sched.h 58.6 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

5 6 7 8
/*
 * Define 'struct task_struct' and provide the main scheduler
 * APIs (schedule(), wakeup variants, etc.)
 */
9

10
#include <uapi/linux/sched.h>
11

12
#include <asm/current.h>
L
Linus Torvalds 已提交
13

14
#include <linux/pid.h>
L
Linus Torvalds 已提交
15
#include <linux/sem.h>
16
#include <linux/shm.h>
17 18 19 20
#include <linux/kcov.h>
#include <linux/mutex.h>
#include <linux/plist.h>
#include <linux/hrtimer.h>
21
#include <linux/irqflags.h>
L
Linus Torvalds 已提交
22
#include <linux/seccomp.h>
23
#include <linux/nodemask.h>
24
#include <linux/rcupdate.h>
25
#include <linux/refcount.h>
26
#include <linux/resource.h>
A
Arjan van de Ven 已提交
27
#include <linux/latencytop.h>
28
#include <linux/sched/prio.h>
29
#include <linux/sched/types.h>
30
#include <linux/signal_types.h>
31
#include <linux/syscall_user_dispatch.h>
32 33
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>
34
#include <linux/posix-timers.h>
35
#include <linux/rseq.h>
36
#include <linux/seqlock.h>
37
#include <linux/kcsan.h>
38
#include <asm/kmap_size.h>
39

40
/* task_struct member predeclarations (sorted alphabetically): */
41 42
struct audit_context;
struct backing_dev_info;
43
struct bio_list;
44
struct blk_plug;
45
struct capture_control;
46 47 48 49
struct cfs_rq;
struct fs_struct;
struct futex_pi_state;
struct io_context;
50
struct io_uring_task;
51
struct mempolicy;
52
struct nameidata;
53 54 55 56 57 58 59
struct nsproxy;
struct perf_event_context;
struct pid_namespace;
struct pipe_inode_info;
struct rcu_node;
struct reclaim_state;
struct robust_list_head;
60 61
struct root_domain;
struct rq;
62 63
struct sched_attr;
struct sched_param;
I
Ingo Molnar 已提交
64
struct seq_file;
65 66 67
struct sighand_struct;
struct signal_struct;
struct task_delay_info;
68
struct task_group;
L
Linus Torvalds 已提交
69

70 71 72 73 74 75 76 77 78 79
/*
 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 *
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.
 */
80 81

/* Used in tsk->state: */
82 83 84 85 86
#define TASK_RUNNING			0x0000
#define TASK_INTERRUPTIBLE		0x0001
#define TASK_UNINTERRUPTIBLE		0x0002
#define __TASK_STOPPED			0x0004
#define __TASK_TRACED			0x0008
87
/* Used in tsk->exit_state: */
88 89
#define EXIT_DEAD			0x0010
#define EXIT_ZOMBIE			0x0020
90 91
#define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
/* Used in tsk->state again: */
92 93 94 95
#define TASK_PARKED			0x0040
#define TASK_DEAD			0x0080
#define TASK_WAKEKILL			0x0100
#define TASK_WAKING			0x0200
96 97 98
#define TASK_NOLOAD			0x0400
#define TASK_NEW			0x0800
#define TASK_STATE_MAX			0x1000
99 100 101 102 103 104 105 106 107 108 109 110 111 112

/* Convenience macros for the sake of set_current_state: */
#define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)

#define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)

/* Convenience macros for the sake of wake_up(): */
#define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)

/* get_task_state(): */
#define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
113 114
					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
					 TASK_PARKED)
115 116 117 118 119 120 121

#define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)

#define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)

#define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)

P
Peter Zijlstra 已提交
122 123
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP

124 125 126 127 128
/*
 * Special states are those that do not use the normal wait-loop pattern. See
 * the comment with set_special_state().
 */
#define is_special_task_state(state)				\
129
	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
130

P
Peter Zijlstra 已提交
131 132
#define __set_current_state(state_value)			\
	do {							\
133
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
134 135 136
		current->task_state_change = _THIS_IP_;		\
		current->state = (state_value);			\
	} while (0)
137

P
Peter Zijlstra 已提交
138 139
#define set_current_state(state_value)				\
	do {							\
140
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
141
		current->task_state_change = _THIS_IP_;		\
142
		smp_store_mb(current->state, (state_value));	\
P
Peter Zijlstra 已提交
143 144
	} while (0)

145 146 147 148 149 150 151 152 153
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		WARN_ON_ONCE(!is_special_task_state(state_value));	\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->task_state_change = _THIS_IP_;			\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)
P
Peter Zijlstra 已提交
154
#else
155 156 157 158 159
/*
 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *
160
 *   for (;;) {
161
 *	set_current_state(TASK_UNINTERRUPTIBLE);
P
Peter Zijlstra 已提交
162 163
 *	if (CONDITION)
 *	   break;
164 165 166 167 168 169
 *
 *	schedule();
 *   }
 *   __set_current_state(TASK_RUNNING);
 *
 * If the caller does not need such serialisation (because, for instance, the
P
Peter Zijlstra 已提交
170
 * CONDITION test and condition change and wakeup are under the same lock) then
171 172 173 174
 * use __set_current_state().
 *
 * The above is typically ordered against the wakeup, which does:
 *
P
Peter Zijlstra 已提交
175
 *   CONDITION = 1;
176
 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
177
 *
P
Peter Zijlstra 已提交
178 179
 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
 * accessing p->state.
180 181 182 183
 *
 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
184
 *
185
 * However, with slightly different timing the wakeup TASK_RUNNING store can
I
Ingo Molnar 已提交
186
 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
187 188
 * a problem either because that will result in one extra go around the loop
 * and our @cond test will save the day.
189
 *
190
 * Also see the comments of try_to_wake_up().
191
 */
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
#define __set_current_state(state_value)				\
	current->state = (state_value)

#define set_current_state(state_value)					\
	smp_store_mb(current->state, (state_value))

/*
 * set_special_state() should be used for those states when the blocking task
 * can not use the regular condition based wait-loop. In that case we must
 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 * will not collide with our state change.
 */
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)

P
Peter Zijlstra 已提交
212 213
#endif

214 215
/* Task command name length: */
#define TASK_COMM_LEN			16
L
Linus Torvalds 已提交
216 217 218

extern void scheduler_tick(void);

219 220 221 222 223 224 225
#define	MAX_SCHEDULE_TIMEOUT		LONG_MAX

extern long schedule_timeout(long timeout);
extern long schedule_timeout_interruptible(long timeout);
extern long schedule_timeout_killable(long timeout);
extern long schedule_timeout_uninterruptible(long timeout);
extern long schedule_timeout_idle(long timeout);
L
Linus Torvalds 已提交
226
asmlinkage void schedule(void);
227
extern void schedule_preempt_disabled(void);
228
asmlinkage void preempt_schedule_irq(void);
L
Linus Torvalds 已提交
229

230 231
extern int __must_check io_schedule_prepare(void);
extern void io_schedule_finish(int token);
232
extern long io_schedule_timeout(long timeout);
233
extern void io_schedule(void);
234

235
/**
236
 * struct prev_cputime - snapshot of system and user cputime
237 238
 * @utime: time spent in user mode
 * @stime: time spent in system mode
239
 * @lock: protects the above two fields
240
 *
241 242
 * Stores previous user/system time values such that we can guarantee
 * monotonicity.
243
 */
244 245
struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
246 247 248
	u64				utime;
	u64				stime;
	raw_spinlock_t			lock;
249
#endif
250 251
};

252 253 254
enum vtime_state {
	/* Task is sleeping or running in a CPU with VTIME inactive: */
	VTIME_INACTIVE = 0,
255 256
	/* Task is idle */
	VTIME_IDLE,
257 258
	/* Task runs in kernelspace in a CPU with VTIME active: */
	VTIME_SYS,
259 260
	/* Task runs in userspace in a CPU with VTIME active: */
	VTIME_USER,
261 262
	/* Task runs as guests in a CPU with VTIME active: */
	VTIME_GUEST,
263 264 265 266 267 268
};

struct vtime {
	seqcount_t		seqcount;
	unsigned long long	starttime;
	enum vtime_state	state;
269
	unsigned int		cpu;
270 271 272
	u64			utime;
	u64			stime;
	u64			gtime;
273 274
};

275 276 277 278 279 280 281 282 283 284 285 286
/*
 * Utilization clamp constraints.
 * @UCLAMP_MIN:	Minimum utilization
 * @UCLAMP_MAX:	Maximum utilization
 * @UCLAMP_CNT:	Utilization clamp constraints count
 */
enum uclamp_id {
	UCLAMP_MIN = 0,
	UCLAMP_MAX,
	UCLAMP_CNT
};

