machine.c 48.6 KB
Newer Older
1
#include "callchain.h"
2 3
#include "debug.h"
#include "event.h"
4 5
#include "evsel.h"
#include "hist.h"
6 7
#include "machine.h"
#include "map.h"
8
#include "sort.h"
9
#include "strlist.h"
10
#include "thread.h"
11
#include "vdso.h"
12
#include <stdbool.h>
13
#include <symbol/kallsyms.h>
14
#include "unwind.h"
15
#include "linux/hash.h"
16

17 18
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

19 20 21 22
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
23
	pthread_rwlock_init(&dsos->lock, NULL);
24 25
}

26 27
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
28
	map_groups__init(&machine->kmaps, machine);
29
	RB_CLEAR_NODE(&machine->rb_node);
30
	dsos__init(&machine->dsos);
31 32

	machine->threads = RB_ROOT;
33
	pthread_rwlock_init(&machine->threads_lock, NULL);
34 35 36
	INIT_LIST_HEAD(&machine->dead_threads);
	machine->last_match = NULL;

37
	machine->vdso_info = NULL;
38
	machine->env = NULL;
39

40 41
	machine->pid = pid;

42
	machine->symbol_filter = NULL;
43
	machine->id_hdr_size = 0;
44
	machine->comm_exec = false;
45
	machine->kernel_start = 0;
46

47 48 49 50 51
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

	if (pid != HOST_KERNEL_ID) {
52
		struct thread *thread = machine__findnew_thread(machine, -1,
53
								pid);
54 55 56 57 58 59
		char comm[64];

		if (thread == NULL)
			return -ENOMEM;

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
60
		thread__set_comm(thread, comm, 0);
61
		thread__put(thread);
62 63
	}

64 65
	machine->current_tid = NULL;

66 67 68
	return 0;
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

86
static void dsos__purge(struct dsos *dsos)
87 88 89
{
	struct dso *pos, *n;

90 91
	pthread_rwlock_wrlock(&dsos->lock);

92
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
93
		RB_CLEAR_NODE(&pos->rb_node);
94 95
		list_del_init(&pos->node);
		dso__put(pos);
96
	}
97 98

	pthread_rwlock_unlock(&dsos->lock);
99
}
100

101 102 103
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
104
	pthread_rwlock_destroy(&dsos->lock);
105 106
}

107 108
void machine__delete_threads(struct machine *machine)
{
109
	struct rb_node *nd;
110

111 112
	pthread_rwlock_wrlock(&machine->threads_lock);
	nd = rb_first(&machine->threads);
113 114 115 116
	while (nd) {
		struct thread *t = rb_entry(nd, struct thread, rb_node);

		nd = rb_next(nd);
117
		__machine__remove_thread(machine, t, false);
118
	}
119
	pthread_rwlock_unlock(&machine->threads_lock);
120 121
}

122 123 124
void machine__exit(struct machine *machine)
{
	map_groups__exit(&machine->kmaps);
125
	dsos__exit(&machine->dsos);
126
	machine__exit_vdso(machine);
127
	zfree(&machine->root_dir);
128
	zfree(&machine->current_tid);
129
	pthread_rwlock_destroy(&machine->threads_lock);
130 131 132 133 134 135 136 137
}

void machine__delete(struct machine *machine)
{
	machine__exit(machine);
	free(machine);
}

138 139 140 141
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
142
	machines->symbol_filter = NULL;
143 144 145 146 147 148 149 150 151
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
152 153
			      const char *root_dir)
{
154
	struct rb_node **p = &machines->guests.rb_node;
155 156 157 158 159 160 161 162 163 164 165
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

166 167
	machine->symbol_filter = machines->symbol_filter;

168 169 170 171 172 173 174 175 176 177
	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
178
	rb_insert_color(&machine->rb_node, &machines->guests);
179 180 181 182

	return machine;
}

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
void machines__set_symbol_filter(struct machines *machines,
				 symbol_filter_t symbol_filter)
{
	struct rb_node *nd;

	machines->symbol_filter = symbol_filter;
	machines->host.symbol_filter = symbol_filter;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->symbol_filter = symbol_filter;
	}
}

