sched.h 65.2 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

5 6 7 8
/*
 * Define 'struct task_struct' and provide the main scheduler
 * APIs (schedule(), wakeup variants, etc.)
 */
9

10
#include <uapi/linux/sched.h>
11

12
#include <asm/current.h>
L
Linus Torvalds 已提交
13

14
#include <linux/pid.h>
L
Linus Torvalds 已提交
15
#include <linux/sem.h>
16
#include <linux/shm.h>
17 18 19
#include <linux/mutex.h>
#include <linux/plist.h>
#include <linux/hrtimer.h>
20
#include <linux/irqflags.h>
L
Linus Torvalds 已提交
21
#include <linux/seccomp.h>
22
#include <linux/nodemask.h>
23
#include <linux/rcupdate.h>
24
#include <linux/refcount.h>
25
#include <linux/resource.h>
A
Arjan van de Ven 已提交
26
#include <linux/latencytop.h>
27
#include <linux/sched/prio.h>
28
#include <linux/sched/types.h>
29
#include <linux/signal_types.h>
30
#include <linux/syscall_user_dispatch.h>
31 32
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>
33
#include <linux/posix-timers.h>
34
#include <linux/rseq.h>
35
#include <linux/seqlock.h>
36
#include <linux/kcsan.h>
37
#include <asm/kmap_size.h>
38

39
/* task_struct member predeclarations (sorted alphabetically): */
40 41
struct audit_context;
struct backing_dev_info;
42
struct bio_list;
43
struct blk_plug;
44
struct bpf_local_storage;
45
struct bpf_run_ctx;
46
struct capture_control;
47 48 49 50
struct cfs_rq;
struct fs_struct;
struct futex_pi_state;
struct io_context;
51
struct io_uring_task;
52
struct mempolicy;
53
struct nameidata;
54 55 56 57 58 59 60
struct nsproxy;
struct perf_event_context;
struct pid_namespace;
struct pipe_inode_info;
struct rcu_node;
struct reclaim_state;
struct robust_list_head;
61 62
struct root_domain;
struct rq;
63 64
struct sched_attr;
struct sched_param;
I
Ingo Molnar 已提交
65
struct seq_file;
66 67 68
struct sighand_struct;
struct signal_struct;
struct task_delay_info;
69
struct task_group;
L
Linus Torvalds 已提交
70

71 72 73 74 75 76 77 78 79 80
/*
 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 *
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.
 */
81 82

/* Used in tsk->state: */
83 84 85 86 87
#define TASK_RUNNING			0x0000
#define TASK_INTERRUPTIBLE		0x0001
#define TASK_UNINTERRUPTIBLE		0x0002
#define __TASK_STOPPED			0x0004
#define __TASK_TRACED			0x0008
88
/* Used in tsk->exit_state: */
89 90
#define EXIT_DEAD			0x0010
#define EXIT_ZOMBIE			0x0020
91 92
#define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
/* Used in tsk->state again: */
93 94 95 96
#define TASK_PARKED			0x0040
#define TASK_DEAD			0x0080
#define TASK_WAKEKILL			0x0100
#define TASK_WAKING			0x0200
97 98
#define TASK_NOLOAD			0x0400
#define TASK_NEW			0x0800
99 100 101
/* RT specific auxilliary flag to mark RT lock waiters */
#define TASK_RTLOCK_WAIT		0x1000
#define TASK_STATE_MAX			0x2000
102 103 104 105 106 107 108 109 110 111 112 113 114 115

/* Convenience macros for the sake of set_current_state: */
#define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)

#define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)

/* Convenience macros for the sake of wake_up(): */
#define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)

/* get_task_state(): */
#define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
116 117
					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
					 TASK_PARKED)
118

119
#define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
120

121
#define task_is_traced(task)		((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
122

123
#define task_is_stopped(task)		((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
124

125
#define task_is_stopped_or_traced(task)	((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
126

127 128 129 130 131
/*
 * Special states are those that do not use the normal wait-loop pattern. See
 * the comment with set_special_state().
 */
#define is_special_task_state(state)				\
132
	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
133

134 135 136 137 138
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
# define debug_normal_state_change(state_value)				\
	do {								\
		WARN_ON_ONCE(is_special_task_state(state_value));	\
		current->task_state_change = _THIS_IP_;			\
P
Peter Zijlstra 已提交
139 140
	} while (0)

141
# define debug_special_state_change(state_value)			\
142 143 144 145
	do {								\
		WARN_ON_ONCE(!is_special_task_state(state_value));	\
		current->task_state_change = _THIS_IP_;			\
	} while (0)
146

147 148 149 150 151 152 153 154 155 156 157
# define debug_rtlock_wait_set_state()					\
	do {								 \
		current->saved_state_change = current->task_state_change;\
		current->task_state_change = _THIS_IP_;			 \
	} while (0)

# define debug_rtlock_wait_restore_state()				\
	do {								 \
		current->task_state_change = current->saved_state_change;\
	} while (0)

P
Peter Zijlstra 已提交
158
#else
159 160
# define debug_normal_state_change(cond)	do { } while (0)
# define debug_special_state_change(cond)	do { } while (0)
161 162
# define debug_rtlock_wait_set_state()		do { } while (0)
# define debug_rtlock_wait_restore_state()	do { } while (0)
163 164
#endif

165 166 167 168 169
/*
 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *
170
 *   for (;;) {
171
 *	set_current_state(TASK_UNINTERRUPTIBLE);
P
Peter Zijlstra 已提交
172 173
 *	if (CONDITION)
 *	   break;
174 175 176 177 178 179
 *
 *	schedule();
 *   }
 *   __set_current_state(TASK_RUNNING);
 *
 * If the caller does not need such serialisation (because, for instance, the
P
Peter Zijlstra 已提交
180
 * CONDITION test and condition change and wakeup are under the same lock) then
181 182 183 184
 * use __set_current_state().
 *
 * The above is typically ordered against the wakeup, which does:
 *
P
Peter Zijlstra 已提交
185
 *   CONDITION = 1;
186
 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
187
 *
P
Peter Zijlstra 已提交
188 189
 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
 * accessing p->state.
190 191 192 193
 *
 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
194
 *
195
 * However, with slightly different timing the wakeup TASK_RUNNING store can
I
Ingo Molnar 已提交
196
 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
197 198
 * a problem either because that will result in one extra go around the loop
 * and our @cond test will save the day.
199
 *
200
 * Also see the comments of try_to_wake_up().
201
 */
202
#define __set_current_state(state_value)				\
203 204 205 206
	do {								\
		debug_normal_state_change((state_value));		\
		WRITE_ONCE(current->__state, (state_value));		\
	} while (0)
207 208

#define set_current_state(state_value)					\
209 210 211 212
	do {								\
		debug_normal_state_change((state_value));		\
		smp_store_mb(current->__state, (state_value));		\
	} while (0)
213 214 215 216

/*
 * set_special_state() should be used for those states when the blocking task
 * can not use the regular condition based wait-loop. In that case we must
217 218
 * serialize against wakeups such that any possible in-flight TASK_RUNNING
 * stores will not collide with our state change.
219 220 221 222
 */
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
223
									\
224
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
225
		debug_special_state_change((state_value));		\
226
		WRITE_ONCE(current->__state, (state_value));		\
227 228 229
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/*
 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
 *
 * RT's spin/rwlock substitutions are state preserving. The state of the
 * task when blocking on the lock is saved in task_struct::saved_state and
 * restored after the lock has been acquired.  These operations are
 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
 * lock related wakeups while the task is blocked on the lock are
 * redirected to operate on task_struct::saved_state to ensure that these
 * are not dropped. On restore task_struct::saved_state is set to
 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
 *
 * The lock operation looks like this:
 *
 *	current_save_and_set_rtlock_wait_state();
 *	for (;;) {
 *		if (try_lock())
 *			break;
 *		raw_spin_unlock_irq(&lock->wait_lock);
 *		schedule_rtlock();
 *		raw_spin_lock_irq(&lock->wait_lock);
 *		set_current_state(TASK_RTLOCK_WAIT);
 *	}
 *	current_restore_rtlock_saved_state();
 */
#define current_save_and_set_rtlock_wait_state()			\
	do {								\
		lockdep_assert_irqs_disabled();				\
		raw_spin_lock(&current->pi_lock);			\
		current->saved_state = current->__state;		\
		debug_rtlock_wait_set_state();				\
		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
		raw_spin_unlock(&current->pi_lock);			\
	} while (0);

#define current_restore_rtlock_saved_state()				\
	do {								\
		lockdep_assert_irqs_disabled();				\
		raw_spin_lock(&current->pi_lock);			\
		debug_rtlock_wait_restore_state();			\
		WRITE_ONCE(current->__state, current->saved_state);	\
		current->saved_state = TASK_RUNNING;			\
		raw_spin_unlock(&current->pi_lock);			\
	} while (0);
P
Peter Zijlstra 已提交
274

275
#define get_current_state()	READ_ONCE(current->__state)
P
Peter Zijlstra 已提交
276

277 278
/* Task command name length: */
#define TASK_COMM_LEN			16
L
Linus Torvalds 已提交
279 280 281

extern void scheduler_tick(void);

282 283 284 285 286 287 288
#define	MAX_SCHEDULE_TIMEOUT		LONG_MAX

extern long schedule_timeout(long timeout);
extern long schedule_timeout_interruptible(long timeout);
extern long schedule_timeout_killable(long timeout);
extern long schedule_timeout_uninterruptible(long timeout);
extern long schedule_timeout_idle(long timeout);
L
Linus Torvalds 已提交
289
asmlinkage void schedule(void);
290
extern void schedule_preempt_disabled(void);
291
asmlinkage void preempt_schedule_irq(void);
292 293 294
#ifdef CONFIG_PREEMPT_RT
 extern void schedule_rtlock(void);
#endif
L
Linus Torvalds 已提交
295

