sched.h 56.6 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

5 6 7 8
/*
 * Define 'struct task_struct' and provide the main scheduler
 * APIs (schedule(), wakeup variants, etc.)
 */
9

10
#include <uapi/linux/sched.h>
11

12
#include <asm/current.h>
L
Linus Torvalds 已提交
13

14
#include <linux/pid.h>
L
Linus Torvalds 已提交
15
#include <linux/sem.h>
16
#include <linux/shm.h>
17 18 19 20
#include <linux/kcov.h>
#include <linux/mutex.h>
#include <linux/plist.h>
#include <linux/hrtimer.h>
21
#include <linux/irqflags.h>
L
Linus Torvalds 已提交
22
#include <linux/seccomp.h>
23
#include <linux/nodemask.h>
24
#include <linux/rcupdate.h>
25
#include <linux/refcount.h>
26
#include <linux/resource.h>
A
Arjan van de Ven 已提交
27
#include <linux/latencytop.h>
28
#include <linux/sched/prio.h>
29
#include <linux/sched/types.h>
30 31 32
#include <linux/signal_types.h>
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>
33
#include <linux/posix-timers.h>
34
#include <linux/rseq.h>
35
#include <linux/seqlock.h>
36
#include <linux/kcsan.h>
37

38
/* task_struct member predeclarations (sorted alphabetically): */
39 40
struct audit_context;
struct backing_dev_info;
41
struct bio_list;
42
struct blk_plug;
43
struct capture_control;
44 45 46 47 48
struct cfs_rq;
struct fs_struct;
struct futex_pi_state;
struct io_context;
struct mempolicy;
49
struct nameidata;
50 51 52 53 54 55 56
struct nsproxy;
struct perf_event_context;
struct pid_namespace;
struct pipe_inode_info;
struct rcu_node;
struct reclaim_state;
struct robust_list_head;
57 58
struct root_domain;
struct rq;
59 60
struct sched_attr;
struct sched_param;
I
Ingo Molnar 已提交
61
struct seq_file;
62 63 64
struct sighand_struct;
struct signal_struct;
struct task_delay_info;
65
struct task_group;
L
Linus Torvalds 已提交
66

67 68 69 70 71 72 73 74 75 76
/*
 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 *
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.
 */
77 78

/* Used in tsk->state: */
79 80 81 82 83
#define TASK_RUNNING			0x0000
#define TASK_INTERRUPTIBLE		0x0001
#define TASK_UNINTERRUPTIBLE		0x0002
#define __TASK_STOPPED			0x0004
#define __TASK_TRACED			0x0008
84
/* Used in tsk->exit_state: */
85 86
#define EXIT_DEAD			0x0010
#define EXIT_ZOMBIE			0x0020
87 88
#define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
/* Used in tsk->state again: */
89 90 91 92
#define TASK_PARKED			0x0040
#define TASK_DEAD			0x0080
#define TASK_WAKEKILL			0x0100
#define TASK_WAKING			0x0200
93 94 95
#define TASK_NOLOAD			0x0400
#define TASK_NEW			0x0800
#define TASK_STATE_MAX			0x1000
96 97 98 99 100 101 102 103 104 105 106 107 108 109

/* Convenience macros for the sake of set_current_state: */
#define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)

#define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)

/* Convenience macros for the sake of wake_up(): */
#define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)

/* get_task_state(): */
#define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
110 111
					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
					 TASK_PARKED)
112 113 114 115 116 117 118

#define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)

#define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)

#define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)

P
Peter Zijlstra 已提交
119 120
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP

121 122 123 124 125
/*
 * Special states are those that do not use the normal wait-loop pattern. See
 * the comment with set_special_state().
 */
#define is_special_task_state(state)				\
126
	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
127

P
Peter Zijlstra 已提交
128 129
#define __set_current_state(state_value)			\
	do {							\
130
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
131 132 133
		current->task_state_change = _THIS_IP_;		\
		current->state = (state_value);			\
	} while (0)
134

P
Peter Zijlstra 已提交
135 136
#define set_current_state(state_value)				\
	do {							\
137
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
138
		current->task_state_change = _THIS_IP_;		\
139
		smp_store_mb(current->state, (state_value));	\
P
Peter Zijlstra 已提交
140 141
	} while (0)

142 143 144 145 146 147 148 149 150
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		WARN_ON_ONCE(!is_special_task_state(state_value));	\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->task_state_change = _THIS_IP_;			\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)
P
Peter Zijlstra 已提交
151
#else
152 153 154 155 156
/*
 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *
157
 *   for (;;) {
158
 *	set_current_state(TASK_UNINTERRUPTIBLE);
P
Peter Zijlstra 已提交
159 160
 *	if (CONDITION)
 *	   break;
161 162 163 164 165 166
 *
 *	schedule();
 *   }
 *   __set_current_state(TASK_RUNNING);
 *
 * If the caller does not need such serialisation (because, for instance, the
P
Peter Zijlstra 已提交
167
 * CONDITION test and condition change and wakeup are under the same lock) then
168 169 170 171
 * use __set_current_state().
 *
 * The above is typically ordered against the wakeup, which does:
 *
P
Peter Zijlstra 已提交
172
 *   CONDITION = 1;
173
 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
174
 *
P
Peter Zijlstra 已提交
175 176
 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
 * accessing p->state.
177 178 179 180
 *
 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
181
 *
182
 * However, with slightly different timing the wakeup TASK_RUNNING store can
I
Ingo Molnar 已提交
183
 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
184 185
 * a problem either because that will result in one extra go around the loop
 * and our @cond test will save the day.
186
 *
187
 * Also see the comments of try_to_wake_up().
188
 */
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#define __set_current_state(state_value)				\
	current->state = (state_value)

#define set_current_state(state_value)					\
	smp_store_mb(current->state, (state_value))

/*
 * set_special_state() should be used for those states when the blocking task
 * can not use the regular condition based wait-loop. In that case we must
 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 * will not collide with our state change.
 */
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)

P
Peter Zijlstra 已提交
209 210
#endif

211 212
/* Task command name length: */
#define TASK_COMM_LEN			16
L
Linus Torvalds 已提交
213 214 215

extern void scheduler_tick(void);

216 217 218 219 220 221 222
#define	MAX_SCHEDULE_TIMEOUT		LONG_MAX

extern long schedule_timeout(long timeout);
extern long schedule_timeout_interruptible(long timeout);
extern long schedule_timeout_killable(long timeout);
extern long schedule_timeout_uninterruptible(long timeout);
extern long schedule_timeout_idle(long timeout);
L
Linus Torvalds 已提交
223
asmlinkage void schedule(void);
224
extern void schedule_preempt_disabled(void);
225
asmlinkage void preempt_schedule_irq(void);
L
Linus Torvalds 已提交
226

227 228
extern int __must_check io_schedule_prepare(void);
extern void io_schedule_finish(int token);
229
extern long io_schedule_timeout(long timeout);
230
extern void io_schedule(void);
231

232
/**
233
 * struct prev_cputime - snapshot of system and user cputime
234 235
 * @utime: time spent in user mode
 * @stime: time spent in system mode
236
 * @lock: protects the above two fields
237
 *
238 239
 * Stores previous user/system time values such that we can guarantee
 * monotonicity.
240
 */
241 242
struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
243 244 245
	u64				utime;
	u64				stime;
	raw_spinlock_t			lock;
246
#endif
247 248
};

249 250 251
enum vtime_state {
	/* Task is sleeping or running in a CPU with VTIME inactive: */
	VTIME_INACTIVE = 0,
252 253
	/* Task is idle */
	VTIME_IDLE,
254 255
	/* Task runs in kernelspace in a CPU with VTIME active: */
	VTIME_SYS,
256 257
	/* Task runs in userspace in a CPU with VTIME active: */
	VTIME_USER,
258 259
	/* Task runs as guests in a CPU with VTIME active: */
	VTIME_GUEST,
260 261 262 263 264 265
};

struct vtime {
	seqcount_t		seqcount;
	unsigned long long	starttime;
	enum vtime_state	state;
266
	unsigned int		cpu;
267 268 269
	u64			utime;
	u64			stime;
	u64			gtime;
270 271
};

272 273 274 275 276 277 278 279 280 281 282 283
/*
 * Utilization clamp constraints.
 * @UCLAMP_MIN:	Minimum utilization
 * @UCLAMP_MAX:	Maximum utilization
 * @UCLAMP_CNT:	Utilization clamp constraints count
 */
enum uclamp_id {
	UCLAMP_MIN = 0,
	UCLAMP_MAX,
	UCLAMP_CNT
};