198 199 200 201 202 203 204 205 206 207 208 209 210
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

211
struct machine *machines__find(struct machines *machines, pid_t pid)
212
{
213
	struct rb_node **p = &machines->guests.rb_node;
214 215 216 217
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

218 219 220
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

237
struct machine *machines__findnew(struct machines *machines, pid_t pid)
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
254
				seen = strlist__new(NULL, NULL);
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

271 272
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
273 274 275
{
	struct rb_node *nd;

276
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
{
	if (machine__is_host(machine))
		snprintf(bf, size, "[%s]", "kernel.kallsyms");
	else if (machine__is_default_guest(machine))
		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
	else {
		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
			 machine->pid);
	}

	return bf;
}

296
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
297 298 299 300
{
	struct rb_node *node;
	struct machine *machine;

301 302 303
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
304 305 306 307 308 309 310
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

311 312 313 314 315 316 317 318 319 320 321 322 323
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

324
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
325 326 327 328
	if (!leader)
		goto out_err;

	if (!leader->mg)
329
		leader->mg = map_groups__new(machine);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
346
		map_groups__put(th->mg);
347 348 349 350 351 352 353 354 355 356
	}

	th->mg = map_groups__get(leader->mg);

	return;

out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
}

357 358 359
static struct thread *____machine__findnew_thread(struct machine *machine,
						  pid_t pid, pid_t tid,
						  bool create)
360 361 362 363 364 365
{
	struct rb_node **p = &machine->threads.rb_node;
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
366
	 * Front-end cache - TID lookups come in blocks,
367 368 369
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
370
	th = machine->last_match;
371 372 373 374 375 376
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
			return th;
		}

377
		machine->last_match = NULL;
378
	}
379 380 381 382 383

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

384
		if (th->tid == tid) {
385
			machine->last_match = th;
386
			machine__update_thread_pid(machine, th, pid);
387 388 389
			return th;
		}

390
		if (tid < th->tid)
391 392 393 394 395 396 397 398
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

399
	th = thread__new(pid, tid);
400 401 402
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
		rb_insert_color(&th->rb_node, &machine->threads);
403 404 405 406 407 408 409 410 411

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
412
		if (thread__init_map_groups(th, machine)) {
413
			rb_erase_init(&th->rb_node, &machine->threads);
414
			RB_CLEAR_NODE(&th->rb_node);
415
			thread__delete(th);
416
			return NULL;
417
		}
418 419 420 421
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
422
		machine->last_match = th;
423 424 425 426 427
	}

	return th;
}

428 429 430 431 432
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
	return ____machine__findnew_thread(machine, pid, tid, true);
}

433 434
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
435
{
436 437 438 439 440 441
	struct thread *th;

	pthread_rwlock_wrlock(&machine->threads_lock);
	th = thread__get(__machine__findnew_thread(machine, pid, tid));
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
442 443
}

444 445
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
446
{
447 448 449 450 451
	struct thread *th;
	pthread_rwlock_rdlock(&machine->threads_lock);
	th =  thread__get(____machine__findnew_thread(machine, pid, tid, false));
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
452
}
453

454 455 456 457 458 459 460 461 462
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

463 464
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
465
{
466 467 468
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
469
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
470
	int err = 0;
471

472 473 474
	if (exec)
		machine->comm_exec = true;

475 476 477
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

478 479
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
480
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
481
		err = -1;
482 483
	}

484 485 486
	thread__put(thread);

	return err;
487 488 489
}

int machine__process_lost_event(struct machine *machine __maybe_unused,
490
				union perf_event *event, struct perf_sample *sample __maybe_unused)
491 492 493 494 495 496
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

497 498 499 500 501 502 503 504
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

505 506 507
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
508 509 510
{
	struct dso *dso;

