sched.h 52.2 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

5 6 7 8
/*
 * Define 'struct task_struct' and provide the main scheduler
 * APIs (schedule(), wakeup variants, etc.)
 */
9

10
#include <uapi/linux/sched.h>
11

12
#include <asm/current.h>
L
Linus Torvalds 已提交
13

14
#include <linux/pid.h>
L
Linus Torvalds 已提交
15
#include <linux/sem.h>
16
#include <linux/shm.h>
17 18 19 20
#include <linux/kcov.h>
#include <linux/mutex.h>
#include <linux/plist.h>
#include <linux/hrtimer.h>
L
Linus Torvalds 已提交
21
#include <linux/seccomp.h>
22
#include <linux/nodemask.h>
23
#include <linux/rcupdate.h>
24
#include <linux/resource.h>
A
Arjan van de Ven 已提交
25
#include <linux/latencytop.h>
26 27
#include <linux/sched/prio.h>
#include <linux/signal_types.h>
28
#include <linux/psi_types.h>
29 30
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>
31
#include <linux/rseq.h>
32

33
/* task_struct member predeclarations (sorted alphabetically): */
34 35
struct audit_context;
struct backing_dev_info;
36
struct bio_list;
37
struct blk_plug;
38 39 40 41 42
struct cfs_rq;
struct fs_struct;
struct futex_pi_state;
struct io_context;
struct mempolicy;
43
struct nameidata;
44 45 46 47 48 49 50 51 52
struct nsproxy;
struct perf_event_context;
struct pid_namespace;
struct pipe_inode_info;
struct rcu_node;
struct reclaim_state;
struct robust_list_head;
struct sched_attr;
struct sched_param;
I
Ingo Molnar 已提交
53
struct seq_file;
54 55 56
struct sighand_struct;
struct signal_struct;
struct task_delay_info;
57
struct task_group;
L
Linus Torvalds 已提交
58

59 60 61 62 63 64 65 66 67 68
/*
 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 *
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.
 */
69 70

/* Used in tsk->state: */
71 72 73 74 75
#define TASK_RUNNING			0x0000
#define TASK_INTERRUPTIBLE		0x0001
#define TASK_UNINTERRUPTIBLE		0x0002
#define __TASK_STOPPED			0x0004
#define __TASK_TRACED			0x0008
76
/* Used in tsk->exit_state: */
77 78
#define EXIT_DEAD			0x0010
#define EXIT_ZOMBIE			0x0020
79 80
#define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
/* Used in tsk->state again: */
81 82 83 84
#define TASK_PARKED			0x0040
#define TASK_DEAD			0x0080
#define TASK_WAKEKILL			0x0100
#define TASK_WAKING			0x0200
85 86 87
#define TASK_NOLOAD			0x0400
#define TASK_NEW			0x0800
#define TASK_STATE_MAX			0x1000
88 89 90 91 92 93 94 95 96 97 98 99 100 101

/* Convenience macros for the sake of set_current_state: */
#define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)

#define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)

/* Convenience macros for the sake of wake_up(): */
#define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)

/* get_task_state(): */
#define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
102 103
					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
					 TASK_PARKED)
104 105 106 107 108 109 110 111 112 113

#define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)

#define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)

#define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)

#define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
					 (task->flags & PF_FROZEN) == 0 && \
					 (task->state & TASK_NOLOAD) == 0)
L
Linus Torvalds 已提交
114

P
Peter Zijlstra 已提交
115 116
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP

117 118 119 120 121
/*
 * Special states are those that do not use the normal wait-loop pattern. See
 * the comment with set_special_state().
 */
#define is_special_task_state(state)				\
122
	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
123

P
Peter Zijlstra 已提交
124 125
#define __set_current_state(state_value)			\
	do {							\
126
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
127 128 129
		current->task_state_change = _THIS_IP_;		\
		current->state = (state_value);			\
	} while (0)
130

P
Peter Zijlstra 已提交
131 132
#define set_current_state(state_value)				\
	do {							\
133
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
134
		current->task_state_change = _THIS_IP_;		\
135
		smp_store_mb(current->state, (state_value));	\
P
Peter Zijlstra 已提交
136 137
	} while (0)

138 139 140 141 142 143 144 145 146
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		WARN_ON_ONCE(!is_special_task_state(state_value));	\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->task_state_change = _THIS_IP_;			\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)
P
Peter Zijlstra 已提交
147
#else
148 149 150 151 152
/*
 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *
153
 *   for (;;) {
154
 *	set_current_state(TASK_UNINTERRUPTIBLE);
155 156 157 158 159 160 161 162 163 164 165 166 167
 *	if (!need_sleep)
 *		break;
 *
 *	schedule();
 *   }
 *   __set_current_state(TASK_RUNNING);
 *
 * If the caller does not need such serialisation (because, for instance, the
 * condition test and condition change and wakeup are under the same lock) then
 * use __set_current_state().
 *
 * The above is typically ordered against the wakeup, which does:
 *
168 169
 *   need_sleep = false;
 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
170
 *
171 172
 * where wake_up_state() executes a full memory barrier before accessing the
 * task state.
173 174 175 176
 *
 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
177
 *
178 179 180 181
 * However, with slightly different timing the wakeup TASK_RUNNING store can
 * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
 * a problem either because that will result in one extra go around the loop
 * and our @cond test will save the day.
182
 *
183
 * Also see the comments of try_to_wake_up().
184
 */
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
#define __set_current_state(state_value)				\
	current->state = (state_value)

#define set_current_state(state_value)					\
	smp_store_mb(current->state, (state_value))

/*
 * set_special_state() should be used for those states when the blocking task
 * can not use the regular condition based wait-loop. In that case we must
 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 * will not collide with our state change.
 */
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)

P
Peter Zijlstra 已提交
205 206
#endif

207 208
/* Task command name length: */
#define TASK_COMM_LEN			16
L
Linus Torvalds 已提交
209 210 211

extern void scheduler_tick(void);

212 213 214 215 216 217 218
#define	MAX_SCHEDULE_TIMEOUT		LONG_MAX

extern long schedule_timeout(long timeout);
extern long schedule_timeout_interruptible(long timeout);
extern long schedule_timeout_killable(long timeout);
extern long schedule_timeout_uninterruptible(long timeout);
extern long schedule_timeout_idle(long timeout);
L
Linus Torvalds 已提交
219
asmlinkage void schedule(void);
220
extern void schedule_preempt_disabled(void);
L
Linus Torvalds 已提交
221

222 223
extern int __must_check io_schedule_prepare(void);
extern void io_schedule_finish(int token);
224
extern long io_schedule_timeout(long timeout);
225
extern void io_schedule(void);
226

227
/**
228
 * struct prev_cputime - snapshot of system and user cputime
229 230
 * @utime: time spent in user mode
 * @stime: time spent in system mode
231
 * @lock: protects the above two fields
232
 *
233 234
 * Stores previous user/system time values such that we can guarantee
 * monotonicity.
235
 */
236 237
struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
238 239 240
	u64				utime;
	u64				stime;
	raw_spinlock_t			lock;
241
#endif
242 243
};

244 245
/**
 * struct task_cputime - collected CPU time counts
246 247
 * @utime:		time spent in user mode, in nanoseconds
 * @stime:		time spent in kernel mode, in nanoseconds
248
 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
249
 *
250 251 252
 * This structure groups together three kinds of CPU time that are tracked for
 * threads and thread groups.  Most things considering CPU time want to group
 * these counts together and treat all three of them in parallel.
253 254
 */
struct task_cputime {
255 256 257
	u64				utime;
	u64				stime;
	unsigned long long		sum_exec_runtime;
258
};
259