284 285 286 287 288
#ifdef CONFIG_SMP
extern struct root_domain def_root_domain;
extern struct mutex sched_domains_mutex;
#endif

L
Linus Torvalds 已提交
289
struct sched_info {
290
#ifdef CONFIG_SCHED_INFO
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	/* Cumulative counters: */

	/* # of times we have run on this CPU: */
	unsigned long			pcount;

	/* Time spent waiting on a runqueue: */
	unsigned long long		run_delay;

	/* Timestamps: */

	/* When did we last run on a CPU? */
	unsigned long long		last_arrival;

	/* When were we last queued to run? */
	unsigned long long		last_queued;
L
Linus Torvalds 已提交
306

307
#endif /* CONFIG_SCHED_INFO */
308
};
L
Linus Torvalds 已提交
309

310 311 312 313 314 315 316
/*
 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 * has a few: load, load_avg, util_avg, freq, and capacity.
 *
 * We define a basic fixed point arithmetic range, and then formalize
 * all these metrics based on that basic range.
 */
317 318
# define SCHED_FIXEDPOINT_SHIFT		10
# define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
319

320 321 322 323
/* Increase resolution of cpu_capacity calculations */
# define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
# define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)

I
Ingo Molnar 已提交
324
struct load_weight {
325 326
	unsigned long			weight;
	u32				inv_weight;
I
Ingo Molnar 已提交
327 328
};

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
/**
 * struct util_est - Estimation utilization of FAIR tasks
 * @enqueued: instantaneous estimated utilization of a task/cpu
 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 *            utilization of a task
 *
 * Support data structure to track an Exponential Weighted Moving Average
 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 * average each time a task completes an activation. Sample's weight is chosen
 * so that the EWMA will be relatively insensitive to transient changes to the
 * task's workload.
 *
 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 * - task:   the task's util_avg at last task dequeue time
 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 * Thus, the util_est.enqueued of a task represents the contribution on the
 * estimated utilization of the CPU where that task is currently enqueued.
 *
 * Only for tasks we track a moving average of the past instantaneous
 * estimated utilization. This allows to absorb sporadic drops in utilization
 * of an otherwise almost periodic task.
 */
struct util_est {
	unsigned int			enqueued;
	unsigned int			ewma;
#define UTIL_EST_WEIGHT_SHIFT		2
355
} __attribute__((__aligned__(sizeof(u64))));
356

357
/*
358
 * The load/runnable/util_avg accumulates an infinite geometric series
359
 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
360 361 362 363 364
 *
 * [load_avg definition]
 *
 *   load_avg = runnable% * scale_load_down(load)
 *
365 366 367
 * [runnable_avg definition]
 *
 *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
368 369 370 371 372
 *
 * [util_avg definition]
 *
 *   util_avg = running% * SCHED_CAPACITY_SCALE
 *
373 374 375 376 377
 * where runnable% is the time ratio that a sched_entity is runnable and
 * running% the time ratio that a sched_entity is running.
 *
 * For cfs_rq, they are the aggregated values of all runnable and blocked
 * sched_entities.
378
 *
王文虎 已提交
379
 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
380 381
 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
 * for computing those signals (see update_rq_clock_pelt())
382
 *
383 384 385 386
 * N.B., the above ratios (runnable% and running%) themselves are in the
 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 * to as large a range as necessary. This is for example reflected by
 * util_avg's SCHED_CAPACITY_SCALE.
387 388 389 390 391 392 393 394 395 396 397 398 399 400
 *
 * [Overflow issue]
 *
 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 * with the highest load (=88761), always runnable on a single cfs_rq,
 * and should not overflow as the number already hits PID_MAX_LIMIT.
 *
 * For all other cases (including 32-bit kernels), struct load_weight's
 * weight will overflow first before we do, because:
 *
 *    Max(load_avg) <= Max(load.weight)
 *
 * Then it is the load_weight's responsibility to consider overflow
 * issues.
401
 */
402
struct sched_avg {
403 404
	u64				last_update_time;
	u64				load_sum;
405
	u64				runnable_sum;
406 407 408
	u32				util_sum;
	u32				period_contrib;
	unsigned long			load_avg;
409
	unsigned long			runnable_avg;
410
	unsigned long			util_avg;
411
	struct util_est			util_est;
412
} ____cacheline_aligned;
413

414
struct sched_statistics {
415
#ifdef CONFIG_SCHEDSTATS
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
	u64				wait_start;
	u64				wait_max;
	u64				wait_count;
	u64				wait_sum;
	u64				iowait_count;
	u64				iowait_sum;

	u64				sleep_start;
	u64				sleep_max;
	s64				sum_sleep_runtime;

	u64				block_start;
	u64				block_max;
	u64				exec_max;
	u64				slice_max;

	u64				nr_migrations_cold;
	u64				nr_failed_migrations_affine;
	u64				nr_failed_migrations_running;
	u64				nr_failed_migrations_hot;
	u64				nr_forced_migrations;

	u64				nr_wakeups;
	u64				nr_wakeups_sync;
	u64				nr_wakeups_migrate;
	u64				nr_wakeups_local;
	u64				nr_wakeups_remote;
	u64				nr_wakeups_affine;
	u64				nr_wakeups_affine_attempts;
	u64				nr_wakeups_passive;
	u64				nr_wakeups_idle;
447
#endif
448
};
449 450

struct sched_entity {
451 452 453 454 455
	/* For load-balancing: */
	struct load_weight		load;
	struct rb_node			run_node;
	struct list_head		group_node;
	unsigned int			on_rq;
456

457 458 459 460
	u64				exec_start;
	u64				sum_exec_runtime;
	u64				vruntime;
	u64				prev_sum_exec_runtime;
461

462
	u64				nr_migrations;
463

464
	struct sched_statistics		statistics;
465

I
Ingo Molnar 已提交
466
#ifdef CONFIG_FAIR_GROUP_SCHED
467 468
	int				depth;
	struct sched_entity		*parent;
I
Ingo Molnar 已提交
469
	/* rq on which this entity is (to be) queued: */
470
	struct cfs_rq			*cfs_rq;
I
Ingo Molnar 已提交
471
	/* rq "owned" by this entity/group: */
472
	struct cfs_rq			*my_q;
473 474
	/* cached value of my_q->h_nr_running */
	unsigned long			runnable_weight;
I
Ingo Molnar 已提交
475
#endif
476

477
#ifdef CONFIG_SMP
478 479 480 481 482 483
	/*
	 * Per entity load average tracking.
	 *
	 * Put into separate cache line so it does not
	 * collide with read-mostly values above.
	 */
484
	struct sched_avg		avg;
485
#endif
I
Ingo Molnar 已提交
486
};
487

P
Peter Zijlstra 已提交
488
struct sched_rt_entity {
489 490 491 492 493 494 495 496
	struct list_head		run_list;
	unsigned long			timeout;
	unsigned long			watchdog_stamp;
	unsigned int			time_slice;
	unsigned short			on_rq;
	unsigned short			on_list;

	struct sched_rt_entity		*back;
497
#ifdef CONFIG_RT_GROUP_SCHED
498
	struct sched_rt_entity		*parent;
P
Peter Zijlstra 已提交
499
	/* rq on which this entity is (to be) queued: */
500
	struct rt_rq			*rt_rq;
P
Peter Zijlstra 已提交
501
	/* rq "owned" by this entity/group: */
502
	struct rt_rq			*my_q;
P
Peter Zijlstra 已提交
503
#endif
504
} __randomize_layout;
P
Peter Zijlstra 已提交
505

506
struct sched_dl_entity {
507
	struct rb_node			rb_node;
508 509 510

	/*
	 * Original scheduling parameters. Copied here from sched_attr
511 512
	 * during sched_setattr(), they will remain the same until
	 * the next sched_setattr().
513
	 */
514 515 516
	u64				dl_runtime;	/* Maximum runtime for each instance	*/
	u64				dl_deadline;	/* Relative deadline of each instance	*/
	u64				dl_period;	/* Separation of two instances (period) */
517
	u64				dl_bw;		/* dl_runtime / dl_period		*/
518
	u64				dl_density;	/* dl_runtime / dl_deadline		*/
519 520 521

