	return skb;
}

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
/**
 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: rx buffer to pull data from
 *
 * This function will clean up the contents of the rx_buffer.  It will
 * either recycle the bufer or unmap it and free the associated resources.
 */
static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *rx_buffer)
{
	if (i40e_can_reuse_rx_page(rx_buffer)) {
1901 1902 1903 1904 1905
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
1906 1907
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
				     i40e_rx_pg_size(rx_ring),
1908
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1909 1910
		__page_frag_cache_drain(rx_buffer->page,
					rx_buffer->pagecnt_bias);
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
1927
 **/
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

/**
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 **/
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1963 1964
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1965
	struct sk_buff *skb = rx_ring->skb;
1966
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1967
	bool failure = false;
1968

1969
	while (likely(total_rx_packets < budget)) {
1970
		struct i40e_rx_buffer *rx_buffer;
1971
		union i40e_rx_desc *rx_desc;
1972
		unsigned int size;
1973
		u16 vlan_tag;
1974 1975 1976
		u8 rx_ptype;
		u64 qword;

1977 1978
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1979
			failure = failure ||
1980
				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1981 1982 1983
			cleaned_count = 0;
		}

1984 1985 1986 1987 1988
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
1989
		 * hardware wrote DD then the length will be non-zero
1990
		 */
1991
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1992

1993
		/* This memory barrier is needed to keep us from reading
1994 1995
		 * any other fields out of the rx_desc until we have
		 * verified the descriptor has been written back.
1996
		 */
1997
		dma_rmb();
1998

1999 2000 2001 2002 2003 2004 2005 2006 2007
		if (unlikely(i40e_rx_is_programming_status(qword))) {
			i40e_clean_programming_status(rx_ring, rx_desc, qword);
			continue;
		}
		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		if (!size)
			break;

2008 2009
		rx_buffer = i40e_get_rx_buffer(rx_ring, size);

2010 2011 2012
		/* retrieve a buffer from the ring */
		if (skb)
			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2013 2014
		else if (ring_uses_build_skb(rx_ring))
			skb = i40e_build_skb(rx_ring, rx_buffer, size);
2015 2016 2017 2018 2019 2020 2021
		else
			skb = i40e_construct_skb(rx_ring, rx_buffer, size);

		/* exit if we failed to retrieve a buffer */
		if (!skb) {
			rx_ring->rx_stats.alloc_buff_failed++;
			rx_buffer->pagecnt_bias++;
2022
			break;
2023
		}
2024

2025
		i40e_put_rx_buffer(rx_ring, rx_buffer);
2026 2027
		cleaned_count++;

2028
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2029 2030
			continue;

2031 2032 2033 2034 2035 2036
		/* ERR_MASK will only have valid bits if EOP set, and
		 * what we are doing here is actually checking
		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
		 * the error field
		 */
		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
2037
			dev_kfree_skb_any(skb);
2038
			skb = NULL;
2039 2040 2041
			continue;
		}

2042 2043
		if (i40e_cleanup_headers(rx_ring, skb)) {
			skb = NULL;
2044
			continue;
2045
		}
2046 2047 2048 2049

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

2050 2051 2052 2053
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

2054 2055
		/* populate checksum, VLAN, and protocol */
		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2056

2057 2058 2059
		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

2060
		i40e_receive_skb(rx_ring, skb, vlan_tag);
2061
		skb = NULL;
2062

2063 2064 2065
		/* update budget accounting */
		total_rx_packets++;
	}
2066

2067 2068
	rx_ring->skb = skb;

2069
	u64_stats_update_begin(&rx_ring->syncp);
2070 2071
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
2072
	u64_stats_update_end(&rx_ring->syncp);
2073 2074 2075
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

2076
	/* guarantee a trip back through this routine if there was a failure */
2077
	return failure ? budget : total_rx_packets;
2078 2079
}

2080 2081 2082 2083 2084
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2085 2086 2087
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
2088 2089 2090 2091 2092 2093 2094 2095
	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_PFINT_DYN_CTLN
2096
static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
2097
{
2098
	return vsi->rx_rings[idx]->rx_itr_setting;
2099 2100
}