296 297
extern int __must_check io_schedule_prepare(void);
extern void io_schedule_finish(int token);
298
extern long io_schedule_timeout(long timeout);
299
extern void io_schedule(void);
300

301
/**
302
 * struct prev_cputime - snapshot of system and user cputime
303 304
 * @utime: time spent in user mode
 * @stime: time spent in system mode
305
 * @lock: protects the above two fields
306
 *
307 308
 * Stores previous user/system time values such that we can guarantee
 * monotonicity.
309
 */
310 311
struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
312 313 314
	u64				utime;
	u64				stime;
	raw_spinlock_t			lock;
315
#endif
316 317
};

318 319 320
enum vtime_state {
	/* Task is sleeping or running in a CPU with VTIME inactive: */
	VTIME_INACTIVE = 0,
321 322
	/* Task is idle */
	VTIME_IDLE,
323 324
	/* Task runs in kernelspace in a CPU with VTIME active: */
	VTIME_SYS,
325 326
	/* Task runs in userspace in a CPU with VTIME active: */
	VTIME_USER,
327 328
	/* Task runs as guests in a CPU with VTIME active: */
	VTIME_GUEST,
329 330 331 332 333 334
};

struct vtime {
	seqcount_t		seqcount;
	unsigned long long	starttime;
	enum vtime_state	state;
335
	unsigned int		cpu;
336 337 338
	u64			utime;
	u64			stime;
	u64			gtime;
339 340
};

341 342 343 344 345 346 347 348 349 350 351 352
/*
 * Utilization clamp constraints.
 * @UCLAMP_MIN:	Minimum utilization
 * @UCLAMP_MAX:	Maximum utilization
 * @UCLAMP_CNT:	Utilization clamp constraints count
 */
enum uclamp_id {
	UCLAMP_MIN = 0,
	UCLAMP_MAX,
	UCLAMP_CNT
};

353 354 355 356 357
#ifdef CONFIG_SMP
extern struct root_domain def_root_domain;
extern struct mutex sched_domains_mutex;
#endif

L
Linus Torvalds 已提交
358
struct sched_info {
359
#ifdef CONFIG_SCHED_INFO
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
	/* Cumulative counters: */

	/* # of times we have run on this CPU: */
	unsigned long			pcount;

	/* Time spent waiting on a runqueue: */
	unsigned long long		run_delay;

	/* Timestamps: */

	/* When did we last run on a CPU? */
	unsigned long long		last_arrival;

	/* When were we last queued to run? */
	unsigned long long		last_queued;
L
Linus Torvalds 已提交
375

376
#endif /* CONFIG_SCHED_INFO */
377
};
L
Linus Torvalds 已提交
378

379 380 381 382 383 384 385
/*
 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 * has a few: load, load_avg, util_avg, freq, and capacity.
 *
 * We define a basic fixed point arithmetic range, and then formalize
 * all these metrics based on that basic range.
 */
386 387
# define SCHED_FIXEDPOINT_SHIFT		10
# define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
388

389 390 391 392
/* Increase resolution of cpu_capacity calculations */
# define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
# define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)

I
Ingo Molnar 已提交
393
struct load_weight {
394 395
	unsigned long			weight;
	u32				inv_weight;
I
Ingo Molnar 已提交
396 397
};

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
/**
 * struct util_est - Estimation utilization of FAIR tasks
 * @enqueued: instantaneous estimated utilization of a task/cpu
 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 *            utilization of a task
 *
 * Support data structure to track an Exponential Weighted Moving Average
 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 * average each time a task completes an activation. Sample's weight is chosen
 * so that the EWMA will be relatively insensitive to transient changes to the
 * task's workload.
 *
 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 * - task:   the task's util_avg at last task dequeue time
 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 * Thus, the util_est.enqueued of a task represents the contribution on the
 * estimated utilization of the CPU where that task is currently enqueued.
 *
 * Only for tasks we track a moving average of the past instantaneous
 * estimated utilization. This allows to absorb sporadic drops in utilization
 * of an otherwise almost periodic task.
419 420 421 422 423 424 425
 *
 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
 * updates. When a task is dequeued, its util_est should not be updated if its
 * util_avg has not been updated in the meantime.
 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
 * for a task) it is safe to use MSB.
426 427 428 429 430
 */
struct util_est {
	unsigned int			enqueued;
	unsigned int			ewma;
#define UTIL_EST_WEIGHT_SHIFT		2
431
#define UTIL_AVG_UNCHANGED		0x80000000
432
} __attribute__((__aligned__(sizeof(u64))));
433

434
/*
435
 * The load/runnable/util_avg accumulates an infinite geometric series
436
 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
437 438 439 440 441
 *
 * [load_avg definition]
 *
 *   load_avg = runnable% * scale_load_down(load)
 *
442 443 444
 * [runnable_avg definition]
 *
 *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
445 446 447 448 449
 *
 * [util_avg definition]
 *
 *   util_avg = running% * SCHED_CAPACITY_SCALE
 *
450 451 452 453 454
 * where runnable% is the time ratio that a sched_entity is runnable and
 * running% the time ratio that a sched_entity is running.
 *
 * For cfs_rq, they are the aggregated values of all runnable and blocked
 * sched_entities.
455
 *
王文虎 已提交
456
 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
457 458
 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
 * for computing those signals (see update_rq_clock_pelt())
459
 *
460 461 462 463
 * N.B., the above ratios (runnable% and running%) themselves are in the
 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 * to as large a range as necessary. This is for example reflected by
 * util_avg's SCHED_CAPACITY_SCALE.
464 465 466 467 468 469 470 471 472 473 474 475 476 477
 *
 * [Overflow issue]
 *
 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 * with the highest load (=88761), always runnable on a single cfs_rq,
 * and should not overflow as the number already hits PID_MAX_LIMIT.
 *
 * For all other cases (including 32-bit kernels), struct load_weight's
 * weight will overflow first before we do, because:
 *
 *    Max(load_avg) <= Max(load.weight)
 *
 * Then it is the load_weight's responsibility to consider overflow
 * issues.
478
 */
479
struct sched_avg {
480 481
	u64				last_update_time;
	u64				load_sum;
482
	u64				runnable_sum;
483 484 485
	u32				util_sum;
	u32				period_contrib;
	unsigned long			load_avg;
486
	unsigned long			runnable_avg;
487
	unsigned long			util_avg;
488
	struct util_est			util_est;
489
} ____cacheline_aligned;
490

491
struct sched_statistics {
492
#ifdef CONFIG_SCHEDSTATS
493 494 495 496 497 498 499 500 501 502 503 504 505
	u64				wait_start;
	u64				wait_max;
	u64				wait_count;
	u64				wait_sum;
	u64				iowait_count;
	u64				iowait_sum;

	u64				sleep_start;
	u64				sleep_max;
	s64				sum_sleep_runtime;

	u64				block_start;
	u64				block_max;
506 507
	s64				sum_block_runtime;

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	u64				exec_max;
	u64				slice_max;

	u64				nr_migrations_cold;
	u64				nr_failed_migrations_affine;
	u64				nr_failed_migrations_running;
	u64				nr_failed_migrations_hot;
	u64				nr_forced_migrations;

	u64				nr_wakeups;
	u64				nr_wakeups_sync;
	u64				nr_wakeups_migrate;
	u64				nr_wakeups_local;
	u64				nr_wakeups_remote;
	u64				nr_wakeups_affine;
	u64				nr_wakeups_affine_attempts;
	u64				nr_wakeups_passive;
	u64				nr_wakeups_idle;
526
#endif
527
} ____cacheline_aligned;
528 529

struct sched_entity {
530 531 532 533 534
	/* For load-balancing: */
	struct load_weight		load;
	struct rb_node			run_node;
	struct list_head		group_node;
	unsigned int			on_rq;
535

536 537 538 539
	u64				exec_start;
	u64				sum_exec_runtime;
	u64				vruntime;
	u64				prev_sum_exec_runtime;
540

541
	u64				nr_migrations;
542

I
Ingo Molnar 已提交
543
#ifdef CONFIG_FAIR_GROUP_SCHED
544 545
	int				depth;
	struct sched_entity		*parent;
I
Ingo Molnar 已提交
546
	/* rq on which this entity is (to be) queued: */
547
	struct cfs_rq			*cfs_rq;
I
Ingo Molnar 已提交
548
	/* rq "owned" by this entity/group: */
549
	struct cfs_rq			*my_q;
550 551
	/* cached value of my_q->h_nr_running */
	unsigned long			runnable_weight;
I
Ingo Molnar 已提交
552
#endif
553

554
#ifdef CONFIG_SMP
555 556 557 558 559 560
	/*
	 * Per entity load average tracking.
	 *
	 * Put into separate cache line so it does not
	 * collide with read-mostly values above.
	 */
561
	struct sched_avg		avg;
562
#endif
I
Ingo Molnar 已提交
563
};
564

P
Peter Zijlstra 已提交
565
struct sched_rt_entity {
566 567 568 569 570 571 572 573
	struct list_head		run_list;
	unsigned long			timeout;
	unsigned long			watchdog_stamp;
	unsigned int			time_slice;
	unsigned short			on_rq;
	unsigned short			on_list;

	struct sched_rt_entity		*back;
574
#ifdef CONFIG_RT_GROUP_SCHED
575
	struct sched_rt_entity		*parent;
P
Peter Zijlstra 已提交
576
	/* rq on which this entity is (to be) queued: */
577
	struct rt_rq			*rt_rq;
P
Peter Zijlstra 已提交
578
	/* rq "owned" by this entity/group: */
579
	struct rt_rq			*my_q;
P
Peter Zijlstra 已提交
580
#endif
581
} __randomize_layout;
P
Peter Zijlstra 已提交
582