	/*
	 * Actual scheduling parameters. Initialized with the values above,
I
Ingo Molnar 已提交
522
	 * they are continuously updated during task execution. Note that
523 524
	 * the remaining runtime could be < 0 in case we are in overrun.
	 */
525 526 527
	s64				runtime;	/* Remaining runtime for this instance	*/
	u64				deadline;	/* Absolute deadline for this instance	*/
	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
528 529 530 531 532 533 534 535

	/*
	 * Some bool flags:
	 *
	 * @dl_throttled tells if we exhausted the runtime. If so, the
	 * task has to wait for a replenishment to be performed at the
	 * next firing of dl_timer.
	 *
536 537
	 * @dl_boosted tells if we are boosted due to DI. If so we are
	 * outside bandwidth enforcement mechanism (but only until we
538 539
	 * exit the critical section);
	 *
540
	 * @dl_yielded tells if task gave up the CPU before consuming
541
	 * all its available runtime during the last job.
542 543 544 545 546 547 548
	 *
	 * @dl_non_contending tells if the task is inactive while still
	 * contributing to the active utilization. In other words, it
	 * indicates if the inactive timer has been armed and its handler
	 * has not been executed yet. This flag is useful to avoid race
	 * conditions between the inactive timer handler and the wakeup
	 * code.
549 550 551
	 *
	 * @dl_overrun tells if the task asked to be informed about runtime
	 * overruns.
552
	 */
553 554 555 556
	unsigned int			dl_throttled      : 1;
	unsigned int			dl_boosted        : 1;
	unsigned int			dl_yielded        : 1;
	unsigned int			dl_non_contending : 1;
557
	unsigned int			dl_overrun	  : 1;
558 559 560 561 562

	/*
	 * Bandwidth enforcement timer. Each -deadline task has its
	 * own bandwidth to be enforced, thus we need one timer per task.
	 */
563
	struct hrtimer			dl_timer;
564 565 566 567 568 569 570 571 572

	/*
	 * Inactive timer, responsible for decreasing the active utilization
	 * at the "0-lag time". When a -deadline task blocks, it contributes
	 * to GRUB's active utilization until the "0-lag time", hence a
	 * timer is needed to decrease the active utilization at the correct
	 * time.
	 */
	struct hrtimer inactive_timer;
573
};
574

575 576 577 578 579 580 581 582
#ifdef CONFIG_UCLAMP_TASK
/* Number of utilization clamp buckets (shorter alias) */
#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT

/*
 * Utilization clamp for a scheduling entity
 * @value:		clamp value "assigned" to a se
 * @bucket_id:		bucket index corresponding to the "assigned" value
583
 * @active:		the se is currently refcounted in a rq's bucket
584
 * @user_defined:	the requested clamp value comes from user-space
585 586 587 588
 *
 * The bucket_id is the index of the clamp bucket matching the clamp value
 * which is pre-computed and stored to avoid expensive integer divisions from
 * the fast path.
589 590 591 592 593
 *
 * The active bit is set whenever a task has got an "effective" value assigned,
 * which can be different from the clamp value "requested" from user-space.
 * This allows to know a task is refcounted in the rq's bucket corresponding
 * to the "effective" bucket_id.
594 595 596 597 598 599 600
 *
 * The user_defined bit is set whenever a task has got a task-specific clamp
 * value requested from userspace, i.e. the system defaults apply to this task
 * just as a restriction. This allows to relax default clamps when a less
 * restrictive task-specific value has been requested, thus allowing to
 * implement a "nice" semantic. For example, a task running with a 20%
 * default boost can still drop its own boosting to 0%.
601 602 603 604
 */
struct uclamp_se {
	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
605
	unsigned int active		: 1;
606
	unsigned int user_defined	: 1;
607 608 609
};
#endif /* CONFIG_UCLAMP_TASK */

610 611
union rcu_special {
	struct {
612 613
		u8			blocked;
		u8			need_qs;
614
		u8			exp_hint; /* Hint for performance. */
615
		u8			need_mb; /* Readers need smp_mb(). */
616
	} b; /* Bits. */
617
	u32 s; /* Set of bits. */
618
};
619

P
Peter Zijlstra 已提交
620 621 622
enum perf_event_task_context {
	perf_invalid_context = -1,
	perf_hw_context = 0,
623
	perf_sw_context,
P
Peter Zijlstra 已提交
624 625 626
	perf_nr_task_contexts,
};

627 628 629 630
struct wake_q_node {
	struct wake_q_node *next;
};

L
Linus Torvalds 已提交
631
struct task_struct {
632 633 634 635 636
#ifdef CONFIG_THREAD_INFO_IN_TASK
	/*
	 * For reasons of header soup (see current_thread_info()), this
	 * must be the first element of task_struct.
	 */
637
	struct thread_info		thread_info;
638
#endif
639 640
	/* -1 unrunnable, 0 runnable, >0 stopped: */
	volatile long			state;
K
Kees Cook 已提交
641 642 643 644 645 646 647

	/*
	 * This begins the randomizable portion of task_struct. Only
	 * scheduling-critical items should be added above here.
	 */
	randomized_struct_fields_start

648
	void				*stack;
649
	refcount_t			usage;
650 651 652
	/* Per task flags (PF_*), defined further below: */
	unsigned int			flags;
	unsigned int			ptrace;
L
Linus Torvalds 已提交
653

654
#ifdef CONFIG_SMP
655
	int				on_cpu;
656
	struct __call_single_node	wake_entry;
657
#ifdef CONFIG_THREAD_INFO_IN_TASK
658 659
	/* Current CPU: */
	unsigned int			cpu;
660
#endif
661 662 663
	unsigned int			wakee_flips;
	unsigned long			wakee_flip_decay_ts;
	struct task_struct		*last_wakee;
664

665 666 667 668 669 670 671 672
	/*
	 * recent_used_cpu is initially set as the last CPU used by a task
	 * that wakes affine another task. Waker/wakee relationships can
	 * push tasks around a CPU where each wakeup moves to the next one.
	 * Tracking a recently used CPU allows a quick search for a recently
	 * used CPU that may be idle.
	 */
	int				recent_used_cpu;
673
	int				wake_cpu;
674
#endif
675 676 677 678 679 680
	int				on_rq;

	int				prio;
	int				static_prio;
	int				normal_prio;
	unsigned int			rt_priority;
681

682 683 684
	const struct sched_class	*sched_class;
	struct sched_entity		se;
	struct sched_rt_entity		rt;
P
Peter Zijlstra 已提交
685
#ifdef CONFIG_CGROUP_SCHED
686
	struct task_group		*sched_task_group;
P
Peter Zijlstra 已提交
687
#endif
688
	struct sched_dl_entity		dl;
L
Linus Torvalds 已提交
689

690
#ifdef CONFIG_UCLAMP_TASK
691 692 693 694
	/*
	 * Clamp values requested for a scheduling entity.
	 * Must be updated with task_rq_lock() held.
	 */
695
	struct uclamp_se		uclamp_req[UCLAMP_CNT];
696 697 698 699
	/*
	 * Effective clamp values used for a scheduling entity.
	 * Must be updated with task_rq_lock() held.
	 */
700 701 702
	struct uclamp_se		uclamp[UCLAMP_CNT];
#endif

703
#ifdef CONFIG_PREEMPT_NOTIFIERS
704 705
	/* List of struct preempt_notifier: */
	struct hlist_head		preempt_notifiers;
706 707
#endif

708
#ifdef CONFIG_BLK_DEV_IO_TRACE
709
	unsigned int			btrace_seq;
710
#endif
L
Linus Torvalds 已提交
711

712 713
	unsigned int			policy;
	int				nr_cpus_allowed;
714 715
	const cpumask_t			*cpus_ptr;
	cpumask_t			cpus_mask;
L
Linus Torvalds 已提交
716

P
Paul E. McKenney 已提交
717
#ifdef CONFIG_PREEMPT_RCU
718 719 720 721
	int				rcu_read_lock_nesting;
	union rcu_special		rcu_read_unlock_special;
	struct list_head		rcu_node_entry;
	struct rcu_node			*rcu_blocked_node;
722
#endif /* #ifdef CONFIG_PREEMPT_RCU */
723

P
Paul E. McKenney 已提交
724
#ifdef CONFIG_TASKS_RCU
725
	unsigned long			rcu_tasks_nvcsw;
726 727
	u8				rcu_tasks_holdout;
	u8				rcu_tasks_idx;
728
	int				rcu_tasks_idle_cpu;
729
	struct list_head		rcu_tasks_holdout_list;
P
Paul E. McKenney 已提交
730
#endif /* #ifdef CONFIG_TASKS_RCU */
P
Paul E. McKenney 已提交
731