511 512 513
	pthread_rwlock_wrlock(&machine->dsos.lock);

	dso = __dsos__find(&machine->dsos, m->name, true);
514
	if (!dso) {
515
		dso = __dsos__addnew(&machine->dsos, m->name);
516
		if (dso == NULL)
517
			goto out_unlock;
518 519 520 521 522 523 524

		if (machine__is_host(machine))
			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
		else
			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;

		/* _KMODULE_COMP should be next to _KMODULE */
525
		if (m->kmod && m->comp)
526
			dso->symtab_type++;
527 528 529

		dso__set_short_name(dso, strdup(m->name), true);
		dso__set_long_name(dso, strdup(filename), true);
530 531
	}

532
	dso__get(dso);
533 534
out_unlock:
	pthread_rwlock_unlock(&machine->dsos.lock);
535 536 537
	return dso;
}

538 539 540 541 542 543 544 545
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

546 547 548 549 550 551 552 553
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

554 555 556 557 558 559 560 561
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

562 563
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
564
{
565 566 567
	struct map *map = NULL;
	struct dso *dso;
	struct kmod_path m;
568

569
	if (kmod_path__parse_name(&m, filename))
570 571
		return NULL;

572 573 574 575 576
	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
				       m.name);
	if (map)
		goto out;

577
	dso = machine__findnew_module_dso(machine, &m, filename);
578 579 580
	if (dso == NULL)
		goto out;

581 582
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
583
		goto out;
584 585

	map_groups__insert(&machine->kmaps, map);
586 587 588

out:
	free(m.name);
589 590 591
	return map;
}

592
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
593 594
{
	struct rb_node *nd;
595
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
596

597
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
598
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
599
		ret += __dsos__fprintf(&pos->dsos.head, fp);
600 601 602 603 604
	}

	return ret;
}

605
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
606 607
				     bool (skip)(struct dso *dso, int parm), int parm)
{
608
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
609 610
}

611
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
612 613 614
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
615
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
616

617
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
	struct dso *kdso = machine->vmlinux_maps[MAP__FUNCTION]->dso;

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	size_t ret = 0;
	struct rb_node *nd;

648 649
	pthread_rwlock_rdlock(&machine->threads_lock);

650 651 652 653 654 655
	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		struct thread *pos = rb_entry(nd, struct thread, rb_node);

		ret += thread__fprintf(pos, fp);
	}

656 657
	pthread_rwlock_unlock(&machine->threads_lock);

658 659 660 661 662 663 664 665 666 667 668 669 670
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
	const char *vmlinux_name = NULL;
	struct dso *kernel;

	if (machine__is_host(machine)) {
		vmlinux_name = symbol_conf.vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = "[kernel.kallsyms]";

671 672
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
673 674 675 676 677 678 679 680 681
	} else {
		char bf[PATH_MAX];

		if (machine__is_default_guest(machine))
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = machine__mmap_name(machine, bf,
							  sizeof(bf));

682 683 684
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
685 686 687 688 689 690 691 692 693 694 695 696
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

697 698 699 700 701 702 703 704 705
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

706 707 708 709 710 711
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
712 713
static u64 machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name)
714
{
715
	char filename[PATH_MAX];
716 717 718
	int i;
	const char *name;
	u64 addr = 0;
719

720
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
721 722 723 724

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

725 726 727 728 729 730 731 732
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
		addr = kallsyms__get_function_start(filename, name);
		if (addr)
			break;
	}

	if (symbol_name)
		*symbol_name = name;
733

734
	return addr;
735 736 737 738 739
}

int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
{
	enum map_type type;
740
	u64 start = machine__get_running_kernel_start(machine, NULL);
741 742 743 744 745 746 747 748 749 750 751 752

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;

		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
		kmap = map__kmap(machine->vmlinux_maps[type]);
753 754 755
		if (!kmap)
			return -1;

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
		kmap->kmaps = &machine->kmaps;
		map_groups__insert(&machine->kmaps,
				   machine->vmlinux_maps[type]);
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
	enum map_type type;

