sched.h 57.0 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

5 6 7 8
/*
 * Define 'struct task_struct' and provide the main scheduler
 * APIs (schedule(), wakeup variants, etc.)
 */
9

10
#include <uapi/linux/sched.h>
11

12
#include <asm/current.h>
L
Linus Torvalds 已提交
13

14
#include <linux/pid.h>
L
Linus Torvalds 已提交
15
#include <linux/sem.h>
16
#include <linux/shm.h>
17 18 19 20
#include <linux/kcov.h>
#include <linux/mutex.h>
#include <linux/plist.h>
#include <linux/hrtimer.h>
21
#include <linux/irqflags.h>
L
Linus Torvalds 已提交
22
#include <linux/seccomp.h>
23
#include <linux/nodemask.h>
24
#include <linux/rcupdate.h>
25
#include <linux/refcount.h>
26
#include <linux/resource.h>
A
Arjan van de Ven 已提交
27
#include <linux/latencytop.h>
28
#include <linux/sched/prio.h>
29
#include <linux/sched/types.h>
30 31 32
#include <linux/signal_types.h>
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>
33
#include <linux/posix-timers.h>
34
#include <linux/rseq.h>
35
#include <linux/seqlock.h>
36
#include <linux/kcsan.h>
37

38
/* task_struct member predeclarations (sorted alphabetically): */
39 40
struct audit_context;
struct backing_dev_info;
41
struct bio_list;
42
struct blk_plug;
43
struct capture_control;
44 45 46 47 48
struct cfs_rq;
struct fs_struct;
struct futex_pi_state;
struct io_context;
struct mempolicy;
49
struct nameidata;
50 51 52 53 54 55 56
struct nsproxy;
struct perf_event_context;
struct pid_namespace;
struct pipe_inode_info;
struct rcu_node;
struct reclaim_state;
struct robust_list_head;
57 58
struct root_domain;
struct rq;
59 60
struct sched_attr;
struct sched_param;
I
Ingo Molnar 已提交
61
struct seq_file;
62 63 64
struct sighand_struct;
struct signal_struct;
struct task_delay_info;
65
struct task_group;
66
struct io_uring_task;
L
Linus Torvalds 已提交
67

68 69 70 71 72 73 74 75 76 77
/*
 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 *
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.
 */
78 79

/* Used in tsk->state: */
80 81 82 83 84
#define TASK_RUNNING			0x0000
#define TASK_INTERRUPTIBLE		0x0001
#define TASK_UNINTERRUPTIBLE		0x0002
#define __TASK_STOPPED			0x0004
#define __TASK_TRACED			0x0008
85
/* Used in tsk->exit_state: */
86 87
#define EXIT_DEAD			0x0010
#define EXIT_ZOMBIE			0x0020
88 89
#define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
/* Used in tsk->state again: */
90 91 92 93
#define TASK_PARKED			0x0040
#define TASK_DEAD			0x0080
#define TASK_WAKEKILL			0x0100
#define TASK_WAKING			0x0200
94 95 96
#define TASK_NOLOAD			0x0400
#define TASK_NEW			0x0800
#define TASK_STATE_MAX			0x1000
97 98 99 100 101 102 103 104 105 106 107 108 109 110

/* Convenience macros for the sake of set_current_state: */
#define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)

#define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)

/* Convenience macros for the sake of wake_up(): */
#define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)

/* get_task_state(): */
#define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
111 112
					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
					 TASK_PARKED)
113 114 115 116 117 118 119

#define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)

#define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)

#define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)

P
Peter Zijlstra 已提交
120 121
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP

122 123 124 125 126
/*
 * Special states are those that do not use the normal wait-loop pattern. See
 * the comment with set_special_state().
 */
#define is_special_task_state(state)				\
127
	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
128

P
Peter Zijlstra 已提交
129 130
#define __set_current_state(state_value)			\
	do {							\
131
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
132 133 134
		current->task_state_change = _THIS_IP_;		\
		current->state = (state_value);			\
	} while (0)
135

P
Peter Zijlstra 已提交
136 137
#define set_current_state(state_value)				\
	do {							\
138
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
139
		current->task_state_change = _THIS_IP_;		\
140
		smp_store_mb(current->state, (state_value));	\
P
Peter Zijlstra 已提交
141 142
	} while (0)

143 144 145 146 147 148 149 150 151
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		WARN_ON_ONCE(!is_special_task_state(state_value));	\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->task_state_change = _THIS_IP_;			\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)
P
Peter Zijlstra 已提交
152
#else
153 154 155 156 157
/*
 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *
158
 *   for (;;) {
159
 *	set_current_state(TASK_UNINTERRUPTIBLE);
P
Peter Zijlstra 已提交
160 161
 *	if (CONDITION)
 *	   break;
162 163 164 165 166 167
 *
 *	schedule();
 *   }
 *   __set_current_state(TASK_RUNNING);
 *
 * If the caller does not need such serialisation (because, for instance, the
P
Peter Zijlstra 已提交
168
 * CONDITION test and condition change and wakeup are under the same lock) then
169 170 171 172
 * use __set_current_state().
 *
 * The above is typically ordered against the wakeup, which does:
 *
P
Peter Zijlstra 已提交
173
 *   CONDITION = 1;
174
 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
175
 *
P
Peter Zijlstra 已提交
176 177
 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
 * accessing p->state.
178 179 180 181
 *
 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
182
 *
183
 * However, with slightly different timing the wakeup TASK_RUNNING store can
I
Ingo Molnar 已提交
184
 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
185 186
 * a problem either because that will result in one extra go around the loop
 * and our @cond test will save the day.
187
 *
188
 * Also see the comments of try_to_wake_up().
189
 */
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
#define __set_current_state(state_value)				\
	current->state = (state_value)

#define set_current_state(state_value)					\
	smp_store_mb(current->state, (state_value))

/*
 * set_special_state() should be used for those states when the blocking task
 * can not use the regular condition based wait-loop. In that case we must
 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 * will not collide with our state change.
 */
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)

P
Peter Zijlstra 已提交
210 211
#endif

212 213
/* Task command name length: */
#define TASK_COMM_LEN			16
L
Linus Torvalds 已提交
214 215 216

extern void scheduler_tick(void);

217 218 219 220 221 222 223
#define	MAX_SCHEDULE_TIMEOUT		LONG_MAX

extern long schedule_timeout(long timeout);
extern long schedule_timeout_interruptible(long timeout);
extern long schedule_timeout_killable(long timeout);
extern long schedule_timeout_uninterruptible(long timeout);
extern long schedule_timeout_idle(long timeout);
L
Linus Torvalds 已提交
224
asmlinkage void schedule(void);
225
extern void schedule_preempt_disabled(void);
226
asmlinkage void preempt_schedule_irq(void);
L
Linus Torvalds 已提交
227

228 229
extern int __must_check io_schedule_prepare(void);
extern void io_schedule_finish(int token);
230
extern long io_schedule_timeout(long timeout);
231
extern void io_schedule(void);
232

233
/**
234
 * struct prev_cputime - snapshot of system and user cputime
235 236
 * @utime: time spent in user mode
 * @stime: time spent in system mode
237
 * @lock: protects the above two fields
238
 *
239 240
 * Stores previous user/system time values such that we can guarantee
 * monotonicity.
241
 */
242 243
struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
244 245 246
	u64				utime;
	u64				stime;
	raw_spinlock_t			lock;
247
#endif
248 249
};

250 251 252
enum vtime_state {
	/* Task is sleeping or running in a CPU with VTIME inactive: */
	VTIME_INACTIVE = 0,
253 254
	/* Task is idle */
	VTIME_IDLE,
255 256
	/* Task runs in kernelspace in a CPU with VTIME active: */
	VTIME_SYS,
257 258
	/* Task runs in userspace in a CPU with VTIME active: */
	VTIME_USER,
259 260
	/* Task runs as guests in a CPU with VTIME active: */
	VTIME_GUEST,
261 262 263 264 265 266
};

struct vtime {
	seqcount_t		seqcount;
	unsigned long long	starttime;
	enum vtime_state	state;
267
	unsigned int		cpu;
268 269 270
	u64			utime;
	u64			stime;
	u64			gtime;
271 272
};

273 274 275 276 277 278 279 280 281 282 283 284
/*
 * Utilization clamp constraints.
 * @UCLAMP_MIN:	Minimum utilization
 * @UCLAMP_MAX:	Maximum utilization
 * @UCLAMP_CNT:	Utilization clamp constraints count
 */
enum uclamp_id {
	UCLAMP_MIN = 0,
	UCLAMP_MAX,
	UCLAMP_CNT
};