732 733 734
#ifdef CONFIG_TASKS_TRACE_RCU
	int				trc_reader_nesting;
	int				trc_ipi_to_cpu;
735
	union rcu_special		trc_reader_special;
736 737 738 739
	bool				trc_reader_checked;
	struct list_head		trc_holdout_list;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */

740
	struct sched_info		sched_info;
L
Linus Torvalds 已提交
741

742
	struct list_head		tasks;
743
#ifdef CONFIG_SMP
744 745
	struct plist_node		pushable_tasks;
	struct rb_node			pushable_dl_tasks;
746
#endif
L
Linus Torvalds 已提交
747

748 749
	struct mm_struct		*mm;
	struct mm_struct		*active_mm;
750 751

	/* Per-thread vma caching: */
752
	struct vmacache			vmacache;
753

754 755
#ifdef SPLIT_RSS_COUNTING
	struct task_rss_stat		rss_stat;
756
#endif
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
	int				exit_state;
	int				exit_code;
	int				exit_signal;
	/* The signal sent when the parent dies: */
	int				pdeath_signal;
	/* JOBCTL_*, siglock protected: */
	unsigned long			jobctl;

	/* Used for emulating ABI behavior of previous Linux versions: */
	unsigned int			personality;

	/* Scheduler bits, serialized by scheduler locks: */
	unsigned			sched_reset_on_fork:1;
	unsigned			sched_contributes_to_load:1;
	unsigned			sched_migrated:1;
	unsigned			sched_remote_wakeup:1;
773 774 775 776
#ifdef CONFIG_PSI
	unsigned			sched_psi_wake_requeue:1;
#endif

777 778 779 780 781 782 783 784 785 786
	/* Force alignment to the next boundary: */
	unsigned			:0;

	/* Unserialized, strictly 'current' */

	/* Bit to tell LSMs we're in execve(): */
	unsigned			in_execve:1;
	unsigned			in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
	unsigned			restore_sigmask:1;
787
#endif
T
Tejun Heo 已提交
788
#ifdef CONFIG_MEMCG
789
	unsigned			in_user_fault:1;
790
#endif
791
#ifdef CONFIG_COMPAT_BRK
792
	unsigned			brk_randomized:1;
793
#endif
794 795 796
#ifdef CONFIG_CGROUPS
	/* disallow userland-initiated cgroup migration */
	unsigned			no_cgroup_migration:1;
R
Roman Gushchin 已提交
797 798
	/* task is frozen/stopped (used by the cgroup freezer) */
	unsigned			frozen:1;
799
#endif
800 801 802
#ifdef CONFIG_BLK_CGROUP
	unsigned			use_memdelay:1;
#endif
803 804 805 806
#ifdef CONFIG_PSI
	/* Stalled due to lack of memory */
	unsigned			in_memstall:1;
#endif
807

808
	unsigned long			atomic_flags; /* Flags requiring atomic access. */
809

810
	struct restart_block		restart_block;
811

812 813
	pid_t				pid;
	pid_t				tgid;
814

815
#ifdef CONFIG_STACKPROTECTOR
816 817
	/* Canary value for the -fstack-protector GCC feature: */
	unsigned long			stack_canary;
818
#endif
819
	/*
820
	 * Pointers to the (original) parent process, youngest child, younger sibling,
821
	 * older sibling, respectively.  (p->father can be replaced with
R
Roland McGrath 已提交
822
	 * p->real_parent->pid)
L
Linus Torvalds 已提交
823
	 */
824 825 826 827 828 829 830

	/* Real parent process: */
	struct task_struct __rcu	*real_parent;

	/* Recipient of SIGCHLD, wait4() reports: */
	struct task_struct __rcu	*parent;

L
Linus Torvalds 已提交
831
	/*
832
	 * Children/sibling form the list of natural children:
L
Linus Torvalds 已提交
833
	 */
834 835 836
	struct list_head		children;
	struct list_head		sibling;
	struct task_struct		*group_leader;
L
Linus Torvalds 已提交
837

R
Roland McGrath 已提交
838
	/*
839 840
	 * 'ptraced' is the list of tasks this task is using ptrace() on.
	 *
R
Roland McGrath 已提交
841
	 * This includes both natural children and PTRACE_ATTACH targets.
842
	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
R
Roland McGrath 已提交
843
	 */
844 845
	struct list_head		ptraced;
	struct list_head		ptrace_entry;
R
Roland McGrath 已提交
846

L
Linus Torvalds 已提交
847
	/* PID/PID hash table linkage. */
848 849
	struct pid			*thread_pid;
	struct hlist_node		pid_links[PIDTYPE_MAX];
850 851 852 853
	struct list_head		thread_group;
	struct list_head		thread_node;

	struct completion		*vfork_done;
L
Linus Torvalds 已提交
854

855 856
	/* CLONE_CHILD_SETTID: */
	int __user			*set_child_tid;
L
Linus Torvalds 已提交
857

858 859 860 861 862
	/* CLONE_CHILD_CLEARTID: */
	int __user			*clear_child_tid;

	u64				utime;
	u64				stime;
863
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
864 865
	u64				utimescaled;
	u64				stimescaled;
866
#endif
867 868
	u64				gtime;
	struct prev_cputime		prev_cputime;
869
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
870
	struct vtime			vtime;
871
#endif
872 873

#ifdef CONFIG_NO_HZ_FULL
874
	atomic_t			tick_dep_mask;
875
#endif
876 877 878 879 880 881 882 883
	/* Context switch counts: */
	unsigned long			nvcsw;
	unsigned long			nivcsw;

	/* Monotonic time in nsecs: */
	u64				start_time;

	/* Boot based time in nsecs: */
884
	u64				start_boottime;
885 886 887 888

	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
	unsigned long			min_flt;
	unsigned long			maj_flt;
L
Linus Torvalds 已提交
889

890 891
	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
	struct posix_cputimers		posix_cputimers;
L
Linus Torvalds 已提交
892

893 894 895 896
#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
	struct posix_cputimers_work	posix_cputimers_work;
#endif

897 898 899 900 901 902 903 904 905 906 907
	/* Process credentials: */

	/* Tracer's credentials at attach: */
	const struct cred __rcu		*ptracer_cred;

	/* Objective and real subjective task credentials (COW): */
	const struct cred __rcu		*real_cred;

	/* Effective (overridable) subjective task credentials (COW): */
	const struct cred __rcu		*cred;

908 909 910 911 912
#ifdef CONFIG_KEYS
	/* Cached requested key. */
	struct key			*cached_requested_key;
#endif

913 914 915 916 917 918 919 920 921 922 923
	/*
	 * executable name, excluding path.
	 *
	 * - normally initialized setup_new_exec()
	 * - access it with [gs]et_task_comm()
	 * - lock it with task_lock()
	 */
	char				comm[TASK_COMM_LEN];

	struct nameidata		*nameidata;

924
#ifdef CONFIG_SYSVIPC
925 926
	struct sysv_sem			sysvsem;
	struct sysv_shm			sysvshm;
927
#endif
928
#ifdef CONFIG_DETECT_HUNG_TASK
929
	unsigned long			last_switch_count;
930
	unsigned long			last_switch_time;
931
#endif
932 933 934 935 936 937 938 939 940 941 942
	/* Filesystem information: */
	struct fs_struct		*fs;

	/* Open file information: */
	struct files_struct		*files;

	/* Namespaces: */
	struct nsproxy			*nsproxy;

	/* Signal handlers: */
	struct signal_struct		*signal;
943
	struct sighand_struct __rcu		*sighand;
944 945 946 947 948 949 950 951 952 953 954
	sigset_t			blocked;
	sigset_t			real_blocked;
	/* Restored if set_restore_sigmask() was used: */
	sigset_t			saved_sigmask;
	struct sigpending		pending;
	unsigned long			sas_ss_sp;
	size_t				sas_ss_size;
	unsigned int			sas_ss_flags;

	struct callback_head		*task_works;

955
#ifdef CONFIG_AUDIT
A
Al Viro 已提交
956
#ifdef CONFIG_AUDITSYSCALL
957 958
	struct audit_context		*audit_context;
#endif
959 960
	kuid_t				loginuid;
	unsigned int			sessionid;
A
Al Viro 已提交
961
#endif
962 963 964
	struct seccomp			seccomp;