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;

		if (machine->vmlinux_maps[type] == NULL)
			continue;

		kmap = map__kmap(machine->vmlinux_maps[type]);
		map_groups__remove(&machine->kmaps,
				   machine->vmlinux_maps[type]);
777
		if (kmap && kmap->ref_reloc_sym) {
778 779 780 781 782
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
783 784 785 786
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
787 788 789 790 791 792
		}

		machine->vmlinux_maps[type] = NULL;
	}
}

793
int machines__create_guest_kernel_maps(struct machines *machines)
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

842
void machines__destroy_kernel_maps(struct machines *machines)
843
{
844 845 846
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
847 848 849 850 851

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
852
		rb_erase(&pos->rb_node, &machines->guests);
853 854 855 856
		machine__delete(pos);
	}
}

857
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

int machine__load_kallsyms(struct machine *machine, const char *filename,
			   enum map_type type, symbol_filter_t filter)
{
	struct map *map = machine->vmlinux_maps[type];
	int ret = dso__load_kallsyms(map->dso, filename, map, filter);

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
			       symbol_filter_t filter)
{
	struct map *map = machine->vmlinux_maps[type];
	int ret = dso__load_vmlinux_path(map->dso, map, filter);

892
	if (ret > 0)
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
		dso__set_loaded(map->dso, type);

	return ret;
}

static void map_groups__fixup_end(struct map_groups *mg)
{
	int i;
	for (i = 0; i < MAP__NR_TYPES; ++i)
		__map_groups__fixup_end(mg, i);
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	struct map *map;
	char *long_name;

	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

965
static int map_groups__set_modules_path_dir(struct map_groups *mg,
966
				const char *dir_name, int depth)
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

991 992 993 994 995 996 997 998 999
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1000 1001 1002
			if (ret < 0)
				goto out;
		} else {
1003
			struct kmod_path m;
1004

1005 1006 1007
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1008

1009 1010
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1011

1012
			free(m.name);
1013

1014
			if (ret)
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1033
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1034 1035 1036
		 machine->root_dir, version);
	free(version);

1037
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1038 1039
}

1040
static int machine__create_module(void *arg, const char *name, u64 start)
1041
{
1042
	struct machine *machine = arg;
1043
	struct map *map;
1044

1045
	map = machine__findnew_module_map(machine, start, name);
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	if (map == NULL)
		return -1;

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1056 1057 1058
	const char *modules;
	char path[PATH_MAX];

1059
	if (machine__is_default_guest(machine)) {
1060
		modules = symbol_conf.default_guest_modules;
1061 1062
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1063 1064 1065
		modules = path;
	}

1066
	if (symbol__restricted_filename(modules, "/proc/modules"))
1067 1068
		return -1;

1069
	if (modules__parse(modules, machine, machine__create_module))
1070 1071
		return -1;

1072 1073
	if (!machine__set_modules_path(machine))
		return 0;
1074

1075
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1076

1077
	return 0;
1078 1079 1080 1081 1082
}

int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1083
	const char *name;
1084
	u64 addr = machine__get_running_kernel_start(machine, &name);
1085 1086
	if (!addr)
		return -1;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

	if (kernel == NULL ||
	    __machine__create_kernel_maps(machine, kernel) < 0)
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

	/*
	 * Now that we have all the maps created, just set the ->end of them:
	 */
	map_groups__fixup_end(&machine->kmaps);
1105 1106 1107 1108 1109 1110 1111

	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
					     addr)) {
		machine__destroy_kernel_maps(machine);
		return -1;
	}

1112 1113 1114
	return 0;
}

1115 1116 1117
static void machine__set_kernel_mmap_len(struct machine *machine,
					 union perf_event *event)
{
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = event->mmap.start;
		machine->vmlinux_maps[i]->end   = (event->mmap.start +
						   event->mmap.len);
		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
		if (machine->vmlinux_maps[i]->end == 0)
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
1131 1132
}

1133 1134 1135 1136
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1137
	list_for_each_entry(dso, &machine->dsos.head, node) {
1138 1139 1140 1141 1142 1143 1144
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1145 1146 1147 1148 1149 1150 1151 1152
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	char kmmap_prefix[PATH_MAX];
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1153 1154 1155 1156
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
				kmmap_prefix,
				strlen(kmmap_prefix) - 1) == 0;
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1168 1169
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
				strlen(kmmap_prefix));
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1181 1182 1183
		struct dso *kernel = NULL;
		struct dso *dso;

