sched.h 55.0 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

5 6 7 8
/*
 * Define 'struct task_struct' and provide the main scheduler
 * APIs (schedule(), wakeup variants, etc.)
 */
9

10
#include <uapi/linux/sched.h>
11

12
#include <asm/current.h>
L
Linus Torvalds 已提交
13

14
#include <linux/pid.h>
L
Linus Torvalds 已提交
15
#include <linux/sem.h>
16
#include <linux/shm.h>
17 18 19 20
#include <linux/kcov.h>
#include <linux/mutex.h>
#include <linux/plist.h>
#include <linux/hrtimer.h>
L
Linus Torvalds 已提交
21
#include <linux/seccomp.h>
22
#include <linux/nodemask.h>
23
#include <linux/rcupdate.h>
24
#include <linux/refcount.h>
25
#include <linux/resource.h>
A
Arjan van de Ven 已提交
26
#include <linux/latencytop.h>
27 28 29 30
#include <linux/sched/prio.h>
#include <linux/signal_types.h>
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>
31
#include <linux/rseq.h>
32

33
/* task_struct member predeclarations (sorted alphabetically): */
34 35
struct audit_context;
struct backing_dev_info;
36
struct bio_list;
37
struct blk_plug;
38
struct capture_control;
39 40 41 42 43
struct cfs_rq;
struct fs_struct;
struct futex_pi_state;
struct io_context;
struct mempolicy;
44
struct nameidata;
45 46 47 48 49 50 51
struct nsproxy;
struct perf_event_context;
struct pid_namespace;
struct pipe_inode_info;
struct rcu_node;
struct reclaim_state;
struct robust_list_head;
52 53
struct root_domain;
struct rq;
54 55
struct sched_attr;
struct sched_param;
I
Ingo Molnar 已提交
56
struct seq_file;
57 58 59
struct sighand_struct;
struct signal_struct;
struct task_delay_info;
60
struct task_group;
L
Linus Torvalds 已提交
61

62 63 64 65 66 67 68 69 70 71
/*
 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 *
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.
 */
72 73

/* Used in tsk->state: */
74 75 76 77 78
#define TASK_RUNNING			0x0000
#define TASK_INTERRUPTIBLE		0x0001
#define TASK_UNINTERRUPTIBLE		0x0002
#define __TASK_STOPPED			0x0004
#define __TASK_TRACED			0x0008
79
/* Used in tsk->exit_state: */
80 81
#define EXIT_DEAD			0x0010
#define EXIT_ZOMBIE			0x0020
82 83
#define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
/* Used in tsk->state again: */
84 85 86 87
#define TASK_PARKED			0x0040
#define TASK_DEAD			0x0080
#define TASK_WAKEKILL			0x0100
#define TASK_WAKING			0x0200
88 89 90
#define TASK_NOLOAD			0x0400
#define TASK_NEW			0x0800
#define TASK_STATE_MAX			0x1000
91 92 93 94 95 96 97 98 99 100 101 102 103 104

/* Convenience macros for the sake of set_current_state: */
#define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)

#define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)

/* Convenience macros for the sake of wake_up(): */
#define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)

/* get_task_state(): */
#define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
105 106
					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
					 TASK_PARKED)
107 108 109 110 111 112 113 114 115 116

#define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)

#define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)

#define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)

#define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
					 (task->flags & PF_FROZEN) == 0 && \
					 (task->state & TASK_NOLOAD) == 0)
L
Linus Torvalds 已提交
117

P
Peter Zijlstra 已提交
118 119
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP

120 121 122 123 124
/*
 * Special states are those that do not use the normal wait-loop pattern. See
 * the comment with set_special_state().
 */
#define is_special_task_state(state)				\
125
	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
126

P
Peter Zijlstra 已提交
127 128
#define __set_current_state(state_value)			\
	do {							\
129
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
130 131 132
		current->task_state_change = _THIS_IP_;		\
		current->state = (state_value);			\
	} while (0)
133