583
struct sched_dl_entity {
584
	struct rb_node			rb_node;
585 586 587

	/*
	 * Original scheduling parameters. Copied here from sched_attr
588 589
	 * during sched_setattr(), they will remain the same until
	 * the next sched_setattr().
590
	 */
591 592 593
	u64				dl_runtime;	/* Maximum runtime for each instance	*/
	u64				dl_deadline;	/* Relative deadline of each instance	*/
	u64				dl_period;	/* Separation of two instances (period) */
594
	u64				dl_bw;		/* dl_runtime / dl_period		*/
595
	u64				dl_density;	/* dl_runtime / dl_deadline		*/
596 597 598

	/*
	 * Actual scheduling parameters. Initialized with the values above,
I
Ingo Molnar 已提交
599
	 * they are continuously updated during task execution. Note that
600 601
	 * the remaining runtime could be < 0 in case we are in overrun.
	 */
602 603 604
	s64				runtime;	/* Remaining runtime for this instance	*/
	u64				deadline;	/* Absolute deadline for this instance	*/
	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
605 606 607 608 609 610 611 612

	/*
	 * Some bool flags:
	 *
	 * @dl_throttled tells if we exhausted the runtime. If so, the
	 * task has to wait for a replenishment to be performed at the
	 * next firing of dl_timer.
	 *
613 614
	 * @dl_boosted tells if we are boosted due to DI. If so we are
	 * outside bandwidth enforcement mechanism (but only until we
615 616
	 * exit the critical section);
	 *
617
	 * @dl_yielded tells if task gave up the CPU before consuming
618
	 * all its available runtime during the last job.
619 620 621 622 623 624 625
	 *
	 * @dl_non_contending tells if the task is inactive while still
	 * contributing to the active utilization. In other words, it
	 * indicates if the inactive timer has been armed and its handler
	 * has not been executed yet. This flag is useful to avoid race
	 * conditions between the inactive timer handler and the wakeup
	 * code.
626 627 628
	 *
	 * @dl_overrun tells if the task asked to be informed about runtime
	 * overruns.
629
	 */
630 631 632
	unsigned int			dl_throttled      : 1;
	unsigned int			dl_yielded        : 1;
	unsigned int			dl_non_contending : 1;
633
	unsigned int			dl_overrun	  : 1;
634 635 636 637 638

	/*
	 * Bandwidth enforcement timer. Each -deadline task has its
	 * own bandwidth to be enforced, thus we need one timer per task.
	 */
639
	struct hrtimer			dl_timer;
640 641 642 643 644 645 646 647 648

	/*
	 * Inactive timer, responsible for decreasing the active utilization
	 * at the "0-lag time". When a -deadline task blocks, it contributes
	 * to GRUB's active utilization until the "0-lag time", hence a
	 * timer is needed to decrease the active utilization at the correct
	 * time.
	 */
	struct hrtimer inactive_timer;
649 650 651 652 653 654 655 656 657

#ifdef CONFIG_RT_MUTEXES
	/*
	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
	 * pi_se points to the donor, otherwise points to the dl_se it belongs
	 * to (the original one/itself).
	 */
	struct sched_dl_entity *pi_se;
#endif
658
};
659

660 661 662 663 664 665 666 667
#ifdef CONFIG_UCLAMP_TASK
/* Number of utilization clamp buckets (shorter alias) */
#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT

/*
 * Utilization clamp for a scheduling entity
 * @value:		clamp value "assigned" to a se
 * @bucket_id:		bucket index corresponding to the "assigned" value
668
 * @active:		the se is currently refcounted in a rq's bucket
669
 * @user_defined:	the requested clamp value comes from user-space
670 671 672 673
 *
 * The bucket_id is the index of the clamp bucket matching the clamp value
 * which is pre-computed and stored to avoid expensive integer divisions from
 * the fast path.
674 675 676 677 678
 *
 * The active bit is set whenever a task has got an "effective" value assigned,
 * which can be different from the clamp value "requested" from user-space.
 * This allows to know a task is refcounted in the rq's bucket corresponding
 * to the "effective" bucket_id.
679 680 681 682 683 684 685
 *
 * The user_defined bit is set whenever a task has got a task-specific clamp
 * value requested from userspace, i.e. the system defaults apply to this task
 * just as a restriction. This allows to relax default clamps when a less
 * restrictive task-specific value has been requested, thus allowing to
 * implement a "nice" semantic. For example, a task running with a 20%
 * default boost can still drop its own boosting to 0%.
686 687 688 689
 */
struct uclamp_se {
	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
690
	unsigned int active		: 1;
691
	unsigned int user_defined	: 1;
692 693 694
};
#endif /* CONFIG_UCLAMP_TASK */

695 696
union rcu_special {
	struct {
697 698
		u8			blocked;
		u8			need_qs;
699
		u8			exp_hint; /* Hint for performance. */
700
		u8			need_mb; /* Readers need smp_mb(). */
701
	} b; /* Bits. */
702
	u32 s; /* Set of bits. */
703
};
704

P
Peter Zijlstra 已提交
705 706 707
enum perf_event_task_context {
	perf_invalid_context = -1,
	perf_hw_context = 0,
708
	perf_sw_context,
P
Peter Zijlstra 已提交
709 710 711
	perf_nr_task_contexts,
};

712 713 714 715
struct wake_q_node {
	struct wake_q_node *next;
};

716 717 718 719 720 721 722
struct kmap_ctrl {
#ifdef CONFIG_KMAP_LOCAL
	int				idx;
	pte_t				pteval[KM_MAX_IDX];
#endif
};

L
Linus Torvalds 已提交
723
struct task_struct {
724 725 726 727 728
#ifdef CONFIG_THREAD_INFO_IN_TASK
	/*
	 * For reasons of header soup (see current_thread_info()), this
	 * must be the first element of task_struct.
	 */
729
	struct thread_info		thread_info;
730
#endif
731
	unsigned int			__state;
K
Kees Cook 已提交
732

733 734 735 736 737
#ifdef CONFIG_PREEMPT_RT
	/* saved state for "spinlock sleepers" */
	unsigned int			saved_state;
#endif

K
Kees Cook 已提交
738 739 740 741 742 743
	/*
	 * This begins the randomizable portion of task_struct. Only
	 * scheduling-critical items should be added above here.
	 */
	randomized_struct_fields_start

744
	void				*stack;
745
	refcount_t			usage;
746 747 748
	/* Per task flags (PF_*), defined further below: */
	unsigned int			flags;
	unsigned int			ptrace;
L
Linus Torvalds 已提交
749

750
#ifdef CONFIG_SMP
751
	int				on_cpu;
752
	struct __call_single_node	wake_entry;
753 754 755
	unsigned int			wakee_flips;
	unsigned long			wakee_flip_decay_ts;
	struct task_struct		*last_wakee;
756

757 758 759 760 761 762 763 764
	/*
	 * recent_used_cpu is initially set as the last CPU used by a task
	 * that wakes affine another task. Waker/wakee relationships can
	 * push tasks around a CPU where each wakeup moves to the next one.
	 * Tracking a recently used CPU allows a quick search for a recently
	 * used CPU that may be idle.
	 */
	int				recent_used_cpu;
765
	int				wake_cpu;
766
#endif
767 768 769 770 771 772
	int				on_rq;

	int				prio;
	int				static_prio;
	int				normal_prio;
	unsigned int			rt_priority;
773

774 775
	struct sched_entity		se;
	struct sched_rt_entity		rt;
776
	struct sched_dl_entity		dl;
777
	const struct sched_class	*sched_class;
778 779 780 781

#ifdef CONFIG_SCHED_CORE
	struct rb_node			core_node;
	unsigned long			core_cookie;
782
	unsigned int			core_occupation;
783 784
#endif

P
Peter Zijlstra 已提交
785
#ifdef CONFIG_CGROUP_SCHED
786
	struct task_group		*sched_task_group;
P
Peter Zijlstra 已提交
787
#endif
L
Linus Torvalds 已提交
788

789
#ifdef CONFIG_UCLAMP_TASK
790 791 792 793
	/*
	 * Clamp values requested for a scheduling entity.
	 * Must be updated with task_rq_lock() held.
	 */
794
	struct uclamp_se		uclamp_req[UCLAMP_CNT];
795 796 797 798
	/*
	 * Effective clamp values used for a scheduling entity.
	 * Must be updated with task_rq_lock() held.
	 */
799 800 801
	struct uclamp_se		uclamp[UCLAMP_CNT];
#endif

802 803
	struct sched_statistics         stats;

804
#ifdef CONFIG_PREEMPT_NOTIFIERS
805 806
	/* List of struct preempt_notifier: */
	struct hlist_head		preempt_notifiers;
807 808
#endif

809
#ifdef CONFIG_BLK_DEV_IO_TRACE
810
	unsigned int			btrace_seq;
811
#endif
L
Linus Torvalds 已提交
812

813 814
	unsigned int			policy;
	int				nr_cpus_allowed;
815
	const cpumask_t			*cpus_ptr;
816
	cpumask_t			*user_cpus_ptr;
817
	cpumask_t			cpus_mask;
818
	void				*migration_pending;
819
#ifdef CONFIG_SMP
820
	unsigned short			migration_disabled;
P
Peter Zijlstra 已提交
821
#endif
822
	unsigned short			migration_flags;
L
Linus Torvalds 已提交
823