1184 1185
		pthread_rwlock_rdlock(&machine->dsos.lock);

1186
		list_for_each_entry(dso, &machine->dsos.head, node) {
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1207 1208
				continue;

1209

1210 1211 1212 1213
			kernel = dso;
			break;
		}

1214 1215
		pthread_rwlock_unlock(&machine->dsos.lock);

1216
		if (kernel == NULL)
1217
			kernel = machine__findnew_dso(machine, kmmap_prefix);
1218 1219 1220 1221
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1222 1223
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1224
			goto out_problem;
1225
		}
1226

1227 1228
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1229

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
		machine__set_kernel_mmap_len(machine, event);

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
			dso__load(kernel, machine->vmlinux_maps[MAP__FUNCTION],
				  NULL);
		}
	}
	return 0;
out_problem:
	return -1;
}

1256
int machine__process_mmap2_event(struct machine *machine,
1257 1258
				 union perf_event *event,
				 struct perf_sample *sample __maybe_unused)
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
{
	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    cpumode == PERF_RECORD_MISC_KERNEL) {
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1278
					event->mmap2.tid);
1279 1280 1281 1282 1283 1284 1285 1286
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1287
	map = map__new(machine, event->mmap2.start,
1288 1289 1290 1291
			event->mmap2.len, event->mmap2.pgoff,
			event->mmap2.pid, event->mmap2.maj,
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1292 1293
			event->mmap2.prot,
			event->mmap2.flags,
1294
			event->mmap2.filename, type, thread);
1295 1296

	if (map == NULL)
1297
		goto out_problem_map;
1298 1299

	thread__insert_map(thread, map);
1300
	thread__put(thread);
1301
	map__put(map);
1302 1303
	return 0;

1304 1305
out_problem_map:
	thread__put(thread);
1306 1307 1308 1309 1310
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1311 1312
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1313 1314 1315 1316
{
	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
	struct thread *thread;
	struct map *map;
1317
	enum map_type type;
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    cpumode == PERF_RECORD_MISC_KERNEL) {
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1331
	thread = machine__findnew_thread(machine, event->mmap.pid,
1332
					 event->mmap.tid);
1333 1334
	if (thread == NULL)
		goto out_problem;
1335 1336 1337 1338 1339 1340

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1341
	map = map__new(machine, event->mmap.start,
1342
			event->mmap.len, event->mmap.pgoff,
1343
			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1344
			event->mmap.filename,
1345
			type, thread);
1346

1347
	if (map == NULL)
1348
		goto out_problem_map;
1349 1350

	thread__insert_map(thread, map);
1351
	thread__put(thread);
1352
	map__put(map);
1353 1354
	return 0;

1355 1356
out_problem_map:
	thread__put(thread);
1357 1358 1359 1360 1361
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1362
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1363
{
1364
	if (machine->last_match == th)
1365
		machine->last_match = NULL;
1366

1367
	BUG_ON(atomic_read(&th->refcnt) == 0);
1368 1369
	if (lock)
		pthread_rwlock_wrlock(&machine->threads_lock);
1370
	rb_erase_init(&th->rb_node, &machine->threads);
1371
	RB_CLEAR_NODE(&th->rb_node);
1372
	/*
1373 1374 1375
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1376 1377
	 */
	list_add_tail(&th->node, &machine->dead_threads);
1378 1379
	if (lock)
		pthread_rwlock_unlock(&machine->threads_lock);
1380
	thread__put(th);
1381 1382
}

1383 1384 1385 1386 1387
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1388 1389
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1390
{
1391 1392 1393
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1394 1395 1396
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1397
	int err = 0;
1398

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1417
	/* if a thread currently exists for the thread id remove it */
1418
	if (thread != NULL) {
1419
		machine__remove_thread(machine, thread);
1420 1421
		thread__put(thread);
	}
1422