260 261 262 263
/* Alternate field names when used on cache expirations: */
#define virt_exp			utime
#define prof_exp			stime
#define sched_exp			sum_exec_runtime
264

265 266 267 268 269 270 271 272 273 274 275 276 277
enum vtime_state {
	/* Task is sleeping or running in a CPU with VTIME inactive: */
	VTIME_INACTIVE = 0,
	/* Task runs in userspace in a CPU with VTIME active: */
	VTIME_USER,
	/* Task runs in kernelspace in a CPU with VTIME active: */
	VTIME_SYS,
};

struct vtime {
	seqcount_t		seqcount;
	unsigned long long	starttime;
	enum vtime_state	state;
278 279 280
	u64			utime;
	u64			stime;
	u64			gtime;
281 282
};

L
Linus Torvalds 已提交
283
struct sched_info {
284
#ifdef CONFIG_SCHED_INFO
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	/* Cumulative counters: */

	/* # of times we have run on this CPU: */
	unsigned long			pcount;

	/* Time spent waiting on a runqueue: */
	unsigned long long		run_delay;

	/* Timestamps: */

	/* When did we last run on a CPU? */
	unsigned long long		last_arrival;

	/* When were we last queued to run? */
	unsigned long long		last_queued;
L
Linus Torvalds 已提交
300

301
#endif /* CONFIG_SCHED_INFO */
302
};
L
Linus Torvalds 已提交
303

304 305 306 307 308 309 310
/*
 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 * has a few: load, load_avg, util_avg, freq, and capacity.
 *
 * We define a basic fixed point arithmetic range, and then formalize
 * all these metrics based on that basic range.
 */
311 312
# define SCHED_FIXEDPOINT_SHIFT		10
# define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
313

I
Ingo Molnar 已提交
314
struct load_weight {
315 316
	unsigned long			weight;
	u32				inv_weight;
I
Ingo Molnar 已提交
317 318
};

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
/**
 * struct util_est - Estimation utilization of FAIR tasks
 * @enqueued: instantaneous estimated utilization of a task/cpu
 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 *            utilization of a task
 *
 * Support data structure to track an Exponential Weighted Moving Average
 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 * average each time a task completes an activation. Sample's weight is chosen
 * so that the EWMA will be relatively insensitive to transient changes to the
 * task's workload.
 *
 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 * - task:   the task's util_avg at last task dequeue time
 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 * Thus, the util_est.enqueued of a task represents the contribution on the
 * estimated utilization of the CPU where that task is currently enqueued.
 *
 * Only for tasks we track a moving average of the past instantaneous
 * estimated utilization. This allows to absorb sporadic drops in utilization
 * of an otherwise almost periodic task.
 */
struct util_est {
	unsigned int			enqueued;
	unsigned int			ewma;
#define UTIL_EST_WEIGHT_SHIFT		2
345
} __attribute__((__aligned__(sizeof(u64))));
346

347
/*
348 349 350 351 352 353 354 355 356
 * The load_avg/util_avg accumulates an infinite geometric series
 * (see __update_load_avg() in kernel/sched/fair.c).
 *
 * [load_avg definition]
 *
 *   load_avg = runnable% * scale_load_down(load)
 *
 * where runnable% is the time ratio that a sched_entity is runnable.
 * For cfs_rq, it is the aggregated load_avg of all runnable and
357
 * blocked sched_entities.
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
 *
 * load_avg may also take frequency scaling into account:
 *
 *   load_avg = runnable% * scale_load_down(load) * freq%
 *
 * where freq% is the CPU frequency normalized to the highest frequency.
 *
 * [util_avg definition]
 *
 *   util_avg = running% * SCHED_CAPACITY_SCALE
 *
 * where running% is the time ratio that a sched_entity is running on
 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
 * and blocked sched_entities.
 *
 * util_avg may also factor frequency scaling and CPU capacity scaling:
 *
 *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
 *
 * where freq% is the same as above, and capacity% is the CPU capacity
 * normalized to the greatest capacity (due to uarch differences, etc).
 *
 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
 * we therefore scale them to as large a range as necessary. This is for
 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
 *
 * [Overflow issue]
 *
 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 * with the highest load (=88761), always runnable on a single cfs_rq,
 * and should not overflow as the number already hits PID_MAX_LIMIT.
 *
 * For all other cases (including 32-bit kernels), struct load_weight's
 * weight will overflow first before we do, because:
 *
 *    Max(load_avg) <= Max(load.weight)
 *
 * Then it is the load_weight's responsibility to consider overflow
 * issues.
398
 */
399
struct sched_avg {
400 401
	u64				last_update_time;
	u64				load_sum;
402
	u64				runnable_load_sum;
403 404 405
	u32				util_sum;
	u32				period_contrib;
	unsigned long			load_avg;
406
	unsigned long			runnable_load_avg;
407
	unsigned long			util_avg;
408
	struct util_est			util_est;
409
} ____cacheline_aligned;
410

411
struct sched_statistics {
412
#ifdef CONFIG_SCHEDSTATS
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
	u64				wait_start;
	u64				wait_max;
	u64				wait_count;
	u64				wait_sum;
	u64				iowait_count;
	u64				iowait_sum;

	u64				sleep_start;
	u64				sleep_max;
	s64				sum_sleep_runtime;

	u64				block_start;
	u64				block_max;
	u64				exec_max;
	u64				slice_max;

	u64				nr_migrations_cold;
	u64				nr_failed_migrations_affine;
	u64				nr_failed_migrations_running;
	u64				nr_failed_migrations_hot;
	u64				nr_forced_migrations;

	u64				nr_wakeups;
	u64				nr_wakeups_sync;
	u64				nr_wakeups_migrate;
	u64				nr_wakeups_local;
	u64				nr_wakeups_remote;
	u64				nr_wakeups_affine;
	u64				nr_wakeups_affine_attempts;
	u64				nr_wakeups_passive;
	u64				nr_wakeups_idle;
444
#endif
445
};
446 447

struct sched_entity {
448 449
	/* For load-balancing: */
	struct load_weight		load;
450
	unsigned long			runnable_weight;
451 452 453
	struct rb_node			run_node;
	struct list_head		group_node;
	unsigned int			on_rq;
454

455 456 457 458
	u64				exec_start;
	u64				sum_exec_runtime;
	u64				vruntime;
	u64				prev_sum_exec_runtime;
459

460
	u64				nr_migrations;
461

462
	struct sched_statistics		statistics;
463

I
Ingo Molnar 已提交
464
#ifdef CONFIG_FAIR_GROUP_SCHED
465 466
	int				depth;
	struct sched_entity		*parent;
I
Ingo Molnar 已提交
467
	/* rq on which this entity is (to be) queued: */
468
	struct cfs_rq			*cfs_rq;
I
Ingo Molnar 已提交
469
	/* rq "owned" by this entity/group: */
470
	struct cfs_rq			*my_q;
I
Ingo Molnar 已提交
471
#endif
472

473
#ifdef CONFIG_SMP
474 475 476 477 478 479
	/*
	 * Per entity load average tracking.
	 *
	 * Put into separate cache line so it does not
	 * collide with read-mostly values above.
	 */
480
	struct sched_avg		avg;
481
#endif
I
Ingo Molnar 已提交
482
};
483

P
Peter Zijlstra 已提交
484
struct sched_rt_entity {
485 486 487 488 489 490 491 492
	struct list_head		run_list;
	unsigned long			timeout;
	unsigned long			watchdog_stamp;
	unsigned int			time_slice;
	unsigned short			on_rq;
	unsigned short			on_list;

	struct sched_rt_entity		*back;
493
#ifdef CONFIG_RT_GROUP_SCHED
494
	struct sched_rt_entity		*parent;
P
Peter Zijlstra 已提交
495
	/* rq on which this entity is (to be) queued: */
496
	struct rt_rq			*rt_rq;
P
Peter Zijlstra 已提交
497
	/* rq "owned" by this entity/group: */
498
	struct rt_rq			*my_q;
P
Peter Zijlstra 已提交
499
#endif
500
} __randomize_layout;
P
Peter Zijlstra 已提交
501