287 288 289 290 291
#ifdef CONFIG_SMP
extern struct root_domain def_root_domain;
extern struct mutex sched_domains_mutex;
#endif

L
Linus Torvalds 已提交
292
struct sched_info {
293
#ifdef CONFIG_SCHED_INFO
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	/* Cumulative counters: */

	/* # of times we have run on this CPU: */
	unsigned long			pcount;

	/* Time spent waiting on a runqueue: */
	unsigned long long		run_delay;

	/* Timestamps: */

	/* When did we last run on a CPU? */
	unsigned long long		last_arrival;

	/* When were we last queued to run? */
	unsigned long long		last_queued;
L
Linus Torvalds 已提交
309

310
#endif /* CONFIG_SCHED_INFO */
311
};
L
Linus Torvalds 已提交
312

313 314 315 316 317 318 319
/*
 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 * has a few: load, load_avg, util_avg, freq, and capacity.
 *
 * We define a basic fixed point arithmetic range, and then formalize
 * all these metrics based on that basic range.
 */
320 321
# define SCHED_FIXEDPOINT_SHIFT		10
# define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
322

323 324 325 326
/* Increase resolution of cpu_capacity calculations */
# define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
# define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)

I
Ingo Molnar 已提交
327
struct load_weight {
328 329
	unsigned long			weight;
	u32				inv_weight;
I
Ingo Molnar 已提交
330 331
};

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
/**
 * struct util_est - Estimation utilization of FAIR tasks
 * @enqueued: instantaneous estimated utilization of a task/cpu
 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 *            utilization of a task
 *
 * Support data structure to track an Exponential Weighted Moving Average
 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 * average each time a task completes an activation. Sample's weight is chosen
 * so that the EWMA will be relatively insensitive to transient changes to the
 * task's workload.
 *
 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 * - task:   the task's util_avg at last task dequeue time
 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 * Thus, the util_est.enqueued of a task represents the contribution on the
 * estimated utilization of the CPU where that task is currently enqueued.
 *
 * Only for tasks we track a moving average of the past instantaneous
 * estimated utilization. This allows to absorb sporadic drops in utilization
 * of an otherwise almost periodic task.
 */
struct util_est {
	unsigned int			enqueued;
	unsigned int			ewma;
#define UTIL_EST_WEIGHT_SHIFT		2
358
} __attribute__((__aligned__(sizeof(u64))));
359

360
/*
361
 * The load/runnable/util_avg accumulates an infinite geometric series
362
 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
363 364 365 366 367
 *
 * [load_avg definition]
 *
 *   load_avg = runnable% * scale_load_down(load)
 *
368 369 370
 * [runnable_avg definition]
 *
 *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
371 372 373 374 375
 *
 * [util_avg definition]
 *
 *   util_avg = running% * SCHED_CAPACITY_SCALE
 *
376 377 378 379 380
 * where runnable% is the time ratio that a sched_entity is runnable and
 * running% the time ratio that a sched_entity is running.
 *
 * For cfs_rq, they are the aggregated values of all runnable and blocked
 * sched_entities.
381
 *
王文虎 已提交
382
 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
383 384
 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
 * for computing those signals (see update_rq_clock_pelt())
385
 *
386 387 388 389
 * N.B., the above ratios (runnable% and running%) themselves are in the
 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 * to as large a range as necessary. This is for example reflected by
 * util_avg's SCHED_CAPACITY_SCALE.
390 391 392 393 394 395 396 397 398 399 400 401 402 403
 *
 * [Overflow issue]
 *
 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 * with the highest load (=88761), always runnable on a single cfs_rq,
 * and should not overflow as the number already hits PID_MAX_LIMIT.
 *
 * For all other cases (including 32-bit kernels), struct load_weight's
 * weight will overflow first before we do, because:
 *
 *    Max(load_avg) <= Max(load.weight)
 *
 * Then it is the load_weight's responsibility to consider overflow
 * issues.
404
 */
405
struct sched_avg {
406 407
	u64				last_update_time;
	u64				load_sum;
408
	u64				runnable_sum;
409 410 411
	u32				util_sum;
	u32				period_contrib;
	unsigned long			load_avg;
412
	unsigned long			runnable_avg;
413
	unsigned long			util_avg;
414
	struct util_est			util_est;
415
} ____cacheline_aligned;
416

417
struct sched_statistics {
418
#ifdef CONFIG_SCHEDSTATS
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
	u64				wait_start;
	u64				wait_max;
	u64				wait_count;
	u64				wait_sum;
	u64				iowait_count;
	u64				iowait_sum;

	u64				sleep_start;
	u64				sleep_max;
	s64				sum_sleep_runtime;

	u64				block_start;
	u64				block_max;
	u64				exec_max;
	u64				slice_max;

	u64				nr_migrations_cold;
	u64				nr_failed_migrations_affine;
	u64				nr_failed_migrations_running;
	u64				nr_failed_migrations_hot;
	u64				nr_forced_migrations;

	u64				nr_wakeups;
	u64				nr_wakeups_sync;
	u64				nr_wakeups_migrate;
	u64				nr_wakeups_local;
	u64				nr_wakeups_remote;
	u64				nr_wakeups_affine;
	u64				nr_wakeups_affine_attempts;
	u64				nr_wakeups_passive;
	u64				nr_wakeups_idle;
450
#endif
451
};
452 453

struct sched_entity {
454 455 456 457 458
	/* For load-balancing: */
	struct load_weight		load;
	struct rb_node			run_node;
	struct list_head		group_node;
	unsigned int			on_rq;
459

460 461 462 463
	u64				exec_start;
	u64				sum_exec_runtime;
	u64				vruntime;
	u64				prev_sum_exec_runtime;
464

465
	u64				nr_migrations;
466

467
	struct sched_statistics		statistics;
468

I
Ingo Molnar 已提交
469
#ifdef CONFIG_FAIR_GROUP_SCHED
470 471
	int				depth;
	struct sched_entity		*parent;
I
Ingo Molnar 已提交
472
	/* rq on which this entity is (to be) queued: */
473
	struct cfs_rq			*cfs_rq;
I
Ingo Molnar 已提交
474
	/* rq "owned" by this entity/group: */
475
	struct cfs_rq			*my_q;
476 477
	/* cached value of my_q->h_nr_running */
	unsigned long			runnable_weight;
I
Ingo Molnar 已提交
478
#endif
479

480
#ifdef CONFIG_SMP
481 482 483 484 485 486
	/*
	 * Per entity load average tracking.
	 *
	 * Put into separate cache line so it does not
	 * collide with read-mostly values above.
	 */
487
	struct sched_avg		avg;
488
#endif
I
Ingo Molnar 已提交
489
};
490

P
Peter Zijlstra 已提交
491
struct sched_rt_entity {
492 493 494 495 496 497 498 499
	struct list_head		run_list;
	unsigned long			timeout;
	unsigned long			watchdog_stamp;
	unsigned int			time_slice;
	unsigned short			on_rq;
	unsigned short			on_list;

	struct sched_rt_entity		*back;
500
#ifdef CONFIG_RT_GROUP_SCHED
501
	struct sched_rt_entity		*parent;
P
Peter Zijlstra 已提交
502
	/* rq on which this entity is (to be) queued: */
503
	struct rt_rq			*rt_rq;
P
Peter Zijlstra 已提交
504
	/* rq "owned" by this entity/group: */
505
	struct rt_rq			*my_q;
P
Peter Zijlstra 已提交
506
#endif
507
} __randomize_layout;
P
Peter Zijlstra 已提交
508

509
struct sched_dl_entity {
510
	struct rb_node			rb_node;
511 512 513

	/*
	 * Original scheduling parameters. Copied here from sched_attr
514 515
	 * during sched_setattr(), they will remain the same until
	 * the next sched_setattr().
516
	 */
517 518 519
	u64				dl_runtime;	/* Maximum runtime for each instance	*/
	u64				dl_deadline;	/* Relative deadline of each instance	*/
	u64				dl_period;	/* Separation of two instances (period) */
520
	u64				dl_bw;		/* dl_runtime / dl_period		*/
521
	u64				dl_density;	/* dl_runtime / dl_deadline		*/
522 523 524

	/*
	 * Actual scheduling parameters. Initialized with the values above,
I
Ingo Molnar 已提交
525
	 * they are continuously updated during task execution. Note that
526 527
	 * the remaining runtime could be < 0 in case we are in overrun.
	 */
528 529 530
	s64				runtime;	/* Remaining runtime for this instance	*/
	u64				deadline;	/* Absolute deadline for this instance	*/
	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
531 532 533 534 535 536 537 538

