machine.c 49.8 KB
Newer Older
1
#include "callchain.h"
2 3
#include "debug.h"
#include "event.h"
4 5
#include "evsel.h"
#include "hist.h"
6 7
#include "machine.h"
#include "map.h"
8
#include "sort.h"
9
#include "strlist.h"
10
#include "thread.h"
11
#include "vdso.h"
12
#include <stdbool.h>
13
#include <symbol/kallsyms.h>
14
#include "unwind.h"
15
#include "linux/hash.h"
16

17 18
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

19 20 21 22
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
23
	pthread_rwlock_init(&dsos->lock, NULL);
24 25
}

26 27
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
28
	memset(machine, 0, sizeof(*machine));
29
	map_groups__init(&machine->kmaps, machine);
30
	RB_CLEAR_NODE(&machine->rb_node);
31
	dsos__init(&machine->dsos);
32 33

	machine->threads = RB_ROOT;
34
	pthread_rwlock_init(&machine->threads_lock, NULL);
35 36 37
	INIT_LIST_HEAD(&machine->dead_threads);
	machine->last_match = NULL;

38
	machine->vdso_info = NULL;
39
	machine->env = NULL;
40

41 42
	machine->pid = pid;

43
	machine->symbol_filter = NULL;
44
	machine->id_hdr_size = 0;
45
	machine->comm_exec = false;
46
	machine->kernel_start = 0;
47

48 49
	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));

50 51 52 53 54
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

	if (pid != HOST_KERNEL_ID) {
55
		struct thread *thread = machine__findnew_thread(machine, -1,
56
								pid);
57 58 59 60 61 62
		char comm[64];

		if (thread == NULL)
			return -ENOMEM;

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
63
		thread__set_comm(thread, comm, 0);
64
		thread__put(thread);
65 66
	}

67 68
	machine->current_tid = NULL;

69 70 71
	return 0;
}

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

89
static void dsos__purge(struct dsos *dsos)
90 91 92
{
	struct dso *pos, *n;

93 94
	pthread_rwlock_wrlock(&dsos->lock);

95
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
96
		RB_CLEAR_NODE(&pos->rb_node);
97
		pos->root = NULL;
98 99
		list_del_init(&pos->node);
		dso__put(pos);
100
	}
101 102

	pthread_rwlock_unlock(&dsos->lock);
103
}
104

105 106 107
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
108
	pthread_rwlock_destroy(&dsos->lock);
109 110
}

111 112
void machine__delete_threads(struct machine *machine)
{
113
	struct rb_node *nd;
114

115 116
	pthread_rwlock_wrlock(&machine->threads_lock);
	nd = rb_first(&machine->threads);
117 118 119 120
	while (nd) {
		struct thread *t = rb_entry(nd, struct thread, rb_node);

		nd = rb_next(nd);
121
		__machine__remove_thread(machine, t, false);
122
	}
123
	pthread_rwlock_unlock(&machine->threads_lock);
124 125
}

126 127
void machine__exit(struct machine *machine)
{
128
	machine__destroy_kernel_maps(machine);
129
	map_groups__exit(&machine->kmaps);
130
	dsos__exit(&machine->dsos);
131
	machine__exit_vdso(machine);
132
	zfree(&machine->root_dir);
133
	zfree(&machine->current_tid);
134
	pthread_rwlock_destroy(&machine->threads_lock);
135 136 137 138 139 140 141 142
}

void machine__delete(struct machine *machine)
{
	machine__exit(machine);
	free(machine);
}

143 144 145 146
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
147
	machines->symbol_filter = NULL;
148 149 150 151 152 153 154 155 156
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
157 158
			      const char *root_dir)
{
159
	struct rb_node **p = &machines->guests.rb_node;
160 161 162 163 164 165 166 167 168 169 170
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

171 172
	machine->symbol_filter = machines->symbol_filter;

173 174 175 176 177 178 179 180 181 182
	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
183
	rb_insert_color(&machine->rb_node, &machines->guests);
184 185 186 187

	return machine;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
void machines__set_symbol_filter(struct machines *machines,
				 symbol_filter_t symbol_filter)
{
	struct rb_node *nd;

	machines->symbol_filter = symbol_filter;
	machines->host.symbol_filter = symbol_filter;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->symbol_filter = symbol_filter;
	}
}