2101
static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
2102
{
2103
	return vsi->tx_rings[idx]->tx_itr_setting;
2104
}
2105

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
2116 2117
	bool rx = false, tx = false;
	u32 rxval, txval;
2118
	int vector;
2119
	int idx = q_vector->v_idx;
2120
	int rx_itr_setting, tx_itr_setting;
2121 2122

	vector = (q_vector->v_idx + vsi->base_vector);
2123

2124 2125 2126
	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
2127 2128
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

2129 2130
	rx_itr_setting = get_rx_itr(vsi, idx);
	tx_itr_setting = get_tx_itr(vsi, idx);
2131

2132
	if (q_vector->itr_countdown > 0 ||
2133 2134
	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
2135 2136 2137
		goto enable_int;
	}

2138
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2139 2140
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
2141
	}
2142

2143
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2144 2145
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
2146
	}
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174

	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
	}

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

2175
enable_int:
2176 2177
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
2178 2179 2180 2181 2182

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2183 2184
}

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
/**
 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40e_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
2199
	struct i40e_ring *ring;
2200
	bool clean_complete = true;
2201
	bool arm_wb = false;
2202
	int budget_per_ring;
2203
	int work_done = 0;
2204 2205 2206 2207 2208 2209

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

2210 2211 2212
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
2213
	i40e_for_each_ring(ring, q_vector->tx) {
2214
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2215 2216 2217 2218
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
2219
		ring->arm_wb = false;
2220
	}
2221

2222 2223 2224 2225
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

2226 2227 2228 2229
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2230

2231
	i40e_for_each_ring(ring, q_vector->rx) {
2232
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2233 2234

		work_done += cleaned;
2235 2236 2237
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
2238
	}
2239 2240

	/* If work not completed, return budget and polling will return */
2241
	if (!clean_complete) {
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
		const cpumask_t *aff_mask = &q_vector->affinity_mask;
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
		if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
			   !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
2254
tx_only:
2255 2256 2257 2258 2259
			if (arm_wb) {
				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
				i40e_enable_wb_on_itr(vsi, q_vector);
			}
			return budget;
2260
		}
2261
	}
2262

2263 2264 2265
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

2266
	/* Work is done so exit the polling mode and re-enable the interrupt */
2267
	napi_complete_done(napi, work_done);
2268 2269 2270 2271 2272 2273 2274 2275

	/* If we're prematurely stopping polling to fix the interrupt
	 * affinity we want to make sure polling starts back up so we
	 * issue a call to i40e_force_wb which triggers a SW interrupt.
	 */
	if (!clean_complete)
		i40e_force_wb(vsi, q_vector);
	else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
2276
		i40e_irq_dynamic_enable_icr0(vsi->back, false);
2277 2278 2279
	else
		i40e_update_enable_itr(vsi, q_vector);

2280
	return min(work_done, budget - 1);
2281 2282 2283 2284 2285 2286
}

/**
 * i40e_atr - Add a Flow Director ATR filter
 * @tx_ring:  ring to add programming descriptor to
 * @skb:      send buffer
2287
 * @tx_flags: send tx flags
2288 2289
 **/
static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2290
		     u32 tx_flags)
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	union {
		unsigned char *network;
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	struct tcphdr *th;
	unsigned int hlen;
	u32 flex_ptype, dtype_cmd;
2302
	int l4_proto;
2303
	u16 i;
2304 2305

	/* make sure ATR is enabled */
J
Jesse Brandeburg 已提交
2306
	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2307 2308
		return;

2309
	if ((pf->hw_disabled_flags & I40E_FLAG_FD_ATR_ENABLED))
2310 2311
		return;

2312 2313 2314 2315
	/* if sampling is disabled do nothing */
	if (!tx_ring->atr_sample_rate)
		return;

2316
	/* Currently only IPv4/IPv6 with TCP is supported */
2317 2318
	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
		return;
2319

2320 2321 2322
	/* snag network header to get L4 type and address */
	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
		      skb_inner_network_header(skb) : skb_network_header(skb);
2323