	/*
	 * Some bool flags:
	 *
	 * @dl_throttled tells if we exhausted the runtime. If so, the
	 * task has to wait for a replenishment to be performed at the
	 * next firing of dl_timer.
	 *
539 540
	 * @dl_boosted tells if we are boosted due to DI. If so we are
	 * outside bandwidth enforcement mechanism (but only until we
541 542
	 * exit the critical section);
	 *
543
	 * @dl_yielded tells if task gave up the CPU before consuming
544
	 * all its available runtime during the last job.
545 546 547 548 549 550 551
	 *
	 * @dl_non_contending tells if the task is inactive while still
	 * contributing to the active utilization. In other words, it
	 * indicates if the inactive timer has been armed and its handler
	 * has not been executed yet. This flag is useful to avoid race
	 * conditions between the inactive timer handler and the wakeup
	 * code.
552 553 554
	 *
	 * @dl_overrun tells if the task asked to be informed about runtime
	 * overruns.
555
	 */
556 557 558
	unsigned int			dl_throttled      : 1;
	unsigned int			dl_yielded        : 1;
	unsigned int			dl_non_contending : 1;
559
	unsigned int			dl_overrun	  : 1;
560 561 562 563 564

	/*
	 * Bandwidth enforcement timer. Each -deadline task has its
	 * own bandwidth to be enforced, thus we need one timer per task.
	 */
565
	struct hrtimer			dl_timer;
566 567 568 569 570 571 572 573 574

	/*
	 * Inactive timer, responsible for decreasing the active utilization
	 * at the "0-lag time". When a -deadline task blocks, it contributes
	 * to GRUB's active utilization until the "0-lag time", hence a
	 * timer is needed to decrease the active utilization at the correct
	 * time.
	 */
	struct hrtimer inactive_timer;
575 576 577 578 579 580 581 582 583

#ifdef CONFIG_RT_MUTEXES
	/*
	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
	 * pi_se points to the donor, otherwise points to the dl_se it belongs
	 * to (the original one/itself).
	 */
	struct sched_dl_entity *pi_se;
#endif
584
};
585

586 587 588 589 590 591 592 593
#ifdef CONFIG_UCLAMP_TASK
/* Number of utilization clamp buckets (shorter alias) */
#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT

/*
 * Utilization clamp for a scheduling entity
 * @value:		clamp value "assigned" to a se
 * @bucket_id:		bucket index corresponding to the "assigned" value
594
 * @active:		the se is currently refcounted in a rq's bucket
595
 * @user_defined:	the requested clamp value comes from user-space
596 597 598 599
 *
 * The bucket_id is the index of the clamp bucket matching the clamp value
 * which is pre-computed and stored to avoid expensive integer divisions from
 * the fast path.
600 601 602 603 604
 *
 * The active bit is set whenever a task has got an "effective" value assigned,
 * which can be different from the clamp value "requested" from user-space.
 * This allows to know a task is refcounted in the rq's bucket corresponding
 * to the "effective" bucket_id.
605 606 607 608 609 610 611
 *
 * The user_defined bit is set whenever a task has got a task-specific clamp
 * value requested from userspace, i.e. the system defaults apply to this task
 * just as a restriction. This allows to relax default clamps when a less
 * restrictive task-specific value has been requested, thus allowing to
 * implement a "nice" semantic. For example, a task running with a 20%
 * default boost can still drop its own boosting to 0%.
612 613 614 615
 */
struct uclamp_se {
	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
616
	unsigned int active		: 1;
617
	unsigned int user_defined	: 1;
618 619 620
};
#endif /* CONFIG_UCLAMP_TASK */

621 622
union rcu_special {
	struct {
623 624
		u8			blocked;
		u8			need_qs;
625
		u8			exp_hint; /* Hint for performance. */
626
		u8			need_mb; /* Readers need smp_mb(). */
627
	} b; /* Bits. */
628
	u32 s; /* Set of bits. */
629
};
630

P
Peter Zijlstra 已提交
631 632 633
enum perf_event_task_context {
	perf_invalid_context = -1,
	perf_hw_context = 0,
634
	perf_sw_context,
P
Peter Zijlstra 已提交
635 636 637
	perf_nr_task_contexts,
};

638 639 640 641
struct wake_q_node {
	struct wake_q_node *next;
};

642 643 644 645 646 647 648
struct kmap_ctrl {
#ifdef CONFIG_KMAP_LOCAL
	int				idx;
	pte_t				pteval[KM_MAX_IDX];
#endif
};

L
Linus Torvalds 已提交
649
struct task_struct {
650 651 652 653 654
#ifdef CONFIG_THREAD_INFO_IN_TASK
	/*
	 * For reasons of header soup (see current_thread_info()), this
	 * must be the first element of task_struct.
	 */
655
	struct thread_info		thread_info;
656
#endif
657 658
	/* -1 unrunnable, 0 runnable, >0 stopped: */
	volatile long			state;
K
Kees Cook 已提交
659 660 661 662 663 664 665

	/*
	 * This begins the randomizable portion of task_struct. Only
	 * scheduling-critical items should be added above here.
	 */
	randomized_struct_fields_start

666
	void				*stack;
667
	refcount_t			usage;
668 669 670
	/* Per task flags (PF_*), defined further below: */
	unsigned int			flags;
	unsigned int			ptrace;
L
Linus Torvalds 已提交
671

672
#ifdef CONFIG_SMP
673
	int				on_cpu;
674
	struct __call_single_node	wake_entry;
675
#ifdef CONFIG_THREAD_INFO_IN_TASK
676 677
	/* Current CPU: */
	unsigned int			cpu;
678
#endif
679 680 681
	unsigned int			wakee_flips;
	unsigned long			wakee_flip_decay_ts;
	struct task_struct		*last_wakee;
682

683 684 685 686 687 688 689 690
	/*
	 * recent_used_cpu is initially set as the last CPU used by a task
	 * that wakes affine another task. Waker/wakee relationships can
	 * push tasks around a CPU where each wakeup moves to the next one.
	 * Tracking a recently used CPU allows a quick search for a recently
	 * used CPU that may be idle.
	 */
	int				recent_used_cpu;
691
	int				wake_cpu;
692
#endif
693 694 695 696 697 698
	int				on_rq;

	int				prio;
	int				static_prio;
	int				normal_prio;
	unsigned int			rt_priority;
699

700 701 702
	const struct sched_class	*sched_class;
	struct sched_entity		se;
	struct sched_rt_entity		rt;
P
Peter Zijlstra 已提交
703
#ifdef CONFIG_CGROUP_SCHED
704
	struct task_group		*sched_task_group;
P
Peter Zijlstra 已提交
705
#endif
706
	struct sched_dl_entity		dl;
L
Linus Torvalds 已提交
707

708
#ifdef CONFIG_UCLAMP_TASK
709 710 711 712
	/*
	 * Clamp values requested for a scheduling entity.
	 * Must be updated with task_rq_lock() held.
	 */
713
	struct uclamp_se		uclamp_req[UCLAMP_CNT];
714 715 716 717
	/*
	 * Effective clamp values used for a scheduling entity.
	 * Must be updated with task_rq_lock() held.
	 */
718 719 720
	struct uclamp_se		uclamp[UCLAMP_CNT];
#endif

721
#ifdef CONFIG_PREEMPT_NOTIFIERS
722 723
	/* List of struct preempt_notifier: */
	struct hlist_head		preempt_notifiers;
724 725
#endif

726
#ifdef CONFIG_BLK_DEV_IO_TRACE
727
	unsigned int			btrace_seq;
728
#endif
L
Linus Torvalds 已提交
729

730 731
	unsigned int			policy;
	int				nr_cpus_allowed;
732 733
	const cpumask_t			*cpus_ptr;
	cpumask_t			cpus_mask;
734
	void				*migration_pending;
735
#ifdef CONFIG_SMP
736
	unsigned short			migration_disabled;
P
Peter Zijlstra 已提交
737
#endif
738
	unsigned short			migration_flags;
L
Linus Torvalds 已提交
739

P
Paul E. McKenney 已提交
740
#ifdef CONFIG_PREEMPT_RCU
741 742 743 744
	int				rcu_read_lock_nesting;
	union rcu_special		rcu_read_unlock_special;
	struct list_head		rcu_node_entry;
	struct rcu_node			*rcu_blocked_node;
745
#endif /* #ifdef CONFIG_PREEMPT_RCU */
746

P
Paul E. McKenney 已提交
747
#ifdef CONFIG_TASKS_RCU
748
	unsigned long			rcu_tasks_nvcsw;
749 750
	u8				rcu_tasks_holdout;
	u8				rcu_tasks_idx;
751
	int				rcu_tasks_idle_cpu;
752
	struct list_head		rcu_tasks_holdout_list;
P
Paul E. McKenney 已提交
753
#endif /* #ifdef CONFIG_TASKS_RCU */
P
Paul E. McKenney 已提交
754