203 204 205 206 207 208 209 210 211 212 213 214 215
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

216
struct machine *machines__find(struct machines *machines, pid_t pid)
217
{
218
	struct rb_node **p = &machines->guests.rb_node;
219 220 221 222
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

223 224 225
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

242
struct machine *machines__findnew(struct machines *machines, pid_t pid)
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
259
				seen = strlist__new(NULL, NULL);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

276 277
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
278 279 280
{
	struct rb_node *nd;

281
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
{
	if (machine__is_host(machine))
		snprintf(bf, size, "[%s]", "kernel.kallsyms");
	else if (machine__is_default_guest(machine))
		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
	else {
		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
			 machine->pid);
	}

	return bf;
}

301
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
302 303 304 305
{
	struct rb_node *node;
	struct machine *machine;

306 307 308
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
309 310 311 312 313 314 315
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

316 317 318 319 320 321 322 323 324 325 326 327 328
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

329
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
330 331 332 333
	if (!leader)
		goto out_err;

	if (!leader->mg)
334
		leader->mg = map_groups__new(machine);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
351
		map_groups__put(th->mg);
352 353 354
	}

	th->mg = map_groups__get(leader->mg);
355 356
out_put:
	thread__put(leader);
357 358 359
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
360
	goto out_put;
361 362
}

363 364 365 366
/*
 * Caller must eventually drop thread->refcnt returned with a successfull
 * lookup/new thread inserted.
 */
367 368 369
static struct thread *____machine__findnew_thread(struct machine *machine,
						  pid_t pid, pid_t tid,
						  bool create)
370 371 372 373 374 375
{
	struct rb_node **p = &machine->threads.rb_node;
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
376
	 * Front-end cache - TID lookups come in blocks,
377 378 379
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
380
	th = machine->last_match;
381 382 383
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
384
			return thread__get(th);
385 386
		}

387
		machine->last_match = NULL;
388
	}
389 390 391 392 393

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

394
		if (th->tid == tid) {
395
			machine->last_match = th;
396
			machine__update_thread_pid(machine, th, pid);
397
			return thread__get(th);
398 399
		}

400
		if (tid < th->tid)
401 402 403 404 405 406 407 408
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

409
	th = thread__new(pid, tid);
410 411 412
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
		rb_insert_color(&th->rb_node, &machine->threads);
413 414 415 416 417 418 419 420 421

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
422
		if (thread__init_map_groups(th, machine)) {
423
			rb_erase_init(&th->rb_node, &machine->threads);
424
			RB_CLEAR_NODE(&th->rb_node);
425
			thread__put(th);
426
			return NULL;
427
		}
428 429 430 431
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
432
		machine->last_match = th;
433 434 435 436 437
	}

	return th;
}

438 439 440 441 442
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
	return ____machine__findnew_thread(machine, pid, tid, true);
}

443 444
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
445
{
446 447 448
	struct thread *th;

	pthread_rwlock_wrlock(&machine->threads_lock);
449
	th = __machine__findnew_thread(machine, pid, tid);
450 451
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
452 453
}

454 455
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
456
{
457 458
	struct thread *th;
	pthread_rwlock_rdlock(&machine->threads_lock);
459
	th =  ____machine__findnew_thread(machine, pid, tid, false);
460 461
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
462
}
463

464 465 466 467 468 469 470 471 472
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

473 474
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
475
{
476 477 478
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
479
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
480
	int err = 0;
481

482 483 484
	if (exec)
		machine->comm_exec = true;

485 486 487
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

488 489
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
490
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
491
		err = -1;
492 493
	}

494 495 496
	thread__put(thread);

	return err;
497 498 499
}

int machine__process_lost_event(struct machine *machine __maybe_unused,
500
				union perf_event *event, struct perf_sample *sample __maybe_unused)
501 502 503 504 505 506
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

507 508 509 510 511 512 513 514
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

515 516 517
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
518 519 520
{
	struct dso *dso;