2324 2325 2326 2327
	/* Note: tx_flags gets modified to reflect inner protocols in
	 * tx_enable_csum function if encap is enabled.
	 */
	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2328
		/* access ihl as u8 to avoid unaligned access on ia64 */
2329 2330
		hlen = (hdr.network[0] & 0x0F) << 2;
		l4_proto = hdr.ipv4->protocol;
2331
	} else {
2332 2333 2334
		hlen = hdr.network - skb->data;
		l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
		hlen -= hdr.network - skb->data;
2335 2336
	}

2337
	if (l4_proto != IPPROTO_TCP)
2338 2339
		return;

2340 2341
	th = (struct tcphdr *)(hdr.network + hlen);

2342
	/* Due to lack of space, no more new filters can be programmed */
2343
	if (th->syn && (pf->hw_disabled_flags & I40E_FLAG_FD_ATR_ENABLED))
2344
		return;
2345
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) {
2346 2347 2348 2349 2350 2351
		/* HW ATR eviction will take care of removing filters on FIN
		 * and RST packets.
		 */
		if (th->fin || th->rst)
			return;
	}
2352 2353 2354

	tx_ring->atr_count++;

2355 2356 2357 2358 2359
	/* sample on all syn/fin/rst packets or once every atr sample rate */
	if (!th->fin &&
	    !th->syn &&
	    !th->rst &&
	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2360 2361 2362 2363 2364
		return;

	tx_ring->atr_count = 0;

	/* grab the next descriptor */
2365 2366 2367 2368 2369
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2370 2371 2372

	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2373
	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2374 2375 2376 2377 2378 2379 2380 2381 2382
		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

2383
	dtype_cmd |= (th->fin || th->rst) ?
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
		     I40E_TXD_FLTR_QW1_DEST_SHIFT;

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;

2395
	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2396
	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2397 2398 2399 2400 2401 2402 2403 2404 2405
		dtype_cmd |=
			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
	else
		dtype_cmd |=
			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2406

2407
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)
2408 2409
		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;

2410
	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
J
Jesse Brandeburg 已提交
2411
	fdir_desc->rsvd = cpu_to_le32(0);
2412
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
J
Jesse Brandeburg 已提交
2413
	fdir_desc->fd_id = cpu_to_le32(0);
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
}

/**
 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
2428 2429 2430
static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
					     struct i40e_ring *tx_ring,
					     u32 *flags)
2431 2432 2433 2434
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

2448
	/* if we have a HW VLAN tag being added, default to the HW one */
2449 2450
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2451 2452
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
2453
	} else if (protocol == htons(ETH_P_8021Q)) {
2454
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
2455

2456 2457 2458 2459 2460 2461 2462 2463 2464
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

2465 2466 2467
	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
		goto out;

2468
	/* Insert 802.1p priority into VLAN header */
2469 2470
	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
	    (skb->priority != TC_PRIO_CONTROL)) {
2471 2472 2473 2474 2475
		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
		tx_flags |= (skb->priority & 0x7) <<
				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
			struct vlan_ethhdr *vhdr;
2476 2477 2478 2479 2480
			int rc;

			rc = skb_cow_head(skb, 0);
			if (rc < 0)
				return rc;
2481 2482 2483 2484 2485 2486 2487
			vhdr = (struct vlan_ethhdr *)skb->data;
			vhdr->h_vlan_TCI = htons(tx_flags >>
						 I40E_TX_FLAGS_VLAN_SHIFT);
		} else {
			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
		}
	}
2488 2489

out:
2490 2491 2492 2493 2494 2495
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
2496
 * @first:    pointer to first Tx buffer for xmit
2497
 * @hdr_len:  ptr to the size of the packet header
2498
 * @cd_type_cmd_tso_mss: Quad Word 1
2499 2500 2501
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
2502 2503
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
2504
{
2505
	struct sk_buff *skb = first->skb;
2506
	u64 cd_cmd, cd_tso_len, cd_mss;
2507 2508 2509 2510 2511
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
2512 2513
	union {
		struct tcphdr *tcp;
2514
		struct udphdr *udp;
2515 2516 2517
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
2518
	u16 gso_segs, gso_size;
2519 2520
	int err;

2521 2522 2523
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2524 2525 2526
	if (!skb_is_gso(skb))
		return 0;

2527 2528 2529
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
2530

2531 2532
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2533

2534 2535 2536 2537
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
2538
	} else {
2539 2540 2541
		ip.v6->payload_len = 0;
	}