755 756 757
#ifdef CONFIG_TASKS_TRACE_RCU
	int				trc_reader_nesting;
	int				trc_ipi_to_cpu;
758
	union rcu_special		trc_reader_special;
759 760 761 762
	bool				trc_reader_checked;
	struct list_head		trc_holdout_list;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */

763
	struct sched_info		sched_info;
L
Linus Torvalds 已提交
764

765
	struct list_head		tasks;
766
#ifdef CONFIG_SMP
767 768
	struct plist_node		pushable_tasks;
	struct rb_node			pushable_dl_tasks;
769
#endif
L
Linus Torvalds 已提交
770

771 772
	struct mm_struct		*mm;
	struct mm_struct		*active_mm;
773 774

	/* Per-thread vma caching: */
775
	struct vmacache			vmacache;
776

777 778
#ifdef SPLIT_RSS_COUNTING
	struct task_rss_stat		rss_stat;
779
#endif
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	int				exit_state;
	int				exit_code;
	int				exit_signal;
	/* The signal sent when the parent dies: */
	int				pdeath_signal;
	/* JOBCTL_*, siglock protected: */
	unsigned long			jobctl;

	/* Used for emulating ABI behavior of previous Linux versions: */
	unsigned int			personality;

	/* Scheduler bits, serialized by scheduler locks: */
	unsigned			sched_reset_on_fork:1;
	unsigned			sched_contributes_to_load:1;
	unsigned			sched_migrated:1;
795 796 797 798
#ifdef CONFIG_PSI
	unsigned			sched_psi_wake_requeue:1;
#endif

799 800 801 802 803
	/* Force alignment to the next boundary: */
	unsigned			:0;

	/* Unserialized, strictly 'current' */

P
Peter Zijlstra 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
	/*
	 * This field must not be in the scheduler word above due to wakelist
	 * queueing no longer being serialized by p->on_cpu. However:
	 *
	 * p->XXX = X;			ttwu()
	 * schedule()			  if (p->on_rq && ..) // false
	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
	 *   deactivate_task()		      ttwu_queue_wakelist())
	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
	 *
	 * guarantees all stores of 'current' are visible before
	 * ->sched_remote_wakeup gets used, so it can be in this word.
	 */
	unsigned			sched_remote_wakeup:1;

819 820 821 822 823
	/* Bit to tell LSMs we're in execve(): */
	unsigned			in_execve:1;
	unsigned			in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
	unsigned			restore_sigmask:1;
824
#endif
T
Tejun Heo 已提交
825
#ifdef CONFIG_MEMCG
826
	unsigned			in_user_fault:1;
827
#endif
828
#ifdef CONFIG_COMPAT_BRK
829
	unsigned			brk_randomized:1;
830
#endif
831 832 833
#ifdef CONFIG_CGROUPS
	/* disallow userland-initiated cgroup migration */
	unsigned			no_cgroup_migration:1;
R
Roman Gushchin 已提交
834 835
	/* task is frozen/stopped (used by the cgroup freezer) */
	unsigned			frozen:1;
836
#endif
837 838 839
#ifdef CONFIG_BLK_CGROUP
	unsigned			use_memdelay:1;
#endif
840 841 842 843
#ifdef CONFIG_PSI
	/* Stalled due to lack of memory */
	unsigned			in_memstall:1;
#endif
844

845
	unsigned long			atomic_flags; /* Flags requiring atomic access. */
846

847
	struct restart_block		restart_block;
848

849 850
	pid_t				pid;
	pid_t				tgid;
851

852
#ifdef CONFIG_STACKPROTECTOR
853 854
	/* Canary value for the -fstack-protector GCC feature: */
	unsigned long			stack_canary;
855
#endif
856
	/*
857
	 * Pointers to the (original) parent process, youngest child, younger sibling,
858
	 * older sibling, respectively.  (p->father can be replaced with
R
Roland McGrath 已提交
859
	 * p->real_parent->pid)
L
Linus Torvalds 已提交
860
	 */
861 862 863 864 865 866 867

	/* Real parent process: */
	struct task_struct __rcu	*real_parent;

	/* Recipient of SIGCHLD, wait4() reports: */
	struct task_struct __rcu	*parent;

L
Linus Torvalds 已提交
868
	/*
869
	 * Children/sibling form the list of natural children:
L
Linus Torvalds 已提交
870
	 */
871 872 873
	struct list_head		children;
	struct list_head		sibling;
	struct task_struct		*group_leader;
L
Linus Torvalds 已提交
874

R
Roland McGrath 已提交
875
	/*
876 877
	 * 'ptraced' is the list of tasks this task is using ptrace() on.
	 *
R
Roland McGrath 已提交
878
	 * This includes both natural children and PTRACE_ATTACH targets.
879
	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
R
Roland McGrath 已提交
880
	 */
881 882
	struct list_head		ptraced;
	struct list_head		ptrace_entry;
R
Roland McGrath 已提交
883

L
Linus Torvalds 已提交
884
	/* PID/PID hash table linkage. */
885 886
	struct pid			*thread_pid;
	struct hlist_node		pid_links[PIDTYPE_MAX];
887 888 889 890
	struct list_head		thread_group;
	struct list_head		thread_node;

	struct completion		*vfork_done;
L
Linus Torvalds 已提交
891

892 893
	/* CLONE_CHILD_SETTID: */
	int __user			*set_child_tid;
L
Linus Torvalds 已提交
894

895 896 897 898 899
	/* CLONE_CHILD_CLEARTID: */
	int __user			*clear_child_tid;

	u64				utime;
	u64				stime;
900
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
901 902
	u64				utimescaled;
	u64				stimescaled;
903
#endif
904 905
	u64				gtime;
	struct prev_cputime		prev_cputime;
906
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
907
	struct vtime			vtime;
908
#endif
909 910

#ifdef CONFIG_NO_HZ_FULL
911
	atomic_t			tick_dep_mask;
912
#endif
913 914 915 916 917 918 919 920
	/* Context switch counts: */
	unsigned long			nvcsw;
	unsigned long			nivcsw;

	/* Monotonic time in nsecs: */
	u64				start_time;

	/* Boot based time in nsecs: */
921
	u64				start_boottime;
922 923 924 925

	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
	unsigned long			min_flt;
	unsigned long			maj_flt;
L
Linus Torvalds 已提交
926

927 928
	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
	struct posix_cputimers		posix_cputimers;
L
Linus Torvalds 已提交
929

930 931 932 933
#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
	struct posix_cputimers_work	posix_cputimers_work;
#endif

934 935 936 937 938 939 940 941 942 943 944
	/* Process credentials: */

	/* Tracer's credentials at attach: */
	const struct cred __rcu		*ptracer_cred;

	/* Objective and real subjective task credentials (COW): */
	const struct cred __rcu		*real_cred;

	/* Effective (overridable) subjective task credentials (COW): */
	const struct cred __rcu		*cred;

945 946 947 948 949
#ifdef CONFIG_KEYS
	/* Cached requested key. */
	struct key			*cached_requested_key;
#endif

950 951 952 953 954 955 956 957 958 959 960
	/*
	 * executable name, excluding path.
	 *
	 * - normally initialized setup_new_exec()
	 * - access it with [gs]et_task_comm()
	 * - lock it with task_lock()
	 */
	char				comm[TASK_COMM_LEN];

	struct nameidata		*nameidata;

961
#ifdef CONFIG_SYSVIPC
962 963
	struct sysv_sem			sysvsem;
	struct sysv_shm			sysvshm;
964
#endif
965
#ifdef CONFIG_DETECT_HUNG_TASK
966
	unsigned long			last_switch_count;
967
	unsigned long			last_switch_time;
968
#endif
969 970 971 972 973 974
	/* Filesystem information: */
	struct fs_struct		*fs;

	/* Open file information: */
	struct files_struct		*files;

975 976 977 978
#ifdef CONFIG_IO_URING
	struct io_uring_task		*io_uring;
#endif

979 980 981 982 983
	/* Namespaces: */
	struct nsproxy			*nsproxy;

	/* Signal handlers: */
	struct signal_struct		*signal;
984
	struct sighand_struct __rcu		*sighand;
985 986 987 988 989 990 991 992 993 994 995
	sigset_t			blocked;
	sigset_t			real_blocked;
	/* Restored if set_restore_sigmask() was used: */
	sigset_t			saved_sigmask;
	struct sigpending		pending;
	unsigned long			sas_ss_sp;
	size_t				sas_ss_size;
	unsigned int			sas_ss_flags;

	struct callback_head		*task_works;