521 522 523
	pthread_rwlock_wrlock(&machine->dsos.lock);

	dso = __dsos__find(&machine->dsos, m->name, true);
524
	if (!dso) {
525
		dso = __dsos__addnew(&machine->dsos, m->name);
526
		if (dso == NULL)
527
			goto out_unlock;
528 529 530 531 532 533 534

		if (machine__is_host(machine))
			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
		else
			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;

		/* _KMODULE_COMP should be next to _KMODULE */
535
		if (m->kmod && m->comp)
536
			dso->symtab_type++;
537 538 539

		dso__set_short_name(dso, strdup(m->name), true);
		dso__set_long_name(dso, strdup(filename), true);
540 541
	}

542
	dso__get(dso);
543 544
out_unlock:
	pthread_rwlock_unlock(&machine->dsos.lock);
545 546 547
	return dso;
}

548 549 550 551 552 553 554 555
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

556 557 558 559 560 561 562 563
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

564 565 566 567 568 569 570 571
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

587
	dso__set_long_name(dso, dup_filename, true);
588 589
}

590 591
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
592
{
593
	struct map *map = NULL;
594
	struct dso *dso = NULL;
595
	struct kmod_path m;
596

597
	if (kmod_path__parse_name(&m, filename))
598 599
		return NULL;

600 601
	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
				       m.name);
602 603 604 605 606 607 608
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
609
		goto out;
610
	}
611

612
	dso = machine__findnew_module_dso(machine, &m, filename);
613 614 615
	if (dso == NULL)
		goto out;

616 617
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
618
		goto out;
619 620

	map_groups__insert(&machine->kmaps, map);
621

622 623
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
624
out:
625 626
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
627
	free(m.name);
628 629 630
	return map;
}

631
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
632 633
{
	struct rb_node *nd;
634
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
635

636
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
637
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
638
		ret += __dsos__fprintf(&pos->dsos.head, fp);
639 640 641 642 643
	}

	return ret;
}

644
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
645 646
				     bool (skip)(struct dso *dso, int parm), int parm)
{
647
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
648 649
}

650
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
651 652 653
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
654
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
655

656
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
657 658 659 660 661 662 663 664 665 666
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
667
	struct dso *kdso = machine__kernel_map(machine)->dso;
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	size_t ret = 0;
	struct rb_node *nd;

687 688
	pthread_rwlock_rdlock(&machine->threads_lock);

689 690 691 692 693 694
	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		struct thread *pos = rb_entry(nd, struct thread, rb_node);

		ret += thread__fprintf(pos, fp);
	}

695 696
	pthread_rwlock_unlock(&machine->threads_lock);

697 698 699 700 701 702 703 704 705 706 707 708 709
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
	const char *vmlinux_name = NULL;
	struct dso *kernel;

	if (machine__is_host(machine)) {
		vmlinux_name = symbol_conf.vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = "[kernel.kallsyms]";

710 711
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
712 713 714 715 716 717 718 719 720
	} else {
		char bf[PATH_MAX];

		if (machine__is_default_guest(machine))
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = machine__mmap_name(machine, bf,
							  sizeof(bf));

721 722 723
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
724 725 726 727 728 729 730 731 732 733 734 735
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

736 737 738 739 740 741 742 743 744
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

745 746 747 748 749 750
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
751 752
static u64 machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name)
753
{
754
	char filename[PATH_MAX];
755 756 757
	int i;
	const char *name;
	u64 addr = 0;
758

759
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
760 761 762 763

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

764 765 766 767 768 769 770 771
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
		addr = kallsyms__get_function_start(filename, name);
		if (addr)
			break;
	}

	if (symbol_name)
		*symbol_name = name;
772

773
	return addr;
774 775 776 777 778
}

int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
{
	enum map_type type;
779
	u64 start = machine__get_running_kernel_start(machine, NULL);
780

781 782 783
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

784 785
	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
786
		struct map *map;
787 788 789 790 791 792 793 794

		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
795
		map = __machine__kernel_map(machine, type);
796
		kmap = map__kmap(map);
797 798 799
		if (!kmap)
			return -1;

800
		kmap->kmaps = &machine->kmaps;
801
		map_groups__insert(&machine->kmaps, map);
802 803 804 805 806 807 808 809 810 811 812
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
	enum map_type type;

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
813
		struct map *map = __machine__kernel_map(machine, type);
814