502
struct sched_dl_entity {
503
	struct rb_node			rb_node;
504 505 506

	/*
	 * Original scheduling parameters. Copied here from sched_attr
507 508
	 * during sched_setattr(), they will remain the same until
	 * the next sched_setattr().
509
	 */
510 511 512
	u64				dl_runtime;	/* Maximum runtime for each instance	*/
	u64				dl_deadline;	/* Relative deadline of each instance	*/
	u64				dl_period;	/* Separation of two instances (period) */
513
	u64				dl_bw;		/* dl_runtime / dl_period		*/
514
	u64				dl_density;	/* dl_runtime / dl_deadline		*/
515 516 517 518 519 520

	/*
	 * Actual scheduling parameters. Initialized with the values above,
	 * they are continously updated during task execution. Note that
	 * the remaining runtime could be < 0 in case we are in overrun.
	 */
521 522 523
	s64				runtime;	/* Remaining runtime for this instance	*/
	u64				deadline;	/* Absolute deadline for this instance	*/
	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
524 525 526 527 528 529 530 531

	/*
	 * Some bool flags:
	 *
	 * @dl_throttled tells if we exhausted the runtime. If so, the
	 * task has to wait for a replenishment to be performed at the
	 * next firing of dl_timer.
	 *
532 533
	 * @dl_boosted tells if we are boosted due to DI. If so we are
	 * outside bandwidth enforcement mechanism (but only until we
534 535
	 * exit the critical section);
	 *
536
	 * @dl_yielded tells if task gave up the CPU before consuming
537
	 * all its available runtime during the last job.
538 539 540 541 542 543 544
	 *
	 * @dl_non_contending tells if the task is inactive while still
	 * contributing to the active utilization. In other words, it
	 * indicates if the inactive timer has been armed and its handler
	 * has not been executed yet. This flag is useful to avoid race
	 * conditions between the inactive timer handler and the wakeup
	 * code.
545 546 547
	 *
	 * @dl_overrun tells if the task asked to be informed about runtime
	 * overruns.
548
	 */
549 550 551 552
	unsigned int			dl_throttled      : 1;
	unsigned int			dl_boosted        : 1;
	unsigned int			dl_yielded        : 1;
	unsigned int			dl_non_contending : 1;
553
	unsigned int			dl_overrun	  : 1;
554 555 556 557 558

	/*
	 * Bandwidth enforcement timer. Each -deadline task has its
	 * own bandwidth to be enforced, thus we need one timer per task.
	 */
559
	struct hrtimer			dl_timer;
560 561 562 563 564 565 566 567 568

	/*
	 * Inactive timer, responsible for decreasing the active utilization
	 * at the "0-lag time". When a -deadline task blocks, it contributes
	 * to GRUB's active utilization until the "0-lag time", hence a
	 * timer is needed to decrease the active utilization at the correct
	 * time.
	 */
	struct hrtimer inactive_timer;
569
};
570

571 572
union rcu_special {
	struct {
573 574
		u8			blocked;
		u8			need_qs;
575
	} b; /* Bits. */
576
	u16 s; /* Set of bits. */
577
};
578

P
Peter Zijlstra 已提交
579 580 581
enum perf_event_task_context {
	perf_invalid_context = -1,
	perf_hw_context = 0,
582
	perf_sw_context,
P
Peter Zijlstra 已提交
583 584 585
	perf_nr_task_contexts,
};

586 587 588 589
struct wake_q_node {
	struct wake_q_node *next;
};

L
Linus Torvalds 已提交
590
struct task_struct {
591 592 593 594 595
#ifdef CONFIG_THREAD_INFO_IN_TASK
	/*
	 * For reasons of header soup (see current_thread_info()), this
	 * must be the first element of task_struct.
	 */
596
	struct thread_info		thread_info;
597
#endif
598 599
	/* -1 unrunnable, 0 runnable, >0 stopped: */
	volatile long			state;
K
Kees Cook 已提交
600 601 602 603 604 605 606

	/*
	 * This begins the randomizable portion of task_struct. Only
	 * scheduling-critical items should be added above here.
	 */
	randomized_struct_fields_start

607 608 609 610 611
	void				*stack;
	atomic_t			usage;
	/* Per task flags (PF_*), defined further below: */
	unsigned int			flags;
	unsigned int			ptrace;
L
Linus Torvalds 已提交
612

613
#ifdef CONFIG_SMP
614 615
	struct llist_node		wake_entry;
	int				on_cpu;
616
#ifdef CONFIG_THREAD_INFO_IN_TASK
617 618
	/* Current CPU: */
	unsigned int			cpu;
619
#endif
620 621 622
	unsigned int			wakee_flips;
	unsigned long			wakee_flip_decay_ts;
	struct task_struct		*last_wakee;
623

624 625 626 627 628 629 630 631
	/*
	 * recent_used_cpu is initially set as the last CPU used by a task
	 * that wakes affine another task. Waker/wakee relationships can
	 * push tasks around a CPU where each wakeup moves to the next one.
	 * Tracking a recently used CPU allows a quick search for a recently
	 * used CPU that may be idle.
	 */
	int				recent_used_cpu;
632
	int				wake_cpu;
633
#endif
634 635 636 637 638 639
	int				on_rq;

	int				prio;
	int				static_prio;
	int				normal_prio;
	unsigned int			rt_priority;
640

641 642 643
	const struct sched_class	*sched_class;
	struct sched_entity		se;
	struct sched_rt_entity		rt;
P
Peter Zijlstra 已提交
644
#ifdef CONFIG_CGROUP_SCHED
645
	struct task_group		*sched_task_group;
P
Peter Zijlstra 已提交
646
#endif
647
	struct sched_dl_entity		dl;
L
Linus Torvalds 已提交
648

649
#ifdef CONFIG_PREEMPT_NOTIFIERS
650 651
	/* List of struct preempt_notifier: */
	struct hlist_head		preempt_notifiers;
652 653
#endif

654
#ifdef CONFIG_BLK_DEV_IO_TRACE
655
	unsigned int			btrace_seq;
656
#endif
L
Linus Torvalds 已提交
657

658 659 660
	unsigned int			policy;
	int				nr_cpus_allowed;
	cpumask_t			cpus_allowed;
L
Linus Torvalds 已提交
661

P
Paul E. McKenney 已提交
662
#ifdef CONFIG_PREEMPT_RCU
663 664 665 666
	int				rcu_read_lock_nesting;
	union rcu_special		rcu_read_unlock_special;
	struct list_head		rcu_node_entry;
	struct rcu_node			*rcu_blocked_node;
667
#endif /* #ifdef CONFIG_PREEMPT_RCU */
668

P
Paul E. McKenney 已提交
669
#ifdef CONFIG_TASKS_RCU
670
	unsigned long			rcu_tasks_nvcsw;
671 672
	u8				rcu_tasks_holdout;
	u8				rcu_tasks_idx;
673
	int				rcu_tasks_idle_cpu;
674
	struct list_head		rcu_tasks_holdout_list;
P
Paul E. McKenney 已提交
675
#endif /* #ifdef CONFIG_TASKS_RCU */
P
Paul E. McKenney 已提交
676

677
	struct sched_info		sched_info;
L
Linus Torvalds 已提交
678

679
	struct list_head		tasks;
680
#ifdef CONFIG_SMP
681 682
	struct plist_node		pushable_tasks;
	struct rb_node			pushable_dl_tasks;
683
#endif
L
Linus Torvalds 已提交
684