P
Paul E. McKenney 已提交
824
#ifdef CONFIG_PREEMPT_RCU
825 826 827 828
	int				rcu_read_lock_nesting;
	union rcu_special		rcu_read_unlock_special;
	struct list_head		rcu_node_entry;
	struct rcu_node			*rcu_blocked_node;
829
#endif /* #ifdef CONFIG_PREEMPT_RCU */
830

P
Paul E. McKenney 已提交
831
#ifdef CONFIG_TASKS_RCU
832
	unsigned long			rcu_tasks_nvcsw;
833 834
	u8				rcu_tasks_holdout;
	u8				rcu_tasks_idx;
835
	int				rcu_tasks_idle_cpu;
836
	struct list_head		rcu_tasks_holdout_list;
P
Paul E. McKenney 已提交
837
#endif /* #ifdef CONFIG_TASKS_RCU */
P
Paul E. McKenney 已提交
838

839 840 841
#ifdef CONFIG_TASKS_TRACE_RCU
	int				trc_reader_nesting;
	int				trc_ipi_to_cpu;
842
	union rcu_special		trc_reader_special;
843 844 845 846
	bool				trc_reader_checked;
	struct list_head		trc_holdout_list;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */

847
	struct sched_info		sched_info;
L
Linus Torvalds 已提交
848

849
	struct list_head		tasks;
850
#ifdef CONFIG_SMP
851 852
	struct plist_node		pushable_tasks;
	struct rb_node			pushable_dl_tasks;
853
#endif
L
Linus Torvalds 已提交
854

855 856
	struct mm_struct		*mm;
	struct mm_struct		*active_mm;
857 858

	/* Per-thread vma caching: */
859
	struct vmacache			vmacache;
860

861 862
#ifdef SPLIT_RSS_COUNTING
	struct task_rss_stat		rss_stat;
863
#endif
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	int				exit_state;
	int				exit_code;
	int				exit_signal;
	/* The signal sent when the parent dies: */
	int				pdeath_signal;
	/* JOBCTL_*, siglock protected: */
	unsigned long			jobctl;

	/* Used for emulating ABI behavior of previous Linux versions: */
	unsigned int			personality;

	/* Scheduler bits, serialized by scheduler locks: */
	unsigned			sched_reset_on_fork:1;
	unsigned			sched_contributes_to_load:1;
	unsigned			sched_migrated:1;
879 880 881 882
#ifdef CONFIG_PSI
	unsigned			sched_psi_wake_requeue:1;
#endif

883 884 885 886 887
	/* Force alignment to the next boundary: */
	unsigned			:0;

	/* Unserialized, strictly 'current' */

P
Peter Zijlstra 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	/*
	 * This field must not be in the scheduler word above due to wakelist
	 * queueing no longer being serialized by p->on_cpu. However:
	 *
	 * p->XXX = X;			ttwu()
	 * schedule()			  if (p->on_rq && ..) // false
	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
	 *   deactivate_task()		      ttwu_queue_wakelist())
	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
	 *
	 * guarantees all stores of 'current' are visible before
	 * ->sched_remote_wakeup gets used, so it can be in this word.
	 */
	unsigned			sched_remote_wakeup:1;

903 904 905 906 907
	/* Bit to tell LSMs we're in execve(): */
	unsigned			in_execve:1;
	unsigned			in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
	unsigned			restore_sigmask:1;
908
#endif
T
Tejun Heo 已提交
909
#ifdef CONFIG_MEMCG
910
	unsigned			in_user_fault:1;
911
#endif
912
#ifdef CONFIG_COMPAT_BRK
913
	unsigned			brk_randomized:1;
914
#endif
915 916 917
#ifdef CONFIG_CGROUPS
	/* disallow userland-initiated cgroup migration */
	unsigned			no_cgroup_migration:1;
R
Roman Gushchin 已提交
918 919
	/* task is frozen/stopped (used by the cgroup freezer) */
	unsigned			frozen:1;
920
#endif
921 922 923
#ifdef CONFIG_BLK_CGROUP
	unsigned			use_memdelay:1;
#endif
924 925 926 927
#ifdef CONFIG_PSI
	/* Stalled due to lack of memory */
	unsigned			in_memstall:1;
#endif
928 929 930 931
#ifdef CONFIG_PAGE_OWNER
	/* Used by page_owner=on to detect recursion in page tracking. */
	unsigned			in_page_owner:1;
#endif
932 933 934 935
#ifdef CONFIG_EVENTFD
	/* Recursion prevention for eventfd_signal() */
	unsigned			in_eventfd_signal:1;
#endif
936

937
	unsigned long			atomic_flags; /* Flags requiring atomic access. */
938

939
	struct restart_block		restart_block;
940

941 942
	pid_t				pid;
	pid_t				tgid;
943

944
#ifdef CONFIG_STACKPROTECTOR
945 946
	/* Canary value for the -fstack-protector GCC feature: */
	unsigned long			stack_canary;
947
#endif
948
	/*
949
	 * Pointers to the (original) parent process, youngest child, younger sibling,
950
	 * older sibling, respectively.  (p->father can be replaced with
R
Roland McGrath 已提交
951
	 * p->real_parent->pid)
L
Linus Torvalds 已提交
952
	 */
953 954 955 956 957 958 959

	/* Real parent process: */
	struct task_struct __rcu	*real_parent;

	/* Recipient of SIGCHLD, wait4() reports: */
	struct task_struct __rcu	*parent;

L
Linus Torvalds 已提交
960
	/*
961
	 * Children/sibling form the list of natural children:
L
Linus Torvalds 已提交
962
	 */
963 964 965
	struct list_head		children;
	struct list_head		sibling;
	struct task_struct		*group_leader;
L
Linus Torvalds 已提交
966

R
Roland McGrath 已提交
967
	/*
968 969
	 * 'ptraced' is the list of tasks this task is using ptrace() on.
	 *
R
Roland McGrath 已提交
970
	 * This includes both natural children and PTRACE_ATTACH targets.
971
	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
R
Roland McGrath 已提交
972
	 */
973 974
	struct list_head		ptraced;
	struct list_head		ptrace_entry;
R
Roland McGrath 已提交
975

L
Linus Torvalds 已提交
976
	/* PID/PID hash table linkage. */
977 978
	struct pid			*thread_pid;
	struct hlist_node		pid_links[PIDTYPE_MAX];
979 980 981 982
	struct list_head		thread_group;
	struct list_head		thread_node;

	struct completion		*vfork_done;
L
Linus Torvalds 已提交
983

984 985
	/* CLONE_CHILD_SETTID: */
	int __user			*set_child_tid;
L
Linus Torvalds 已提交
986

987 988 989
	/* CLONE_CHILD_CLEARTID: */
	int __user			*clear_child_tid;

990 991
	/* PF_KTHREAD | PF_IO_WORKER */
	void				*worker_private;
992

993 994
	u64				utime;
	u64				stime;
995
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
996 997
	u64				utimescaled;
	u64				stimescaled;
998
#endif
999 1000
	u64				gtime;
	struct prev_cputime		prev_cputime;
1001
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1002
	struct vtime			vtime;
1003
#endif
1004 1005

#ifdef CONFIG_NO_HZ_FULL
1006
	atomic_t			tick_dep_mask;
1007
#endif
1008 1009 1010 1011 1012 1013 1014 1015
	/* Context switch counts: */
	unsigned long			nvcsw;
	unsigned long			nivcsw;

	/* Monotonic time in nsecs: */
	u64				start_time;

	/* Boot based time in nsecs: */
1016
	u64				start_boottime;
1017 1018 1019 1020

	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
	unsigned long			min_flt;
	unsigned long			maj_flt;
L
Linus Torvalds 已提交
1021

1022 1023
	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
	struct posix_cputimers		posix_cputimers;
L
Linus Torvalds 已提交
1024

1025 1026 1027 1028
#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
	struct posix_cputimers_work	posix_cputimers_work;
#endif

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	/* Process credentials: */

	/* Tracer's credentials at attach: */
	const struct cred __rcu		*ptracer_cred;

	/* Objective and real subjective task credentials (COW): */
	const struct cred __rcu		*real_cred;

	/* Effective (overridable) subjective task credentials (COW): */
	const struct cred __rcu		*cred;

1040 1041 1042 1043 1044
#ifdef CONFIG_KEYS
	/* Cached requested key. */
	struct key			*cached_requested_key;
#endif

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	/*
	 * executable name, excluding path.
	 *
	 * - normally initialized setup_new_exec()
	 * - access it with [gs]et_task_comm()
	 * - lock it with task_lock()
	 */
	char				comm[TASK_COMM_LEN];

	struct nameidata		*nameidata;

1056
#ifdef CONFIG_SYSVIPC
1057 1058
	struct sysv_sem			sysvsem;
	struct sysv_shm			sysvshm;
1059
#endif
1060
#ifdef CONFIG_DETECT_HUNG_TASK
1061
	unsigned long			last_switch_count;
1062
	unsigned long			last_switch_time;
1063
#endif
1064 1065 1066 1067 1068 1069
	/* Filesystem information: */
	struct fs_struct		*fs;

	/* Open file information: */
	struct files_struct		*files;

1070 1071 1072 1073
#ifdef CONFIG_IO_URING
	struct io_uring_task		*io_uring;
#endif

1074 1075 1076 1077 1078
	/* Namespaces: */
	struct nsproxy			*nsproxy;