285 286 287 288 289
#ifdef CONFIG_SMP
extern struct root_domain def_root_domain;
extern struct mutex sched_domains_mutex;
#endif

L
Linus Torvalds 已提交
290
struct sched_info {
291
#ifdef CONFIG_SCHED_INFO
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	/* Cumulative counters: */

	/* # of times we have run on this CPU: */
	unsigned long			pcount;

	/* Time spent waiting on a runqueue: */
	unsigned long long		run_delay;

	/* Timestamps: */

	/* When did we last run on a CPU? */
	unsigned long long		last_arrival;

	/* When were we last queued to run? */
	unsigned long long		last_queued;
L
Linus Torvalds 已提交
307

308
#endif /* CONFIG_SCHED_INFO */
309
};
L
Linus Torvalds 已提交
310

311 312 313 314 315 316 317
/*
 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 * has a few: load, load_avg, util_avg, freq, and capacity.
 *
 * We define a basic fixed point arithmetic range, and then formalize
 * all these metrics based on that basic range.
 */
318 319
# define SCHED_FIXEDPOINT_SHIFT		10
# define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
320

321 322 323 324
/* Increase resolution of cpu_capacity calculations */
# define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
# define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)

I
Ingo Molnar 已提交
325
struct load_weight {
326 327
	unsigned long			weight;
	u32				inv_weight;
I
Ingo Molnar 已提交
328 329
};

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/**
 * struct util_est - Estimation utilization of FAIR tasks
 * @enqueued: instantaneous estimated utilization of a task/cpu
 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 *            utilization of a task
 *
 * Support data structure to track an Exponential Weighted Moving Average
 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 * average each time a task completes an activation. Sample's weight is chosen
 * so that the EWMA will be relatively insensitive to transient changes to the
 * task's workload.
 *
 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 * - task:   the task's util_avg at last task dequeue time
 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 * Thus, the util_est.enqueued of a task represents the contribution on the
 * estimated utilization of the CPU where that task is currently enqueued.
 *
 * Only for tasks we track a moving average of the past instantaneous
 * estimated utilization. This allows to absorb sporadic drops in utilization
 * of an otherwise almost periodic task.
 */
struct util_est {
	unsigned int			enqueued;
	unsigned int			ewma;
#define UTIL_EST_WEIGHT_SHIFT		2
356
} __attribute__((__aligned__(sizeof(u64))));
357

358
/*
359
 * The load/runnable/util_avg accumulates an infinite geometric series
360
 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
361 362 363 364 365
 *
 * [load_avg definition]
 *
 *   load_avg = runnable% * scale_load_down(load)
 *
366 367 368
 * [runnable_avg definition]
 *
 *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
369 370 371 372 373
 *
 * [util_avg definition]
 *
 *   util_avg = running% * SCHED_CAPACITY_SCALE
 *
374 375 376 377 378
 * where runnable% is the time ratio that a sched_entity is runnable and
 * running% the time ratio that a sched_entity is running.
 *
 * For cfs_rq, they are the aggregated values of all runnable and blocked
 * sched_entities.
379
 *
王文虎 已提交
380
 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
381 382
 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
 * for computing those signals (see update_rq_clock_pelt())
383
 *
384 385 386 387
 * N.B., the above ratios (runnable% and running%) themselves are in the
 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 * to as large a range as necessary. This is for example reflected by
 * util_avg's SCHED_CAPACITY_SCALE.
388 389 390 391 392 393 394 395 396 397 398 399 400 401
 *
 * [Overflow issue]
 *
 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 * with the highest load (=88761), always runnable on a single cfs_rq,
 * and should not overflow as the number already hits PID_MAX_LIMIT.
 *
 * For all other cases (including 32-bit kernels), struct load_weight's
 * weight will overflow first before we do, because:
 *
 *    Max(load_avg) <= Max(load.weight)
 *
 * Then it is the load_weight's responsibility to consider overflow
 * issues.
402
 */
403
struct sched_avg {
404 405
	u64				last_update_time;
	u64				load_sum;
406
	u64				runnable_sum;
407 408 409
	u32				util_sum;
	u32				period_contrib;
	unsigned long			load_avg;
410
	unsigned long			runnable_avg;
411
	unsigned long			util_avg;
412
	struct util_est			util_est;
413
} ____cacheline_aligned;
414

415
struct sched_statistics {
416
#ifdef CONFIG_SCHEDSTATS
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	u64				wait_start;
	u64				wait_max;
	u64				wait_count;
	u64				wait_sum;
	u64				iowait_count;
	u64				iowait_sum;

	u64				sleep_start;
	u64				sleep_max;
	s64				sum_sleep_runtime;

	u64				block_start;
	u64				block_max;
	u64				exec_max;
	u64				slice_max;

	u64				nr_migrations_cold;
	u64				nr_failed_migrations_affine;
	u64				nr_failed_migrations_running;
	u64				nr_failed_migrations_hot;
	u64				nr_forced_migrations;

	u64				nr_wakeups;
	u64				nr_wakeups_sync;
	u64				nr_wakeups_migrate;
	u64				nr_wakeups_local;
	u64				nr_wakeups_remote;
	u64				nr_wakeups_affine;
	u64				nr_wakeups_affine_attempts;
	u64				nr_wakeups_passive;
	u64				nr_wakeups_idle;
448
#endif
449
};
450 451

struct sched_entity {
452 453 454 455 456
	/* For load-balancing: */
	struct load_weight		load;
	struct rb_node			run_node;
	struct list_head		group_node;
	unsigned int			on_rq;
457

458 459 460 461
	u64				exec_start;
	u64				sum_exec_runtime;
	u64				vruntime;
	u64				prev_sum_exec_runtime;
462

463
	u64				nr_migrations;
464

465
	struct sched_statistics		statistics;
466

I
Ingo Molnar 已提交
467
#ifdef CONFIG_FAIR_GROUP_SCHED
468 469
	int				depth;
	struct sched_entity		*parent;
I
Ingo Molnar 已提交
470
	/* rq on which this entity is (to be) queued: */
471
	struct cfs_rq			*cfs_rq;
I
Ingo Molnar 已提交
472
	/* rq "owned" by this entity/group: */
473
	struct cfs_rq			*my_q;
474 475
	/* cached value of my_q->h_nr_running */
	unsigned long			runnable_weight;
I
Ingo Molnar 已提交
476
#endif
477

478
#ifdef CONFIG_SMP
479 480 481 482 483 484
	/*
	 * Per entity load average tracking.
	 *
	 * Put into separate cache line so it does not
	 * collide with read-mostly values above.
	 */
485
	struct sched_avg		avg;
486
#endif
I
Ingo Molnar 已提交
487
};
488

P
Peter Zijlstra 已提交
489
struct sched_rt_entity {
490 491 492 493 494 495 496 497
	struct list_head		run_list;
	unsigned long			timeout;
	unsigned long			watchdog_stamp;
	unsigned int			time_slice;
	unsigned short			on_rq;
	unsigned short			on_list;

	struct sched_rt_entity		*back;
498
#ifdef CONFIG_RT_GROUP_SCHED
499
	struct sched_rt_entity		*parent;
P
Peter Zijlstra 已提交
500
	/* rq on which this entity is (to be) queued: */
501
	struct rt_rq			*rt_rq;
P
Peter Zijlstra 已提交
502
	/* rq "owned" by this entity/group: */
503
	struct rt_rq			*my_q;
P
Peter Zijlstra 已提交
504
#endif
505
} __randomize_layout;
P
Peter Zijlstra 已提交
506

507
struct sched_dl_entity {
508
	struct rb_node			rb_node;
509 510 511

	/*
	 * Original scheduling parameters. Copied here from sched_attr
512 513
	 * during sched_setattr(), they will remain the same until
	 * the next sched_setattr().
514
	 */
515 516 517
	u64				dl_runtime;	/* Maximum runtime for each instance	*/
	u64				dl_deadline;	/* Relative deadline of each instance	*/
	u64				dl_period;	/* Separation of two instances (period) */
518
	u64				dl_bw;		/* dl_runtime / dl_period		*/
519
	u64				dl_density;	/* dl_runtime / dl_deadline		*/
520 521 522