1423 1424
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1425 1426

	if (thread == NULL || parent == NULL ||
1427
	    thread__fork(thread, parent, sample->time) < 0) {
1428
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1429
		err = -1;
1430
	}
1431 1432
	thread__put(thread);
	thread__put(parent);
1433

1434
	return err;
1435 1436
}

1437 1438
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1439
{
1440 1441 1442
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1443 1444 1445 1446

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1447
	if (thread != NULL) {
1448
		thread__exited(thread);
1449 1450
		thread__put(thread);
	}
1451 1452 1453 1454

	return 0;
}

1455 1456
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1457 1458 1459 1460 1461
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1462
		ret = machine__process_comm_event(machine, event, sample); break;
1463
	case PERF_RECORD_MMAP:
1464
		ret = machine__process_mmap_event(machine, event, sample); break;
1465
	case PERF_RECORD_MMAP2:
1466
		ret = machine__process_mmap2_event(machine, event, sample); break;
1467
	case PERF_RECORD_FORK:
1468
		ret = machine__process_fork_event(machine, event, sample); break;
1469
	case PERF_RECORD_EXIT:
1470
		ret = machine__process_exit_event(machine, event, sample); break;
1471
	case PERF_RECORD_LOST:
1472
		ret = machine__process_lost_event(machine, event, sample); break;
1473 1474
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1475
	case PERF_RECORD_ITRACE_START:
1476
		ret = machine__process_itrace_start_event(machine, event); break;
1477 1478
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1479 1480 1481
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1482 1483 1484 1485 1486 1487 1488
	default:
		ret = -1;
		break;
	}

	return ret;
}
1489

1490
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1491
{
1492
	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1493 1494 1495 1496
		return 1;
	return 0;
}

1497
static void ip__resolve_ams(struct thread *thread,
1498 1499 1500 1501 1502 1503
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1504 1505 1506 1507 1508 1509 1510
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1511
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1512 1513 1514 1515 1516 1517 1518

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1519
static void ip__resolve_data(struct thread *thread,
1520 1521 1522 1523 1524 1525
			     u8 m, struct addr_map_symbol *ams, u64 addr)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1526
	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1527 1528 1529 1530 1531 1532
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1533
		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1534 1535
	}

1536 1537 1538 1539 1540 1541
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1542 1543
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1544 1545 1546 1547 1548 1549
{
	struct mem_info *mi = zalloc(sizeof(*mi));

	if (!mi)
		return NULL;

1550 1551
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1552 1553 1554 1555 1556
	mi->data_src.val = sample->data_src;

	return mi;
}

1557 1558 1559
static int add_callchain_ip(struct thread *thread,
			    struct symbol **parent,
			    struct addr_location *root_al,
1560
			    u8 *cpumode,
1561 1562 1563 1564 1565 1566
			    u64 ip)
{
	struct addr_location al;

	al.filtered = 0;
	al.sym = NULL;
1567
	if (!cpumode) {
1568 1569
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1570
	} else {
1571 1572 1573
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1574
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1575 1576
				break;
			case PERF_CONTEXT_KERNEL:
1577
				*cpumode = PERF_RECORD_MISC_KERNEL;
1578 1579
				break;
			case PERF_CONTEXT_USER:
1580
				*cpumode = PERF_RECORD_MISC_USER;
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
				callchain_cursor_reset(&callchain_cursor);
				return 1;
			}
			return 0;
		}
1594 1595
		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
					   ip, &al);
1596 1597
	}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	if (al.sym != NULL) {
		if (sort__has_parent && !*parent &&
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
			callchain_cursor_reset(&callchain_cursor);
		}
	}

1611
	return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1612 1613
}

1614 1615
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1616 1617
{
	unsigned int i;
1618 1619
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1620 1621 1622 1623 1624