815
		if (map == NULL)
816 817
			continue;

818 819
		kmap = map__kmap(map);
		map_groups__remove(&machine->kmaps, map);
820
		if (kmap && kmap->ref_reloc_sym) {
821 822 823 824 825
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
826 827 828 829
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
830 831
		}

832
		map__put(machine->vmlinux_maps[type]);
833 834 835 836
		machine->vmlinux_maps[type] = NULL;
	}
}

837
int machines__create_guest_kernel_maps(struct machines *machines)
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

886
void machines__destroy_kernel_maps(struct machines *machines)
887
{
888 889 890
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
891 892 893 894 895

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
896
		rb_erase(&pos->rb_node, &machines->guests);
897 898 899 900
		machine__delete(pos);
	}
}

901
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
902 903 904 905 906 907 908 909 910 911 912 913
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

int machine__load_kallsyms(struct machine *machine, const char *filename,
			   enum map_type type, symbol_filter_t filter)
{
914
	struct map *map = machine__kernel_map(machine);
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
	int ret = dso__load_kallsyms(map->dso, filename, map, filter);

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
			       symbol_filter_t filter)
{
933
	struct map *map = machine__kernel_map(machine);
934 935
	int ret = dso__load_vmlinux_path(map->dso, map, filter);

936
	if (ret > 0)
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
		dso__set_loaded(map->dso, type);

	return ret;
}

static void map_groups__fixup_end(struct map_groups *mg)
{
	int i;
	for (i = 0; i < MAP__NR_TYPES; ++i)
		__map_groups__fixup_end(mg, i);
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	struct map *map;
	char *long_name;

	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

1009
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1010
				const char *dir_name, int depth)
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1035 1036 1037 1038 1039 1040 1041 1042 1043
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1044 1045 1046
			if (ret < 0)
				goto out;
		} else {
1047
			struct kmod_path m;
1048

1049 1050 1051
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1052

1053 1054
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1055

1056
			free(m.name);
1057

1058
			if (ret)
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1077
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1078 1079 1080
		 machine->root_dir, version);
	free(version);

1081
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1082 1083
}

1084
static int machine__create_module(void *arg, const char *name, u64 start)
1085
{
1086
	struct machine *machine = arg;
1087
	struct map *map;
1088

1089
	map = machine__findnew_module_map(machine, start, name);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	if (map == NULL)
		return -1;

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1100 1101 1102
	const char *modules;
	char path[PATH_MAX];

1103
	if (machine__is_default_guest(machine)) {
1104
		modules = symbol_conf.default_guest_modules;
1105 1106
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1107 1108 1109
		modules = path;
	}

1110
	if (symbol__restricted_filename(modules, "/proc/modules"))
1111 1112
		return -1;

1113
	if (modules__parse(modules, machine, machine__create_module))
1114 1115
		return -1;

1116 1117
	if (!machine__set_modules_path(machine))
		return 0;
1118

1119
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1120

1121
	return 0;
1122 1123 1124 1125 1126
}

int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1127
	const char *name;
1128
	u64 addr = machine__get_running_kernel_start(machine, &name);
1129 1130 1131
	int ret;

	if (!addr || kernel == NULL)
1132
		return -1;
1133

1134 1135 1136
	ret = __machine__create_kernel_maps(machine, kernel);
	dso__put(kernel);
	if (ret < 0)
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

	/*
	 * Now that we have all the maps created, just set the ->end of them:
	 */
	map_groups__fixup_end(&machine->kmaps);
1152 1153 1154 1155 1156 1157 1158

	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
					     addr)) {
		machine__destroy_kernel_maps(machine);
		return -1;
	}

1159 1160 1161
	return 0;
}

1162 1163 1164
static void machine__set_kernel_mmap_len(struct machine *machine,
					 union perf_event *event)
{
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = event->mmap.start;
		machine->vmlinux_maps[i]->end   = (event->mmap.start +
						   event->mmap.len);
		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
		if (machine->vmlinux_maps[i]->end == 0)
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
1178 1179
}