P
Peter Zijlstra 已提交
134 135
#define set_current_state(state_value)				\
	do {							\
136
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
137
		current->task_state_change = _THIS_IP_;		\
138
		smp_store_mb(current->state, (state_value));	\
P
Peter Zijlstra 已提交
139 140
	} while (0)

141 142 143 144 145 146 147 148 149
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		WARN_ON_ONCE(!is_special_task_state(state_value));	\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->task_state_change = _THIS_IP_;			\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)
P
Peter Zijlstra 已提交
150
#else
151 152 153 154 155
/*
 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *
156
 *   for (;;) {
157
 *	set_current_state(TASK_UNINTERRUPTIBLE);
158 159 160 161 162 163 164 165 166 167 168 169 170
 *	if (!need_sleep)
 *		break;
 *
 *	schedule();
 *   }
 *   __set_current_state(TASK_RUNNING);
 *
 * If the caller does not need such serialisation (because, for instance, the
 * condition test and condition change and wakeup are under the same lock) then
 * use __set_current_state().
 *
 * The above is typically ordered against the wakeup, which does:
 *
171 172
 *   need_sleep = false;
 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
173
 *
174 175
 * where wake_up_state() executes a full memory barrier before accessing the
 * task state.
176 177 178 179
 *
 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
180
 *
181
 * However, with slightly different timing the wakeup TASK_RUNNING store can
I
Ingo Molnar 已提交
182
 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
183 184
 * a problem either because that will result in one extra go around the loop
 * and our @cond test will save the day.
185
 *
186
 * Also see the comments of try_to_wake_up().
187
 */
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
#define __set_current_state(state_value)				\
	current->state = (state_value)

#define set_current_state(state_value)					\
	smp_store_mb(current->state, (state_value))

/*
 * set_special_state() should be used for those states when the blocking task
 * can not use the regular condition based wait-loop. In that case we must
 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 * will not collide with our state change.
 */
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)

P
Peter Zijlstra 已提交
208 209
#endif

210 211
/* Task command name length: */
#define TASK_COMM_LEN			16
L
Linus Torvalds 已提交
212 213 214

extern void scheduler_tick(void);

215 216 217 218 219 220 221
#define	MAX_SCHEDULE_TIMEOUT		LONG_MAX

extern long schedule_timeout(long timeout);
extern long schedule_timeout_interruptible(long timeout);
extern long schedule_timeout_killable(long timeout);
extern long schedule_timeout_uninterruptible(long timeout);
extern long schedule_timeout_idle(long timeout);
L
Linus Torvalds 已提交
222
asmlinkage void schedule(void);
223
extern void schedule_preempt_disabled(void);
L
Linus Torvalds 已提交
224

225 226
extern int __must_check io_schedule_prepare(void);
extern void io_schedule_finish(int token);
227
extern long io_schedule_timeout(long timeout);
228
extern void io_schedule(void);
229

230
/**
231
 * struct prev_cputime - snapshot of system and user cputime
232 233
 * @utime: time spent in user mode
 * @stime: time spent in system mode
234
 * @lock: protects the above two fields
235
 *
236 237
 * Stores previous user/system time values such that we can guarantee
 * monotonicity.
238
 */
239 240
struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
241 242 243
	u64				utime;
	u64				stime;
	raw_spinlock_t			lock;
244
#endif
245 246
};

247 248
/**
 * struct task_cputime - collected CPU time counts
249 250
 * @utime:		time spent in user mode, in nanoseconds
 * @stime:		time spent in kernel mode, in nanoseconds
251
 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
252
 *
253 254 255
 * This structure groups together three kinds of CPU time that are tracked for
 * threads and thread groups.  Most things considering CPU time want to group
 * these counts together and treat all three of them in parallel.
256 257
 */
struct task_cputime {
258 259 260
	u64				utime;
	u64				stime;
	unsigned long long		sum_exec_runtime;
261
};
262