685 686
	struct mm_struct		*mm;
	struct mm_struct		*active_mm;
687 688

	/* Per-thread vma caching: */
689
	struct vmacache			vmacache;
690

691 692
#ifdef SPLIT_RSS_COUNTING
	struct task_rss_stat		rss_stat;
693
#endif
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	int				exit_state;
	int				exit_code;
	int				exit_signal;
	/* The signal sent when the parent dies: */
	int				pdeath_signal;
	/* JOBCTL_*, siglock protected: */
	unsigned long			jobctl;

	/* Used for emulating ABI behavior of previous Linux versions: */
	unsigned int			personality;

	/* Scheduler bits, serialized by scheduler locks: */
	unsigned			sched_reset_on_fork:1;
	unsigned			sched_contributes_to_load:1;
	unsigned			sched_migrated:1;
	unsigned			sched_remote_wakeup:1;
710 711 712 713
#ifdef CONFIG_PSI
	unsigned			sched_psi_wake_requeue:1;
#endif

714 715 716 717 718 719 720 721 722 723
	/* Force alignment to the next boundary: */
	unsigned			:0;

	/* Unserialized, strictly 'current' */

	/* Bit to tell LSMs we're in execve(): */
	unsigned			in_execve:1;
	unsigned			in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
	unsigned			restore_sigmask:1;
724
#endif
T
Tejun Heo 已提交
725
#ifdef CONFIG_MEMCG
726
	unsigned			in_user_fault:1;
727
#endif
728
#ifdef CONFIG_COMPAT_BRK
729
	unsigned			brk_randomized:1;
730
#endif
731 732 733 734
#ifdef CONFIG_CGROUPS
	/* disallow userland-initiated cgroup migration */
	unsigned			no_cgroup_migration:1;
#endif
735 736 737 738
#ifdef CONFIG_BLK_CGROUP
	/* to be used once the psi infrastructure lands upstream. */
	unsigned			use_memdelay:1;
#endif
739

740 741 742 743 744 745
	/*
	 * May usercopy functions fault on kernel addresses?
	 * This is not just a single bit because this can potentially nest.
	 */
	unsigned int			kernel_uaccess_faults_ok;

746
	unsigned long			atomic_flags; /* Flags requiring atomic access. */
747

748
	struct restart_block		restart_block;
749

750 751
	pid_t				pid;
	pid_t				tgid;
752

753
#ifdef CONFIG_STACKPROTECTOR
754 755
	/* Canary value for the -fstack-protector GCC feature: */
	unsigned long			stack_canary;
756
#endif
757
	/*
758
	 * Pointers to the (original) parent process, youngest child, younger sibling,
759
	 * older sibling, respectively.  (p->father can be replaced with
R
Roland McGrath 已提交
760
	 * p->real_parent->pid)
L
Linus Torvalds 已提交
761
	 */
762 763 764 765 766 767 768

	/* Real parent process: */
	struct task_struct __rcu	*real_parent;

	/* Recipient of SIGCHLD, wait4() reports: */
	struct task_struct __rcu	*parent;

L
Linus Torvalds 已提交
769
	/*
770
	 * Children/sibling form the list of natural children:
L
Linus Torvalds 已提交
771
	 */
772 773 774
	struct list_head		children;
	struct list_head		sibling;
	struct task_struct		*group_leader;
L
Linus Torvalds 已提交
775

R
Roland McGrath 已提交
776
	/*
777 778
	 * 'ptraced' is the list of tasks this task is using ptrace() on.
	 *
R
Roland McGrath 已提交
779
	 * This includes both natural children and PTRACE_ATTACH targets.
780
	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
R
Roland McGrath 已提交
781
	 */
782 783
	struct list_head		ptraced;
	struct list_head		ptrace_entry;
R
Roland McGrath 已提交
784

L
Linus Torvalds 已提交
785
	/* PID/PID hash table linkage. */
786 787
	struct pid			*thread_pid;
	struct hlist_node		pid_links[PIDTYPE_MAX];
788 789 790 791
	struct list_head		thread_group;
	struct list_head		thread_node;

	struct completion		*vfork_done;
L
Linus Torvalds 已提交
792

793 794
	/* CLONE_CHILD_SETTID: */
	int __user			*set_child_tid;
L
Linus Torvalds 已提交
795

796 797 798 799 800
	/* CLONE_CHILD_CLEARTID: */
	int __user			*clear_child_tid;

	u64				utime;
	u64				stime;
801
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
802 803
	u64				utimescaled;
	u64				stimescaled;
804
#endif
805 806
	u64				gtime;
	struct prev_cputime		prev_cputime;
807
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
808
	struct vtime			vtime;
809
#endif
810 811

#ifdef CONFIG_NO_HZ_FULL
812
	atomic_t			tick_dep_mask;
813
#endif
814 815 816 817 818 819 820 821 822 823 824 825 826
	/* Context switch counts: */
	unsigned long			nvcsw;
	unsigned long			nivcsw;

	/* Monotonic time in nsecs: */
	u64				start_time;

	/* Boot based time in nsecs: */
	u64				real_start_time;

	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
	unsigned long			min_flt;
	unsigned long			maj_flt;
L
Linus Torvalds 已提交
827

828
#ifdef CONFIG_POSIX_TIMERS
829 830
	struct task_cputime		cputime_expires;
	struct list_head		cpu_timers[3];
831
#endif
L
Linus Torvalds 已提交
832

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	/* Process credentials: */

	/* Tracer's credentials at attach: */
	const struct cred __rcu		*ptracer_cred;

	/* Objective and real subjective task credentials (COW): */
	const struct cred __rcu		*real_cred;

	/* Effective (overridable) subjective task credentials (COW): */
	const struct cred __rcu		*cred;

	/*
	 * executable name, excluding path.
	 *
	 * - normally initialized setup_new_exec()
	 * - access it with [gs]et_task_comm()
	 * - lock it with task_lock()
	 */
	char				comm[TASK_COMM_LEN];

	struct nameidata		*nameidata;

855
#ifdef CONFIG_SYSVIPC
856 857
	struct sysv_sem			sysvsem;
	struct sysv_shm			sysvshm;
858
#endif
859
#ifdef CONFIG_DETECT_HUNG_TASK
860
	unsigned long			last_switch_count;
861
	unsigned long			last_switch_time;
862
#endif
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	/* Filesystem information: */
	struct fs_struct		*fs;

	/* Open file information: */
	struct files_struct		*files;

	/* Namespaces: */
	struct nsproxy			*nsproxy;

	/* Signal handlers: */
	struct signal_struct		*signal;
	struct sighand_struct		*sighand;
	sigset_t			blocked;
	sigset_t			real_blocked;
	/* Restored if set_restore_sigmask() was used: */
	sigset_t			saved_sigmask;
	struct sigpending		pending;
	unsigned long			sas_ss_sp;
	size_t				sas_ss_size;
	unsigned int			sas_ss_flags;

	struct callback_head		*task_works;

	struct audit_context		*audit_context;
A
Al Viro 已提交
887
#ifdef CONFIG_AUDITSYSCALL
888 889
	kuid_t				loginuid;
	unsigned int			sessionid;
A
Al Viro 已提交
890
#endif
891 892 893 894 895
	struct seccomp			seccomp;

	/* Thread group tracking: */
	u32				parent_exec_id;
	u32				self_exec_id;
L
Linus Torvalds 已提交
896

897 898
	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
	spinlock_t			alloc_lock;
L
Linus Torvalds 已提交
899

900
	/* Protection of the PI data structures: */
901
	raw_spinlock_t			pi_lock;
902