1180 1181 1182 1183
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1184
	list_for_each_entry(dso, &machine->dsos.head, node) {
1185 1186 1187 1188 1189 1190 1191
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1192 1193 1194 1195 1196 1197 1198 1199
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	char kmmap_prefix[PATH_MAX];
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1200 1201 1202 1203
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
				kmmap_prefix,
				strlen(kmmap_prefix) - 1) == 0;
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1215 1216
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
				strlen(kmmap_prefix));
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1228 1229 1230
		struct dso *kernel = NULL;
		struct dso *dso;

1231 1232
		pthread_rwlock_rdlock(&machine->dsos.lock);

1233
		list_for_each_entry(dso, &machine->dsos.head, node) {
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1254 1255
				continue;

1256

1257 1258 1259 1260
			kernel = dso;
			break;
		}

1261 1262
		pthread_rwlock_unlock(&machine->dsos.lock);

1263
		if (kernel == NULL)
1264
			kernel = machine__findnew_dso(machine, kmmap_prefix);
1265 1266 1267 1268
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1269 1270
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1271
			goto out_problem;
1272
		}
1273

1274 1275
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1276

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		machine__set_kernel_mmap_len(machine, event);

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1294
			dso__load(kernel, machine__kernel_map(machine), NULL);
1295 1296 1297 1298 1299 1300 1301
		}
	}
	return 0;
out_problem:
	return -1;
}

1302
int machine__process_mmap2_event(struct machine *machine,
1303
				 union perf_event *event,
1304
				 struct perf_sample *sample)
1305 1306 1307 1308 1309 1310 1311 1312 1313
{
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1314 1315
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1316 1317 1318 1319 1320 1321 1322
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1323
					event->mmap2.tid);
1324 1325 1326 1327 1328 1329 1330 1331
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1332
	map = map__new(machine, event->mmap2.start,
1333 1334 1335 1336
			event->mmap2.len, event->mmap2.pgoff,
			event->mmap2.pid, event->mmap2.maj,
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1337 1338
			event->mmap2.prot,
			event->mmap2.flags,
1339
			event->mmap2.filename, type, thread);
1340 1341

	if (map == NULL)
1342
		goto out_problem_map;
1343 1344

	thread__insert_map(thread, map);
1345
	thread__put(thread);
1346
	map__put(map);
1347 1348
	return 0;

1349 1350
out_problem_map:
	thread__put(thread);
1351 1352 1353 1354 1355
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1356
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1357
				struct perf_sample *sample)
1358 1359 1360
{
	struct thread *thread;
	struct map *map;
1361
	enum map_type type;
1362 1363 1364 1365 1366
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1367 1368
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1369 1370 1371 1372 1373 1374
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1375
	thread = machine__findnew_thread(machine, event->mmap.pid,
1376
					 event->mmap.tid);
1377 1378
	if (thread == NULL)
		goto out_problem;
1379 1380 1381 1382 1383 1384

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1385
	map = map__new(machine, event->mmap.start,
1386
			event->mmap.len, event->mmap.pgoff,
1387
			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1388
			event->mmap.filename,
1389
			type, thread);
1390

1391
	if (map == NULL)
1392
		goto out_problem_map;
1393 1394

	thread__insert_map(thread, map);
1395
	thread__put(thread);
1396
	map__put(map);
1397 1398
	return 0;

1399 1400
out_problem_map:
	thread__put(thread);
1401 1402 1403 1404 1405
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1406
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1407
{
1408
	if (machine->last_match == th)
1409
		machine->last_match = NULL;
1410

1411
	BUG_ON(atomic_read(&th->refcnt) == 0);
1412 1413
	if (lock)
		pthread_rwlock_wrlock(&machine->threads_lock);
1414
	rb_erase_init(&th->rb_node, &machine->threads);
1415
	RB_CLEAR_NODE(&th->rb_node);
1416
	/*
1417 1418 1419
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1420 1421
	 */
	list_add_tail(&th->node, &machine->dead_threads);
1422 1423
	if (lock)
		pthread_rwlock_unlock(&machine->threads_lock);
1424
	thread__put(th);
1425 1426
}

1427 1428 1429 1430 1431
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1432 1433
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1434
{
1435 1436 1437
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1438 1439 1440
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1441
	int err = 0;
1442