263 264 265 266
/* Alternate field names when used on cache expirations: */
#define virt_exp			utime
#define prof_exp			stime
#define sched_exp			sum_exec_runtime
267

268 269 270 271 272 273 274 275 276 277 278 279 280
enum vtime_state {
	/* Task is sleeping or running in a CPU with VTIME inactive: */
	VTIME_INACTIVE = 0,
	/* Task runs in userspace in a CPU with VTIME active: */
	VTIME_USER,
	/* Task runs in kernelspace in a CPU with VTIME active: */
	VTIME_SYS,
};

struct vtime {
	seqcount_t		seqcount;
	unsigned long long	starttime;
	enum vtime_state	state;
281 282 283
	u64			utime;
	u64			stime;
	u64			gtime;
284 285
};

286 287 288 289 290 291 292 293 294 295 296 297
/*
 * Utilization clamp constraints.
 * @UCLAMP_MIN:	Minimum utilization
 * @UCLAMP_MAX:	Maximum utilization
 * @UCLAMP_CNT:	Utilization clamp constraints count
 */
enum uclamp_id {
	UCLAMP_MIN = 0,
	UCLAMP_MAX,
	UCLAMP_CNT
};

L
Linus Torvalds 已提交
298
struct sched_info {
299
#ifdef CONFIG_SCHED_INFO
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	/* Cumulative counters: */

	/* # of times we have run on this CPU: */
	unsigned long			pcount;

	/* Time spent waiting on a runqueue: */
	unsigned long long		run_delay;

	/* Timestamps: */

	/* When did we last run on a CPU? */
	unsigned long long		last_arrival;

	/* When were we last queued to run? */
	unsigned long long		last_queued;
L
Linus Torvalds 已提交
315

316
#endif /* CONFIG_SCHED_INFO */
317
};
L
Linus Torvalds 已提交
318

319 320 321 322 323 324 325
/*
 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 * has a few: load, load_avg, util_avg, freq, and capacity.
 *
 * We define a basic fixed point arithmetic range, and then formalize
 * all these metrics based on that basic range.
 */
326 327
# define SCHED_FIXEDPOINT_SHIFT		10
# define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
328

329 330 331 332
/* Increase resolution of cpu_capacity calculations */
# define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
# define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)

I
Ingo Molnar 已提交
333
struct load_weight {
334 335
	unsigned long			weight;
	u32				inv_weight;
I
Ingo Molnar 已提交
336 337
};

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
/**
 * struct util_est - Estimation utilization of FAIR tasks
 * @enqueued: instantaneous estimated utilization of a task/cpu
 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 *            utilization of a task
 *
 * Support data structure to track an Exponential Weighted Moving Average
 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 * average each time a task completes an activation. Sample's weight is chosen
 * so that the EWMA will be relatively insensitive to transient changes to the
 * task's workload.
 *
 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 * - task:   the task's util_avg at last task dequeue time
 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 * Thus, the util_est.enqueued of a task represents the contribution on the
 * estimated utilization of the CPU where that task is currently enqueued.
 *
 * Only for tasks we track a moving average of the past instantaneous
 * estimated utilization. This allows to absorb sporadic drops in utilization
 * of an otherwise almost periodic task.
 */
struct util_est {
	unsigned int			enqueued;
	unsigned int			ewma;
#define UTIL_EST_WEIGHT_SHIFT		2
364
} __attribute__((__aligned__(sizeof(u64))));
365