2542
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2543
					 SKB_GSO_GRE_CSUM |
2544
					 SKB_GSO_IPXIP4 |
2545
					 SKB_GSO_IPXIP6 |
2546
					 SKB_GSO_UDP_TUNNEL |
2547
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2548 2549 2550 2551
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

2552 2553 2554 2555
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
2556
			paylen = skb->len - l4_offset;
2557 2558
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
2559 2560
		}

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
2572 2573
	}

2574 2575 2576 2577
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
2578
	paylen = skb->len - l4_offset;
2579
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2580 2581 2582

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2583

2584 2585 2586 2587 2588 2589 2590 2591
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

2592 2593 2594
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
2595
	cd_mss = gso_size;
2596 2597 2598
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2599 2600 2601
	return 1;
}

J
Jacob Keller 已提交
2602 2603 2604 2605 2606
/**
 * i40e_tsyn - set up the tsyn context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @tx_flags: the collected send information
2607
 * @cd_type_cmd_tso_mss: Quad Word 1
J
Jacob Keller 已提交
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
 *
 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
 **/
static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
{
	struct i40e_pf *pf;

	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
		return 0;

	/* Tx timestamps cannot be sampled when doing TSO */
	if (tx_flags & I40E_TX_FLAGS_TSO)
		return 0;

	/* only timestamp the outbound packet if the user has requested it and
	 * we are not already transmitting a packet to be timestamped
	 */
	pf = i40e_netdev_to_pf(tx_ring->netdev);
2627 2628 2629
	if (!(pf->flags & I40E_FLAG_PTP))
		return 0;

2630 2631
	if (pf->ptp_tx &&
	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
J
Jacob Keller 已提交
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
		pf->ptp_tx_skb = skb_get(skb);
	} else {
		return 0;
	}

	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
				I40E_TXD_CTX_QW1_CMD_SHIFT;

	return 1;
}

2644 2645 2646
/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
2647
 * @tx_flags: pointer to Tx flags currently set
2648 2649
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
2650
 * @tx_ring: Tx descriptor ring
2651 2652
 * @cd_tunneling: ptr to context desc bits
 **/
2653 2654 2655 2656
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
2657
{
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
2668
	unsigned char *exthdr;
2669
	u32 offset, cmd = 0;
2670
	__be16 frag_off;
2671 2672
	u8 l4_proto = 0;

2673 2674 2675
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2676 2677
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2678

2679 2680 2681
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

2682
	if (skb->encapsulation) {
2683
		u32 tunnel = 0;
2684 2685
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2686 2687 2688 2689
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

2690 2691
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2692
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2693 2694

			exthdr = ip.hdr + sizeof(*ip.v6);
2695
			l4_proto = ip.v6->nexthdr;
2696 2697 2698
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
2699 2700 2701 2702
		}

		/* define outer transport */
		switch (l4_proto) {
2703
		case IPPROTO_UDP:
2704
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2705
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2706
			break;
2707
		case IPPROTO_GRE:
2708
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2709
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2710
			break;
2711 2712 2713 2714 2715
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
2716
		default:
2717 2718 2719 2720 2721
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
2722
		}
2723

2724 2725 2726 2727 2728 2729 2730
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

2731 2732 2733 2734
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

2735 2736
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2737
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2738 2739 2740
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

2741 2742 2743
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

2744 2745
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
2746
		l4_proto = 0;
2747

2748 2749 2750 2751 2752
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
2753
			*tx_flags |= I40E_TX_FLAGS_IPV6;
2754 2755 2756
	}

	/* Enable IP checksum offloads */
2757
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2758
		l4_proto = ip.v4->protocol;
2759 2760 2761
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
2762 2763 2764
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
2765
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2766
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2767 2768 2769 2770 2771 2772

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
2773
	}
2774

2775 2776
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2777 2778

	/* Enable L4 checksum offloads */
2779
	switch (l4_proto) {
2780 2781
	case IPPROTO_TCP:
		/* enable checksum offloads */
2782 2783
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2784 2785 2786
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
2787 2788 2789
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2790 2791 2792
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
2793 2794 2795
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2796 2797
		break;
	default:
2798 2799 2800 2801
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
2802
	}
2803 2804 2805