903
	struct wake_q_node		wake_q;
904

I
Ingo Molnar 已提交
905
#ifdef CONFIG_RT_MUTEXES
906
	/* PI waiters blocked on a rt_mutex held by this task: */
907
	struct rb_root_cached		pi_waiters;
908 909
	/* Updated under owner's pi_lock and rq lock */
	struct task_struct		*pi_top_task;
910 911
	/* Deadlock detection and priority inheritance handling: */
	struct rt_mutex_waiter		*pi_blocked_on;
I
Ingo Molnar 已提交
912 913
#endif

914
#ifdef CONFIG_DEBUG_MUTEXES
915 916
	/* Mutex deadlock detection: */
	struct mutex_waiter		*blocked_on;
917
#endif
918

919
#ifdef CONFIG_TRACE_IRQFLAGS
920 921 922 923 924 925 926 927 928 929 930 931 932
	unsigned int			irq_events;
	unsigned long			hardirq_enable_ip;
	unsigned long			hardirq_disable_ip;
	unsigned int			hardirq_enable_event;
	unsigned int			hardirq_disable_event;
	int				hardirqs_enabled;
	int				hardirq_context;
	unsigned long			softirq_disable_ip;
	unsigned long			softirq_enable_ip;
	unsigned int			softirq_disable_event;
	unsigned int			softirq_enable_event;
	int				softirqs_enabled;
	int				softirq_context;
933
#endif
934

I
Ingo Molnar 已提交
935
#ifdef CONFIG_LOCKDEP
936 937 938 939 940
# define MAX_LOCK_DEPTH			48UL
	u64				curr_chain_key;
	int				lockdep_depth;
	unsigned int			lockdep_recursion;
	struct held_lock		held_locks[MAX_LOCK_DEPTH];
I
Ingo Molnar 已提交
941
#endif
942

943
#ifdef CONFIG_UBSAN
944
	unsigned int			in_ubsan;
945
#endif
946

947 948
	/* Journalling filesystem info: */
	void				*journal_info;
L
Linus Torvalds 已提交
949

950 951
	/* Stacked block device info: */
	struct bio_list			*bio_list;
952

953
#ifdef CONFIG_BLOCK
954 955
	/* Stack plugging: */
	struct blk_plug			*plug;
956 957
#endif

958 959 960 961
	/* VM state: */
	struct reclaim_state		*reclaim_state;

	struct backing_dev_info		*backing_dev_info;
L
Linus Torvalds 已提交
962

963
	struct io_context		*io_context;
L
Linus Torvalds 已提交
964

965 966
	/* Ptrace state: */
	unsigned long			ptrace_message;
967
	kernel_siginfo_t		*last_siginfo;
L
Linus Torvalds 已提交
968

969
	struct task_io_accounting	ioac;
970 971 972 973
#ifdef CONFIG_PSI
	/* Pressure stall state */
	unsigned int			psi_flags;
#endif
974 975 976 977 978 979 980
#ifdef CONFIG_TASK_XACCT
	/* Accumulated RSS usage: */
	u64				acct_rss_mem1;
	/* Accumulated virtual memory usage: */
	u64				acct_vm_mem1;
	/* stime + utime since last update: */
	u64				acct_timexpd;
L
Linus Torvalds 已提交
981 982
#endif
#ifdef CONFIG_CPUSETS
983 984 985 986 987 988
	/* Protected by ->alloc_lock: */
	nodemask_t			mems_allowed;
	/* Seqence number to catch updates: */
	seqcount_t			mems_allowed_seq;
	int				cpuset_mem_spread_rotor;
	int				cpuset_slab_spread_rotor;
L
Linus Torvalds 已提交
989
#endif
990
#ifdef CONFIG_CGROUPS
991 992 993 994
	/* Control Group info protected by css_set_lock: */
	struct css_set __rcu		*cgroups;
	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
	struct list_head		cg_list;
995
#endif
996
#ifdef CONFIG_INTEL_RDT
997
	u32				closid;
998
	u32				rmid;
F
Fenghua Yu 已提交
999
#endif
1000
#ifdef CONFIG_FUTEX
1001
	struct robust_list_head __user	*robust_list;
1002 1003 1004
#ifdef CONFIG_COMPAT
	struct compat_robust_list_head __user *compat_robust_list;
#endif
1005 1006
	struct list_head		pi_state_list;
	struct futex_pi_state		*pi_state_cache;
1007
#endif
1008
#ifdef CONFIG_PERF_EVENTS
1009 1010 1011
	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
	struct mutex			perf_event_mutex;
	struct list_head		perf_event_list;
1012
#endif
1013
#ifdef CONFIG_DEBUG_PREEMPT
1014
	unsigned long			preempt_disable_ip;
1015
#endif
1016
#ifdef CONFIG_NUMA
1017 1018
	/* Protected by alloc_lock: */
	struct mempolicy		*mempolicy;
1019
	short				il_prev;
1020
	short				pref_node_fork;
1021
#endif
1022
#ifdef CONFIG_NUMA_BALANCING
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	int				numa_scan_seq;
	unsigned int			numa_scan_period;
	unsigned int			numa_scan_period_max;
	int				numa_preferred_nid;
	unsigned long			numa_migrate_retry;
	/* Migration stamp: */
	u64				node_stamp;
	u64				last_task_numa_placement;
	u64				last_sum_exec_runtime;
	struct callback_head		numa_work;

	struct numa_group		*numa_group;
1035

1036
	/*
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	 * numa_faults is an array split into four regions:
	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
	 * in this precise order.
	 *
	 * faults_memory: Exponential decaying average of faults on a per-node
	 * basis. Scheduling placement decisions are made based on these
	 * counts. The values remain static for the duration of a PTE scan.
	 * faults_cpu: Track the nodes the process was running on when a NUMA
	 * hinting fault was incurred.
	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
	 * during the current scan window. When the scan completes, the counts
	 * in faults_memory and faults_cpu decay and these values are copied.
1049
	 */
1050 1051
	unsigned long			*numa_faults;
	unsigned long			total_numa_faults;
1052

1053 1054
	/*
	 * numa_faults_locality tracks if faults recorded during the last
1055 1056 1057
	 * scan window were remote/local or failed to migrate. The task scan
	 * period is adapted based on the locality of the faults with different
	 * weights depending on whether they were shared or private faults
1058
	 */
1059
	unsigned long			numa_faults_locality[3];
1060

1061
	unsigned long			numa_pages_migrated;
1062 1063
#endif /* CONFIG_NUMA_BALANCING */

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
#ifdef CONFIG_RSEQ
	struct rseq __user *rseq;
	u32 rseq_len;
	u32 rseq_sig;
	/*
	 * RmW on rseq_event_mask must be performed atomically
	 * with respect to preemption.
	 */
	unsigned long rseq_event_mask;
#endif

1075
	struct tlbflush_unmap_batch	tlb_ubc;
1076

1077
	struct rcu_head			rcu;
1078

1079 1080
	/* Cache last used pipe for splice(): */
	struct pipe_inode_info		*splice_pipe;
1081

1082
	struct page_frag		task_frag;
1083

1084 1085
#ifdef CONFIG_TASK_DELAY_ACCT
	struct task_delay_info		*delays;
1086
#endif
1087

1088
#ifdef CONFIG_FAULT_INJECTION
1089
	int				make_it_fail;
1090
	unsigned int			fail_nth;
1091
#endif
1092
	/*
1093 1094
	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
	 * balance_dirty_pages() for a dirty throttling pause:
1095
	 */
1096 1097 1098 1099
	int				nr_dirtied;
	int				nr_dirtied_pause;
	/* Start of a write-and-pause period: */
	unsigned long			dirty_paused_when;
1100