	/* Thread group tracking: */
965 966
	u64				parent_exec_id;
	u64				self_exec_id;
L
Linus Torvalds 已提交
967

968 969
	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
	spinlock_t			alloc_lock;
L
Linus Torvalds 已提交
970

971
	/* Protection of the PI data structures: */
972
	raw_spinlock_t			pi_lock;
973

974
	struct wake_q_node		wake_q;
975

I
Ingo Molnar 已提交
976
#ifdef CONFIG_RT_MUTEXES
977
	/* PI waiters blocked on a rt_mutex held by this task: */
978
	struct rb_root_cached		pi_waiters;
979 980
	/* Updated under owner's pi_lock and rq lock */
	struct task_struct		*pi_top_task;
981 982
	/* Deadlock detection and priority inheritance handling: */
	struct rt_mutex_waiter		*pi_blocked_on;
I
Ingo Molnar 已提交
983 984
#endif

985
#ifdef CONFIG_DEBUG_MUTEXES
986 987
	/* Mutex deadlock detection: */
	struct mutex_waiter		*blocked_on;
988
#endif
989

990 991 992 993
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
	int				non_block_count;
#endif

994
#ifdef CONFIG_TRACE_IRQFLAGS
995
	struct irqtrace_events		irqtrace;
996
	unsigned int			hardirq_threaded;
997
	u64				hardirq_chain_key;
998 999
	int				softirqs_enabled;
	int				softirq_context;
1000
	int				irq_config;
1001
#endif
1002

I
Ingo Molnar 已提交
1003
#ifdef CONFIG_LOCKDEP
1004 1005 1006 1007 1008
# define MAX_LOCK_DEPTH			48UL
	u64				curr_chain_key;
	int				lockdep_depth;
	unsigned int			lockdep_recursion;
	struct held_lock		held_locks[MAX_LOCK_DEPTH];
I
Ingo Molnar 已提交
1009
#endif
1010

1011
#ifdef CONFIG_UBSAN
1012
	unsigned int			in_ubsan;
1013
#endif
1014

1015 1016
	/* Journalling filesystem info: */
	void				*journal_info;
L
Linus Torvalds 已提交
1017

1018 1019
	/* Stacked block device info: */
	struct bio_list			*bio_list;
1020

1021
#ifdef CONFIG_BLOCK
1022 1023
	/* Stack plugging: */
	struct blk_plug			*plug;
1024 1025
#endif

1026 1027 1028 1029
	/* VM state: */
	struct reclaim_state		*reclaim_state;

	struct backing_dev_info		*backing_dev_info;
L
Linus Torvalds 已提交
1030

1031
	struct io_context		*io_context;
L
Linus Torvalds 已提交
1032

1033 1034 1035
#ifdef CONFIG_COMPACTION
	struct capture_control		*capture_control;
#endif
1036 1037
	/* Ptrace state: */
	unsigned long			ptrace_message;
1038
	kernel_siginfo_t		*last_siginfo;
L
Linus Torvalds 已提交
1039

1040
	struct task_io_accounting	ioac;
1041 1042 1043 1044
#ifdef CONFIG_PSI
	/* Pressure stall state */
	unsigned int			psi_flags;
#endif
1045 1046 1047 1048 1049 1050 1051
#ifdef CONFIG_TASK_XACCT
	/* Accumulated RSS usage: */
	u64				acct_rss_mem1;
	/* Accumulated virtual memory usage: */
	u64				acct_vm_mem1;
	/* stime + utime since last update: */
	u64				acct_timexpd;
L
Linus Torvalds 已提交
1052 1053
#endif
#ifdef CONFIG_CPUSETS
1054 1055 1056
	/* Protected by ->alloc_lock: */
	nodemask_t			mems_allowed;
	/* Seqence number to catch updates: */
1057
	seqcount_spinlock_t		mems_allowed_seq;
1058 1059
	int				cpuset_mem_spread_rotor;
	int				cpuset_slab_spread_rotor;
L
Linus Torvalds 已提交
1060
#endif
1061
#ifdef CONFIG_CGROUPS
1062 1063 1064 1065
	/* Control Group info protected by css_set_lock: */
	struct css_set __rcu		*cgroups;
	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
	struct list_head		cg_list;
1066
#endif
1067
#ifdef CONFIG_X86_CPU_RESCTRL
1068
	u32				closid;
1069
	u32				rmid;
F
Fenghua Yu 已提交
1070
#endif
1071
#ifdef CONFIG_FUTEX
1072
	struct robust_list_head __user	*robust_list;
1073 1074 1075
#ifdef CONFIG_COMPAT
	struct compat_robust_list_head __user *compat_robust_list;
#endif
1076 1077
	struct list_head		pi_state_list;
	struct futex_pi_state		*pi_state_cache;
1078
	struct mutex			futex_exit_mutex;
1079
	unsigned int			futex_state;
1080
#endif
1081
#ifdef CONFIG_PERF_EVENTS
1082 1083 1084
	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
	struct mutex			perf_event_mutex;
	struct list_head		perf_event_list;
1085
#endif
1086
#ifdef CONFIG_DEBUG_PREEMPT
1087
	unsigned long			preempt_disable_ip;
1088
#endif
1089
#ifdef CONFIG_NUMA
1090 1091
	/* Protected by alloc_lock: */
	struct mempolicy		*mempolicy;
1092
	short				il_prev;
1093
	short				pref_node_fork;
1094
#endif
1095
#ifdef CONFIG_NUMA_BALANCING
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	int				numa_scan_seq;
	unsigned int			numa_scan_period;
	unsigned int			numa_scan_period_max;
	int				numa_preferred_nid;
	unsigned long			numa_migrate_retry;
	/* Migration stamp: */
	u64				node_stamp;
	u64				last_task_numa_placement;
	u64				last_sum_exec_runtime;
	struct callback_head		numa_work;

1107 1108 1109 1110 1111 1112 1113 1114 1115
	/*
	 * This pointer is only modified for current in syscall and
	 * pagefault context (and for tasks being destroyed), so it can be read
	 * from any of the following contexts:
	 *  - RCU read-side critical section
	 *  - current->numa_group from everywhere
	 *  - task's runqueue locked, task not running
	 */
	struct numa_group __rcu		*numa_group;
1116

1117
	/*
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	 * numa_faults is an array split into four regions:
	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
	 * in this precise order.
	 *
	 * faults_memory: Exponential decaying average of faults on a per-node
	 * basis. Scheduling placement decisions are made based on these
	 * counts. The values remain static for the duration of a PTE scan.
	 * faults_cpu: Track the nodes the process was running on when a NUMA
	 * hinting fault was incurred.
	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
	 * during the current scan window. When the scan completes, the counts
	 * in faults_memory and faults_cpu decay and these values are copied.
1130
	 */
1131 1132
	unsigned long			*numa_faults;
	unsigned long			total_numa_faults;
1133

1134 1135
	/*
	 * numa_faults_locality tracks if faults recorded during the last
1136 1137 1138
	 * scan window were remote/local or failed to migrate. The task scan
	 * period is adapted based on the locality of the faults with different
	 * weights depending on whether they were shared or private faults
1139
	 */
1140
	unsigned long			numa_faults_locality[3];
1141

1142
	unsigned long			numa_pages_migrated;
1143 1144
#endif /* CONFIG_NUMA_BALANCING */

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
#ifdef CONFIG_RSEQ
	struct rseq __user *rseq;
	u32 rseq_sig;
	/*
	 * RmW on rseq_event_mask must be performed atomically
	 * with respect to preemption.
	 */
	unsigned long rseq_event_mask;
#endif

1155
	struct tlbflush_unmap_batch	tlb_ubc;
1156

1157 1158 1159 1160
	union {
		refcount_t		rcu_users;
		struct rcu_head		rcu;
	};
1161

1162 1163
	/* Cache last used pipe for splice(): */
	struct pipe_inode_info		*splice_pipe;
1164

1165
	struct page_frag		task_frag;
1166

1167 1168
#ifdef CONFIG_TASK_DELAY_ACCT
	struct task_delay_info		*delays;
1169
#endif
1170

1171
#ifdef CONFIG_FAULT_INJECTION
1172
	int				make_it_fail;
1173
	unsigned int			fail_nth;
1174
#endif
1175
	/*
1176 1177
	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
	 * balance_dirty_pages() for a dirty throttling pause:
1178
	 */
1179 1180 1181 1182
	int				nr_dirtied;
	int				nr_dirtied_pause;
	/* Start of a write-and-pause period: */
	unsigned long			dirty_paused_when;
1183