	/* Signal handlers: */
	struct signal_struct		*signal;
1079
	struct sighand_struct __rcu		*sighand;
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	sigset_t			blocked;
	sigset_t			real_blocked;
	/* Restored if set_restore_sigmask() was used: */
	sigset_t			saved_sigmask;
	struct sigpending		pending;
	unsigned long			sas_ss_sp;
	size_t				sas_ss_size;
	unsigned int			sas_ss_flags;

	struct callback_head		*task_works;

1091
#ifdef CONFIG_AUDIT
A
Al Viro 已提交
1092
#ifdef CONFIG_AUDITSYSCALL
1093 1094
	struct audit_context		*audit_context;
#endif
1095 1096
	kuid_t				loginuid;
	unsigned int			sessionid;
A
Al Viro 已提交
1097
#endif
1098
	struct seccomp			seccomp;
1099
	struct syscall_user_dispatch	syscall_dispatch;
1100 1101

	/* Thread group tracking: */
1102 1103
	u64				parent_exec_id;
	u64				self_exec_id;
L
Linus Torvalds 已提交
1104

1105 1106
	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
	spinlock_t			alloc_lock;
L
Linus Torvalds 已提交
1107

1108
	/* Protection of the PI data structures: */
1109
	raw_spinlock_t			pi_lock;
1110

1111
	struct wake_q_node		wake_q;
1112

I
Ingo Molnar 已提交
1113
#ifdef CONFIG_RT_MUTEXES
1114
	/* PI waiters blocked on a rt_mutex held by this task: */
1115
	struct rb_root_cached		pi_waiters;
1116 1117
	/* Updated under owner's pi_lock and rq lock */
	struct task_struct		*pi_top_task;
1118 1119
	/* Deadlock detection and priority inheritance handling: */
	struct rt_mutex_waiter		*pi_blocked_on;
I
Ingo Molnar 已提交
1120 1121
#endif

1122
#ifdef CONFIG_DEBUG_MUTEXES
1123 1124
	/* Mutex deadlock detection: */
	struct mutex_waiter		*blocked_on;
1125
#endif
1126

1127 1128 1129 1130
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
	int				non_block_count;
#endif

1131
#ifdef CONFIG_TRACE_IRQFLAGS
1132
	struct irqtrace_events		irqtrace;
1133
	unsigned int			hardirq_threaded;
1134
	u64				hardirq_chain_key;
1135 1136
	int				softirqs_enabled;
	int				softirq_context;
1137
	int				irq_config;
1138
#endif
1139 1140 1141
#ifdef CONFIG_PREEMPT_RT
	int				softirq_disable_cnt;
#endif
1142

I
Ingo Molnar 已提交
1143
#ifdef CONFIG_LOCKDEP
1144 1145 1146 1147 1148
# define MAX_LOCK_DEPTH			48UL
	u64				curr_chain_key;
	int				lockdep_depth;
	unsigned int			lockdep_recursion;
	struct held_lock		held_locks[MAX_LOCK_DEPTH];
I
Ingo Molnar 已提交
1149
#endif
1150

1151
#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1152
	unsigned int			in_ubsan;
1153
#endif
1154

1155 1156
	/* Journalling filesystem info: */
	void				*journal_info;
L
Linus Torvalds 已提交
1157

1158 1159
	/* Stacked block device info: */
	struct bio_list			*bio_list;
1160

1161 1162
	/* Stack plugging: */
	struct blk_plug			*plug;
1163

1164 1165 1166 1167
	/* VM state: */
	struct reclaim_state		*reclaim_state;

	struct backing_dev_info		*backing_dev_info;
L
Linus Torvalds 已提交
1168

1169
	struct io_context		*io_context;
L
Linus Torvalds 已提交
1170

1171 1172 1173
#ifdef CONFIG_COMPACTION
	struct capture_control		*capture_control;
#endif
1174 1175
	/* Ptrace state: */
	unsigned long			ptrace_message;
1176
	kernel_siginfo_t		*last_siginfo;
L
Linus Torvalds 已提交
1177

1178
	struct task_io_accounting	ioac;
1179 1180 1181 1182
#ifdef CONFIG_PSI
	/* Pressure stall state */
	unsigned int			psi_flags;
#endif
1183 1184 1185 1186 1187 1188 1189
#ifdef CONFIG_TASK_XACCT
	/* Accumulated RSS usage: */
	u64				acct_rss_mem1;
	/* Accumulated virtual memory usage: */
	u64				acct_vm_mem1;
	/* stime + utime since last update: */
	u64				acct_timexpd;
L
Linus Torvalds 已提交
1190 1191
#endif
#ifdef CONFIG_CPUSETS
1192 1193
	/* Protected by ->alloc_lock: */
	nodemask_t			mems_allowed;
I
Ingo Molnar 已提交
1194
	/* Sequence number to catch updates: */
1195
	seqcount_spinlock_t		mems_allowed_seq;
1196 1197
	int				cpuset_mem_spread_rotor;
	int				cpuset_slab_spread_rotor;
L
Linus Torvalds 已提交
1198
#endif
1199
#ifdef CONFIG_CGROUPS
1200 1201 1202 1203
	/* Control Group info protected by css_set_lock: */
	struct css_set __rcu		*cgroups;
	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
	struct list_head		cg_list;
1204
#endif
1205
#ifdef CONFIG_X86_CPU_RESCTRL
1206
	u32				closid;
1207
	u32				rmid;
F
Fenghua Yu 已提交
1208
#endif
1209
#ifdef CONFIG_FUTEX
1210
	struct robust_list_head __user	*robust_list;
1211 1212 1213
#ifdef CONFIG_COMPAT
	struct compat_robust_list_head __user *compat_robust_list;
#endif
1214 1215
	struct list_head		pi_state_list;
	struct futex_pi_state		*pi_state_cache;
1216
	struct mutex			futex_exit_mutex;
1217
	unsigned int			futex_state;
1218
#endif
1219
#ifdef CONFIG_PERF_EVENTS
1220 1221 1222
	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
	struct mutex			perf_event_mutex;
	struct list_head		perf_event_list;
1223
#endif
1224
#ifdef CONFIG_DEBUG_PREEMPT
1225
	unsigned long			preempt_disable_ip;
1226
#endif
1227
#ifdef CONFIG_NUMA
1228 1229
	/* Protected by alloc_lock: */
	struct mempolicy		*mempolicy;
1230
	short				il_prev;
1231
	short				pref_node_fork;
1232
#endif
1233
#ifdef CONFIG_NUMA_BALANCING
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	int				numa_scan_seq;
	unsigned int			numa_scan_period;
	unsigned int			numa_scan_period_max;
	int				numa_preferred_nid;
	unsigned long			numa_migrate_retry;
	/* Migration stamp: */
	u64				node_stamp;
	u64				last_task_numa_placement;
	u64				last_sum_exec_runtime;
	struct callback_head		numa_work;

1245 1246 1247 1248 1249 1250 1251 1252 1253
	/*
	 * This pointer is only modified for current in syscall and
	 * pagefault context (and for tasks being destroyed), so it can be read
	 * from any of the following contexts:
	 *  - RCU read-side critical section
	 *  - current->numa_group from everywhere
	 *  - task's runqueue locked, task not running
	 */
	struct numa_group __rcu		*numa_group;
1254

1255
	/*
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	 * numa_faults is an array split into four regions:
	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
	 * in this precise order.
	 *
	 * faults_memory: Exponential decaying average of faults on a per-node
	 * basis. Scheduling placement decisions are made based on these
	 * counts. The values remain static for the duration of a PTE scan.
	 * faults_cpu: Track the nodes the process was running on when a NUMA
	 * hinting fault was incurred.
	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
	 * during the current scan window. When the scan completes, the counts
	 * in faults_memory and faults_cpu decay and these values are copied.
1268
	 */
1269 1270
	unsigned long			*numa_faults;
	unsigned long			total_numa_faults;
1271

1272 1273
	/*
	 * numa_faults_locality tracks if faults recorded during the last
1274 1275 1276
	 * scan window were remote/local or failed to migrate. The task scan
	 * period is adapted based on the locality of the faults with different
	 * weights depending on whether they were shared or private faults
1277
	 */
1278
	unsigned long			numa_faults_locality[3];
1279

1280
	unsigned long			numa_pages_migrated;
1281 1282
#endif /* CONFIG_NUMA_BALANCING */

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
#ifdef CONFIG_RSEQ
	struct rseq __user *rseq;
	u32 rseq_sig;
	/*
	 * RmW on rseq_event_mask must be performed atomically
	 * with respect to preemption.
	 */
	unsigned long rseq_event_mask;
#endif

1293
	struct tlbflush_unmap_batch	tlb_ubc;
1294

1295 1296 1297 1298
	union {
		refcount_t		rcu_users;
		struct rcu_head		rcu;
	};
1299

1300 1301
	/* Cache last used pipe for splice(): */
	struct pipe_inode_info		*splice_pipe;
1302

1303
	struct page_frag		task_frag;
1304

1305 1306
#ifdef CONFIG_TASK_DELAY_ACCT
	struct task_delay_info		*delays;
1307
#endif
1308

1309
#ifdef CONFIG_FAULT_INJECTION
1310
	int				make_it_fail;
1311
	unsigned int			fail_nth;
1312
#endif
1313
	/*
1314 1315
	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
	 * balance_dirty_pages() for a dirty throttling pause:
1316
	 */
1317 1318 1319 1320
	int				nr_dirtied;
	int				nr_dirtied_pause;
	/* Start of a write-and-pause period: */
	unsigned long			dirty_paused_when;
1321