996
#ifdef CONFIG_AUDIT
A
Al Viro 已提交
997
#ifdef CONFIG_AUDITSYSCALL
998 999
	struct audit_context		*audit_context;
#endif
1000 1001
	kuid_t				loginuid;
	unsigned int			sessionid;
A
Al Viro 已提交
1002
#endif
1003
	struct seccomp			seccomp;
1004
	struct syscall_user_dispatch	syscall_dispatch;
1005 1006

	/* Thread group tracking: */
1007 1008
	u64				parent_exec_id;
	u64				self_exec_id;
L
Linus Torvalds 已提交
1009

1010 1011
	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
	spinlock_t			alloc_lock;
L
Linus Torvalds 已提交
1012

1013
	/* Protection of the PI data structures: */
1014
	raw_spinlock_t			pi_lock;
1015

1016
	struct wake_q_node		wake_q;
1017

I
Ingo Molnar 已提交
1018
#ifdef CONFIG_RT_MUTEXES
1019
	/* PI waiters blocked on a rt_mutex held by this task: */
1020
	struct rb_root_cached		pi_waiters;
1021 1022
	/* Updated under owner's pi_lock and rq lock */
	struct task_struct		*pi_top_task;
1023 1024
	/* Deadlock detection and priority inheritance handling: */
	struct rt_mutex_waiter		*pi_blocked_on;
I
Ingo Molnar 已提交
1025 1026
#endif

1027
#ifdef CONFIG_DEBUG_MUTEXES
1028 1029
	/* Mutex deadlock detection: */
	struct mutex_waiter		*blocked_on;
1030
#endif
1031

1032 1033 1034 1035
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
	int				non_block_count;
#endif

1036
#ifdef CONFIG_TRACE_IRQFLAGS
1037
	struct irqtrace_events		irqtrace;
1038
	unsigned int			hardirq_threaded;
1039
	u64				hardirq_chain_key;
1040 1041
	int				softirqs_enabled;
	int				softirq_context;
1042
	int				irq_config;
1043
#endif
1044

I
Ingo Molnar 已提交
1045
#ifdef CONFIG_LOCKDEP
1046 1047 1048 1049 1050
# define MAX_LOCK_DEPTH			48UL
	u64				curr_chain_key;
	int				lockdep_depth;
	unsigned int			lockdep_recursion;
	struct held_lock		held_locks[MAX_LOCK_DEPTH];
I
Ingo Molnar 已提交
1051
#endif
1052

1053
#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1054
	unsigned int			in_ubsan;
1055
#endif
1056

1057 1058
	/* Journalling filesystem info: */
	void				*journal_info;
L
Linus Torvalds 已提交
1059

1060 1061
	/* Stacked block device info: */
	struct bio_list			*bio_list;
1062

1063
#ifdef CONFIG_BLOCK
1064 1065
	/* Stack plugging: */
	struct blk_plug			*plug;
1066 1067
#endif

1068 1069 1070 1071
	/* VM state: */
	struct reclaim_state		*reclaim_state;

	struct backing_dev_info		*backing_dev_info;
L
Linus Torvalds 已提交
1072

1073
	struct io_context		*io_context;
L
Linus Torvalds 已提交
1074

1075 1076 1077
#ifdef CONFIG_COMPACTION
	struct capture_control		*capture_control;
#endif
1078 1079
	/* Ptrace state: */
	unsigned long			ptrace_message;
1080
	kernel_siginfo_t		*last_siginfo;
L
Linus Torvalds 已提交
1081

1082
	struct task_io_accounting	ioac;
1083 1084 1085 1086
#ifdef CONFIG_PSI
	/* Pressure stall state */
	unsigned int			psi_flags;
#endif
1087 1088 1089 1090 1091 1092 1093
#ifdef CONFIG_TASK_XACCT
	/* Accumulated RSS usage: */
	u64				acct_rss_mem1;
	/* Accumulated virtual memory usage: */
	u64				acct_vm_mem1;
	/* stime + utime since last update: */
	u64				acct_timexpd;
L
Linus Torvalds 已提交
1094 1095
#endif
#ifdef CONFIG_CPUSETS
1096 1097 1098
	/* Protected by ->alloc_lock: */
	nodemask_t			mems_allowed;
	/* Seqence number to catch updates: */
1099
	seqcount_spinlock_t		mems_allowed_seq;
1100 1101
	int				cpuset_mem_spread_rotor;
	int				cpuset_slab_spread_rotor;
L
Linus Torvalds 已提交
1102
#endif
1103
#ifdef CONFIG_CGROUPS
1104 1105 1106 1107
	/* Control Group info protected by css_set_lock: */
	struct css_set __rcu		*cgroups;
	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
	struct list_head		cg_list;
1108
#endif
1109
#ifdef CONFIG_X86_CPU_RESCTRL
1110
	u32				closid;
1111
	u32				rmid;
F
Fenghua Yu 已提交
1112
#endif
1113
#ifdef CONFIG_FUTEX
1114
	struct robust_list_head __user	*robust_list;
1115 1116 1117
#ifdef CONFIG_COMPAT
	struct compat_robust_list_head __user *compat_robust_list;
#endif
1118 1119
	struct list_head		pi_state_list;
	struct futex_pi_state		*pi_state_cache;
1120
	struct mutex			futex_exit_mutex;
1121
	unsigned int			futex_state;
1122
#endif
1123
#ifdef CONFIG_PERF_EVENTS
1124 1125 1126
	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
	struct mutex			perf_event_mutex;
	struct list_head		perf_event_list;
1127
#endif
1128
#ifdef CONFIG_DEBUG_PREEMPT
1129
	unsigned long			preempt_disable_ip;
1130
#endif
1131
#ifdef CONFIG_NUMA
1132 1133
	/* Protected by alloc_lock: */
	struct mempolicy		*mempolicy;
1134
	short				il_prev;
1135
	short				pref_node_fork;
1136
#endif
1137
#ifdef CONFIG_NUMA_BALANCING
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	int				numa_scan_seq;
	unsigned int			numa_scan_period;
	unsigned int			numa_scan_period_max;
	int				numa_preferred_nid;
	unsigned long			numa_migrate_retry;
	/* Migration stamp: */
	u64				node_stamp;
	u64				last_task_numa_placement;
	u64				last_sum_exec_runtime;
	struct callback_head		numa_work;

1149 1150 1151 1152 1153 1154 1155 1156 1157
	/*
	 * This pointer is only modified for current in syscall and
	 * pagefault context (and for tasks being destroyed), so it can be read
	 * from any of the following contexts:
	 *  - RCU read-side critical section
	 *  - current->numa_group from everywhere
	 *  - task's runqueue locked, task not running
	 */
	struct numa_group __rcu		*numa_group;
1158

1159
	/*
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	 * numa_faults is an array split into four regions:
	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
	 * in this precise order.
	 *
	 * faults_memory: Exponential decaying average of faults on a per-node
	 * basis. Scheduling placement decisions are made based on these
	 * counts. The values remain static for the duration of a PTE scan.
	 * faults_cpu: Track the nodes the process was running on when a NUMA
	 * hinting fault was incurred.
	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
	 * during the current scan window. When the scan completes, the counts
	 * in faults_memory and faults_cpu decay and these values are copied.
1172
	 */
1173 1174
	unsigned long			*numa_faults;
	unsigned long			total_numa_faults;
1175

1176 1177
	/*
	 * numa_faults_locality tracks if faults recorded during the last
1178 1179 1180
	 * scan window were remote/local or failed to migrate. The task scan
	 * period is adapted based on the locality of the faults with different
	 * weights depending on whether they were shared or private faults
1181
	 */
1182
	unsigned long			numa_faults_locality[3];
1183

1184
	unsigned long			numa_pages_migrated;
1185 1186
#endif /* CONFIG_NUMA_BALANCING */

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
#ifdef CONFIG_RSEQ
	struct rseq __user *rseq;
	u32 rseq_sig;
	/*
	 * RmW on rseq_event_mask must be performed atomically
	 * with respect to preemption.
	 */
	unsigned long rseq_event_mask;
#endif

1197
	struct tlbflush_unmap_batch	tlb_ubc;
1198

1199 1200 1201 1202
	union {
		refcount_t		rcu_users;
		struct rcu_head		rcu;
	};
1203

1204 1205
	/* Cache last used pipe for splice(): */
	struct pipe_inode_info		*splice_pipe;
1206

1207
	struct page_frag		task_frag;
1208

1209 1210
#ifdef CONFIG_TASK_DELAY_ACCT
	struct task_delay_info		*delays;
1211
#endif
1212

1213
#ifdef CONFIG_FAULT_INJECTION
1214
	int				make_it_fail;
1215
	unsigned int			fail_nth;
1216
#endif
1217
	/*
1218 1219
	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
	 * balance_dirty_pages() for a dirty throttling pause:
1220
	 */
1221 1222 1223 1224
	int				nr_dirtied;
	int				nr_dirtied_pause;
	/* Start of a write-and-pause period: */
	unsigned long			dirty_paused_when;
1225