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1461
	/* if a thread currently exists for the thread id remove it */
1462
	if (thread != NULL) {
1463
		machine__remove_thread(machine, thread);
1464 1465
		thread__put(thread);
	}
1466

1467 1468
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1469 1470

	if (thread == NULL || parent == NULL ||
1471
	    thread__fork(thread, parent, sample->time) < 0) {
1472
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1473
		err = -1;
1474
	}
1475 1476
	thread__put(thread);
	thread__put(parent);
1477

1478
	return err;
1479 1480
}

1481 1482
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1483
{
1484 1485 1486
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1487 1488 1489 1490

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1491
	if (thread != NULL) {
1492
		thread__exited(thread);
1493 1494
		thread__put(thread);
	}
1495 1496 1497 1498

	return 0;
}

1499 1500
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1501 1502 1503 1504 1505
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1506
		ret = machine__process_comm_event(machine, event, sample); break;
1507
	case PERF_RECORD_MMAP:
1508
		ret = machine__process_mmap_event(machine, event, sample); break;
1509
	case PERF_RECORD_MMAP2:
1510
		ret = machine__process_mmap2_event(machine, event, sample); break;
1511
	case PERF_RECORD_FORK:
1512
		ret = machine__process_fork_event(machine, event, sample); break;
1513
	case PERF_RECORD_EXIT:
1514
		ret = machine__process_exit_event(machine, event, sample); break;
1515
	case PERF_RECORD_LOST:
1516
		ret = machine__process_lost_event(machine, event, sample); break;
1517 1518
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1519
	case PERF_RECORD_ITRACE_START:
1520
		ret = machine__process_itrace_start_event(machine, event); break;
1521 1522
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1523 1524 1525
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1526 1527 1528 1529 1530 1531 1532
	default:
		ret = -1;
		break;
	}

	return ret;
}
1533

1534
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1535
{
1536
	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1537 1538 1539 1540
		return 1;
	return 0;
}

1541
static void ip__resolve_ams(struct thread *thread,
1542 1543 1544 1545 1546 1547
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1548 1549 1550 1551 1552 1553 1554
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1555
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1556 1557 1558 1559 1560 1561 1562

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1563
static void ip__resolve_data(struct thread *thread,
1564 1565 1566 1567 1568 1569
			     u8 m, struct addr_map_symbol *ams, u64 addr)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1570
	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1571 1572 1573 1574 1575 1576
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1577
		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1578 1579
	}

1580 1581 1582 1583 1584 1585
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1586 1587
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1588 1589 1590 1591 1592 1593
{
	struct mem_info *mi = zalloc(sizeof(*mi));

	if (!mi)
		return NULL;

1594 1595
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1596 1597 1598 1599 1600
	mi->data_src.val = sample->data_src;

	return mi;
}

1601 1602 1603
static int add_callchain_ip(struct thread *thread,
			    struct symbol **parent,
			    struct addr_location *root_al,
1604
			    u8 *cpumode,
1605 1606 1607 1608 1609 1610
			    u64 ip)
{
	struct addr_location al;

	al.filtered = 0;
	al.sym = NULL;
1611
	if (!cpumode) {
1612 1613
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1614
	} else {
1615 1616 1617
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1618
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1619 1620
				break;
			case PERF_CONTEXT_KERNEL:
1621
				*cpumode = PERF_RECORD_MISC_KERNEL;
1622 1623
				break;
			case PERF_CONTEXT_USER:
1624
				*cpumode = PERF_RECORD_MISC_USER;
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
				callchain_cursor_reset(&callchain_cursor);
				return 1;
			}
			return 0;
		}
1638 1639
		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
					   ip, &al);
1640 1641
	}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	if (al.sym != NULL) {
		if (sort__has_parent && !*parent &&
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
			callchain_cursor_reset(&callchain_cursor);
		}
	}

1655 1656
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
1657
	return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1658 1659
}

1660 1661
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1662 1663
{
	unsigned int i;
1664 1665
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1666 1667 1668 1669 1670