A
Arjan van de Ven 已提交
1322
#ifdef CONFIG_LATENCYTOP
1323 1324
	int				latency_record_count;
	struct latency_record		latency_record[LT_SAVECOUNT];
A
Arjan van de Ven 已提交
1325
#endif
1326
	/*
1327
	 * Time slack values; these are used to round up poll() and
1328 1329
	 * select() etc timeout values. These are in nanoseconds.
	 */
1330 1331
	u64				timer_slack_ns;
	u64				default_timer_slack_ns;
1332

1333
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1334
	unsigned int			kasan_depth;
1335
#endif
1336

1337 1338
#ifdef CONFIG_KCSAN
	struct kcsan_ctx		kcsan_ctx;
1339 1340 1341
#ifdef CONFIG_TRACE_IRQFLAGS
	struct irqtrace_events		kcsan_save_irqtrace;
#endif
1342
#endif
1343

1344 1345 1346 1347
#if IS_ENABLED(CONFIG_KUNIT)
	struct kunit			*kunit_test;
#endif

1348
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1349 1350
	/* Index of current stored address in ret_stack: */
	int				curr_ret_stack;
1351
	int				curr_ret_depth;
1352 1353 1354 1355 1356 1357 1358

	/* Stack of return addresses for return function tracing: */
	struct ftrace_ret_stack		*ret_stack;

	/* Timestamp for last schedule: */
	unsigned long long		ftrace_timestamp;

1359 1360
	/*
	 * Number of functions that haven't been traced
1361
	 * because of depth overrun:
1362
	 */
1363 1364 1365 1366
	atomic_t			trace_overrun;

	/* Pause tracing: */
	atomic_t			tracing_graph_pause;
1367
#endif
1368

1369
#ifdef CONFIG_TRACING
1370 1371 1372 1373 1374
	/* State flags for use by tracers: */
	unsigned long			trace;

	/* Bitmask and counter of trace recursion: */
	unsigned long			trace_recursion;
1375
#endif /* CONFIG_TRACING */
1376

D
Dmitry Vyukov 已提交
1377
#ifdef CONFIG_KCOV
A
Andrey Konovalov 已提交
1378 1379
	/* See kernel/kcov.c for more details. */

1380
	/* Coverage collection mode enabled for this task (0 if disabled): */
1381
	unsigned int			kcov_mode;
1382 1383 1384 1385 1386 1387 1388 1389 1390

	/* Size of the kcov_area: */
	unsigned int			kcov_size;

	/* Buffer for coverage collection: */
	void				*kcov_area;

	/* KCOV descriptor wired with this task or NULL: */
	struct kcov			*kcov;
A
Andrey Konovalov 已提交
1391 1392 1393 1394 1395 1396

	/* KCOV common handle for remote coverage collection: */
	u64				kcov_handle;

	/* KCOV sequence number: */
	int				kcov_sequence;
1397 1398 1399

	/* Collect coverage from softirq context: */
	unsigned int			kcov_softirq;
D
Dmitry Vyukov 已提交
1400
#endif
1401

1402
#ifdef CONFIG_MEMCG
1403 1404 1405
	struct mem_cgroup		*memcg_in_oom;
	gfp_t				memcg_oom_gfp_mask;
	int				memcg_oom_order;
1406

1407 1408
	/* Number of pages to reclaim on returning to userland: */
	unsigned int			memcg_nr_pages_over_high;
1409 1410 1411

	/* Used by memcontrol for targeted memcg charge: */
	struct mem_cgroup		*active_memcg;
1412
#endif
1413

1414 1415 1416 1417
#ifdef CONFIG_BLK_CGROUP
	struct request_queue		*throttle_queue;
#endif

1418
#ifdef CONFIG_UPROBES
1419
	struct uprobe_task		*utask;
1420
#endif
K
Kent Overstreet 已提交
1421
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1422 1423
	unsigned int			sequential_io;
	unsigned int			sequential_io_avg;
K
Kent Overstreet 已提交
1424
#endif
1425
	struct kmap_ctrl		kmap_ctrl;
P
Peter Zijlstra 已提交
1426
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1427
	unsigned long			task_state_change;
1428 1429 1430
# ifdef CONFIG_PREEMPT_RT
	unsigned long			saved_state_change;
# endif
P
Peter Zijlstra 已提交
1431
#endif
1432
	int				pagefault_disabled;
1433
#ifdef CONFIG_MMU
1434
	struct task_struct		*oom_reaper_list;
1435
#endif
1436
#ifdef CONFIG_VMAP_STACK
1437
	struct vm_struct		*stack_vm_area;
1438
#endif
1439
#ifdef CONFIG_THREAD_INFO_IN_TASK
1440
	/* A live task holds one reference: */
1441
	refcount_t			stack_refcount;
1442 1443 1444
#endif
#ifdef CONFIG_LIVEPATCH
	int patch_state;
1445
#endif
1446 1447 1448
#ifdef CONFIG_SECURITY
	/* Used by LSM modules for access restriction: */
	void				*security;
1449
#endif
1450 1451 1452
#ifdef CONFIG_BPF_SYSCALL
	/* Used by BPF task local storage */
	struct bpf_local_storage __rcu	*bpf_storage;
1453 1454
	/* Used for BPF run context */
	struct bpf_run_ctx		*bpf_ctx;
1455
#endif
K
Kees Cook 已提交
1456

1457 1458
#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
	unsigned long			lowest_stack;
1459
	unsigned long			prev_lowest_stack;
1460 1461
#endif

1462
#ifdef CONFIG_X86_MCE
1463 1464
	void __user			*mce_vaddr;
	__u64				mce_kflags;
1465
	u64				mce_addr;
1466 1467 1468
	__u64				mce_ripv : 1,
					mce_whole_page : 1,
					__mce_reserved : 62;
1469
	struct callback_head		mce_kill_me;
1470
	int				mce_count;
1471 1472
#endif

P
Peter Zijlstra 已提交
1473 1474 1475 1476
#ifdef CONFIG_KRETPROBES
	struct llist_head               kretprobe_instances;
#endif

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
	/*
	 * If L1D flush is supported on mm context switch
	 * then we use this callback head to queue kill work
	 * to kill tasks that are not running on SMT disabled
	 * cores
	 */
	struct callback_head		l1d_flush_kill;
#endif

K
Kees Cook 已提交
1487 1488 1489 1490 1491 1492
	/*
	 * New fields for task_struct should be added above here, so that
	 * they are included in the randomized portion of task_struct.
	 */
	randomized_struct_fields_end

1493 1494 1495 1496 1497 1498 1499 1500 1501
	/* CPU-specific state of this task: */
	struct thread_struct		thread;

	/*
	 * WARNING: on x86, 'thread_struct' contains a variable-sized
	 * structure.  It *MUST* be at the end of 'task_struct'.
	 *
	 * Do not put anything below here!
	 */
L
Linus Torvalds 已提交
1502 1503
};

A
Alexey Dobriyan 已提交
1504
static inline struct pid *task_pid(struct task_struct *task)
1505
{
1506
	return task->thread_pid;
1507 1508
}

1509 1510 1511 1512 1513
/*
 * the helpers to get the task's different pids as they are seen
 * from various namespaces
 *
 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
E
Eric W. Biederman 已提交
1514 1515
 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
 *                     current.
1516 1517 1518 1519
 * task_xid_nr_ns()  : id seen from the ns specified;
 *
 * see also pid_nr() etc in include/linux/pid.h
 */
1520
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1521

A
Alexey Dobriyan 已提交
1522
static inline pid_t task_pid_nr(struct task_struct *tsk)
1523 1524 1525 1526
{
	return tsk->pid;
}

1527
static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1528 1529 1530
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
}
1531 1532 1533

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{
1534
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1535 1536 1537
}


A
Alexey Dobriyan 已提交
1538
static inline pid_t task_tgid_nr(struct task_struct *tsk)
1539 1540 1541 1542
{
	return tsk->tgid;
}

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
/**
 * pid_alive - check that a task structure is not stale
 * @p: Task structure to be checked.
 *
 * Test if a process is not yet dead (at most zombie state)
 * If pid_alive fails, then pointers within the task structure
 * can be stale and must not be dereferenced.
 *
 * Return: 1 if the process is alive. 0 otherwise.
 */
static inline int pid_alive(const struct task_struct *p)
{
1555
	return p->thread_pid != NULL;
1556
}
1557

1558
static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1559
{
1560
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1561 1562 1563 1564
}

static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
{
1565
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1566 1567 1568
}


1569
static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1570
{
1571
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1572 1573 1574 1575
}

static inline pid_t task_session_vnr(struct task_struct *tsk)
{
1576
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1577 1578
}

1579 1580
static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
E
Eric W. Biederman 已提交
1581
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1582 1583 1584 1585
}

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
E
Eric W. Biederman 已提交
1586
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
}

static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
{
	pid_t pid = 0;

	rcu_read_lock();
	if (pid_alive(tsk))
		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
	rcu_read_unlock();

	return pid;
}

static inline pid_t task_ppid_nr(const struct task_struct *tsk)
{
	return task_ppid_nr_ns(tsk, &init_pid_ns);
}

1606
/* Obsolete, do not use: */
1607 1608 1609 1610
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
	return task_pgrp_nr_ns(tsk, &init_pid_ns);
}
1611

1612 1613 1614
#define TASK_REPORT_IDLE	(TASK_REPORT + 1)
#define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)

1615
static inline unsigned int task_state_index(struct task_struct *tsk)
1616
{
1617
	unsigned int tsk_state = READ_ONCE(tsk->__state);
1618
	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1619

1620 1621 1622 1623 1624
	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);

	if (tsk_state == TASK_IDLE)
		state = TASK_REPORT_IDLE;