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1625 1626
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1627 1628 1629 1630 1631
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
static int remove_loops(struct branch_entry *l, int nr)
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
				memmove(l + i, l + i + off,
					(nr - (i + off)) * sizeof(*l));
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1685
{
K
Kan Liang 已提交
1686 1687
	struct ip_callchain *chain = sample->callchain;
	int chain_nr = min(max_stack, (int)chain->nr);
1688
	u8 cpumode = PERF_RECORD_MISC_USER;
K
Kan Liang 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
	int i, j, err;
	u64 ip;

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
		int lbr_nr = lbr_stack->nr;
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted callchain. skipping...\n");
			return 0;
		}

		for (j = 0; j < mix_chain_nr; j++) {
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
				else if (j > i + 1)
					ip = lbr_stack->entries[j - i - 2].from;
				else
					ip = lbr_stack->entries[0].to;
			} else {
				if (j < lbr_nr)
					ip = lbr_stack->entries[lbr_nr - j - 1].from;
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
				else
					ip = lbr_stack->entries[0].to;
			}

1735
			err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
K
Kan Liang 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
1754
	int chain_nr = min(max_stack, (int)chain->nr);
1755
	u8 cpumode = PERF_RECORD_MISC_USER;
1756
	int i, j, err;
1757 1758 1759
	int skip_idx = -1;
	int first_call = 0;

K
Kan Liang 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768
	callchain_cursor_reset(&callchain_cursor);

	if (has_branch_callstack(evsel)) {
		err = resolve_lbr_callchain_sample(thread, sample, parent,
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

1769 1770 1771 1772 1773 1774
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
	if (chain->nr < PERF_MAX_STACK_DEPTH)
		skip_idx = arch_skip_callchain_idx(thread, chain);
1775

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

		nr = remove_loops(be, nr);

		for (i = 0; i < nr; i++) {
			err = add_callchain_ip(thread, parent, root_al,
1821
					       NULL, be[i].to);
1822 1823
			if (!err)
				err = add_callchain_ip(thread, parent, root_al,
1824
						       NULL, be[i].from);
1825 1826 1827 1828 1829 1830 1831 1832 1833
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
		chain_nr -= nr;
	}

check_calls:
1834 1835 1836 1837 1838
	if (chain->nr > PERF_MAX_STACK_DEPTH) {
		pr_warning("corrupted callchain. skipping...\n");
		return 0;
	}

1839
	for (i = first_call; i < chain_nr; i++) {
1840 1841 1842
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
1843
			j = i;
1844
		else
1845 1846 1847 1848 1849 1850 1851
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
1852

1853
		err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1854 1855

		if (err)
1856
			return (err < 0) ? err : 0;
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	}

	return 0;
}

static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
	return callchain_cursor_append(cursor, entry->ip,
				       entry->map, entry->sym);
}

1869 1870 1871 1872 1873 1874
int thread__resolve_callchain(struct thread *thread,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
1875
{
K
Kan Liang 已提交
1876 1877 1878
	int ret = thread__resolve_callchain_sample(thread, evsel,
						   sample, parent,
						   root_al, max_stack);
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	if (ret)
		return ret;

	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

1892
	return unwind__get_entries(unwind_entry, &callchain_cursor,
1893
				   thread, sample, max_stack);
1894 1895

}
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;

	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		thread = rb_entry(nd, struct thread, rb_node);
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}

	list_for_each_entry(thread, &machine->dead_threads, node) {
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}
1919

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

1941
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1942
				  struct target *target, struct thread_map *threads,
1943 1944
				  perf_event__handler_t process, bool data_mmap,
				  unsigned int proc_map_timeout)
1945
{
1946
	if (target__has_task(target))
1947
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1948
	else if (target__has_cpu(target))
1949
		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1950 1951 1952
	/* command specified */
	return 0;
}
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
1993
	thread__put(thread);
1994 1995 1996

	return 0;
}
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

int machine__get_kernel_start(struct machine *machine)
{
	struct map *map = machine__kernel_map(machine, MAP__FUNCTION);
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
		err = map__load(map, machine->symbol_filter);
		if (map->start)
			machine->kernel_start = map->start;
	}
	return err;
}
2019 2020 2021

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2022
	return dsos__findnew(&machine->dsos, filename);
2023
}
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}