	/*
	 * Actual scheduling parameters. Initialized with the values above,
I
Ingo Molnar 已提交
523
	 * they are continuously updated during task execution. Note that
524 525
	 * the remaining runtime could be < 0 in case we are in overrun.
	 */
526 527 528
	s64				runtime;	/* Remaining runtime for this instance	*/
	u64				deadline;	/* Absolute deadline for this instance	*/
	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
529 530 531 532 533 534 535 536

	/*
	 * Some bool flags:
	 *
	 * @dl_throttled tells if we exhausted the runtime. If so, the
	 * task has to wait for a replenishment to be performed at the
	 * next firing of dl_timer.
	 *
537 538
	 * @dl_boosted tells if we are boosted due to DI. If so we are
	 * outside bandwidth enforcement mechanism (but only until we
539 540
	 * exit the critical section);
	 *
541
	 * @dl_yielded tells if task gave up the CPU before consuming
542
	 * all its available runtime during the last job.
543 544 545 546 547 548 549
	 *
	 * @dl_non_contending tells if the task is inactive while still
	 * contributing to the active utilization. In other words, it
	 * indicates if the inactive timer has been armed and its handler
	 * has not been executed yet. This flag is useful to avoid race
	 * conditions between the inactive timer handler and the wakeup
	 * code.
550 551 552
	 *
	 * @dl_overrun tells if the task asked to be informed about runtime
	 * overruns.
553
	 */
554 555 556 557
	unsigned int			dl_throttled      : 1;
	unsigned int			dl_boosted        : 1;
	unsigned int			dl_yielded        : 1;
	unsigned int			dl_non_contending : 1;
558
	unsigned int			dl_overrun	  : 1;
559 560 561 562 563

	/*
	 * Bandwidth enforcement timer. Each -deadline task has its
	 * own bandwidth to be enforced, thus we need one timer per task.
	 */
564
	struct hrtimer			dl_timer;
565 566 567 568 569 570 571 572 573

	/*
	 * Inactive timer, responsible for decreasing the active utilization
	 * at the "0-lag time". When a -deadline task blocks, it contributes
	 * to GRUB's active utilization until the "0-lag time", hence a
	 * timer is needed to decrease the active utilization at the correct
	 * time.
	 */
	struct hrtimer inactive_timer;
574
};
575

576 577 578 579 580 581 582 583
#ifdef CONFIG_UCLAMP_TASK
/* Number of utilization clamp buckets (shorter alias) */
#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT

/*
 * Utilization clamp for a scheduling entity
 * @value:		clamp value "assigned" to a se
 * @bucket_id:		bucket index corresponding to the "assigned" value
584
 * @active:		the se is currently refcounted in a rq's bucket
585
 * @user_defined:	the requested clamp value comes from user-space
586 587 588 589
 *
 * The bucket_id is the index of the clamp bucket matching the clamp value
 * which is pre-computed and stored to avoid expensive integer divisions from
 * the fast path.
590 591 592 593 594
 *
 * The active bit is set whenever a task has got an "effective" value assigned,
 * which can be different from the clamp value "requested" from user-space.
 * This allows to know a task is refcounted in the rq's bucket corresponding
 * to the "effective" bucket_id.
595 596 597 598 599 600 601
 *
 * The user_defined bit is set whenever a task has got a task-specific clamp
 * value requested from userspace, i.e. the system defaults apply to this task
 * just as a restriction. This allows to relax default clamps when a less
 * restrictive task-specific value has been requested, thus allowing to
 * implement a "nice" semantic. For example, a task running with a 20%
 * default boost can still drop its own boosting to 0%.
602 603 604 605
 */
struct uclamp_se {
	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
606
	unsigned int active		: 1;
607
	unsigned int user_defined	: 1;
608 609 610
};
#endif /* CONFIG_UCLAMP_TASK */

611 612
union rcu_special {
	struct {
613 614
		u8			blocked;
		u8			need_qs;
615
		u8			exp_hint; /* Hint for performance. */
616
		u8			need_mb; /* Readers need smp_mb(). */
617
	} b; /* Bits. */
618
	u32 s; /* Set of bits. */
619
};
620

P
Peter Zijlstra 已提交
621 622 623
enum perf_event_task_context {
	perf_invalid_context = -1,
	perf_hw_context = 0,
624
	perf_sw_context,
P
Peter Zijlstra 已提交
625 626 627
	perf_nr_task_contexts,
};

628 629 630 631
struct wake_q_node {
	struct wake_q_node *next;
};

L
Linus Torvalds 已提交
632
struct task_struct {
633 634 635 636 637
#ifdef CONFIG_THREAD_INFO_IN_TASK
	/*
	 * For reasons of header soup (see current_thread_info()), this
	 * must be the first element of task_struct.
	 */
638
	struct thread_info		thread_info;
639
#endif
640 641
	/* -1 unrunnable, 0 runnable, >0 stopped: */
	volatile long			state;
K
Kees Cook 已提交
642 643 644 645 646 647 648

	/*
	 * This begins the randomizable portion of task_struct. Only
	 * scheduling-critical items should be added above here.
	 */
	randomized_struct_fields_start

649
	void				*stack;
650
	refcount_t			usage;
651 652 653
	/* Per task flags (PF_*), defined further below: */
	unsigned int			flags;
	unsigned int			ptrace;
L
Linus Torvalds 已提交
654

655
#ifdef CONFIG_SMP
656
	int				on_cpu;
657
	struct __call_single_node	wake_entry;
658
#ifdef CONFIG_THREAD_INFO_IN_TASK
659 660
	/* Current CPU: */
	unsigned int			cpu;
661
#endif
662 663 664
	unsigned int			wakee_flips;
	unsigned long			wakee_flip_decay_ts;
	struct task_struct		*last_wakee;
665

666 667 668 669 670 671 672 673
	/*
	 * recent_used_cpu is initially set as the last CPU used by a task
	 * that wakes affine another task. Waker/wakee relationships can
	 * push tasks around a CPU where each wakeup moves to the next one.
	 * Tracking a recently used CPU allows a quick search for a recently
	 * used CPU that may be idle.
	 */
	int				recent_used_cpu;
674
	int				wake_cpu;
675
#endif
676 677 678 679 680 681
	int				on_rq;

	int				prio;
	int				static_prio;
	int				normal_prio;
	unsigned int			rt_priority;
682

683 684 685
	const struct sched_class	*sched_class;
	struct sched_entity		se;
	struct sched_rt_entity		rt;
P
Peter Zijlstra 已提交
686
#ifdef CONFIG_CGROUP_SCHED
687
	struct task_group		*sched_task_group;
P
Peter Zijlstra 已提交
688
#endif
689
	struct sched_dl_entity		dl;
L
Linus Torvalds 已提交
690

691
#ifdef CONFIG_UCLAMP_TASK
692 693 694 695
	/*
	 * Clamp values requested for a scheduling entity.
	 * Must be updated with task_rq_lock() held.
	 */
696
	struct uclamp_se		uclamp_req[UCLAMP_CNT];
697 698 699 700
	/*
	 * Effective clamp values used for a scheduling entity.
	 * Must be updated with task_rq_lock() held.
	 */
701 702 703
	struct uclamp_se		uclamp[UCLAMP_CNT];
#endif

704
#ifdef CONFIG_PREEMPT_NOTIFIERS
705 706
	/* List of struct preempt_notifier: */
	struct hlist_head		preempt_notifiers;
707 708
#endif

709
#ifdef CONFIG_BLK_DEV_IO_TRACE
710
	unsigned int			btrace_seq;
711
#endif
L
Linus Torvalds 已提交
712

713 714
	unsigned int			policy;
	int				nr_cpus_allowed;
715 716
	const cpumask_t			*cpus_ptr;
	cpumask_t			cpus_mask;
P
Peter Zijlstra 已提交
717 718 719
#if defined(CONFIG_SMP) && defined(CONFIG_PREEMPT_RT)
	int				migration_disabled;
#endif
L
Linus Torvalds 已提交
720

P
Paul E. McKenney 已提交
721
#ifdef CONFIG_PREEMPT_RCU
722 723 724 725
	int				rcu_read_lock_nesting;
	union rcu_special		rcu_read_unlock_special;
	struct list_head		rcu_node_entry;
	struct rcu_node			*rcu_blocked_node;
726
#endif /* #ifdef CONFIG_PREEMPT_RCU */
727

P
Paul E. McKenney 已提交
728
#ifdef CONFIG_TASKS_RCU
729
	unsigned long			rcu_tasks_nvcsw;
730 731
	u8				rcu_tasks_holdout;
	u8				rcu_tasks_idx;
732
	int				rcu_tasks_idle_cpu;
733
	struct list_head		rcu_tasks_holdout_list;
P
Paul E. McKenney 已提交
734
#endif /* #ifdef CONFIG_TASKS_RCU */
P
Paul E. McKenney 已提交
735