1625 1626 1627
	return fls(state);
}

1628
static inline char task_index_to_char(unsigned int state)
1629
{
1630
	static const char state_char[] = "RSDTtXZPI";
1631

1632
	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1633

1634 1635 1636 1637 1638
	return state_char[state];
}

static inline char task_state_to_char(struct task_struct *tsk)
{
1639
	return task_index_to_char(task_state_index(tsk));
1640 1641
}

1642
/**
1643 1644
 * is_global_init - check if a task structure is init. Since init
 * is free to have sub-threads we need to check tgid.
1645 1646 1647
 * @tsk: Task structure to be checked.
 *
 * Check if a task structure is the first user space task the kernel created.
1648 1649
 *
 * Return: 1 if the task structure is init. 0 otherwise.
1650
 */
A
Alexey Dobriyan 已提交
1651
static inline int is_global_init(struct task_struct *tsk)
1652
{
1653
	return task_tgid_nr(tsk) == 1;
1654
}
1655

1656 1657
extern struct pid *cad_pid;

L
Linus Torvalds 已提交
1658 1659 1660
/*
 * Per process flags
 */
1661
#define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1662 1663
#define PF_IDLE			0x00000002	/* I am an IDLE thread */
#define PF_EXITING		0x00000004	/* Getting shut down */
1664
#define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1665
#define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
#define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
#define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
#define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
#define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
#define PF_DUMPCORE		0x00000200	/* Dumped core */
#define PF_SIGNALED		0x00000400	/* Killed by a signal */
#define PF_MEMALLOC		0x00000800	/* Allocating memory */
#define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
#define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
#define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
#define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
#define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1678 1679 1680
#define PF_KSWAPD		0x00020000	/* I am kswapd */
#define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
#define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1681 1682
#define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
						 * I am cleaning dirty pages from some other bdi. */
1683 1684 1685
#define PF_KTHREAD		0x00200000	/* I am a kernel thread */
#define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
#define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1686
#define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1687
#define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1688
#define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1689 1690
#define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
#define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
L
Linus Torvalds 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702

/*
 * Only the _current_ task can read/write to tsk->flags, but other
 * tasks can access tsk->flags in readonly mode for example
 * with tsk_used_math (like during threaded core dumping).
 * There is however an exception to this rule during ptrace
 * or during fork: the ptracer task is allowed to write to the
 * child->flags of its traced child (same goes for fork, the parent
 * can write to the child->flags), because we're guaranteed the
 * child is not running and in turn not changing child->flags
 * at the same time the parent does it.
 */
1703 1704 1705 1706 1707
#define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math()			clear_stopped_child_used_math(current)
#define set_used_math()				set_stopped_child_used_math(current)

L
Linus Torvalds 已提交
1708 1709
#define conditional_stopped_child_used_math(condition, child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1710 1711 1712

#define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)

L
Linus Torvalds 已提交
1713 1714
#define copy_to_stopped_child_used_math(child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1715

L
Linus Torvalds 已提交
1716
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1717 1718
#define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
#define used_math()				tsk_used_math(current)
L
Linus Torvalds 已提交
1719

1720
static __always_inline bool is_percpu_thread(void)
1721 1722 1723 1724 1725 1726 1727 1728 1729
{
#ifdef CONFIG_SMP
	return (current->flags & PF_NO_SETAFFINITY) &&
		(current->nr_cpus_allowed  == 1);
#else
	return true;
#endif
}

1730
/* Per-process atomic flags. */
1731 1732 1733
#define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
#define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
#define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1734 1735
#define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
#define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1736 1737
#define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
#define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1738
#define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1739

1740 1741 1742
#define TASK_PFA_TEST(name, func)					\
	static inline bool task_##func(struct task_struct *p)		\
	{ return test_bit(PFA_##name, &p->atomic_flags); }
1743

1744 1745 1746
#define TASK_PFA_SET(name, func)					\
	static inline void task_set_##func(struct task_struct *p)	\
	{ set_bit(PFA_##name, &p->atomic_flags); }
1747

1748 1749 1750 1751 1752 1753
#define TASK_PFA_CLEAR(name, func)					\
	static inline void task_clear_##func(struct task_struct *p)	\
	{ clear_bit(PFA_##name, &p->atomic_flags); }

TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1754

1755 1756 1757 1758 1759 1760 1761
TASK_PFA_TEST(SPREAD_PAGE, spread_page)
TASK_PFA_SET(SPREAD_PAGE, spread_page)
TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)

TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
TASK_PFA_SET(SPREAD_SLAB, spread_slab)
TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1762

1763 1764 1765 1766
TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)

1767 1768 1769 1770
TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)

1771 1772 1773
TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)

1774 1775 1776 1777 1778 1779 1780
TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)

TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)

1781
static inline void
1782
current_restore_flags(unsigned long orig_flags, unsigned long flags)
1783
{
1784 1785
	current->flags &= ~flags;
	current->flags |= orig_flags & flags;
1786 1787
}

1788 1789
extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
L
Linus Torvalds 已提交
1790
#ifdef CONFIG_SMP
1791 1792
extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1793 1794
extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
extern void release_user_cpus_ptr(struct task_struct *p);
1795
extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1796 1797
extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
L
Linus Torvalds 已提交
1798
#else
1799
static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1800 1801
{
}
1802
static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
1803
{
1804
	if (!cpumask_test_cpu(0, new_mask))
L
Linus Torvalds 已提交
1805 1806 1807
		return -EINVAL;
	return 0;
}
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
{
	if (src->user_cpus_ptr)
		return -EINVAL;
	return 0;
}
static inline void release_user_cpus_ptr(struct task_struct *p)
{
	WARN_ON(p->user_cpus_ptr);
}
1818 1819 1820 1821 1822

static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
{
	return 0;
}
L
Linus Torvalds 已提交
1823
#endif
1824

1825
extern int yield_to(struct task_struct *p, bool preempt);
1826 1827
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
1828

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 *
 * Return: The nice value [ -20 ... 0 ... 19 ].
 */
static inline int task_nice(const struct task_struct *p)
{
	return PRIO_TO_NICE((p)->static_prio);
}
1839

1840 1841
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
L
Linus Torvalds 已提交
1842
extern int idle_cpu(int cpu);
1843
extern int available_idle_cpu(int cpu);
1844 1845
extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1846 1847 1848
extern void sched_set_fifo(struct task_struct *p);
extern void sched_set_fifo_low(struct task_struct *p);
extern void sched_set_normal(struct task_struct *p, int nice);
1849
extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1850
extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1851
extern struct task_struct *idle_task(int cpu);
1852

1853 1854
/**
 * is_idle_task - is the specified task an idle task?
1855
 * @p: the task in question.
1856 1857
 *
 * Return: 1 if @p is an idle task. 0 otherwise.
1858
 */
1859
static __always_inline bool is_idle_task(const struct task_struct *p)
1860
{
1861
	return !!(p->flags & PF_IDLE);
1862
}
1863

1864
extern struct task_struct *curr_task(int cpu);
1865
extern void ia64_set_curr_task(int cpu, struct task_struct *p);
L
Linus Torvalds 已提交
1866 1867 1868 1869

void yield(void);

union thread_union {
1870 1871 1872
#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
	struct task_struct task;
#endif
1873
#ifndef CONFIG_THREAD_INFO_IN_TASK
L
Linus Torvalds 已提交
1874
	struct thread_info thread_info;
1875
#endif
L
Linus Torvalds 已提交
1876 1877 1878
	unsigned long stack[THREAD_SIZE/sizeof(long)];
};

1879 1880 1881 1882 1883 1884
#ifndef CONFIG_THREAD_INFO_IN_TASK
extern struct thread_info init_thread_info;
#endif

extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];

1885
#ifdef CONFIG_THREAD_INFO_IN_TASK
1886
# define task_thread_info(task)	(&(task)->thread_info)
1887 1888 1889 1890
#elif !defined(__HAVE_THREAD_FUNCTIONS)
# define task_thread_info(task)	((struct thread_info *)(task)->stack)
#endif

1891 1892 1893 1894 1895
/*
 * find a task by one of its numerical ids
 *
 * find_task_by_pid_ns():
 *      finds a task by its pid in the specified namespace
1896 1897
 * find_task_by_vpid():
 *      finds a task by its virtual pid
1898
 *
1899
 * see also find_vpid() etc in include/linux/pid.h
1900 1901
 */

1902
extern struct task_struct *find_task_by_vpid(pid_t nr);
1903
extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1904

1905 1906 1907 1908 1909
/*
 * find a task by its virtual pid and get the task struct
 */
extern struct task_struct *find_get_task_by_vpid(pid_t nr);

1910 1911
extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
1912
extern void wake_up_new_task(struct task_struct *tsk);
1913

L
Linus Torvalds 已提交
1914
#ifdef CONFIG_SMP
1915
extern void kick_process(struct task_struct *tsk);
L
Linus Torvalds 已提交
1916
#else
1917
static inline void kick_process(struct task_struct *tsk) { }
L
Linus Torvalds 已提交
1918 1919
#endif

1920
extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1921

1922 1923 1924 1925
static inline void set_task_comm(struct task_struct *tsk, const char *from)
{
	__set_task_comm(tsk, from, false);
}
1926

1927 1928 1929 1930 1931
extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
#define get_task_comm(buf, tsk) ({			\
	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
	__get_task_comm(buf, sizeof(buf), tsk);		\
})
L
Linus Torvalds 已提交
1932 1933