366
/*
367 368 369 370 371 372 373 374 375
 * The load_avg/util_avg accumulates an infinite geometric series
 * (see __update_load_avg() in kernel/sched/fair.c).
 *
 * [load_avg definition]
 *
 *   load_avg = runnable% * scale_load_down(load)
 *
 * where runnable% is the time ratio that a sched_entity is runnable.
 * For cfs_rq, it is the aggregated load_avg of all runnable and
376
 * blocked sched_entities.
377 378 379 380 381 382 383 384 385
 *
 * [util_avg definition]
 *
 *   util_avg = running% * SCHED_CAPACITY_SCALE
 *
 * where running% is the time ratio that a sched_entity is running on
 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
 * and blocked sched_entities.
 *
386 387 388
 * load_avg and util_avg don't direcly factor frequency scaling and CPU
 * capacity scaling. The scaling is done through the rq_clock_pelt that
 * is used for computing those signals (see update_rq_clock_pelt())
389
 *
390 391 392 393
 * N.B., the above ratios (runnable% and running%) themselves are in the
 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 * to as large a range as necessary. This is for example reflected by
 * util_avg's SCHED_CAPACITY_SCALE.
394 395 396 397 398 399 400 401 402 403 404 405 406 407
 *
 * [Overflow issue]
 *
 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 * with the highest load (=88761), always runnable on a single cfs_rq,
 * and should not overflow as the number already hits PID_MAX_LIMIT.
 *
 * For all other cases (including 32-bit kernels), struct load_weight's
 * weight will overflow first before we do, because:
 *
 *    Max(load_avg) <= Max(load.weight)
 *
 * Then it is the load_weight's responsibility to consider overflow
 * issues.
408
 */
409
struct sched_avg {
410 411
	u64				last_update_time;
	u64				load_sum;
412
	u64				runnable_load_sum;
413 414 415
	u32				util_sum;
	u32				period_contrib;
	unsigned long			load_avg;
416
	unsigned long			runnable_load_avg;
417
	unsigned long			util_avg;
418
	struct util_est			util_est;
419
} ____cacheline_aligned;
420

421
struct sched_statistics {
422
#ifdef CONFIG_SCHEDSTATS
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
	u64				wait_start;
	u64				wait_max;
	u64				wait_count;
	u64				wait_sum;
	u64				iowait_count;
	u64				iowait_sum;

	u64				sleep_start;
	u64				sleep_max;
	s64				sum_sleep_runtime;

	u64				block_start;
	u64				block_max;
	u64				exec_max;
	u64				slice_max;

	u64				nr_migrations_cold;
	u64				nr_failed_migrations_affine;
	u64				nr_failed_migrations_running;
	u64				nr_failed_migrations_hot;
	u64				nr_forced_migrations;

	u64				nr_wakeups;
	u64				nr_wakeups_sync;
	u64				nr_wakeups_migrate;
	u64				nr_wakeups_local;
	u64				nr_wakeups_remote;
	u64				nr_wakeups_affine;
	u64				nr_wakeups_affine_attempts;
	u64				nr_wakeups_passive;
	u64				nr_wakeups_idle;
454
#endif
455
};
456 457

struct sched_entity {
458 459
	/* For load-balancing: */
	struct load_weight		load;
460
	unsigned long			runnable_weight;
461 462 463
	struct rb_node			run_node;
	struct list_head		group_node;
	unsigned int			on_rq;
464

465 466 467 468
	u64				exec_start;
	u64				sum_exec_runtime;
	u64				vruntime;
	u64				prev_sum_exec_runtime;
469

470
	u64				nr_migrations;
471

472
	struct sched_statistics		statistics;
473

I
Ingo Molnar 已提交
474
#ifdef CONFIG_FAIR_GROUP_SCHED
475 476
	int				depth;
	struct sched_entity		*parent;
I
Ingo Molnar 已提交
477
	/* rq on which this entity is (to be) queued: */
478
	struct cfs_rq			*cfs_rq;
I
Ingo Molnar 已提交
479
	/* rq "owned" by this entity/group: */
480
	struct cfs_rq			*my_q;
I
Ingo Molnar 已提交
481
#endif
482

483
#ifdef CONFIG_SMP
484 485 486 487 488 489
	/*
	 * Per entity load average tracking.
	 *
	 * Put into separate cache line so it does not
	 * collide with read-mostly values above.
	 */
490
	struct sched_avg		avg;
491
#endif
I
Ingo Molnar 已提交
492
};
493