736 737 738
#ifdef CONFIG_TASKS_TRACE_RCU
	int				trc_reader_nesting;
	int				trc_ipi_to_cpu;
739
	union rcu_special		trc_reader_special;
740 741 742 743
	bool				trc_reader_checked;
	struct list_head		trc_holdout_list;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */

744
	struct sched_info		sched_info;
L
Linus Torvalds 已提交
745

746
	struct list_head		tasks;
747
#ifdef CONFIG_SMP
748 749
	struct plist_node		pushable_tasks;
	struct rb_node			pushable_dl_tasks;
750
#endif
L
Linus Torvalds 已提交
751

752 753
	struct mm_struct		*mm;
	struct mm_struct		*active_mm;
754 755

	/* Per-thread vma caching: */
756
	struct vmacache			vmacache;
757

758 759
#ifdef SPLIT_RSS_COUNTING
	struct task_rss_stat		rss_stat;
760
#endif
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
	int				exit_state;
	int				exit_code;
	int				exit_signal;
	/* The signal sent when the parent dies: */
	int				pdeath_signal;
	/* JOBCTL_*, siglock protected: */
	unsigned long			jobctl;

	/* Used for emulating ABI behavior of previous Linux versions: */
	unsigned int			personality;

	/* Scheduler bits, serialized by scheduler locks: */
	unsigned			sched_reset_on_fork:1;
	unsigned			sched_contributes_to_load:1;
	unsigned			sched_migrated:1;
	unsigned			sched_remote_wakeup:1;
777 778 779 780
#ifdef CONFIG_PSI
	unsigned			sched_psi_wake_requeue:1;
#endif

781 782 783 784 785 786 787 788 789 790
	/* Force alignment to the next boundary: */
	unsigned			:0;

	/* Unserialized, strictly 'current' */

	/* Bit to tell LSMs we're in execve(): */
	unsigned			in_execve:1;
	unsigned			in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
	unsigned			restore_sigmask:1;
791
#endif
T
Tejun Heo 已提交
792
#ifdef CONFIG_MEMCG
793
	unsigned			in_user_fault:1;
794
#endif
795
#ifdef CONFIG_COMPAT_BRK
796
	unsigned			brk_randomized:1;
797
#endif
798 799 800
#ifdef CONFIG_CGROUPS
	/* disallow userland-initiated cgroup migration */
	unsigned			no_cgroup_migration:1;
R
Roman Gushchin 已提交
801 802
	/* task is frozen/stopped (used by the cgroup freezer) */
	unsigned			frozen:1;
803
#endif
804 805 806
#ifdef CONFIG_BLK_CGROUP
	unsigned			use_memdelay:1;
#endif
807 808 809 810
#ifdef CONFIG_PSI
	/* Stalled due to lack of memory */
	unsigned			in_memstall:1;
#endif
811

812
	unsigned long			atomic_flags; /* Flags requiring atomic access. */
813

814
	struct restart_block		restart_block;
815

816 817
	pid_t				pid;
	pid_t				tgid;
818

819
#ifdef CONFIG_STACKPROTECTOR
820 821
	/* Canary value for the -fstack-protector GCC feature: */
	unsigned long			stack_canary;
822
#endif
823
	/*
824
	 * Pointers to the (original) parent process, youngest child, younger sibling,
825
	 * older sibling, respectively.  (p->father can be replaced with
R
Roland McGrath 已提交
826
	 * p->real_parent->pid)
L
Linus Torvalds 已提交
827
	 */
828 829 830 831 832 833 834

	/* Real parent process: */
	struct task_struct __rcu	*real_parent;

	/* Recipient of SIGCHLD, wait4() reports: */
	struct task_struct __rcu	*parent;

L
Linus Torvalds 已提交
835
	/*
836
	 * Children/sibling form the list of natural children:
L
Linus Torvalds 已提交
837
	 */
838 839 840
	struct list_head		children;
	struct list_head		sibling;
	struct task_struct		*group_leader;
L
Linus Torvalds 已提交
841

R
Roland McGrath 已提交
842
	/*
843 844
	 * 'ptraced' is the list of tasks this task is using ptrace() on.
	 *
R
Roland McGrath 已提交
845
	 * This includes both natural children and PTRACE_ATTACH targets.
846
	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
R
Roland McGrath 已提交
847
	 */
848 849
	struct list_head		ptraced;
	struct list_head		ptrace_entry;
R
Roland McGrath 已提交
850

L
Linus Torvalds 已提交
851
	/* PID/PID hash table linkage. */
852 853
	struct pid			*thread_pid;
	struct hlist_node		pid_links[PIDTYPE_MAX];
854 855 856 857
	struct list_head		thread_group;
	struct list_head		thread_node;

	struct completion		*vfork_done;
L
Linus Torvalds 已提交
858

859 860
	/* CLONE_CHILD_SETTID: */
	int __user			*set_child_tid;
L
Linus Torvalds 已提交
861

862 863 864 865 866
	/* CLONE_CHILD_CLEARTID: */
	int __user			*clear_child_tid;

	u64				utime;
	u64				stime;
867
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
868 869
	u64				utimescaled;
	u64				stimescaled;
870
#endif
871 872
	u64				gtime;
	struct prev_cputime		prev_cputime;
873
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
874
	struct vtime			vtime;
875
#endif
876 877

#ifdef CONFIG_NO_HZ_FULL
878
	atomic_t			tick_dep_mask;
879
#endif
880 881 882 883 884 885 886 887
	/* Context switch counts: */
	unsigned long			nvcsw;
	unsigned long			nivcsw;

	/* Monotonic time in nsecs: */
	u64				start_time;

	/* Boot based time in nsecs: */
888
	u64				start_boottime;
889 890 891 892

	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
	unsigned long			min_flt;
	unsigned long			maj_flt;
L
Linus Torvalds 已提交
893

894 895
	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
	struct posix_cputimers		posix_cputimers;
L
Linus Torvalds 已提交
896

897 898 899 900
#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
	struct posix_cputimers_work	posix_cputimers_work;
#endif

901 902 903 904 905 906 907 908 909 910 911
	/* Process credentials: */

	/* Tracer's credentials at attach: */
	const struct cred __rcu		*ptracer_cred;

	/* Objective and real subjective task credentials (COW): */
	const struct cred __rcu		*real_cred;

	/* Effective (overridable) subjective task credentials (COW): */
	const struct cred __rcu		*cred;

912 913 914 915 916
#ifdef CONFIG_KEYS
	/* Cached requested key. */
	struct key			*cached_requested_key;
#endif

917 918 919 920 921 922 923 924 925 926 927
	/*
	 * executable name, excluding path.
	 *
	 * - normally initialized setup_new_exec()
	 * - access it with [gs]et_task_comm()
	 * - lock it with task_lock()
	 */
	char				comm[TASK_COMM_LEN];

	struct nameidata		*nameidata;

928
#ifdef CONFIG_SYSVIPC
929 930
	struct sysv_sem			sysvsem;
	struct sysv_shm			sysvshm;
931
#endif
932
#ifdef CONFIG_DETECT_HUNG_TASK
933
	unsigned long			last_switch_count;
934
	unsigned long			last_switch_time;
935
#endif
936 937 938 939 940 941
	/* Filesystem information: */
	struct fs_struct		*fs;

	/* Open file information: */
	struct files_struct		*files;

942 943 944 945
#ifdef CONFIG_IO_URING
	struct io_uring_task		*io_uring;
#endif

946 947 948 949 950
	/* Namespaces: */
	struct nsproxy			*nsproxy;

	/* Signal handlers: */
	struct signal_struct		*signal;
951
	struct sighand_struct __rcu		*sighand;
952 953 954 955 956 957 958 959 960 961 962
	sigset_t			blocked;
	sigset_t			real_blocked;
	/* Restored if set_restore_sigmask() was used: */
	sigset_t			saved_sigmask;
	struct sigpending		pending;
	unsigned long			sas_ss_sp;
	size_t				sas_ss_size;
	unsigned int			sas_ss_flags;

	struct callback_head		*task_works;

963
#ifdef CONFIG_AUDIT
A
Al Viro 已提交
964
#ifdef CONFIG_AUDITSYSCALL
965 966
	struct audit_context		*audit_context;
#endif
967 968
	kuid_t				loginuid;
	unsigned int			sessionid;
A
Al Viro 已提交
969
#endif
970 971 972
	struct seccomp			seccomp;