#ifdef CONFIG_SMP
1934 1935 1936 1937 1938 1939 1940 1941 1942
static __always_inline void scheduler_ipi(void)
{
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
	preempt_fold_need_resched();
}
1943
extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
L
Linus Torvalds 已提交
1944
#else
1945
static inline void scheduler_ipi(void) { }
1946
static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
R
Roland McGrath 已提交
1947 1948 1949
{
	return 1;
}
L
Linus Torvalds 已提交
1950 1951
#endif

1952 1953 1954
/*
 * Set thread flags in other task's structures.
 * See asm/thread_info.h for TIF_xxxx flags available:
L
Linus Torvalds 已提交
1955 1956 1957
 */
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1958
	set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1959 1960 1961 1962
}

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1963
	clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1964 1965
}

1966 1967 1968 1969 1970 1971
static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
					  bool value)
{
	update_ti_thread_flag(task_thread_info(tsk), flag, value);
}

L
Linus Torvalds 已提交
1972 1973
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1974
	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1975 1976 1977 1978
}

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1979
	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1980 1981 1982 1983
}

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1984
	return test_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
}

static inline void set_tsk_need_resched(struct task_struct *tsk)
{
	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

1997 1998 1999 2000 2001
static inline int test_tsk_need_resched(struct task_struct *tsk)
{
	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}

L
Linus Torvalds 已提交
2002 2003 2004 2005 2006 2007
/*
 * cond_resched() and cond_resched_lock(): latency reduction via
 * explicit rescheduling in places that are safe. The return
 * value indicates whether a reschedule was done in fact.
 * cond_resched_lock() will drop the spinlock before scheduling,
 */
2008 2009 2010 2011 2012 2013 2014 2015 2016
#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
extern int __cond_resched(void);

#ifdef CONFIG_PREEMPT_DYNAMIC

DECLARE_STATIC_CALL(cond_resched, __cond_resched);

static __always_inline int _cond_resched(void)
{
P
Peter Zijlstra 已提交
2017
	return static_call_mod(cond_resched)();
2018 2019
}

2020
#else
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

static inline int _cond_resched(void)
{
	return __cond_resched();
}

#endif /* CONFIG_PREEMPT_DYNAMIC */

#else

2031
static inline int _cond_resched(void) { return 0; }
2032 2033

#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2034

2035
#define cond_resched() ({			\
2036
	__might_resched(__FILE__, __LINE__, 0);	\
2037 2038
	_cond_resched();			\
})
2039

2040
extern int __cond_resched_lock(spinlock_t *lock);
B
Ben Gardon 已提交
2041 2042
extern int __cond_resched_rwlock_read(rwlock_t *lock);
extern int __cond_resched_rwlock_write(rwlock_t *lock);
2043

2044 2045 2046
#define MIGHT_RESCHED_RCU_SHIFT		8
#define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
#ifndef CONFIG_PREEMPT_RT
/*
 * Non RT kernels have an elevated preempt count due to the held lock,
 * but are not allowed to be inside a RCU read side critical section
 */
# define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
#else
/*
 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
 * cond_resched*lock() has to take that into account because it checks for
 * preempt_count() and rcu_preempt_depth().
 */
# define PREEMPT_LOCK_RESCHED_OFFSETS	\
	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
#endif

#define cond_resched_lock(lock) ({						\
	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
	__cond_resched_lock(lock);						\
2066 2067
})

2068 2069 2070
#define cond_resched_rwlock_read(lock) ({					\
	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
	__cond_resched_rwlock_read(lock);					\
B
Ben Gardon 已提交
2071 2072
})

2073 2074 2075
#define cond_resched_rwlock_write(lock) ({					\
	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
	__cond_resched_rwlock_write(lock);					\
B
Ben Gardon 已提交
2076 2077
})

2078 2079 2080 2081 2082 2083 2084 2085 2086
static inline void cond_resched_rcu(void)
{
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
	rcu_read_unlock();
	cond_resched();
	rcu_read_lock();
#endif
}

L
Linus Torvalds 已提交
2087 2088
/*
 * Does a critical section need to be broken due to another
2089
 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
N
Nick Piggin 已提交
2090
 * but a general need for low latency)
L
Linus Torvalds 已提交
2091
 */
N
Nick Piggin 已提交
2092
static inline int spin_needbreak(spinlock_t *lock)
L
Linus Torvalds 已提交
2093
{
2094
#ifdef CONFIG_PREEMPTION
N
Nick Piggin 已提交
2095 2096
	return spin_is_contended(lock);
#else
L
Linus Torvalds 已提交
2097
	return 0;
N
Nick Piggin 已提交
2098
#endif
L
Linus Torvalds 已提交
2099 2100
}

B
Ben Gardon 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
/*
 * Check if a rwlock is contended.
 * Returns non-zero if there is another task waiting on the rwlock.
 * Returns zero if the lock is not contended or the system / underlying
 * rwlock implementation does not support contention detection.
 * Technically does not depend on CONFIG_PREEMPTION, but a general need
 * for low latency.
 */
static inline int rwlock_needbreak(rwlock_t *lock)
{
#ifdef CONFIG_PREEMPTION
	return rwlock_is_contended(lock);
#else
	return 0;
#endif
}

2118 2119 2120 2121 2122
static __always_inline bool need_resched(void)
{
	return unlikely(tif_need_resched());
}

L
Linus Torvalds 已提交
2123 2124 2125 2126 2127 2128 2129
/*
 * Wrappers for p->thread_info->cpu access. No-op on UP.
 */
#ifdef CONFIG_SMP

static inline unsigned int task_cpu(const struct task_struct *p)
{
2130
	return READ_ONCE(task_thread_info(p)->cpu);
L
Linus Torvalds 已提交
2131 2132
}

I
Ingo Molnar 已提交
2133
extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
L
Linus Torvalds 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147

#else

static inline unsigned int task_cpu(const struct task_struct *p)
{
	return 0;
}

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}

#endif /* CONFIG_SMP */

2148
extern bool sched_task_on_rq(struct task_struct *p);
2149
extern unsigned long get_wchan(struct task_struct *p);
2150

2151 2152 2153 2154 2155 2156 2157 2158 2159
/*
 * In order to reduce various lock holder preemption latencies provide an
 * interface to see if a vCPU is currently running or not.
 *
 * This allows us to terminate optimistic spin loops and block, analogous to
 * the native optimistic spin heuristic of testing if the lock owner task is
 * running or not.
 */
#ifndef vcpu_is_preempted
2160 2161 2162 2163
static inline bool vcpu_is_preempted(int cpu)
{
	return false;
}
2164 2165
#endif

2166 2167
extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2168

D
Dave Hansen 已提交
2169 2170 2171 2172
#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk)	TASK_SIZE
#endif

2173 2174 2175 2176 2177
#ifdef CONFIG_SMP
/* Returns effective CPU energy utilization, as seen by the scheduler */
unsigned long sched_cpu_util(int cpu, unsigned long max);
#endif /* CONFIG_SMP */

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
#ifdef CONFIG_RSEQ

/*
 * Map the event mask on the user-space ABI enum rseq_cs_flags
 * for direct mask checks.
 */
enum rseq_event_mask_bits {
	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
};

enum rseq_event_mask {
	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
};

static inline void rseq_set_notify_resume(struct task_struct *t)
{
	if (t->rseq)
		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
}

2202
void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2203

2204 2205
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
2206 2207
{
	if (current->rseq)
2208
		__rseq_handle_notify_resume(ksig, regs);
2209 2210
}

2211 2212
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
2213 2214 2215 2216
{
	preempt_disable();
	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
	preempt_enable();
2217
	rseq_handle_notify_resume(ksig, regs);
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
}

/* rseq_preempt() requires preemption to be disabled. */
static inline void rseq_preempt(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/* rseq_migrate() requires preemption to be disabled. */
static inline void rseq_migrate(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/*
 * If parent process has a registered restartable sequences area, the
2236
 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2237 2238 2239
 */
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
2240
	if (clone_flags & CLONE_VM) {
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
		t->rseq = NULL;
		t->rseq_sig = 0;
		t->rseq_event_mask = 0;
	} else {
		t->rseq = current->rseq;
		t->rseq_sig = current->rseq_sig;
		t->rseq_event_mask = current->rseq_event_mask;
	}
}

static inline void rseq_execve(struct task_struct *t)
{
	t->rseq = NULL;
	t->rseq_sig = 0;
	t->rseq_event_mask = 0;
}

#else

static inline void rseq_set_notify_resume(struct task_struct *t)
{
}
2263 2264
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
2265 2266
{
}
2267 2268
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
{
}
static inline void rseq_preempt(struct task_struct *t)
{
}
static inline void rseq_migrate(struct task_struct *t)
{
}
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
}
static inline void rseq_execve(struct task_struct *t)
{
}

#endif

#ifdef CONFIG_DEBUG_RSEQ

void rseq_syscall(struct pt_regs *regs);

#else

static inline void rseq_syscall(struct pt_regs *regs)
{
}

#endif

2298 2299 2300 2301 2302 2303 2304 2305 2306
const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);

const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);

int sched_trace_rq_cpu(struct rq *rq);
2307
int sched_trace_rq_cpu_capacity(struct rq *rq);
2308
int sched_trace_rq_nr_running(struct rq *rq);
2309 2310 2311

const struct cpumask *sched_trace_rd_span(struct root_domain *rd);

2312 2313
#ifdef CONFIG_SCHED_CORE
extern void sched_core_free(struct task_struct *tsk);
2314
extern void sched_core_fork(struct task_struct *p);
2315 2316
extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
				unsigned long uaddr);
2317 2318
#else
static inline void sched_core_free(struct task_struct *tsk) { }
2319
static inline void sched_core_fork(struct task_struct *p) { }
2320 2321
#endif

L
Linus Torvalds 已提交
2322
#endif