A
Arjan van de Ven 已提交
1184
#ifdef CONFIG_LATENCYTOP
1185 1186
	int				latency_record_count;
	struct latency_record		latency_record[LT_SAVECOUNT];
A
Arjan van de Ven 已提交
1187
#endif
1188
	/*
1189
	 * Time slack values; these are used to round up poll() and
1190 1191
	 * select() etc timeout values. These are in nanoseconds.
	 */
1192 1193
	u64				timer_slack_ns;
	u64				default_timer_slack_ns;
1194

1195
#ifdef CONFIG_KASAN
1196
	unsigned int			kasan_depth;
1197
#endif
1198

1199 1200
#ifdef CONFIG_KCSAN
	struct kcsan_ctx		kcsan_ctx;
1201 1202 1203
#ifdef CONFIG_TRACE_IRQFLAGS
	struct irqtrace_events		kcsan_save_irqtrace;
#endif
1204
#endif
1205

1206
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1207 1208
	/* Index of current stored address in ret_stack: */
	int				curr_ret_stack;
1209
	int				curr_ret_depth;
1210 1211 1212 1213 1214 1215 1216

	/* Stack of return addresses for return function tracing: */
	struct ftrace_ret_stack		*ret_stack;

	/* Timestamp for last schedule: */
	unsigned long long		ftrace_timestamp;

1217 1218
	/*
	 * Number of functions that haven't been traced
1219
	 * because of depth overrun:
1220
	 */
1221 1222 1223 1224
	atomic_t			trace_overrun;

	/* Pause tracing: */
	atomic_t			tracing_graph_pause;
1225
#endif
1226

1227
#ifdef CONFIG_TRACING
1228 1229 1230 1231 1232
	/* State flags for use by tracers: */
	unsigned long			trace;

	/* Bitmask and counter of trace recursion: */
	unsigned long			trace_recursion;
1233
#endif /* CONFIG_TRACING */
1234

D
Dmitry Vyukov 已提交
1235
#ifdef CONFIG_KCOV
A
Andrey Konovalov 已提交
1236 1237
	/* See kernel/kcov.c for more details. */

1238
	/* Coverage collection mode enabled for this task (0 if disabled): */
1239
	unsigned int			kcov_mode;
1240 1241 1242 1243 1244 1245 1246 1247 1248

	/* Size of the kcov_area: */
	unsigned int			kcov_size;

	/* Buffer for coverage collection: */
	void				*kcov_area;

	/* KCOV descriptor wired with this task or NULL: */
	struct kcov			*kcov;
A
Andrey Konovalov 已提交
1249 1250 1251 1252 1253 1254

	/* KCOV common handle for remote coverage collection: */
	u64				kcov_handle;

	/* KCOV sequence number: */
	int				kcov_sequence;
1255 1256 1257

	/* Collect coverage from softirq context: */
	unsigned int			kcov_softirq;
D
Dmitry Vyukov 已提交
1258
#endif
1259

1260
#ifdef CONFIG_MEMCG
1261 1262 1263
	struct mem_cgroup		*memcg_in_oom;
	gfp_t				memcg_oom_gfp_mask;
	int				memcg_oom_order;
1264

1265 1266
	/* Number of pages to reclaim on returning to userland: */
	unsigned int			memcg_nr_pages_over_high;
1267 1268 1269

	/* Used by memcontrol for targeted memcg charge: */
	struct mem_cgroup		*active_memcg;
1270
#endif
1271

1272 1273 1274 1275
#ifdef CONFIG_BLK_CGROUP
	struct request_queue		*throttle_queue;
#endif

1276
#ifdef CONFIG_UPROBES
1277
	struct uprobe_task		*utask;
1278
#endif
K
Kent Overstreet 已提交
1279
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1280 1281
	unsigned int			sequential_io;
	unsigned int			sequential_io_avg;
K
Kent Overstreet 已提交
1282
#endif
P
Peter Zijlstra 已提交
1283
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1284
	unsigned long			task_state_change;
P
Peter Zijlstra 已提交
1285
#endif
1286
	int				pagefault_disabled;
1287
#ifdef CONFIG_MMU
1288
	struct task_struct		*oom_reaper_list;
1289
#endif
1290
#ifdef CONFIG_VMAP_STACK
1291
	struct vm_struct		*stack_vm_area;
1292
#endif
1293
#ifdef CONFIG_THREAD_INFO_IN_TASK
1294
	/* A live task holds one reference: */
1295
	refcount_t			stack_refcount;
1296 1297 1298
#endif
#ifdef CONFIG_LIVEPATCH
	int patch_state;
1299
#endif
1300 1301 1302
#ifdef CONFIG_SECURITY
	/* Used by LSM modules for access restriction: */
	void				*security;
1303
#endif
K
Kees Cook 已提交
1304

1305 1306
#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
	unsigned long			lowest_stack;
1307
	unsigned long			prev_lowest_stack;
1308 1309
#endif

1310 1311
#ifdef CONFIG_X86_MCE
	u64				mce_addr;
1312 1313 1314
	__u64				mce_ripv : 1,
					mce_whole_page : 1,
					__mce_reserved : 62;
1315 1316 1317
	struct callback_head		mce_kill_me;
#endif

K
Kees Cook 已提交
1318 1319 1320 1321 1322 1323
	/*
	 * New fields for task_struct should be added above here, so that
	 * they are included in the randomized portion of task_struct.
	 */
	randomized_struct_fields_end

1324 1325 1326 1327 1328 1329 1330 1331 1332
	/* CPU-specific state of this task: */
	struct thread_struct		thread;

	/*
	 * WARNING: on x86, 'thread_struct' contains a variable-sized
	 * structure.  It *MUST* be at the end of 'task_struct'.
	 *
	 * Do not put anything below here!
	 */
L
Linus Torvalds 已提交
1333 1334
};

A
Alexey Dobriyan 已提交
1335
static inline struct pid *task_pid(struct task_struct *task)
1336
{
1337
	return task->thread_pid;
1338 1339
}

1340 1341 1342 1343 1344
/*
 * the helpers to get the task's different pids as they are seen
 * from various namespaces
 *
 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
E
Eric W. Biederman 已提交
1345 1346
 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
 *                     current.
1347 1348 1349 1350
 * task_xid_nr_ns()  : id seen from the ns specified;
 *
 * see also pid_nr() etc in include/linux/pid.h
 */
1351
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1352

A
Alexey Dobriyan 已提交
1353
static inline pid_t task_pid_nr(struct task_struct *tsk)
1354 1355 1356 1357
{
	return tsk->pid;
}

1358
static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1359 1360 1361
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
}
1362 1363 1364

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{
1365
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1366 1367 1368
}


A
Alexey Dobriyan 已提交
1369
static inline pid_t task_tgid_nr(struct task_struct *tsk)
1370 1371 1372 1373
{
	return tsk->tgid;
}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
/**
 * pid_alive - check that a task structure is not stale
 * @p: Task structure to be checked.
 *
 * Test if a process is not yet dead (at most zombie state)
 * If pid_alive fails, then pointers within the task structure
 * can be stale and must not be dereferenced.
 *
 * Return: 1 if the process is alive. 0 otherwise.
 */
static inline int pid_alive(const struct task_struct *p)
{
1386
	return p->thread_pid != NULL;
1387
}
1388

1389
static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1390
{
1391
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1392 1393 1394 1395
}

static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
{
1396
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1397 1398 1399
}


1400
static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1401
{
1402
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1403 1404 1405 1406
}

static inline pid_t task_session_vnr(struct task_struct *tsk)
{
1407
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1408 1409
}

1410 1411
static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
E
Eric W. Biederman 已提交
1412
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1413 1414 1415 1416
}

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
E
Eric W. Biederman 已提交
1417
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
}

static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
{
	pid_t pid = 0;

	rcu_read_lock();
	if (pid_alive(tsk))
		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
	rcu_read_unlock();

	return pid;
}

static inline pid_t task_ppid_nr(const struct task_struct *tsk)
{
	return task_ppid_nr_ns(tsk, &init_pid_ns);
}

1437
/* Obsolete, do not use: */
1438 1439 1440 1441
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
	return task_pgrp_nr_ns(tsk, &init_pid_ns);
}
1442