	/* Thread group tracking: */
973 974
	u64				parent_exec_id;
	u64				self_exec_id;
L
Linus Torvalds 已提交
975

976 977
	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
	spinlock_t			alloc_lock;
L
Linus Torvalds 已提交
978

979
	/* Protection of the PI data structures: */
980
	raw_spinlock_t			pi_lock;
981

982
	struct wake_q_node		wake_q;
983

I
Ingo Molnar 已提交
984
#ifdef CONFIG_RT_MUTEXES
985
	/* PI waiters blocked on a rt_mutex held by this task: */
986
	struct rb_root_cached		pi_waiters;
987 988
	/* Updated under owner's pi_lock and rq lock */
	struct task_struct		*pi_top_task;
989 990
	/* Deadlock detection and priority inheritance handling: */
	struct rt_mutex_waiter		*pi_blocked_on;
I
Ingo Molnar 已提交
991 992
#endif

993
#ifdef CONFIG_DEBUG_MUTEXES
994 995
	/* Mutex deadlock detection: */
	struct mutex_waiter		*blocked_on;
996
#endif
997

998 999 1000 1001
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
	int				non_block_count;
#endif

1002
#ifdef CONFIG_TRACE_IRQFLAGS
1003
	struct irqtrace_events		irqtrace;
1004
	unsigned int			hardirq_threaded;
1005
	u64				hardirq_chain_key;
1006 1007
	int				softirqs_enabled;
	int				softirq_context;
1008
	int				irq_config;
1009
#endif
1010

I
Ingo Molnar 已提交
1011
#ifdef CONFIG_LOCKDEP
1012 1013 1014 1015 1016
# define MAX_LOCK_DEPTH			48UL
	u64				curr_chain_key;
	int				lockdep_depth;
	unsigned int			lockdep_recursion;
	struct held_lock		held_locks[MAX_LOCK_DEPTH];
I
Ingo Molnar 已提交
1017
#endif
1018

1019
#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1020
	unsigned int			in_ubsan;
1021
#endif
1022

1023 1024
	/* Journalling filesystem info: */
	void				*journal_info;
L
Linus Torvalds 已提交
1025

1026 1027
	/* Stacked block device info: */
	struct bio_list			*bio_list;
1028

1029
#ifdef CONFIG_BLOCK
1030 1031
	/* Stack plugging: */
	struct blk_plug			*plug;
1032 1033
#endif

1034 1035 1036 1037
	/* VM state: */
	struct reclaim_state		*reclaim_state;

	struct backing_dev_info		*backing_dev_info;
L
Linus Torvalds 已提交
1038

1039
	struct io_context		*io_context;
L
Linus Torvalds 已提交
1040

1041 1042 1043
#ifdef CONFIG_COMPACTION
	struct capture_control		*capture_control;
#endif
1044 1045
	/* Ptrace state: */
	unsigned long			ptrace_message;
1046
	kernel_siginfo_t		*last_siginfo;
L
Linus Torvalds 已提交
1047

1048
	struct task_io_accounting	ioac;
1049 1050 1051 1052
#ifdef CONFIG_PSI
	/* Pressure stall state */
	unsigned int			psi_flags;
#endif
1053 1054 1055 1056 1057 1058 1059
#ifdef CONFIG_TASK_XACCT
	/* Accumulated RSS usage: */
	u64				acct_rss_mem1;
	/* Accumulated virtual memory usage: */
	u64				acct_vm_mem1;
	/* stime + utime since last update: */
	u64				acct_timexpd;
L
Linus Torvalds 已提交
1060 1061
#endif
#ifdef CONFIG_CPUSETS
1062 1063 1064
	/* Protected by ->alloc_lock: */
	nodemask_t			mems_allowed;
	/* Seqence number to catch updates: */
1065
	seqcount_spinlock_t		mems_allowed_seq;
1066 1067
	int				cpuset_mem_spread_rotor;
	int				cpuset_slab_spread_rotor;
L
Linus Torvalds 已提交
1068
#endif
1069
#ifdef CONFIG_CGROUPS
1070 1071 1072 1073
	/* Control Group info protected by css_set_lock: */
	struct css_set __rcu		*cgroups;
	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
	struct list_head		cg_list;
1074
#endif
1075
#ifdef CONFIG_X86_CPU_RESCTRL
1076
	u32				closid;
1077
	u32				rmid;
F
Fenghua Yu 已提交
1078
#endif
1079
#ifdef CONFIG_FUTEX
1080
	struct robust_list_head __user	*robust_list;
1081 1082 1083
#ifdef CONFIG_COMPAT
	struct compat_robust_list_head __user *compat_robust_list;
#endif
1084 1085
	struct list_head		pi_state_list;
	struct futex_pi_state		*pi_state_cache;
1086
	struct mutex			futex_exit_mutex;
1087
	unsigned int			futex_state;
1088
#endif
1089
#ifdef CONFIG_PERF_EVENTS
1090 1091 1092
	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
	struct mutex			perf_event_mutex;
	struct list_head		perf_event_list;
1093
#endif
1094
#ifdef CONFIG_DEBUG_PREEMPT
1095
	unsigned long			preempt_disable_ip;
1096
#endif
1097
#ifdef CONFIG_NUMA
1098 1099
	/* Protected by alloc_lock: */
	struct mempolicy		*mempolicy;
1100
	short				il_prev;
1101
	short				pref_node_fork;
1102
#endif
1103
#ifdef CONFIG_NUMA_BALANCING
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	int				numa_scan_seq;
	unsigned int			numa_scan_period;
	unsigned int			numa_scan_period_max;
	int				numa_preferred_nid;
	unsigned long			numa_migrate_retry;
	/* Migration stamp: */
	u64				node_stamp;
	u64				last_task_numa_placement;
	u64				last_sum_exec_runtime;
	struct callback_head		numa_work;

1115 1116 1117 1118 1119 1120 1121 1122 1123
	/*
	 * This pointer is only modified for current in syscall and
	 * pagefault context (and for tasks being destroyed), so it can be read
	 * from any of the following contexts:
	 *  - RCU read-side critical section
	 *  - current->numa_group from everywhere
	 *  - task's runqueue locked, task not running
	 */
	struct numa_group __rcu		*numa_group;
1124

1125
	/*
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	 * numa_faults is an array split into four regions:
	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
	 * in this precise order.
	 *
	 * faults_memory: Exponential decaying average of faults on a per-node
	 * basis. Scheduling placement decisions are made based on these
	 * counts. The values remain static for the duration of a PTE scan.
	 * faults_cpu: Track the nodes the process was running on when a NUMA
	 * hinting fault was incurred.
	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
	 * during the current scan window. When the scan completes, the counts
	 * in faults_memory and faults_cpu decay and these values are copied.
1138
	 */
1139 1140
	unsigned long			*numa_faults;
	unsigned long			total_numa_faults;
1141

1142 1143
	/*
	 * numa_faults_locality tracks if faults recorded during the last
1144 1145 1146
	 * scan window were remote/local or failed to migrate. The task scan
	 * period is adapted based on the locality of the faults with different
	 * weights depending on whether they were shared or private faults
1147
	 */
1148
	unsigned long			numa_faults_locality[3];
1149

1150
	unsigned long			numa_pages_migrated;
1151 1152
#endif /* CONFIG_NUMA_BALANCING */

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
#ifdef CONFIG_RSEQ
	struct rseq __user *rseq;
	u32 rseq_sig;
	/*
	 * RmW on rseq_event_mask must be performed atomically
	 * with respect to preemption.
	 */
	unsigned long rseq_event_mask;
#endif

1163
	struct tlbflush_unmap_batch	tlb_ubc;
1164

1165 1166 1167 1168
	union {
		refcount_t		rcu_users;
		struct rcu_head		rcu;
	};
1169

1170 1171
	/* Cache last used pipe for splice(): */
	struct pipe_inode_info		*splice_pipe;
1172

1173
	struct page_frag		task_frag;
1174

1175 1176
#ifdef CONFIG_TASK_DELAY_ACCT
	struct task_delay_info		*delays;
1177
#endif
1178

1179
#ifdef CONFIG_FAULT_INJECTION
1180
	int				make_it_fail;
1181
	unsigned int			fail_nth;
1182
#endif
1183
	/*
1184 1185
	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
	 * balance_dirty_pages() for a dirty throttling pause:
1186
	 */
1187 1188 1189 1190
	int				nr_dirtied;
	int				nr_dirtied_pause;
	/* Start of a write-and-pause period: */
	unsigned long			dirty_paused_when;
1191