P
Peter Zijlstra 已提交
494
struct sched_rt_entity {
495 496 497 498 499 500 501 502
	struct list_head		run_list;
	unsigned long			timeout;
	unsigned long			watchdog_stamp;
	unsigned int			time_slice;
	unsigned short			on_rq;
	unsigned short			on_list;

	struct sched_rt_entity		*back;
503
#ifdef CONFIG_RT_GROUP_SCHED
504
	struct sched_rt_entity		*parent;
P
Peter Zijlstra 已提交
505
	/* rq on which this entity is (to be) queued: */
506
	struct rt_rq			*rt_rq;
P
Peter Zijlstra 已提交
507
	/* rq "owned" by this entity/group: */
508
	struct rt_rq			*my_q;
P
Peter Zijlstra 已提交
509
#endif
510
} __randomize_layout;
P
Peter Zijlstra 已提交
511

512
struct sched_dl_entity {
513
	struct rb_node			rb_node;
514 515 516

	/*
	 * Original scheduling parameters. Copied here from sched_attr
517 518
	 * during sched_setattr(), they will remain the same until
	 * the next sched_setattr().
519
	 */
520 521 522
	u64				dl_runtime;	/* Maximum runtime for each instance	*/
	u64				dl_deadline;	/* Relative deadline of each instance	*/
	u64				dl_period;	/* Separation of two instances (period) */
523
	u64				dl_bw;		/* dl_runtime / dl_period		*/
524
	u64				dl_density;	/* dl_runtime / dl_deadline		*/
525 526 527

	/*
	 * Actual scheduling parameters. Initialized with the values above,
I
Ingo Molnar 已提交
528
	 * they are continuously updated during task execution. Note that
529 530
	 * the remaining runtime could be < 0 in case we are in overrun.
	 */
531 532 533
	s64				runtime;	/* Remaining runtime for this instance	*/
	u64				deadline;	/* Absolute deadline for this instance	*/
	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
534 535 536 537 538 539 540 541

	/*
	 * Some bool flags:
	 *
	 * @dl_throttled tells if we exhausted the runtime. If so, the
	 * task has to wait for a replenishment to be performed at the
	 * next firing of dl_timer.
	 *
542 543
	 * @dl_boosted tells if we are boosted due to DI. If so we are
	 * outside bandwidth enforcement mechanism (but only until we
544 545
	 * exit the critical section);
	 *
546
	 * @dl_yielded tells if task gave up the CPU before consuming
547
	 * all its available runtime during the last job.
548 549 550 551 552 553 554
	 *
	 * @dl_non_contending tells if the task is inactive while still
	 * contributing to the active utilization. In other words, it
	 * indicates if the inactive timer has been armed and its handler
	 * has not been executed yet. This flag is useful to avoid race
	 * conditions between the inactive timer handler and the wakeup
	 * code.
555 556 557
	 *
	 * @dl_overrun tells if the task asked to be informed about runtime
	 * overruns.
558
	 */
559 560 561 562
	unsigned int			dl_throttled      : 1;
	unsigned int			dl_boosted        : 1;
	unsigned int			dl_yielded        : 1;
	unsigned int			dl_non_contending : 1;
563
	unsigned int			dl_overrun	  : 1;
564 565 566 567 568

	/*
	 * Bandwidth enforcement timer. Each -deadline task has its
	 * own bandwidth to be enforced, thus we need one timer per task.
	 */
569
	struct hrtimer			dl_timer;
570 571 572 573 574 575 576 577 578

	/*
	 * Inactive timer, responsible for decreasing the active utilization
	 * at the "0-lag time". When a -deadline task blocks, it contributes
	 * to GRUB's active utilization until the "0-lag time", hence a
	 * timer is needed to decrease the active utilization at the correct
	 * time.
	 */
	struct hrtimer inactive_timer;
579
};
580