1443 1444 1445
#define TASK_REPORT_IDLE	(TASK_REPORT + 1)
#define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)

1446
static inline unsigned int task_state_index(struct task_struct *tsk)
1447
{
1448 1449
	unsigned int tsk_state = READ_ONCE(tsk->state);
	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1450

1451 1452 1453 1454 1455
	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);

	if (tsk_state == TASK_IDLE)
		state = TASK_REPORT_IDLE;

1456 1457 1458
	return fls(state);
}

1459
static inline char task_index_to_char(unsigned int state)
1460
{
1461
	static const char state_char[] = "RSDTtXZPI";
1462

1463
	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1464

1465 1466 1467 1468 1469
	return state_char[state];
}

static inline char task_state_to_char(struct task_struct *tsk)
{
1470
	return task_index_to_char(task_state_index(tsk));
1471 1472
}

1473
/**
1474 1475
 * is_global_init - check if a task structure is init. Since init
 * is free to have sub-threads we need to check tgid.
1476 1477 1478
 * @tsk: Task structure to be checked.
 *
 * Check if a task structure is the first user space task the kernel created.
1479 1480
 *
 * Return: 1 if the task structure is init. 0 otherwise.
1481
 */
A
Alexey Dobriyan 已提交
1482
static inline int is_global_init(struct task_struct *tsk)
1483
{
1484
	return task_tgid_nr(tsk) == 1;
1485
}
1486

1487 1488
extern struct pid *cad_pid;

L
Linus Torvalds 已提交
1489 1490 1491
/*
 * Per process flags
 */
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
#define PF_IDLE			0x00000002	/* I am an IDLE thread */
#define PF_EXITING		0x00000004	/* Getting shut down */
#define PF_VCPU			0x00000010	/* I'm a virtual CPU */
#define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
#define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
#define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
#define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
#define PF_DUMPCORE		0x00000200	/* Dumped core */
#define PF_SIGNALED		0x00000400	/* Killed by a signal */
#define PF_MEMALLOC		0x00000800	/* Allocating memory */
#define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
#define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
#define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
#define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
#define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1507 1508 1509
#define PF_KSWAPD		0x00020000	/* I am kswapd */
#define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
#define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1510 1511
#define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
						 * I am cleaning dirty pages from some other bdi. */
1512 1513 1514
#define PF_KTHREAD		0x00200000	/* I am a kernel thread */
#define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
#define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1515
#define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1516
#define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1517
#define PF_MEMALLOC_NOCMA	0x10000000	/* All allocation request will have _GFP_MOVABLE cleared */
1518
#define PF_IO_WORKER		0x20000000	/* Task is an IO worker */
1519 1520
#define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
#define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
L
Linus Torvalds 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

/*
 * Only the _current_ task can read/write to tsk->flags, but other
 * tasks can access tsk->flags in readonly mode for example
 * with tsk_used_math (like during threaded core dumping).
 * There is however an exception to this rule during ptrace
 * or during fork: the ptracer task is allowed to write to the
 * child->flags of its traced child (same goes for fork, the parent
 * can write to the child->flags), because we're guaranteed the
 * child is not running and in turn not changing child->flags
 * at the same time the parent does it.
 */
1533 1534 1535 1536 1537
#define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math()			clear_stopped_child_used_math(current)
#define set_used_math()				set_stopped_child_used_math(current)

L
Linus Torvalds 已提交
1538 1539
#define conditional_stopped_child_used_math(condition, child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1540 1541 1542

#define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)

L
Linus Torvalds 已提交
1543 1544
#define copy_to_stopped_child_used_math(child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1545

L
Linus Torvalds 已提交
1546
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1547 1548
#define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
#define used_math()				tsk_used_math(current)
L
Linus Torvalds 已提交
1549

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
static inline bool is_percpu_thread(void)
{
#ifdef CONFIG_SMP
	return (current->flags & PF_NO_SETAFFINITY) &&
		(current->nr_cpus_allowed  == 1);
#else
	return true;
#endif
}

1560
/* Per-process atomic flags. */
1561 1562 1563
#define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
#define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
#define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1564 1565
#define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
#define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1566 1567
#define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
#define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1568
#define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1569

1570 1571 1572
#define TASK_PFA_TEST(name, func)					\
	static inline bool task_##func(struct task_struct *p)		\
	{ return test_bit(PFA_##name, &p->atomic_flags); }
1573

1574 1575 1576
#define TASK_PFA_SET(name, func)					\
	static inline void task_set_##func(struct task_struct *p)	\
	{ set_bit(PFA_##name, &p->atomic_flags); }
1577

1578 1579 1580 1581 1582 1583
#define TASK_PFA_CLEAR(name, func)					\
	static inline void task_clear_##func(struct task_struct *p)	\
	{ clear_bit(PFA_##name, &p->atomic_flags); }

TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1584

1585 1586 1587 1588 1589 1590 1591
TASK_PFA_TEST(SPREAD_PAGE, spread_page)
TASK_PFA_SET(SPREAD_PAGE, spread_page)
TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)

TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
TASK_PFA_SET(SPREAD_SLAB, spread_slab)
TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1592

1593 1594 1595 1596
TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)

1597 1598 1599 1600
TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)

1601 1602 1603
TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)

1604 1605 1606 1607 1608 1609 1610
TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)

TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)

1611
static inline void
1612
current_restore_flags(unsigned long orig_flags, unsigned long flags)
1613
{
1614 1615
	current->flags &= ~flags;
	current->flags |= orig_flags & flags;
1616 1617
}

1618 1619
extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
L
Linus Torvalds 已提交
1620
#ifdef CONFIG_SMP
1621 1622
extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
L
Linus Torvalds 已提交
1623
#else
1624
static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1625 1626
{
}
1627
static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
1628
{
1629
	if (!cpumask_test_cpu(0, new_mask))
L
Linus Torvalds 已提交
1630 1631 1632 1633
		return -EINVAL;
	return 0;
}
#endif
1634

1635
extern int yield_to(struct task_struct *p, bool preempt);
1636 1637
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
1638

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 *
 * Return: The nice value [ -20 ... 0 ... 19 ].
 */
static inline int task_nice(const struct task_struct *p)
{
	return PRIO_TO_NICE((p)->static_prio);
}
1649

1650 1651
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
L
Linus Torvalds 已提交
1652
extern int idle_cpu(int cpu);
1653
extern int available_idle_cpu(int cpu);
1654 1655
extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1656 1657 1658
extern void sched_set_fifo(struct task_struct *p);
extern void sched_set_fifo_low(struct task_struct *p);
extern void sched_set_normal(struct task_struct *p, int nice);
1659
extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1660
extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1661
extern struct task_struct *idle_task(int cpu);
1662

1663 1664
/**
 * is_idle_task - is the specified task an idle task?
1665
 * @p: the task in question.
1666 1667
 *
 * Return: 1 if @p is an idle task. 0 otherwise.
1668
 */
1669
static inline bool is_idle_task(const struct task_struct *p)
1670
{
1671
	return !!(p->flags & PF_IDLE);
1672
}
1673

1674
extern struct task_struct *curr_task(int cpu);
1675
extern void ia64_set_curr_task(int cpu, struct task_struct *p);
L
Linus Torvalds 已提交
1676 1677 1678 1679

void yield(void);

union thread_union {
1680 1681 1682
#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
	struct task_struct task;
#endif
1683
#ifndef CONFIG_THREAD_INFO_IN_TASK
L
Linus Torvalds 已提交
1684
	struct thread_info thread_info;
1685
#endif
L
Linus Torvalds 已提交
1686 1687 1688
	unsigned long stack[THREAD_SIZE/sizeof(long)];
};

1689 1690 1691 1692 1693 1694
#ifndef CONFIG_THREAD_INFO_IN_TASK
extern struct thread_info init_thread_info;
#endif

extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];

1695 1696 1697 1698 1699 1700 1701 1702 1703
#ifdef CONFIG_THREAD_INFO_IN_TASK
static inline struct thread_info *task_thread_info(struct task_struct *task)
{
	return &task->thread_info;
}
#elif !defined(__HAVE_THREAD_FUNCTIONS)
# define task_thread_info(task)	((struct thread_info *)(task)->stack)
#endif

1704 1705 1706 1707 1708
/*
 * find a task by one of its numerical ids
 *
 * find_task_by_pid_ns():
 *      finds a task by its pid in the specified namespace
1709 1710
 * find_task_by_vpid():
 *      finds a task by its virtual pid
1711
 *
1712
 * see also find_vpid() etc in include/linux/pid.h
1713 1714
 */