A
Arjan van de Ven 已提交
1192
#ifdef CONFIG_LATENCYTOP
1193 1194
	int				latency_record_count;
	struct latency_record		latency_record[LT_SAVECOUNT];
A
Arjan van de Ven 已提交
1195
#endif
1196
	/*
1197
	 * Time slack values; these are used to round up poll() and
1198 1199
	 * select() etc timeout values. These are in nanoseconds.
	 */
1200 1201
	u64				timer_slack_ns;
	u64				default_timer_slack_ns;
1202

1203
#ifdef CONFIG_KASAN
1204
	unsigned int			kasan_depth;
1205
#endif
1206

1207 1208
#ifdef CONFIG_KCSAN
	struct kcsan_ctx		kcsan_ctx;
1209 1210 1211
#ifdef CONFIG_TRACE_IRQFLAGS
	struct irqtrace_events		kcsan_save_irqtrace;
#endif
1212
#endif
1213

1214 1215 1216 1217
#if IS_ENABLED(CONFIG_KUNIT)
	struct kunit			*kunit_test;
#endif

1218
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1219 1220
	/* Index of current stored address in ret_stack: */
	int				curr_ret_stack;
1221
	int				curr_ret_depth;
1222 1223 1224 1225 1226 1227 1228

	/* Stack of return addresses for return function tracing: */
	struct ftrace_ret_stack		*ret_stack;

	/* Timestamp for last schedule: */
	unsigned long long		ftrace_timestamp;

1229 1230
	/*
	 * Number of functions that haven't been traced
1231
	 * because of depth overrun:
1232
	 */
1233 1234 1235 1236
	atomic_t			trace_overrun;

	/* Pause tracing: */
	atomic_t			tracing_graph_pause;
1237
#endif
1238

1239
#ifdef CONFIG_TRACING
1240 1241 1242 1243 1244
	/* State flags for use by tracers: */
	unsigned long			trace;

	/* Bitmask and counter of trace recursion: */
	unsigned long			trace_recursion;
1245
#endif /* CONFIG_TRACING */
1246

D
Dmitry Vyukov 已提交
1247
#ifdef CONFIG_KCOV
A
Andrey Konovalov 已提交
1248 1249
	/* See kernel/kcov.c for more details. */

1250
	/* Coverage collection mode enabled for this task (0 if disabled): */
1251
	unsigned int			kcov_mode;
1252 1253 1254 1255 1256 1257 1258 1259 1260

	/* Size of the kcov_area: */
	unsigned int			kcov_size;

	/* Buffer for coverage collection: */
	void				*kcov_area;

	/* KCOV descriptor wired with this task or NULL: */
	struct kcov			*kcov;
A
Andrey Konovalov 已提交
1261 1262 1263 1264 1265 1266

	/* KCOV common handle for remote coverage collection: */
	u64				kcov_handle;

	/* KCOV sequence number: */
	int				kcov_sequence;
1267 1268 1269

	/* Collect coverage from softirq context: */
	unsigned int			kcov_softirq;
D
Dmitry Vyukov 已提交
1270
#endif
1271

1272
#ifdef CONFIG_MEMCG
1273 1274 1275
	struct mem_cgroup		*memcg_in_oom;
	gfp_t				memcg_oom_gfp_mask;
	int				memcg_oom_order;
1276

1277 1278
	/* Number of pages to reclaim on returning to userland: */
	unsigned int			memcg_nr_pages_over_high;
1279 1280 1281

	/* Used by memcontrol for targeted memcg charge: */
	struct mem_cgroup		*active_memcg;
1282
#endif
1283

1284 1285 1286 1287
#ifdef CONFIG_BLK_CGROUP
	struct request_queue		*throttle_queue;
#endif

1288
#ifdef CONFIG_UPROBES
1289
	struct uprobe_task		*utask;
1290
#endif
K
Kent Overstreet 已提交
1291
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1292 1293
	unsigned int			sequential_io;
	unsigned int			sequential_io_avg;
K
Kent Overstreet 已提交
1294
#endif
P
Peter Zijlstra 已提交
1295
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1296
	unsigned long			task_state_change;
P
Peter Zijlstra 已提交
1297
#endif
1298
	int				pagefault_disabled;
1299
#ifdef CONFIG_MMU
1300
	struct task_struct		*oom_reaper_list;
1301
#endif
1302
#ifdef CONFIG_VMAP_STACK
1303
	struct vm_struct		*stack_vm_area;
1304
#endif
1305
#ifdef CONFIG_THREAD_INFO_IN_TASK
1306
	/* A live task holds one reference: */
1307
	refcount_t			stack_refcount;
1308 1309 1310
#endif
#ifdef CONFIG_LIVEPATCH
	int patch_state;
1311
#endif
1312 1313 1314
#ifdef CONFIG_SECURITY
	/* Used by LSM modules for access restriction: */
	void				*security;
1315
#endif
K
Kees Cook 已提交
1316

1317 1318
#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
	unsigned long			lowest_stack;
1319
	unsigned long			prev_lowest_stack;
1320 1321
#endif

1322
#ifdef CONFIG_X86_MCE
1323 1324
	void __user			*mce_vaddr;
	__u64				mce_kflags;
1325
	u64				mce_addr;
1326 1327 1328
	__u64				mce_ripv : 1,
					mce_whole_page : 1,
					__mce_reserved : 62;
1329 1330 1331
	struct callback_head		mce_kill_me;
#endif

K
Kees Cook 已提交
1332 1333 1334 1335 1336 1337
	/*
	 * New fields for task_struct should be added above here, so that
	 * they are included in the randomized portion of task_struct.
	 */
	randomized_struct_fields_end

1338 1339 1340 1341 1342 1343 1344 1345 1346
	/* CPU-specific state of this task: */
	struct thread_struct		thread;

	/*
	 * WARNING: on x86, 'thread_struct' contains a variable-sized
	 * structure.  It *MUST* be at the end of 'task_struct'.
	 *
	 * Do not put anything below here!
	 */
L
Linus Torvalds 已提交
1347 1348
};

A
Alexey Dobriyan 已提交
1349
static inline struct pid *task_pid(struct task_struct *task)
1350
{
1351
	return task->thread_pid;
1352 1353
}

1354 1355 1356 1357 1358
/*
 * the helpers to get the task's different pids as they are seen
 * from various namespaces
 *
 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
E
Eric W. Biederman 已提交
1359 1360
 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
 *                     current.
1361 1362 1363 1364
 * task_xid_nr_ns()  : id seen from the ns specified;
 *
 * see also pid_nr() etc in include/linux/pid.h
 */
1365
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1366

A
Alexey Dobriyan 已提交
1367
static inline pid_t task_pid_nr(struct task_struct *tsk)
1368 1369 1370 1371
{
	return tsk->pid;
}

1372
static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1373 1374 1375
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
}
1376 1377 1378

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{
1379
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1380 1381 1382
}


A
Alexey Dobriyan 已提交
1383
static inline pid_t task_tgid_nr(struct task_struct *tsk)
1384 1385 1386 1387
{
	return tsk->tgid;
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
/**
 * pid_alive - check that a task structure is not stale
 * @p: Task structure to be checked.
 *
 * Test if a process is not yet dead (at most zombie state)
 * If pid_alive fails, then pointers within the task structure
 * can be stale and must not be dereferenced.
 *
 * Return: 1 if the process is alive. 0 otherwise.
 */
static inline int pid_alive(const struct task_struct *p)
{
1400
	return p->thread_pid != NULL;
1401
}
1402

1403
static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1404
{
1405
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1406 1407 1408 1409
}

static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
{
1410
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1411 1412 1413
}


1414
static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1415
{
1416
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1417 1418 1419 1420
}

static inline pid_t task_session_vnr(struct task_struct *tsk)
{
1421
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1422 1423
}

1424 1425
static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
E
Eric W. Biederman 已提交
1426
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1427 1428 1429 1430
}

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
E
Eric W. Biederman 已提交
1431
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
}

static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
{
	pid_t pid = 0;

	rcu_read_lock();
	if (pid_alive(tsk))
		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
	rcu_read_unlock();

	return pid;
}

static inline pid_t task_ppid_nr(const struct task_struct *tsk)
{
	return task_ppid_nr_ns(tsk, &init_pid_ns);
}