A
Arjan van de Ven 已提交
1226
#ifdef CONFIG_LATENCYTOP
1227 1228
	int				latency_record_count;
	struct latency_record		latency_record[LT_SAVECOUNT];
A
Arjan van de Ven 已提交
1229
#endif
1230
	/*
1231
	 * Time slack values; these are used to round up poll() and
1232 1233
	 * select() etc timeout values. These are in nanoseconds.
	 */
1234 1235
	u64				timer_slack_ns;
	u64				default_timer_slack_ns;
1236

1237
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1238
	unsigned int			kasan_depth;
1239
#endif
1240

1241 1242
#ifdef CONFIG_KCSAN
	struct kcsan_ctx		kcsan_ctx;
1243 1244 1245
#ifdef CONFIG_TRACE_IRQFLAGS
	struct irqtrace_events		kcsan_save_irqtrace;
#endif
1246
#endif
1247

1248 1249 1250 1251
#if IS_ENABLED(CONFIG_KUNIT)
	struct kunit			*kunit_test;
#endif

1252
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1253 1254
	/* Index of current stored address in ret_stack: */
	int				curr_ret_stack;
1255
	int				curr_ret_depth;
1256 1257 1258 1259 1260 1261 1262

	/* Stack of return addresses for return function tracing: */
	struct ftrace_ret_stack		*ret_stack;

	/* Timestamp for last schedule: */
	unsigned long long		ftrace_timestamp;

1263 1264
	/*
	 * Number of functions that haven't been traced
1265
	 * because of depth overrun:
1266
	 */
1267 1268 1269 1270
	atomic_t			trace_overrun;

	/* Pause tracing: */
	atomic_t			tracing_graph_pause;
1271
#endif
1272

1273
#ifdef CONFIG_TRACING
1274 1275 1276 1277 1278
	/* State flags for use by tracers: */
	unsigned long			trace;

	/* Bitmask and counter of trace recursion: */
	unsigned long			trace_recursion;
1279
#endif /* CONFIG_TRACING */
1280

D
Dmitry Vyukov 已提交
1281
#ifdef CONFIG_KCOV
A
Andrey Konovalov 已提交
1282 1283
	/* See kernel/kcov.c for more details. */

1284
	/* Coverage collection mode enabled for this task (0 if disabled): */
1285
	unsigned int			kcov_mode;
1286 1287 1288 1289 1290 1291 1292 1293 1294

	/* Size of the kcov_area: */
	unsigned int			kcov_size;

	/* Buffer for coverage collection: */
	void				*kcov_area;

	/* KCOV descriptor wired with this task or NULL: */
	struct kcov			*kcov;
A
Andrey Konovalov 已提交
1295 1296 1297 1298 1299 1300

	/* KCOV common handle for remote coverage collection: */
	u64				kcov_handle;

	/* KCOV sequence number: */
	int				kcov_sequence;
1301 1302 1303

	/* Collect coverage from softirq context: */
	unsigned int			kcov_softirq;
D
Dmitry Vyukov 已提交
1304
#endif
1305

1306
#ifdef CONFIG_MEMCG
1307 1308 1309
	struct mem_cgroup		*memcg_in_oom;
	gfp_t				memcg_oom_gfp_mask;
	int				memcg_oom_order;
1310

1311 1312
	/* Number of pages to reclaim on returning to userland: */
	unsigned int			memcg_nr_pages_over_high;
1313 1314 1315

	/* Used by memcontrol for targeted memcg charge: */
	struct mem_cgroup		*active_memcg;
1316
#endif
1317

1318 1319 1320 1321
#ifdef CONFIG_BLK_CGROUP
	struct request_queue		*throttle_queue;
#endif

1322
#ifdef CONFIG_UPROBES
1323
	struct uprobe_task		*utask;
1324
#endif
K
Kent Overstreet 已提交
1325
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1326 1327
	unsigned int			sequential_io;
	unsigned int			sequential_io_avg;
K
Kent Overstreet 已提交
1328
#endif
1329
	struct kmap_ctrl		kmap_ctrl;
P
Peter Zijlstra 已提交
1330
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1331
	unsigned long			task_state_change;
P
Peter Zijlstra 已提交
1332
#endif
1333
	int				pagefault_disabled;
1334
#ifdef CONFIG_MMU
1335
	struct task_struct		*oom_reaper_list;
1336
#endif
1337
#ifdef CONFIG_VMAP_STACK
1338
	struct vm_struct		*stack_vm_area;
1339
#endif
1340
#ifdef CONFIG_THREAD_INFO_IN_TASK
1341
	/* A live task holds one reference: */
1342
	refcount_t			stack_refcount;
1343 1344 1345
#endif
#ifdef CONFIG_LIVEPATCH
	int patch_state;
1346
#endif
1347 1348 1349
#ifdef CONFIG_SECURITY
	/* Used by LSM modules for access restriction: */
	void				*security;
1350
#endif
K
Kees Cook 已提交
1351

1352 1353
#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
	unsigned long			lowest_stack;
1354
	unsigned long			prev_lowest_stack;
1355 1356
#endif

1357
#ifdef CONFIG_X86_MCE
1358 1359
	void __user			*mce_vaddr;
	__u64				mce_kflags;
1360
	u64				mce_addr;
1361 1362 1363
	__u64				mce_ripv : 1,
					mce_whole_page : 1,
					__mce_reserved : 62;
1364 1365 1366
	struct callback_head		mce_kill_me;
#endif

P
Peter Zijlstra 已提交
1367 1368 1369 1370
#ifdef CONFIG_KRETPROBES
	struct llist_head               kretprobe_instances;
#endif

K
Kees Cook 已提交
1371 1372 1373 1374 1375 1376
	/*
	 * New fields for task_struct should be added above here, so that
	 * they are included in the randomized portion of task_struct.
	 */
	randomized_struct_fields_end

1377 1378 1379 1380 1381 1382 1383 1384 1385
	/* CPU-specific state of this task: */
	struct thread_struct		thread;

	/*
	 * WARNING: on x86, 'thread_struct' contains a variable-sized
	 * structure.  It *MUST* be at the end of 'task_struct'.
	 *
	 * Do not put anything below here!
	 */
L
Linus Torvalds 已提交
1386 1387
};

A
Alexey Dobriyan 已提交
1388
static inline struct pid *task_pid(struct task_struct *task)
1389
{
1390
	return task->thread_pid;
1391 1392
}

1393 1394 1395 1396 1397
/*
 * the helpers to get the task's different pids as they are seen
 * from various namespaces
 *
 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
E
Eric W. Biederman 已提交
1398 1399
 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
 *                     current.
1400 1401 1402 1403
 * task_xid_nr_ns()  : id seen from the ns specified;
 *
 * see also pid_nr() etc in include/linux/pid.h
 */
1404
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1405

A
Alexey Dobriyan 已提交
1406
static inline pid_t task_pid_nr(struct task_struct *tsk)
1407 1408 1409 1410
{
	return tsk->pid;
}

1411
static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1412 1413 1414
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
}
1415 1416 1417

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{
1418
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1419 1420 1421
}


A
Alexey Dobriyan 已提交
1422
static inline pid_t task_tgid_nr(struct task_struct *tsk)
1423 1424 1425 1426
{
	return tsk->tgid;
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
/**
 * pid_alive - check that a task structure is not stale
 * @p: Task structure to be checked.
 *
 * Test if a process is not yet dead (at most zombie state)
 * If pid_alive fails, then pointers within the task structure
 * can be stale and must not be dereferenced.
 *
 * Return: 1 if the process is alive. 0 otherwise.
 */
static inline int pid_alive(const struct task_struct *p)
{
1439
	return p->thread_pid != NULL;
1440
}
1441

1442
static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1443
{
1444
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1445 1446 1447 1448
}

static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
{
1449
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1450 1451 1452
}


1453
static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1454
{
1455
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1456 1457 1458 1459
}

static inline pid_t task_session_vnr(struct task_struct *tsk)
{
1460
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1461 1462
}

1463 1464
static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
E
Eric W. Biederman 已提交
1465
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1466 1467 1468 1469
}

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
E
Eric W. Biederman 已提交
1470
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
}

static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
{
	pid_t pid = 0;

	rcu_read_lock();
	if (pid_alive(tsk))
		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
	rcu_read_unlock();

	return pid;
}

static inline pid_t task_ppid_nr(const struct task_struct *tsk)
{
	return task_ppid_nr_ns(tsk, &init_pid_ns);
}