1715
extern struct task_struct *find_task_by_vpid(pid_t nr);
1716
extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1717

1718 1719 1720 1721 1722
/*
 * find a task by its virtual pid and get the task struct
 */
extern struct task_struct *find_get_task_by_vpid(pid_t nr);

1723 1724
extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
1725
extern void wake_up_new_task(struct task_struct *tsk);
1726

L
Linus Torvalds 已提交
1727
#ifdef CONFIG_SMP
1728
extern void kick_process(struct task_struct *tsk);
L
Linus Torvalds 已提交
1729
#else
1730
static inline void kick_process(struct task_struct *tsk) { }
L
Linus Torvalds 已提交
1731 1732
#endif

1733
extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1734

1735 1736 1737 1738
static inline void set_task_comm(struct task_struct *tsk, const char *from)
{
	__set_task_comm(tsk, from, false);
}
1739

1740 1741 1742 1743 1744
extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
#define get_task_comm(buf, tsk) ({			\
	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
	__get_task_comm(buf, sizeof(buf), tsk);		\
})
L
Linus Torvalds 已提交
1745 1746

#ifdef CONFIG_SMP
1747 1748 1749 1750 1751 1752 1753 1754 1755
static __always_inline void scheduler_ipi(void)
{
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
	preempt_fold_need_resched();
}
R
Roland McGrath 已提交
1756
extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
L
Linus Torvalds 已提交
1757
#else
1758
static inline void scheduler_ipi(void) { }
1759
static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
R
Roland McGrath 已提交
1760 1761 1762
{
	return 1;
}
L
Linus Torvalds 已提交
1763 1764
#endif

1765 1766 1767
/*
 * Set thread flags in other task's structures.
 * See asm/thread_info.h for TIF_xxxx flags available:
L
Linus Torvalds 已提交
1768 1769 1770
 */
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1771
	set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1772 1773 1774 1775
}

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1776
	clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1777 1778
}

1779 1780 1781 1782 1783 1784
static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
					  bool value)
{
	update_ti_thread_flag(task_thread_info(tsk), flag, value);
}

L
Linus Torvalds 已提交
1785 1786
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1787
	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1788 1789 1790 1791
}

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1792
	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1793 1794 1795 1796
}

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1797
	return test_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
}

static inline void set_tsk_need_resched(struct task_struct *tsk)
{
	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

1810 1811 1812 1813 1814
static inline int test_tsk_need_resched(struct task_struct *tsk)
{
	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}

L
Linus Torvalds 已提交
1815 1816 1817 1818 1819 1820
/*
 * cond_resched() and cond_resched_lock(): latency reduction via
 * explicit rescheduling in places that are safe. The return
 * value indicates whether a reschedule was done in fact.
 * cond_resched_lock() will drop the spinlock before scheduling,
 */
1821
#ifndef CONFIG_PREEMPTION
1822
extern int _cond_resched(void);
1823 1824 1825
#else
static inline int _cond_resched(void) { return 0; }
#endif
1826

1827
#define cond_resched() ({			\
1828
	___might_sleep(__FILE__, __LINE__, 0);	\
1829 1830
	_cond_resched();			\
})
1831

1832 1833 1834
extern int __cond_resched_lock(spinlock_t *lock);

#define cond_resched_lock(lock) ({				\
1835
	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1836 1837 1838
	__cond_resched_lock(lock);				\
})

1839 1840 1841 1842 1843 1844 1845 1846 1847
static inline void cond_resched_rcu(void)
{
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
	rcu_read_unlock();
	cond_resched();
	rcu_read_lock();
#endif
}

L
Linus Torvalds 已提交
1848 1849
/*
 * Does a critical section need to be broken due to another
1850
 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
N
Nick Piggin 已提交
1851
 * but a general need for low latency)
L
Linus Torvalds 已提交
1852
 */
N
Nick Piggin 已提交
1853
static inline int spin_needbreak(spinlock_t *lock)
L
Linus Torvalds 已提交
1854
{
1855
#ifdef CONFIG_PREEMPTION
N
Nick Piggin 已提交
1856 1857
	return spin_is_contended(lock);
#else
L
Linus Torvalds 已提交
1858
	return 0;
N
Nick Piggin 已提交
1859
#endif
L
Linus Torvalds 已提交
1860 1861
}

1862 1863 1864 1865 1866
static __always_inline bool need_resched(void)
{
	return unlikely(tif_need_resched());
}

L
Linus Torvalds 已提交
1867 1868 1869 1870 1871 1872 1873
/*
 * Wrappers for p->thread_info->cpu access. No-op on UP.
 */
#ifdef CONFIG_SMP

static inline unsigned int task_cpu(const struct task_struct *p)
{
1874
#ifdef CONFIG_THREAD_INFO_IN_TASK
1875
	return READ_ONCE(p->cpu);
1876
#else
1877
	return READ_ONCE(task_thread_info(p)->cpu);
1878
#endif
L
Linus Torvalds 已提交
1879 1880
}

I
Ingo Molnar 已提交
1881
extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
L
Linus Torvalds 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895

#else

static inline unsigned int task_cpu(const struct task_struct *p)
{
	return 0;
}

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}

#endif /* CONFIG_SMP */

1896 1897 1898 1899 1900 1901 1902 1903 1904
/*
 * In order to reduce various lock holder preemption latencies provide an
 * interface to see if a vCPU is currently running or not.
 *
 * This allows us to terminate optimistic spin loops and block, analogous to
 * the native optimistic spin heuristic of testing if the lock owner task is
 * running or not.
 */
#ifndef vcpu_is_preempted
1905 1906 1907 1908
static inline bool vcpu_is_preempted(int cpu)
{
	return false;
}
1909 1910
#endif

1911 1912
extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1913

D
Dave Hansen 已提交
1914 1915 1916 1917
#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk)	TASK_SIZE
#endif

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
#ifdef CONFIG_RSEQ

/*
 * Map the event mask on the user-space ABI enum rseq_cs_flags
 * for direct mask checks.
 */
enum rseq_event_mask_bits {
	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
};

enum rseq_event_mask {
	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
};

static inline void rseq_set_notify_resume(struct task_struct *t)
{
	if (t->rseq)
		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
}

1942
void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1943

1944 1945
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
1946 1947
{
	if (current->rseq)
1948
		__rseq_handle_notify_resume(ksig, regs);
1949 1950
}

1951 1952
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
1953 1954 1955 1956
{
	preempt_disable();
	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
	preempt_enable();
1957
	rseq_handle_notify_resume(ksig, regs);
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
}

/* rseq_preempt() requires preemption to be disabled. */
static inline void rseq_preempt(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/* rseq_migrate() requires preemption to be disabled. */
static inline void rseq_migrate(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/*
 * If parent process has a registered restartable sequences area, the
1976
 * child inherits. Unregister rseq for a clone with CLONE_VM set.
1977 1978 1979
 */
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
1980
	if (clone_flags & CLONE_VM) {
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
		t->rseq = NULL;
		t->rseq_sig = 0;
		t->rseq_event_mask = 0;
	} else {
		t->rseq = current->rseq;
		t->rseq_sig = current->rseq_sig;
		t->rseq_event_mask = current->rseq_event_mask;
	}
}

static inline void rseq_execve(struct task_struct *t)
{
	t->rseq = NULL;
	t->rseq_sig = 0;
	t->rseq_event_mask = 0;
}

#else

static inline void rseq_set_notify_resume(struct task_struct *t)
{
}
2003 2004
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
2005 2006
{
}
2007 2008
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
{
}
static inline void rseq_preempt(struct task_struct *t)
{
}
static inline void rseq_migrate(struct task_struct *t)
{
}
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
}
static inline void rseq_execve(struct task_struct *t)
{
}

#endif

#ifdef CONFIG_DEBUG_RSEQ

void rseq_syscall(struct pt_regs *regs);

#else

static inline void rseq_syscall(struct pt_regs *regs)
{
}

#endif

2038 2039 2040 2041 2042 2043 2044 2045 2046
const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);

const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);

int sched_trace_rq_cpu(struct rq *rq);
2047
int sched_trace_rq_nr_running(struct rq *rq);
2048 2049 2050

const struct cpumask *sched_trace_rd_span(struct root_domain *rd);

L
Linus Torvalds 已提交
2051
#endif