A
Arjan van de Ven 已提交
1101
#ifdef CONFIG_LATENCYTOP
1102 1103
	int				latency_record_count;
	struct latency_record		latency_record[LT_SAVECOUNT];
A
Arjan van de Ven 已提交
1104
#endif
1105
	/*
1106
	 * Time slack values; these are used to round up poll() and
1107 1108
	 * select() etc timeout values. These are in nanoseconds.
	 */
1109 1110
	u64				timer_slack_ns;
	u64				default_timer_slack_ns;
1111

1112
#ifdef CONFIG_KASAN
1113
	unsigned int			kasan_depth;
1114
#endif
1115

1116
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1117 1118 1119 1120 1121 1122 1123 1124 1125
	/* Index of current stored address in ret_stack: */
	int				curr_ret_stack;

	/* Stack of return addresses for return function tracing: */
	struct ftrace_ret_stack		*ret_stack;

	/* Timestamp for last schedule: */
	unsigned long long		ftrace_timestamp;

1126 1127
	/*
	 * Number of functions that haven't been traced
1128
	 * because of depth overrun:
1129
	 */
1130 1131 1132 1133
	atomic_t			trace_overrun;

	/* Pause tracing: */
	atomic_t			tracing_graph_pause;
1134
#endif
1135

1136
#ifdef CONFIG_TRACING
1137 1138 1139 1140 1141
	/* State flags for use by tracers: */
	unsigned long			trace;

	/* Bitmask and counter of trace recursion: */
	unsigned long			trace_recursion;
1142
#endif /* CONFIG_TRACING */
1143

D
Dmitry Vyukov 已提交
1144
#ifdef CONFIG_KCOV
1145
	/* Coverage collection mode enabled for this task (0 if disabled): */
1146
	unsigned int			kcov_mode;
1147 1148 1149 1150 1151 1152 1153 1154 1155

	/* Size of the kcov_area: */
	unsigned int			kcov_size;

	/* Buffer for coverage collection: */
	void				*kcov_area;

	/* KCOV descriptor wired with this task or NULL: */
	struct kcov			*kcov;
D
Dmitry Vyukov 已提交
1156
#endif
1157

1158
#ifdef CONFIG_MEMCG
1159 1160 1161
	struct mem_cgroup		*memcg_in_oom;
	gfp_t				memcg_oom_gfp_mask;
	int				memcg_oom_order;
1162

1163 1164
	/* Number of pages to reclaim on returning to userland: */
	unsigned int			memcg_nr_pages_over_high;
1165 1166 1167

	/* Used by memcontrol for targeted memcg charge: */
	struct mem_cgroup		*active_memcg;
1168
#endif
1169

1170 1171 1172 1173
#ifdef CONFIG_BLK_CGROUP
	struct request_queue		*throttle_queue;
#endif

1174
#ifdef CONFIG_UPROBES
1175
	struct uprobe_task		*utask;
1176
#endif
K
Kent Overstreet 已提交
1177
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1178 1179
	unsigned int			sequential_io;
	unsigned int			sequential_io_avg;
K
Kent Overstreet 已提交
1180
#endif
P
Peter Zijlstra 已提交
1181
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1182
	unsigned long			task_state_change;
P
Peter Zijlstra 已提交
1183
#endif
1184
	int				pagefault_disabled;
1185
#ifdef CONFIG_MMU
1186
	struct task_struct		*oom_reaper_list;
1187
#endif
1188
#ifdef CONFIG_VMAP_STACK
1189
	struct vm_struct		*stack_vm_area;
1190
#endif
1191
#ifdef CONFIG_THREAD_INFO_IN_TASK
1192 1193
	/* A live task holds one reference: */
	atomic_t			stack_refcount;
1194 1195 1196
#endif
#ifdef CONFIG_LIVEPATCH
	int patch_state;
1197
#endif
1198 1199 1200
#ifdef CONFIG_SECURITY
	/* Used by LSM modules for access restriction: */
	void				*security;
1201
#endif
K
Kees Cook 已提交
1202

1203 1204
#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
	unsigned long			lowest_stack;
1205
	unsigned long			prev_lowest_stack;
1206 1207
#endif

K
Kees Cook 已提交
1208 1209 1210 1211 1212 1213
	/*
	 * New fields for task_struct should be added above here, so that
	 * they are included in the randomized portion of task_struct.
	 */
	randomized_struct_fields_end

1214 1215 1216 1217 1218 1219 1220 1221 1222
	/* CPU-specific state of this task: */
	struct thread_struct		thread;

	/*
	 * WARNING: on x86, 'thread_struct' contains a variable-sized
	 * structure.  It *MUST* be at the end of 'task_struct'.
	 *
	 * Do not put anything below here!
	 */
L
Linus Torvalds 已提交
1223 1224
};

A
Alexey Dobriyan 已提交
1225
static inline struct pid *task_pid(struct task_struct *task)
1226
{
1227
	return task->thread_pid;
1228 1229
}

1230 1231 1232 1233 1234
/*
 * the helpers to get the task's different pids as they are seen
 * from various namespaces
 *
 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
E
Eric W. Biederman 已提交
1235 1236
 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
 *                     current.
1237 1238 1239 1240
 * task_xid_nr_ns()  : id seen from the ns specified;
 *
 * see also pid_nr() etc in include/linux/pid.h
 */
1241
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1242

A
Alexey Dobriyan 已提交
1243
static inline pid_t task_pid_nr(struct task_struct *tsk)
1244 1245 1246 1247
{
	return tsk->pid;
}

1248
static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1249 1250 1251
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
}
1252 1253 1254

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{
1255
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1256 1257 1258
}


A
Alexey Dobriyan 已提交
1259
static inline pid_t task_tgid_nr(struct task_struct *tsk)
1260 1261 1262 1263
{
	return tsk->tgid;
}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
/**
 * pid_alive - check that a task structure is not stale
 * @p: Task structure to be checked.
 *
 * Test if a process is not yet dead (at most zombie state)
 * If pid_alive fails, then pointers within the task structure
 * can be stale and must not be dereferenced.
 *
 * Return: 1 if the process is alive. 0 otherwise.
 */
static inline int pid_alive(const struct task_struct *p)
{
1276
	return p->thread_pid != NULL;
1277
}
1278

1279
static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1280
{
1281
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1282 1283 1284 1285
}

static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
{
1286
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1287 1288 1289
}


1290
static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1291
{
1292
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1293 1294 1295 1296
}

static inline pid_t task_session_vnr(struct task_struct *tsk)
{
1297
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1298 1299
}

1300 1301
static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
E
Eric W. Biederman 已提交
1302
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1303 1304 1305 1306
}

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
E
Eric W. Biederman 已提交
1307
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
}

static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
{
	pid_t pid = 0;

	rcu_read_lock();
	if (pid_alive(tsk))
		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
	rcu_read_unlock();

	return pid;
}

static inline pid_t task_ppid_nr(const struct task_struct *tsk)
{
	return task_ppid_nr_ns(tsk, &init_pid_ns);
}

1327
/* Obsolete, do not use: */
1328 1329 1330 1331
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
	return task_pgrp_nr_ns(tsk, &init_pid_ns);
}
1332

1333 1334 1335
#define TASK_REPORT_IDLE	(TASK_REPORT + 1)
#define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)

1336
static inline unsigned int task_state_index(struct task_struct *tsk)
1337
{
1338 1339
	unsigned int tsk_state = READ_ONCE(tsk->state);
	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1340

1341 1342 1343 1344 1345
	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);

	if (tsk_state == TASK_IDLE)
		state = TASK_REPORT_IDLE;

1346 1347 1348
	return fls(state);
}

1349
static inline char task_index_to_char(unsigned int state)
1350
{
1351
	static const char state_char[] = "RSDTtXZPI";
1352