1490
/* Obsolete, do not use: */
1491 1492 1493 1494
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
	return task_pgrp_nr_ns(tsk, &init_pid_ns);
}
1495

1496 1497 1498
#define TASK_REPORT_IDLE	(TASK_REPORT + 1)
#define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)

1499
static inline unsigned int task_state_index(struct task_struct *tsk)
1500
{
1501 1502
	unsigned int tsk_state = READ_ONCE(tsk->state);
	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1503

1504 1505 1506 1507 1508
	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);

	if (tsk_state == TASK_IDLE)
		state = TASK_REPORT_IDLE;

1509 1510 1511
	return fls(state);
}

1512
static inline char task_index_to_char(unsigned int state)
1513
{
1514
	static const char state_char[] = "RSDTtXZPI";
1515

1516
	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1517

1518 1519 1520 1521 1522
	return state_char[state];
}

static inline char task_state_to_char(struct task_struct *tsk)
{
1523
	return task_index_to_char(task_state_index(tsk));
1524 1525
}

1526
/**
1527 1528
 * is_global_init - check if a task structure is init. Since init
 * is free to have sub-threads we need to check tgid.
1529 1530 1531
 * @tsk: Task structure to be checked.
 *
 * Check if a task structure is the first user space task the kernel created.
1532 1533
 *
 * Return: 1 if the task structure is init. 0 otherwise.
1534
 */
A
Alexey Dobriyan 已提交
1535
static inline int is_global_init(struct task_struct *tsk)
1536
{
1537
	return task_tgid_nr(tsk) == 1;
1538
}
1539

1540 1541
extern struct pid *cad_pid;

L
Linus Torvalds 已提交
1542 1543 1544
/*
 * Per process flags
 */
1545
#define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1546 1547
#define PF_IDLE			0x00000002	/* I am an IDLE thread */
#define PF_EXITING		0x00000004	/* Getting shut down */
1548
#define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
#define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
#define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
#define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
#define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
#define PF_DUMPCORE		0x00000200	/* Dumped core */
#define PF_SIGNALED		0x00000400	/* Killed by a signal */
#define PF_MEMALLOC		0x00000800	/* Allocating memory */
#define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
#define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
#define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
#define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
#define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1561 1562 1563
#define PF_KSWAPD		0x00020000	/* I am kswapd */
#define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
#define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1564 1565
#define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
						 * I am cleaning dirty pages from some other bdi. */
1566 1567 1568
#define PF_KTHREAD		0x00200000	/* I am a kernel thread */
#define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
#define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1569
#define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1570
#define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1571
#define PF_MEMALLOC_NOCMA	0x10000000	/* All allocation request will have _GFP_MOVABLE cleared */
1572 1573
#define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
#define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
L
Linus Torvalds 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585

/*
 * Only the _current_ task can read/write to tsk->flags, but other
 * tasks can access tsk->flags in readonly mode for example
 * with tsk_used_math (like during threaded core dumping).
 * There is however an exception to this rule during ptrace
 * or during fork: the ptracer task is allowed to write to the
 * child->flags of its traced child (same goes for fork, the parent
 * can write to the child->flags), because we're guaranteed the
 * child is not running and in turn not changing child->flags
 * at the same time the parent does it.
 */
1586 1587 1588 1589 1590
#define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math()			clear_stopped_child_used_math(current)
#define set_used_math()				set_stopped_child_used_math(current)

L
Linus Torvalds 已提交
1591 1592
#define conditional_stopped_child_used_math(condition, child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1593 1594 1595

#define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)

L
Linus Torvalds 已提交
1596 1597
#define copy_to_stopped_child_used_math(child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1598

L
Linus Torvalds 已提交
1599
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1600 1601
#define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
#define used_math()				tsk_used_math(current)
L
Linus Torvalds 已提交
1602

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
static inline bool is_percpu_thread(void)
{
#ifdef CONFIG_SMP
	return (current->flags & PF_NO_SETAFFINITY) &&
		(current->nr_cpus_allowed  == 1);
#else
	return true;
#endif
}

1613
/* Per-process atomic flags. */
1614 1615 1616
#define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
#define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
#define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1617 1618
#define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
#define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1619 1620
#define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
#define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1621
#define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1622

1623 1624 1625
#define TASK_PFA_TEST(name, func)					\
	static inline bool task_##func(struct task_struct *p)		\
	{ return test_bit(PFA_##name, &p->atomic_flags); }
1626

1627 1628 1629
#define TASK_PFA_SET(name, func)					\
	static inline void task_set_##func(struct task_struct *p)	\
	{ set_bit(PFA_##name, &p->atomic_flags); }
1630

1631 1632 1633 1634 1635 1636
#define TASK_PFA_CLEAR(name, func)					\
	static inline void task_clear_##func(struct task_struct *p)	\
	{ clear_bit(PFA_##name, &p->atomic_flags); }

TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1637

1638 1639 1640 1641 1642 1643 1644
TASK_PFA_TEST(SPREAD_PAGE, spread_page)
TASK_PFA_SET(SPREAD_PAGE, spread_page)
TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)

TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
TASK_PFA_SET(SPREAD_SLAB, spread_slab)
TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1645

1646 1647 1648 1649
TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)

1650 1651 1652 1653
TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)

1654 1655 1656
TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)

1657 1658 1659 1660 1661 1662 1663
TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)

TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)

1664
static inline void
1665
current_restore_flags(unsigned long orig_flags, unsigned long flags)
1666
{
1667 1668
	current->flags &= ~flags;
	current->flags |= orig_flags & flags;
1669 1670
}

1671 1672
extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
L
Linus Torvalds 已提交
1673
#ifdef CONFIG_SMP
1674 1675
extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
L
Linus Torvalds 已提交
1676
#else
1677
static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1678 1679
{
}
1680
static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
1681
{
1682
	if (!cpumask_test_cpu(0, new_mask))
L
Linus Torvalds 已提交
1683 1684 1685 1686
		return -EINVAL;
	return 0;
}
#endif
1687

1688
extern int yield_to(struct task_struct *p, bool preempt);
1689 1690
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
1691

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 *
 * Return: The nice value [ -20 ... 0 ... 19 ].
 */
static inline int task_nice(const struct task_struct *p)
{
	return PRIO_TO_NICE((p)->static_prio);
}
1702

1703 1704
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
L
Linus Torvalds 已提交
1705
extern int idle_cpu(int cpu);
1706
extern int available_idle_cpu(int cpu);
1707 1708
extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1709 1710 1711
extern void sched_set_fifo(struct task_struct *p);
extern void sched_set_fifo_low(struct task_struct *p);
extern void sched_set_normal(struct task_struct *p, int nice);
1712
extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1713
extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1714
extern struct task_struct *idle_task(int cpu);
1715

1716 1717
/**
 * is_idle_task - is the specified task an idle task?
1718
 * @p: the task in question.
1719 1720
 *
 * Return: 1 if @p is an idle task. 0 otherwise.
1721
 */
1722
static __always_inline bool is_idle_task(const struct task_struct *p)
1723
{
1724
	return !!(p->flags & PF_IDLE);
1725
}
1726

1727
extern struct task_struct *curr_task(int cpu);
1728
extern void ia64_set_curr_task(int cpu, struct task_struct *p);
L
Linus Torvalds 已提交
1729 1730 1731 1732

void yield(void);

union thread_union {
1733 1734 1735
#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
	struct task_struct task;
#endif
1736
#ifndef CONFIG_THREAD_INFO_IN_TASK
L
Linus Torvalds 已提交
1737
	struct thread_info thread_info;
1738
#endif
L
Linus Torvalds 已提交
1739 1740 1741
	unsigned long stack[THREAD_SIZE/sizeof(long)];
};

1742 1743 1744 1745 1746 1747
#ifndef CONFIG_THREAD_INFO_IN_TASK
extern struct thread_info init_thread_info;
#endif

extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];

1748 1749 1750 1751 1752 1753 1754 1755 1756
#ifdef CONFIG_THREAD_INFO_IN_TASK
static inline struct thread_info *task_thread_info(struct task_struct *task)
{
	return &task->thread_info;
}
#elif !defined(__HAVE_THREAD_FUNCTIONS)
# define task_thread_info(task)	((struct thread_info *)(task)->stack)
#endif

1757 1758 1759 1760 1761
/*
 * find a task by one of its numerical ids
 *
 * find_task_by_pid_ns():
 *      finds a task by its pid in the specified namespace
1762 1763
 * find_task_by_vpid():
 *      finds a task by its virtual pid
1764
 *
1765
 * see also find_vpid() etc in include/linux/pid.h
1766 1767
 */

1768
extern struct task_struct *find_task_by_vpid(pid_t nr);
1769
extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1770