	*td_cmd |= cmd;
	*td_offset |= offset;
2806 2807

	return 1;
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
2822
	int i = tx_ring->next_to_use;
2823

2824 2825
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
2826 2827 2828
		return;

	/* grab the next descriptor */
2829 2830 2831 2832
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2833 2834 2835 2836

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2837
	context_desc->rsvd = cpu_to_le16(0);
2838 2839 2840
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

E
Eric Dumazet 已提交
2841 2842 2843 2844 2845 2846 2847
/**
 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
2848
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
E
Eric Dumazet 已提交
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

2864
/**
2865
 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2866 2867
 * @skb:      send buffer
 *
2868 2869 2870 2871 2872 2873 2874 2875
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
2876
 **/
2877
bool __i40e_chk_linearize(struct sk_buff *skb)
2878
{
2879
	const struct skb_frag_struct *frag, *stale;
2880
	int nr_frags, sum;
2881

2882
	/* no need to check if number of frags is less than 7 */
2883
	nr_frags = skb_shinfo(skb)->nr_frags;
2884
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2885
		return false;
2886

2887
	/* We need to walk through the list and validate that each group
2888
	 * of 6 fragments totals at least gso_size.
2889
	 */
2890
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2891 2892 2893 2894 2895 2896 2897 2898
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
2899
	sum = 1 - skb_shinfo(skb)->gso_size;
2900

2901 2902 2903 2904 2905 2906
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
2907 2908 2909 2910 2911 2912

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
2913
		sum += skb_frag_size(frag++);
2914 2915 2916 2917 2918

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

2919
		if (!nr_frags--)
2920 2921
			break;

2922
		sum -= skb_frag_size(stale++);
2923 2924
	}

2925
	return false;
2926 2927
}

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
/**
 * i40e_tx_map - Build the Tx descriptor
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
2938 2939 2940
static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
			       struct i40e_tx_buffer *first, u32 tx_flags,
			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2941 2942 2943
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
A
Alexander Duyck 已提交
2944
	struct skb_frag_struct *frag;
2945 2946
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
A
Alexander Duyck 已提交
2947
	u16 i = tx_ring->next_to_use;
2948 2949
	u32 td_tag = 0;
	dma_addr_t dma;
2950
	u16 desc_count = 1;
2951 2952 2953 2954 2955 2956 2957

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

A
Alexander Duyck 已提交
2958 2959 2960 2961
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

2962
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
2963 2964 2965
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2966 2967
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

A
Alexander Duyck 已提交
2968 2969 2970 2971 2972 2973 2974
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

2975 2976
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
A
Alexander Duyck 已提交
2977 2978 2979
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2980 2981
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
2982
					   max_data, td_tag);
2983 2984 2985

			tx_desc++;
			i++;
2986 2987
			desc_count++;

2988 2989 2990 2991 2992
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

2993 2994
			dma += max_data;
			size -= max_data;
2995

2996
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
A
Alexander Duyck 已提交
2997 2998
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}
2999 3000 3001 3002

		if (likely(!data_len))
			break;

A
Alexander Duyck 已提交
3003 3004
		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);
3005 3006 3007

		tx_desc++;
		i++;
3008 3009
		desc_count++;

3010 3011 3012 3013 3014
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

A
Alexander Duyck 已提交
3015 3016
		size = skb_frag_size(frag);
		data_len -= size;
3017

A
Alexander Duyck 已提交
3018 3019
		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);
3020

A
Alexander Duyck 已提交
3021 3022
		tx_bi = &tx_ring->tx_bi[i];
	}
3023

3024
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
A
Alexander Duyck 已提交
3025 3026 3027 3028 3029 3030 3031

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

E
Eric Dumazet 已提交
3032
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3033

3034 3035 3036 3037 3038 3039 3040 3041 3042
	/* write last descriptor with EOP bit */
	td_cmd |= I40E_TX_DESC_CMD_EOP;

	/* We can OR these values together as they both are checked against
	 * 4 below and at this point desc_count will be used as a boolean value
	 * after this if/else block.
	 */
	desc_count |= ++tx_ring->packet_stride;