1353
	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1354

1355 1356 1357 1358 1359
	return state_char[state];
}

static inline char task_state_to_char(struct task_struct *tsk)
{
1360
	return task_index_to_char(task_state_index(tsk));
1361 1362
}

1363
/**
1364 1365
 * is_global_init - check if a task structure is init. Since init
 * is free to have sub-threads we need to check tgid.
1366 1367 1368
 * @tsk: Task structure to be checked.
 *
 * Check if a task structure is the first user space task the kernel created.
1369 1370
 *
 * Return: 1 if the task structure is init. 0 otherwise.
1371
 */
A
Alexey Dobriyan 已提交
1372
static inline int is_global_init(struct task_struct *tsk)
1373
{
1374
	return task_tgid_nr(tsk) == 1;
1375
}
1376

1377 1378
extern struct pid *cad_pid;

L
Linus Torvalds 已提交
1379 1380 1381
/*
 * Per process flags
 */
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
#define PF_IDLE			0x00000002	/* I am an IDLE thread */
#define PF_EXITING		0x00000004	/* Getting shut down */
#define PF_EXITPIDONE		0x00000008	/* PI exit done on shut down */
#define PF_VCPU			0x00000010	/* I'm a virtual CPU */
#define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
#define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
#define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
#define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
#define PF_DUMPCORE		0x00000200	/* Dumped core */
#define PF_SIGNALED		0x00000400	/* Killed by a signal */
#define PF_MEMALLOC		0x00000800	/* Allocating memory */
#define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
#define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
#define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
#define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
#define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1398 1399 1400
#define PF_KSWAPD		0x00020000	/* I am kswapd */
#define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
#define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1401 1402 1403 1404
#define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
#define PF_KTHREAD		0x00200000	/* I am a kernel thread */
#define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
#define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1405
#define PF_MEMSTALL		0x01000000	/* Stalled due to lack of memory */
1406 1407 1408 1409 1410
#define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
#define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
#define PF_MUTEX_TESTER		0x20000000	/* Thread belongs to the rt mutex tester */
#define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
#define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
L
Linus Torvalds 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

/*
 * Only the _current_ task can read/write to tsk->flags, but other
 * tasks can access tsk->flags in readonly mode for example
 * with tsk_used_math (like during threaded core dumping).
 * There is however an exception to this rule during ptrace
 * or during fork: the ptracer task is allowed to write to the
 * child->flags of its traced child (same goes for fork, the parent
 * can write to the child->flags), because we're guaranteed the
 * child is not running and in turn not changing child->flags
 * at the same time the parent does it.
 */
1423 1424 1425 1426 1427
#define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math()			clear_stopped_child_used_math(current)
#define set_used_math()				set_stopped_child_used_math(current)

L
Linus Torvalds 已提交
1428 1429
#define conditional_stopped_child_used_math(condition, child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1430 1431 1432

#define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)

L
Linus Torvalds 已提交
1433 1434
#define copy_to_stopped_child_used_math(child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1435

L
Linus Torvalds 已提交
1436
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1437 1438
#define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
#define used_math()				tsk_used_math(current)
L
Linus Torvalds 已提交
1439

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static inline bool is_percpu_thread(void)
{
#ifdef CONFIG_SMP
	return (current->flags & PF_NO_SETAFFINITY) &&
		(current->nr_cpus_allowed  == 1);
#else
	return true;
#endif
}

1450
/* Per-process atomic flags. */
1451 1452 1453
#define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
#define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
#define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1454 1455
#define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
#define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1456

1457 1458 1459
#define TASK_PFA_TEST(name, func)					\
	static inline bool task_##func(struct task_struct *p)		\
	{ return test_bit(PFA_##name, &p->atomic_flags); }
1460

1461 1462 1463
#define TASK_PFA_SET(name, func)					\
	static inline void task_set_##func(struct task_struct *p)	\
	{ set_bit(PFA_##name, &p->atomic_flags); }
1464

1465 1466 1467 1468 1469 1470
#define TASK_PFA_CLEAR(name, func)					\
	static inline void task_clear_##func(struct task_struct *p)	\
	{ clear_bit(PFA_##name, &p->atomic_flags); }

TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1471

1472 1473 1474 1475 1476 1477 1478
TASK_PFA_TEST(SPREAD_PAGE, spread_page)
TASK_PFA_SET(SPREAD_PAGE, spread_page)
TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)

TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
TASK_PFA_SET(SPREAD_SLAB, spread_slab)
TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1479

1480 1481 1482 1483 1484 1485 1486
TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)

TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)

1487
static inline void
1488
current_restore_flags(unsigned long orig_flags, unsigned long flags)
1489
{
1490 1491
	current->flags &= ~flags;
	current->flags |= orig_flags & flags;
1492 1493
}

1494 1495
extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
L
Linus Torvalds 已提交
1496
#ifdef CONFIG_SMP
1497 1498
extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
L
Linus Torvalds 已提交
1499
#else
1500
static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1501 1502
{
}
1503
static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
1504
{
1505
	if (!cpumask_test_cpu(0, new_mask))
L
Linus Torvalds 已提交
1506 1507 1508 1509
		return -EINVAL;
	return 0;
}
#endif
1510

1511 1512 1513 1514
#ifndef cpu_relax_yield
#define cpu_relax_yield() cpu_relax()
#endif

1515
extern int yield_to(struct task_struct *p, bool preempt);
1516 1517
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
1518

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 *
 * Return: The nice value [ -20 ... 0 ... 19 ].
 */
static inline int task_nice(const struct task_struct *p)
{
	return PRIO_TO_NICE((p)->static_prio);
}
1529

1530 1531
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
L
Linus Torvalds 已提交
1532
extern int idle_cpu(int cpu);
1533
extern int available_idle_cpu(int cpu);
1534 1535 1536
extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1537
extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1538
extern struct task_struct *idle_task(int cpu);
1539

1540 1541
/**
 * is_idle_task - is the specified task an idle task?
1542
 * @p: the task in question.
1543 1544
 *
 * Return: 1 if @p is an idle task. 0 otherwise.
1545
 */
1546
static inline bool is_idle_task(const struct task_struct *p)
1547
{
1548
	return !!(p->flags & PF_IDLE);
1549
}
1550

1551
extern struct task_struct *curr_task(int cpu);
1552
extern void ia64_set_curr_task(int cpu, struct task_struct *p);
L
Linus Torvalds 已提交
1553 1554 1555 1556

void yield(void);

union thread_union {
1557 1558 1559
#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
	struct task_struct task;
#endif
1560
#ifndef CONFIG_THREAD_INFO_IN_TASK
L
Linus Torvalds 已提交
1561
	struct thread_info thread_info;
1562
#endif
L
Linus Torvalds 已提交
1563 1564 1565
	unsigned long stack[THREAD_SIZE/sizeof(long)];
};

1566 1567 1568 1569 1570 1571
#ifndef CONFIG_THREAD_INFO_IN_TASK
extern struct thread_info init_thread_info;
#endif

extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];

1572 1573 1574 1575 1576 1577 1578 1579 1580
#ifdef CONFIG_THREAD_INFO_IN_TASK
static inline struct thread_info *task_thread_info(struct task_struct *task)
{
	return &task->thread_info;
}
#elif !defined(__HAVE_THREAD_FUNCTIONS)
# define task_thread_info(task)	((struct thread_info *)(task)->stack)
#endif

1581 1582 1583 1584 1585
/*
 * find a task by one of its numerical ids
 *
 * find_task_by_pid_ns():
 *      finds a task by its pid in the specified namespace
1586 1587
 * find_task_by_vpid():
 *      finds a task by its virtual pid
1588
 *
1589
 * see also find_vpid() etc in include/linux/pid.h
1590 1591
 */

1592
extern struct task_struct *find_task_by_vpid(pid_t nr);
1593
extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1594