1771 1772 1773 1774 1775
/*
 * find a task by its virtual pid and get the task struct
 */
extern struct task_struct *find_get_task_by_vpid(pid_t nr);

1776 1777
extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
1778
extern void wake_up_new_task(struct task_struct *tsk);
1779

L
Linus Torvalds 已提交
1780
#ifdef CONFIG_SMP
1781
extern void kick_process(struct task_struct *tsk);
L
Linus Torvalds 已提交
1782
#else
1783
static inline void kick_process(struct task_struct *tsk) { }
L
Linus Torvalds 已提交
1784 1785
#endif

1786
extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1787

1788 1789 1790 1791
static inline void set_task_comm(struct task_struct *tsk, const char *from)
{
	__set_task_comm(tsk, from, false);
}
1792

1793 1794 1795 1796 1797
extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
#define get_task_comm(buf, tsk) ({			\
	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
	__get_task_comm(buf, sizeof(buf), tsk);		\
})
L
Linus Torvalds 已提交
1798 1799

#ifdef CONFIG_SMP
1800 1801 1802 1803 1804 1805 1806 1807 1808
static __always_inline void scheduler_ipi(void)
{
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
	preempt_fold_need_resched();
}
R
Roland McGrath 已提交
1809
extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
L
Linus Torvalds 已提交
1810
#else
1811
static inline void scheduler_ipi(void) { }
1812
static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
R
Roland McGrath 已提交
1813 1814 1815
{
	return 1;
}
L
Linus Torvalds 已提交
1816 1817
#endif

1818 1819 1820
/*
 * Set thread flags in other task's structures.
 * See asm/thread_info.h for TIF_xxxx flags available:
L
Linus Torvalds 已提交
1821 1822 1823
 */
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1824
	set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1825 1826 1827 1828
}

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1829
	clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1830 1831
}

1832 1833 1834 1835 1836 1837
static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
					  bool value)
{
	update_ti_thread_flag(task_thread_info(tsk), flag, value);
}

L
Linus Torvalds 已提交
1838 1839
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1840
	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1841 1842 1843 1844
}

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1845
	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1846 1847 1848 1849
}

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1850
	return test_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
}

static inline void set_tsk_need_resched(struct task_struct *tsk)
{
	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

1863 1864 1865 1866 1867
static inline int test_tsk_need_resched(struct task_struct *tsk)
{
	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}

L
Linus Torvalds 已提交
1868 1869 1870 1871 1872 1873
/*
 * cond_resched() and cond_resched_lock(): latency reduction via
 * explicit rescheduling in places that are safe. The return
 * value indicates whether a reschedule was done in fact.
 * cond_resched_lock() will drop the spinlock before scheduling,
 */
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
extern int __cond_resched(void);

#ifdef CONFIG_PREEMPT_DYNAMIC

DECLARE_STATIC_CALL(cond_resched, __cond_resched);

static __always_inline int _cond_resched(void)
{
	return static_call(cond_resched)();
}

1886
#else
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896

static inline int _cond_resched(void)
{
	return __cond_resched();
}

#endif /* CONFIG_PREEMPT_DYNAMIC */

#else

1897
static inline int _cond_resched(void) { return 0; }
1898 1899

#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
1900

1901
#define cond_resched() ({			\
1902
	___might_sleep(__FILE__, __LINE__, 0);	\
1903 1904
	_cond_resched();			\
})
1905

1906 1907 1908
extern int __cond_resched_lock(spinlock_t *lock);

#define cond_resched_lock(lock) ({				\
1909
	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1910 1911 1912
	__cond_resched_lock(lock);				\
})

1913 1914 1915 1916 1917 1918 1919 1920 1921
static inline void cond_resched_rcu(void)
{
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
	rcu_read_unlock();
	cond_resched();
	rcu_read_lock();
#endif
}

L
Linus Torvalds 已提交
1922 1923
/*
 * Does a critical section need to be broken due to another
1924
 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
N
Nick Piggin 已提交
1925
 * but a general need for low latency)
L
Linus Torvalds 已提交
1926
 */
N
Nick Piggin 已提交
1927
static inline int spin_needbreak(spinlock_t *lock)
L
Linus Torvalds 已提交
1928
{
1929
#ifdef CONFIG_PREEMPTION
N
Nick Piggin 已提交
1930 1931
	return spin_is_contended(lock);
#else
L
Linus Torvalds 已提交
1932
	return 0;
N
Nick Piggin 已提交
1933
#endif
L
Linus Torvalds 已提交
1934 1935
}

1936 1937 1938 1939 1940
static __always_inline bool need_resched(void)
{
	return unlikely(tif_need_resched());
}

L
Linus Torvalds 已提交
1941 1942 1943 1944 1945 1946 1947
/*
 * Wrappers for p->thread_info->cpu access. No-op on UP.
 */
#ifdef CONFIG_SMP

static inline unsigned int task_cpu(const struct task_struct *p)
{
1948
#ifdef CONFIG_THREAD_INFO_IN_TASK
1949
	return READ_ONCE(p->cpu);
1950
#else
1951
	return READ_ONCE(task_thread_info(p)->cpu);
1952
#endif
L
Linus Torvalds 已提交
1953 1954
}

I
Ingo Molnar 已提交
1955
extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
L
Linus Torvalds 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969

#else

static inline unsigned int task_cpu(const struct task_struct *p)
{
	return 0;
}

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}

#endif /* CONFIG_SMP */

1970 1971 1972 1973 1974 1975 1976 1977 1978
/*
 * In order to reduce various lock holder preemption latencies provide an
 * interface to see if a vCPU is currently running or not.
 *
 * This allows us to terminate optimistic spin loops and block, analogous to
 * the native optimistic spin heuristic of testing if the lock owner task is
 * running or not.
 */
#ifndef vcpu_is_preempted
1979 1980 1981 1982
static inline bool vcpu_is_preempted(int cpu)
{
	return false;
}
1983 1984
#endif

1985 1986
extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1987

D
Dave Hansen 已提交
1988 1989 1990 1991
#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk)	TASK_SIZE
#endif

1992 1993 1994 1995 1996
#ifdef CONFIG_SMP
/* Returns effective CPU energy utilization, as seen by the scheduler */
unsigned long sched_cpu_util(int cpu, unsigned long max);
#endif /* CONFIG_SMP */

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
#ifdef CONFIG_RSEQ

/*
 * Map the event mask on the user-space ABI enum rseq_cs_flags
 * for direct mask checks.
 */
enum rseq_event_mask_bits {
	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
};

enum rseq_event_mask {
	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
};

static inline void rseq_set_notify_resume(struct task_struct *t)
{
	if (t->rseq)
		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
}

2021
void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2022

2023 2024
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
2025 2026
{
	if (current->rseq)
2027
		__rseq_handle_notify_resume(ksig, regs);
2028 2029
}

2030 2031
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
2032 2033 2034 2035
{
	preempt_disable();
	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
	preempt_enable();
2036
	rseq_handle_notify_resume(ksig, regs);
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
}

/* rseq_preempt() requires preemption to be disabled. */
static inline void rseq_preempt(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/* rseq_migrate() requires preemption to be disabled. */
static inline void rseq_migrate(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/*
 * If parent process has a registered restartable sequences area, the
2055
 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2056 2057 2058
 */
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
2059
	if (clone_flags & CLONE_VM) {
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
		t->rseq = NULL;
		t->rseq_sig = 0;
		t->rseq_event_mask = 0;
	} else {
		t->rseq = current->rseq;
		t->rseq_sig = current->rseq_sig;
		t->rseq_event_mask = current->rseq_event_mask;
	}
}

static inline void rseq_execve(struct task_struct *t)
{
	t->rseq = NULL;
	t->rseq_sig = 0;
	t->rseq_event_mask = 0;
}

#else

static inline void rseq_set_notify_resume(struct task_struct *t)
{
}
2082 2083
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
2084 2085
{
}
2086 2087
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
{
}
static inline void rseq_preempt(struct task_struct *t)
{
}
static inline void rseq_migrate(struct task_struct *t)
{
}
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
}
static inline void rseq_execve(struct task_struct *t)
{
}

#endif

#ifdef CONFIG_DEBUG_RSEQ

void rseq_syscall(struct pt_regs *regs);

#else

static inline void rseq_syscall(struct pt_regs *regs)
{
}

#endif

2117 2118 2119 2120 2121 2122 2123 2124 2125
const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);

const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);

int sched_trace_rq_cpu(struct rq *rq);
2126
int sched_trace_rq_cpu_capacity(struct rq *rq);
2127
int sched_trace_rq_nr_running(struct rq *rq);
2128 2129 2130

const struct cpumask *sched_trace_rd_span(struct root_domain *rd);

L
Linus Torvalds 已提交
2131
#endif