3043
	/* Algorithm to optimize tail and RS bit setting:
3044 3045 3046 3047 3048 3049
	 * if queue is stopped
	 *	mark RS bit
	 *	reset packet counter
	 * else if xmit_more is supported and is true
	 *	advance packet counter to 4
	 *	reset desc_count to 0
3050
	 *
3051 3052 3053 3054 3055
	 * if desc_count >= 4
	 *	mark RS bit
	 *	reset packet counter
	 * if desc_count > 0
	 *	update tail
3056
	 *
3057
	 * Note: If there are less than 4 descriptors
3058 3059 3060
	 * pending and interrupts were disabled the service task will
	 * trigger a force WB.
	 */
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
	if (netif_xmit_stopped(txring_txq(tx_ring))) {
		goto do_rs;
	} else if (skb->xmit_more) {
		/* set stride to arm on next packet and reset desc_count */
		tx_ring->packet_stride = WB_STRIDE;
		desc_count = 0;
	} else if (desc_count >= WB_STRIDE) {
do_rs:
		/* write last descriptor with RS bit set */
		td_cmd |= I40E_TX_DESC_CMD_RS;
3071 3072 3073 3074
		tx_ring->packet_stride = 0;
	}

	tx_desc->cmd_type_offset_bsz =
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
3087

A
Alexander Duyck 已提交
3088
	/* notify HW of packet */
3089
	if (desc_count) {
3090
		writel(i, tx_ring->tail);
3091 3092 3093 3094 3095

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
3096
	}
3097

3098 3099 3100
	return;

dma_error:
A
Alexander Duyck 已提交
3101
	dev_info(tx_ring->dev, "TX DMA map failed\n");
3102 3103 3104 3105

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
A
Alexander Duyck 已提交
3106
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
3135
	int tso, count;
J
Jacob Keller 已提交
3136
	int tsyn;
J
Jesse Brandeburg 已提交
3137

3138 3139 3140
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

3141
	count = i40e_xmit_descriptor_count(skb);
3142
	if (i40e_chk_linearize(skb, count)) {
3143 3144 3145 3146
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
3147
		count = i40e_txd_use_count(skb->len);
3148 3149
		tx_ring->tx_stats.tx_linearize++;
	}
3150 3151 3152 3153 3154 3155 3156 3157 3158

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
3159
		return NETDEV_TX_BUSY;
3160
	}
3161

3162 3163 3164 3165 3166 3167
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

3168 3169 3170 3171 3172
	/* prepare the xmit flags */
	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
		goto out_drop;

	/* obtain protocol of skb */
3173
	protocol = vlan_get_protocol(skb);
3174 3175

	/* setup IPv4/IPv6 offloads */
3176
	if (protocol == htons(ETH_P_IP))
3177
		tx_flags |= I40E_TX_FLAGS_IPV4;
3178
	else if (protocol == htons(ETH_P_IPV6))
3179 3180
		tx_flags |= I40E_TX_FLAGS_IPV6;

3181
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3182 3183 3184 3185 3186 3187

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

3188 3189 3190 3191 3192 3193
	/* Always offload the checksum, since it's in the data descriptor */
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;

J
Jacob Keller 已提交
3194 3195 3196 3197 3198
	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);

	if (tsyn)
		tx_flags |= I40E_TX_FLAGS_TSYN;

3199 3200
	skb_tx_timestamp(skb);

3201 3202 3203
	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

3204 3205 3206 3207 3208 3209 3210
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

	/* Add Flow Director ATR if it's enabled.
	 *
	 * NOTE: this must always be directly before the data descriptor.
	 */
3211
	i40e_atr(tx_ring, skb, tx_flags);
3212 3213 3214 3215 3216 3217 3218

	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		    td_cmd, td_offset);

	return NETDEV_TX_OK;

out_drop:
3219 3220
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
	return NETDEV_TX_OK;
}

/**
 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40e_netdev_priv *np = netdev_priv(netdev);
	struct i40e_vsi *vsi = np->vsi;
3235
	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3236 3237 3238 3239

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
3240 3241
	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
		return NETDEV_TX_OK;
3242 3243 3244

	return i40e_xmit_frame_ring(skb, tx_ring);
}