1451
/* Obsolete, do not use: */
1452 1453 1454 1455
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
	return task_pgrp_nr_ns(tsk, &init_pid_ns);
}
1456

1457 1458 1459
#define TASK_REPORT_IDLE	(TASK_REPORT + 1)
#define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)

1460
static inline unsigned int task_state_index(struct task_struct *tsk)
1461
{
1462 1463
	unsigned int tsk_state = READ_ONCE(tsk->state);
	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1464

1465 1466 1467 1468 1469
	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);

	if (tsk_state == TASK_IDLE)
		state = TASK_REPORT_IDLE;

1470 1471 1472
	return fls(state);
}

1473
static inline char task_index_to_char(unsigned int state)
1474
{
1475
	static const char state_char[] = "RSDTtXZPI";
1476

1477
	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1478

1479 1480 1481 1482 1483
	return state_char[state];
}

static inline char task_state_to_char(struct task_struct *tsk)
{
1484
	return task_index_to_char(task_state_index(tsk));
1485 1486
}

1487
/**
1488 1489
 * is_global_init - check if a task structure is init. Since init
 * is free to have sub-threads we need to check tgid.
1490 1491 1492
 * @tsk: Task structure to be checked.
 *
 * Check if a task structure is the first user space task the kernel created.
1493 1494
 *
 * Return: 1 if the task structure is init. 0 otherwise.
1495
 */
A
Alexey Dobriyan 已提交
1496
static inline int is_global_init(struct task_struct *tsk)
1497
{
1498
	return task_tgid_nr(tsk) == 1;
1499
}
1500

1501 1502
extern struct pid *cad_pid;

L
Linus Torvalds 已提交
1503 1504 1505
/*
 * Per process flags
 */
1506
#define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1507 1508
#define PF_IDLE			0x00000002	/* I am an IDLE thread */
#define PF_EXITING		0x00000004	/* Getting shut down */
1509
#define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
#define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
#define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
#define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
#define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
#define PF_DUMPCORE		0x00000200	/* Dumped core */
#define PF_SIGNALED		0x00000400	/* Killed by a signal */
#define PF_MEMALLOC		0x00000800	/* Allocating memory */
#define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
#define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
#define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
#define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
#define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1522 1523 1524
#define PF_KSWAPD		0x00020000	/* I am kswapd */
#define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
#define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1525 1526
#define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
						 * I am cleaning dirty pages from some other bdi. */
1527 1528 1529
#define PF_KTHREAD		0x00200000	/* I am a kernel thread */
#define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
#define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1530
#define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1531
#define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1532
#define PF_MEMALLOC_NOCMA	0x10000000	/* All allocation request will have _GFP_MOVABLE cleared */
1533 1534
#define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
#define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
L
Linus Torvalds 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

/*
 * Only the _current_ task can read/write to tsk->flags, but other
 * tasks can access tsk->flags in readonly mode for example
 * with tsk_used_math (like during threaded core dumping).
 * There is however an exception to this rule during ptrace
 * or during fork: the ptracer task is allowed to write to the
 * child->flags of its traced child (same goes for fork, the parent
 * can write to the child->flags), because we're guaranteed the
 * child is not running and in turn not changing child->flags
 * at the same time the parent does it.
 */
1547 1548 1549 1550 1551
#define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math()			clear_stopped_child_used_math(current)
#define set_used_math()				set_stopped_child_used_math(current)

L
Linus Torvalds 已提交
1552 1553
#define conditional_stopped_child_used_math(condition, child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1554 1555 1556

#define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)

L
Linus Torvalds 已提交
1557 1558
#define copy_to_stopped_child_used_math(child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1559

L
Linus Torvalds 已提交
1560
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1561 1562
#define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
#define used_math()				tsk_used_math(current)
L
Linus Torvalds 已提交
1563

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
static inline bool is_percpu_thread(void)
{
#ifdef CONFIG_SMP
	return (current->flags & PF_NO_SETAFFINITY) &&
		(current->nr_cpus_allowed  == 1);
#else
	return true;
#endif
}

1574
/* Per-process atomic flags. */
1575 1576 1577
#define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
#define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
#define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1578 1579
#define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
#define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1580 1581
#define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
#define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1582
#define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1583

1584 1585 1586
#define TASK_PFA_TEST(name, func)					\
	static inline bool task_##func(struct task_struct *p)		\
	{ return test_bit(PFA_##name, &p->atomic_flags); }
1587

1588 1589 1590
#define TASK_PFA_SET(name, func)					\
	static inline void task_set_##func(struct task_struct *p)	\
	{ set_bit(PFA_##name, &p->atomic_flags); }
1591

1592 1593 1594 1595 1596 1597
#define TASK_PFA_CLEAR(name, func)					\
	static inline void task_clear_##func(struct task_struct *p)	\
	{ clear_bit(PFA_##name, &p->atomic_flags); }

TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1598

1599 1600 1601 1602 1603 1604 1605
TASK_PFA_TEST(SPREAD_PAGE, spread_page)
TASK_PFA_SET(SPREAD_PAGE, spread_page)
TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)

TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
TASK_PFA_SET(SPREAD_SLAB, spread_slab)
TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1606

1607 1608 1609 1610
TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)

1611 1612 1613 1614
TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)

1615 1616 1617
TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)

1618 1619 1620 1621 1622 1623 1624
TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)

TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)

1625
static inline void
1626
current_restore_flags(unsigned long orig_flags, unsigned long flags)
1627
{
1628 1629
	current->flags &= ~flags;
	current->flags |= orig_flags & flags;
1630 1631
}

1632 1633
extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
L
Linus Torvalds 已提交
1634
#ifdef CONFIG_SMP
1635 1636
extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
L
Linus Torvalds 已提交
1637
#else
1638
static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1639 1640
{
}
1641
static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
1642
{
1643
	if (!cpumask_test_cpu(0, new_mask))
L
Linus Torvalds 已提交
1644 1645 1646 1647
		return -EINVAL;
	return 0;
}
#endif
1648

1649
extern int yield_to(struct task_struct *p, bool preempt);
1650 1651
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
1652

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 *
 * Return: The nice value [ -20 ... 0 ... 19 ].
 */
static inline int task_nice(const struct task_struct *p)
{
	return PRIO_TO_NICE((p)->static_prio);
}
1663

1664 1665
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
L
Linus Torvalds 已提交
1666
extern int idle_cpu(int cpu);
1667
extern int available_idle_cpu(int cpu);
1668 1669
extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1670 1671 1672
extern void sched_set_fifo(struct task_struct *p);
extern void sched_set_fifo_low(struct task_struct *p);
extern void sched_set_normal(struct task_struct *p, int nice);
1673
extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1674
extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1675
extern struct task_struct *idle_task(int cpu);
1676

1677 1678
/**
 * is_idle_task - is the specified task an idle task?
1679
 * @p: the task in question.
1680 1681
 *
 * Return: 1 if @p is an idle task. 0 otherwise.
1682
 */
1683
static __always_inline bool is_idle_task(const struct task_struct *p)
1684
{
1685
	return !!(p->flags & PF_IDLE);
1686
}
1687

1688
extern struct task_struct *curr_task(int cpu);
1689
extern void ia64_set_curr_task(int cpu, struct task_struct *p);
L
Linus Torvalds 已提交
1690 1691 1692 1693

void yield(void);

union thread_union {
1694 1695 1696
#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
	struct task_struct task;
#endif
1697
#ifndef CONFIG_THREAD_INFO_IN_TASK
L
Linus Torvalds 已提交
1698
	struct thread_info thread_info;
1699
#endif
L
Linus Torvalds 已提交
1700 1701 1702
	unsigned long stack[THREAD_SIZE/sizeof(long)];
};

1703 1704 1705 1706 1707 1708
#ifndef CONFIG_THREAD_INFO_IN_TASK
extern struct thread_info init_thread_info;
#endif

extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];

1709 1710 1711 1712 1713 1714 1715 1716 1717
#ifdef CONFIG_THREAD_INFO_IN_TASK
static inline struct thread_info *task_thread_info(struct task_struct *task)
{
	return &task->thread_info;
}
#elif !defined(__HAVE_THREAD_FUNCTIONS)
# define task_thread_info(task)	((struct thread_info *)(task)->stack)
#endif

1718 1719 1720 1721 1722
/*
 * find a task by one of its numerical ids
 *
 * find_task_by_pid_ns():
 *      finds a task by its pid in the specified namespace
1723 1724
 * find_task_by_vpid():
 *      finds a task by its virtual pid
1725
 *
1726
 * see also find_vpid() etc in include/linux/pid.h
1727 1728
 */