1595 1596 1597 1598 1599
/*
 * find a task by its virtual pid and get the task struct
 */
extern struct task_struct *find_get_task_by_vpid(pid_t nr);

1600 1601
extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
1602
extern void wake_up_new_task(struct task_struct *tsk);
1603

L
Linus Torvalds 已提交
1604
#ifdef CONFIG_SMP
1605
extern void kick_process(struct task_struct *tsk);
L
Linus Torvalds 已提交
1606
#else
1607
static inline void kick_process(struct task_struct *tsk) { }
L
Linus Torvalds 已提交
1608 1609
#endif

1610
extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1611

1612 1613 1614 1615
static inline void set_task_comm(struct task_struct *tsk, const char *from)
{
	__set_task_comm(tsk, from, false);
}
1616

1617 1618 1619 1620 1621
extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
#define get_task_comm(buf, tsk) ({			\
	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
	__get_task_comm(buf, sizeof(buf), tsk);		\
})
L
Linus Torvalds 已提交
1622 1623

#ifdef CONFIG_SMP
1624
void scheduler_ipi(void);
R
Roland McGrath 已提交
1625
extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
L
Linus Torvalds 已提交
1626
#else
1627
static inline void scheduler_ipi(void) { }
1628
static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
R
Roland McGrath 已提交
1629 1630 1631
{
	return 1;
}
L
Linus Torvalds 已提交
1632 1633
#endif

1634 1635 1636
/*
 * Set thread flags in other task's structures.
 * See asm/thread_info.h for TIF_xxxx flags available:
L
Linus Torvalds 已提交
1637 1638 1639
 */
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1640
	set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1641 1642 1643 1644
}

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1645
	clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1646 1647
}

1648 1649 1650 1651 1652 1653
static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
					  bool value)
{
	update_ti_thread_flag(task_thread_info(tsk), flag, value);
}

L
Linus Torvalds 已提交
1654 1655
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1656
	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1657 1658 1659 1660
}

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1661
	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1662 1663 1664 1665
}

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1666
	return test_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
}

static inline void set_tsk_need_resched(struct task_struct *tsk)
{
	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

1679 1680 1681 1682 1683
static inline int test_tsk_need_resched(struct task_struct *tsk)
{
	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}

L
Linus Torvalds 已提交
1684 1685 1686 1687 1688 1689
/*
 * cond_resched() and cond_resched_lock(): latency reduction via
 * explicit rescheduling in places that are safe. The return
 * value indicates whether a reschedule was done in fact.
 * cond_resched_lock() will drop the spinlock before scheduling,
 */
1690
#ifndef CONFIG_PREEMPT
1691
extern int _cond_resched(void);
1692 1693 1694
#else
static inline int _cond_resched(void) { return 0; }
#endif
1695

1696
#define cond_resched() ({			\
1697
	___might_sleep(__FILE__, __LINE__, 0);	\
1698 1699
	_cond_resched();			\
})
1700

1701 1702 1703
extern int __cond_resched_lock(spinlock_t *lock);

#define cond_resched_lock(lock) ({				\
1704
	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1705 1706 1707
	__cond_resched_lock(lock);				\
})

1708 1709 1710 1711 1712 1713 1714 1715 1716
static inline void cond_resched_rcu(void)
{
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
	rcu_read_unlock();
	cond_resched();
	rcu_read_lock();
#endif
}

L
Linus Torvalds 已提交
1717 1718
/*
 * Does a critical section need to be broken due to another
N
Nick Piggin 已提交
1719 1720
 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
 * but a general need for low latency)
L
Linus Torvalds 已提交
1721
 */
N
Nick Piggin 已提交
1722
static inline int spin_needbreak(spinlock_t *lock)
L
Linus Torvalds 已提交
1723
{
N
Nick Piggin 已提交
1724 1725 1726
#ifdef CONFIG_PREEMPT
	return spin_is_contended(lock);
#else
L
Linus Torvalds 已提交
1727
	return 0;
N
Nick Piggin 已提交
1728
#endif
L
Linus Torvalds 已提交
1729 1730
}

1731 1732 1733 1734 1735
static __always_inline bool need_resched(void)
{
	return unlikely(tif_need_resched());
}

L
Linus Torvalds 已提交
1736 1737 1738 1739 1740 1741 1742
/*
 * Wrappers for p->thread_info->cpu access. No-op on UP.
 */
#ifdef CONFIG_SMP

static inline unsigned int task_cpu(const struct task_struct *p)
{
1743 1744 1745
#ifdef CONFIG_THREAD_INFO_IN_TASK
	return p->cpu;
#else
A
Al Viro 已提交
1746
	return task_thread_info(p)->cpu;
1747
#endif
L
Linus Torvalds 已提交
1748 1749
}

I
Ingo Molnar 已提交
1750
extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
L
Linus Torvalds 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764

#else

static inline unsigned int task_cpu(const struct task_struct *p)
{
	return 0;
}

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}

#endif /* CONFIG_SMP */

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
/*
 * In order to reduce various lock holder preemption latencies provide an
 * interface to see if a vCPU is currently running or not.
 *
 * This allows us to terminate optimistic spin loops and block, analogous to
 * the native optimistic spin heuristic of testing if the lock owner task is
 * running or not.
 */
#ifndef vcpu_is_preempted
# define vcpu_is_preempted(cpu)	false
#endif

1777 1778
extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1779

D
Dave Hansen 已提交
1780 1781 1782 1783
#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk)	TASK_SIZE
#endif

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
#ifdef CONFIG_RSEQ

/*
 * Map the event mask on the user-space ABI enum rseq_cs_flags
 * for direct mask checks.
 */
enum rseq_event_mask_bits {
	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
};

enum rseq_event_mask {
	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
};

static inline void rseq_set_notify_resume(struct task_struct *t)
{
	if (t->rseq)
		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
}

1808
void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1809

1810 1811
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
1812 1813
{
	if (current->rseq)
1814
		__rseq_handle_notify_resume(ksig, regs);
1815 1816
}

1817 1818
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
1819 1820 1821 1822
{
	preempt_disable();
	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
	preempt_enable();
1823
	rseq_handle_notify_resume(ksig, regs);
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
}

/* rseq_preempt() requires preemption to be disabled. */
static inline void rseq_preempt(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/* rseq_migrate() requires preemption to be disabled. */
static inline void rseq_migrate(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/*
 * If parent process has a registered restartable sequences area, the
1842
 * child inherits. Only applies when forking a process, not a thread.
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
 */
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
	if (clone_flags & CLONE_THREAD) {
		t->rseq = NULL;
		t->rseq_len = 0;
		t->rseq_sig = 0;
		t->rseq_event_mask = 0;
	} else {
		t->rseq = current->rseq;
		t->rseq_len = current->rseq_len;
		t->rseq_sig = current->rseq_sig;
		t->rseq_event_mask = current->rseq_event_mask;
	}
}

static inline void rseq_execve(struct task_struct *t)
{
	t->rseq = NULL;
	t->rseq_len = 0;
	t->rseq_sig = 0;
	t->rseq_event_mask = 0;
}

#else

static inline void rseq_set_notify_resume(struct task_struct *t)
{
}
1872 1873
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
1874 1875
{
}
1876 1877
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
{
}
static inline void rseq_preempt(struct task_struct *t)
{
}
static inline void rseq_migrate(struct task_struct *t)
{
}
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
}
static inline void rseq_execve(struct task_struct *t)
{
}

#endif

#ifdef CONFIG_DEBUG_RSEQ

void rseq_syscall(struct pt_regs *regs);

#else

static inline void rseq_syscall(struct pt_regs *regs)
{
}

#endif

L
Linus Torvalds 已提交
1907
#endif