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1671 1672
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1673 1674 1675 1676 1677
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
static int remove_loops(struct branch_entry *l, int nr)
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
				memmove(l + i, l + i + off,
					(nr - (i + off)) * sizeof(*l));
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1731
{
K
Kan Liang 已提交
1732 1733
	struct ip_callchain *chain = sample->callchain;
	int chain_nr = min(max_stack, (int)chain->nr);
1734
	u8 cpumode = PERF_RECORD_MISC_USER;
K
Kan Liang 已提交
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	int i, j, err;
	u64 ip;

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
		int lbr_nr = lbr_stack->nr;
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted callchain. skipping...\n");
			return 0;
		}

		for (j = 0; j < mix_chain_nr; j++) {
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
				else if (j > i + 1)
					ip = lbr_stack->entries[j - i - 2].from;
				else
					ip = lbr_stack->entries[0].to;
			} else {
				if (j < lbr_nr)
					ip = lbr_stack->entries[lbr_nr - j - 1].from;
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
				else
					ip = lbr_stack->entries[0].to;
			}

1781
			err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
K
Kan Liang 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
1800
	int chain_nr = min(max_stack, (int)chain->nr);
1801
	u8 cpumode = PERF_RECORD_MISC_USER;
1802
	int i, j, err;
1803 1804 1805
	int skip_idx = -1;
	int first_call = 0;

K
Kan Liang 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814
	callchain_cursor_reset(&callchain_cursor);

	if (has_branch_callstack(evsel)) {
		err = resolve_lbr_callchain_sample(thread, sample, parent,
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

1815 1816 1817 1818 1819 1820
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
	if (chain->nr < PERF_MAX_STACK_DEPTH)
		skip_idx = arch_skip_callchain_idx(thread, chain);
1821

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

		nr = remove_loops(be, nr);

		for (i = 0; i < nr; i++) {
			err = add_callchain_ip(thread, parent, root_al,
1867
					       NULL, be[i].to);
1868 1869
			if (!err)
				err = add_callchain_ip(thread, parent, root_al,
1870
						       NULL, be[i].from);
1871 1872 1873 1874 1875 1876 1877 1878 1879
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
		chain_nr -= nr;
	}

check_calls:
1880
	if (chain->nr > PERF_MAX_STACK_DEPTH && (int)chain->nr > max_stack) {
1881 1882 1883 1884
		pr_warning("corrupted callchain. skipping...\n");
		return 0;
	}

1885
	for (i = first_call; i < chain_nr; i++) {
1886 1887 1888
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
1889
			j = i;
1890
		else
1891 1892 1893 1894 1895 1896 1897
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
1898

1899
		err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1900 1901

		if (err)
1902
			return (err < 0) ? err : 0;
1903 1904 1905 1906 1907 1908 1909 1910
	}

	return 0;
}

static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
1911 1912 1913

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
1914 1915 1916 1917
	return callchain_cursor_append(cursor, entry->ip,
				       entry->map, entry->sym);
}

1918 1919 1920 1921 1922 1923
int thread__resolve_callchain(struct thread *thread,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
1924
{
K
Kan Liang 已提交
1925 1926 1927
	int ret = thread__resolve_callchain_sample(thread, evsel,
						   sample, parent,
						   root_al, max_stack);
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	if (ret)
		return ret;

	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

1941
	return unwind__get_entries(unwind_entry, &callchain_cursor,
1942
				   thread, sample, max_stack);
1943 1944

}
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;

	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		thread = rb_entry(nd, struct thread, rb_node);
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}

	list_for_each_entry(thread, &machine->dead_threads, node) {
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}
1968

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

1990
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1991
				  struct target *target, struct thread_map *threads,
1992 1993
				  perf_event__handler_t process, bool data_mmap,
				  unsigned int proc_map_timeout)
1994
{
1995
	if (target__has_task(target))
1996
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1997
	else if (target__has_cpu(target))
1998
		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1999 2000 2001
	/* command specified */
	return 0;
}
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2042
	thread__put(thread);
2043 2044 2045

	return 0;
}
2046 2047 2048

int machine__get_kernel_start(struct machine *machine)
{
2049
	struct map *map = machine__kernel_map(machine);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
		err = map__load(map, machine->symbol_filter);
		if (map->start)
			machine->kernel_start = map->start;
	}
	return err;
}
2068 2069 2070

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2071
	return dsos__findnew(&machine->dsos, filename);
2072
}
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}