1729
extern struct task_struct *find_task_by_vpid(pid_t nr);
1730
extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1731

1732 1733 1734 1735 1736
/*
 * find a task by its virtual pid and get the task struct
 */
extern struct task_struct *find_get_task_by_vpid(pid_t nr);

1737 1738
extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
1739
extern void wake_up_new_task(struct task_struct *tsk);
1740

L
Linus Torvalds 已提交
1741
#ifdef CONFIG_SMP
1742
extern void kick_process(struct task_struct *tsk);
L
Linus Torvalds 已提交
1743
#else
1744
static inline void kick_process(struct task_struct *tsk) { }
L
Linus Torvalds 已提交
1745 1746
#endif

1747
extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1748

1749 1750 1751 1752
static inline void set_task_comm(struct task_struct *tsk, const char *from)
{
	__set_task_comm(tsk, from, false);
}
1753

1754 1755 1756 1757 1758
extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
#define get_task_comm(buf, tsk) ({			\
	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
	__get_task_comm(buf, sizeof(buf), tsk);		\
})
L
Linus Torvalds 已提交
1759 1760

#ifdef CONFIG_SMP
1761 1762 1763 1764 1765 1766 1767 1768 1769
static __always_inline void scheduler_ipi(void)
{
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
	preempt_fold_need_resched();
}
R
Roland McGrath 已提交
1770
extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
L
Linus Torvalds 已提交
1771
#else
1772
static inline void scheduler_ipi(void) { }
1773
static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
R
Roland McGrath 已提交
1774 1775 1776
{
	return 1;
}
L
Linus Torvalds 已提交
1777 1778
#endif

1779 1780 1781
/*
 * Set thread flags in other task's structures.
 * See asm/thread_info.h for TIF_xxxx flags available:
L
Linus Torvalds 已提交
1782 1783 1784
 */
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1785
	set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1786 1787 1788 1789
}

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1790
	clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1791 1792
}

1793 1794 1795 1796 1797 1798
static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
					  bool value)
{
	update_ti_thread_flag(task_thread_info(tsk), flag, value);
}

L
Linus Torvalds 已提交
1799 1800
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1801
	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1802 1803 1804 1805
}

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1806
	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1807 1808 1809 1810
}

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1811
	return test_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
}

static inline void set_tsk_need_resched(struct task_struct *tsk)
{
	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

1824 1825 1826 1827 1828
static inline int test_tsk_need_resched(struct task_struct *tsk)
{
	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}

L
Linus Torvalds 已提交
1829 1830 1831 1832 1833 1834
/*
 * cond_resched() and cond_resched_lock(): latency reduction via
 * explicit rescheduling in places that are safe. The return
 * value indicates whether a reschedule was done in fact.
 * cond_resched_lock() will drop the spinlock before scheduling,
 */
1835
#ifndef CONFIG_PREEMPTION
1836
extern int _cond_resched(void);
1837 1838 1839
#else
static inline int _cond_resched(void) { return 0; }
#endif
1840

1841
#define cond_resched() ({			\
1842
	___might_sleep(__FILE__, __LINE__, 0);	\
1843 1844
	_cond_resched();			\
})
1845

1846 1847 1848
extern int __cond_resched_lock(spinlock_t *lock);

#define cond_resched_lock(lock) ({				\
1849
	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1850 1851 1852
	__cond_resched_lock(lock);				\
})

1853 1854 1855 1856 1857 1858 1859 1860 1861
static inline void cond_resched_rcu(void)
{
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
	rcu_read_unlock();
	cond_resched();
	rcu_read_lock();
#endif
}

L
Linus Torvalds 已提交
1862 1863
/*
 * Does a critical section need to be broken due to another
1864
 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
N
Nick Piggin 已提交
1865
 * but a general need for low latency)
L
Linus Torvalds 已提交
1866
 */
N
Nick Piggin 已提交
1867
static inline int spin_needbreak(spinlock_t *lock)
L
Linus Torvalds 已提交
1868
{
1869
#ifdef CONFIG_PREEMPTION
N
Nick Piggin 已提交
1870 1871
	return spin_is_contended(lock);
#else
L
Linus Torvalds 已提交
1872
	return 0;
N
Nick Piggin 已提交
1873
#endif
L
Linus Torvalds 已提交
1874 1875
}

1876 1877 1878 1879 1880
static __always_inline bool need_resched(void)
{
	return unlikely(tif_need_resched());
}

L
Linus Torvalds 已提交
1881 1882 1883 1884 1885 1886 1887
/*
 * Wrappers for p->thread_info->cpu access. No-op on UP.
 */
#ifdef CONFIG_SMP

static inline unsigned int task_cpu(const struct task_struct *p)
{
1888
#ifdef CONFIG_THREAD_INFO_IN_TASK
1889
	return READ_ONCE(p->cpu);
1890
#else
1891
	return READ_ONCE(task_thread_info(p)->cpu);
1892
#endif
L
Linus Torvalds 已提交
1893 1894
}

I
Ingo Molnar 已提交
1895
extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
L
Linus Torvalds 已提交
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

#else

static inline unsigned int task_cpu(const struct task_struct *p)
{
	return 0;
}

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}

#endif /* CONFIG_SMP */

1910 1911 1912 1913 1914 1915 1916 1917 1918
/*
 * In order to reduce various lock holder preemption latencies provide an
 * interface to see if a vCPU is currently running or not.
 *
 * This allows us to terminate optimistic spin loops and block, analogous to
 * the native optimistic spin heuristic of testing if the lock owner task is
 * running or not.
 */
#ifndef vcpu_is_preempted
1919 1920 1921 1922
static inline bool vcpu_is_preempted(int cpu)
{
	return false;
}
1923 1924
#endif

1925 1926
extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1927

D
Dave Hansen 已提交
1928 1929 1930 1931
#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk)	TASK_SIZE
#endif

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
#ifdef CONFIG_RSEQ

/*
 * Map the event mask on the user-space ABI enum rseq_cs_flags
 * for direct mask checks.
 */
enum rseq_event_mask_bits {
	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
};

enum rseq_event_mask {
	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
};

static inline void rseq_set_notify_resume(struct task_struct *t)
{
	if (t->rseq)
		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
}

1956
void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1957

1958 1959
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
1960 1961
{
	if (current->rseq)
1962
		__rseq_handle_notify_resume(ksig, regs);
1963 1964
}

1965 1966
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
1967 1968 1969 1970
{
	preempt_disable();
	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
	preempt_enable();
1971
	rseq_handle_notify_resume(ksig, regs);
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
}

/* rseq_preempt() requires preemption to be disabled. */
static inline void rseq_preempt(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/* rseq_migrate() requires preemption to be disabled. */
static inline void rseq_migrate(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/*
 * If parent process has a registered restartable sequences area, the
1990
 * child inherits. Unregister rseq for a clone with CLONE_VM set.
1991 1992 1993
 */
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
1994
	if (clone_flags & CLONE_VM) {
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
		t->rseq = NULL;
		t->rseq_sig = 0;
		t->rseq_event_mask = 0;
	} else {
		t->rseq = current->rseq;
		t->rseq_sig = current->rseq_sig;
		t->rseq_event_mask = current->rseq_event_mask;
	}
}

static inline void rseq_execve(struct task_struct *t)
{
	t->rseq = NULL;
	t->rseq_sig = 0;
	t->rseq_event_mask = 0;
}

#else

static inline void rseq_set_notify_resume(struct task_struct *t)
{
}
2017 2018
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
2019 2020
{
}
2021 2022
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
{
}
static inline void rseq_preempt(struct task_struct *t)
{
}
static inline void rseq_migrate(struct task_struct *t)
{
}
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
}
static inline void rseq_execve(struct task_struct *t)
{
}

#endif

#ifdef CONFIG_DEBUG_RSEQ

void rseq_syscall(struct pt_regs *regs);

#else

static inline void rseq_syscall(struct pt_regs *regs)
{
}

#endif

2052 2053 2054 2055 2056 2057 2058 2059 2060
const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);

const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);

int sched_trace_rq_cpu(struct rq *rq);
2061
int sched_trace_rq_cpu_capacity(struct rq *rq);
2062
int sched_trace_rq_nr_running(struct rq *rq);
2063 2064 2065

const struct cpumask *sched_trace_rd_span(struct root_domain *rd);

L
Linus Torvalds 已提交
2066
#endif