581 582 583 584 585 586 587 588
#ifdef CONFIG_UCLAMP_TASK
/* Number of utilization clamp buckets (shorter alias) */
#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT

/*
 * Utilization clamp for a scheduling entity
 * @value:		clamp value "assigned" to a se
 * @bucket_id:		bucket index corresponding to the "assigned" value
589
 * @active:		the se is currently refcounted in a rq's bucket
590 591 592 593
 *
 * The bucket_id is the index of the clamp bucket matching the clamp value
 * which is pre-computed and stored to avoid expensive integer divisions from
 * the fast path.
594 595 596 597 598
 *
 * The active bit is set whenever a task has got an "effective" value assigned,
 * which can be different from the clamp value "requested" from user-space.
 * This allows to know a task is refcounted in the rq's bucket corresponding
 * to the "effective" bucket_id.
599 600 601 602
 */
struct uclamp_se {
	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
603
	unsigned int active		: 1;
604 605 606
};
#endif /* CONFIG_UCLAMP_TASK */

607 608
union rcu_special {
	struct {
609 610
		u8			blocked;
		u8			need_qs;
611 612
		u8			exp_hint; /* Hint for performance. */
		u8			pad; /* No garbage from compiler! */
613
	} b; /* Bits. */
614
	u32 s; /* Set of bits. */
615
};
616

P
Peter Zijlstra 已提交
617 618 619
enum perf_event_task_context {
	perf_invalid_context = -1,
	perf_hw_context = 0,
620
	perf_sw_context,
P
Peter Zijlstra 已提交
621 622 623
	perf_nr_task_contexts,
};

624 625 626 627
struct wake_q_node {
	struct wake_q_node *next;
};

L
Linus Torvalds 已提交
628
struct task_struct {
629 630 631 632 633
#ifdef CONFIG_THREAD_INFO_IN_TASK
	/*
	 * For reasons of header soup (see current_thread_info()), this
	 * must be the first element of task_struct.
	 */
634
	struct thread_info		thread_info;
635
#endif
636 637
	/* -1 unrunnable, 0 runnable, >0 stopped: */
	volatile long			state;
K
Kees Cook 已提交
638 639 640 641 642 643 644

	/*
	 * This begins the randomizable portion of task_struct. Only
	 * scheduling-critical items should be added above here.
	 */
	randomized_struct_fields_start

645
	void				*stack;
646
	refcount_t			usage;
647 648 649
	/* Per task flags (PF_*), defined further below: */
	unsigned int			flags;
	unsigned int			ptrace;
L
Linus Torvalds 已提交
650

651
#ifdef CONFIG_SMP
652 653
	struct llist_node		wake_entry;
	int				on_cpu;
654
#ifdef CONFIG_THREAD_INFO_IN_TASK
655 656
	/* Current CPU: */
	unsigned int			cpu;
657
#endif
658 659 660
	unsigned int			wakee_flips;
	unsigned long			wakee_flip_decay_ts;
	struct task_struct		*last_wakee;
661

662 663 664 665 666 667 668 669
	/*
	 * recent_used_cpu is initially set as the last CPU used by a task
	 * that wakes affine another task. Waker/wakee relationships can
	 * push tasks around a CPU where each wakeup moves to the next one.
	 * Tracking a recently used CPU allows a quick search for a recently
	 * used CPU that may be idle.
	 */
	int				recent_used_cpu;
670
	int				wake_cpu;
671
#endif
672 673 674 675 676 677
	int				on_rq;

	int				prio;
	int				static_prio;
	int				normal_prio;
	unsigned int			rt_priority;
678

679 680 681
	const struct sched_class	*sched_class;
	struct sched_entity		se;
	struct sched_rt_entity		rt;
P
Peter Zijlstra 已提交
682
#ifdef CONFIG_CGROUP_SCHED
683
	struct task_group		*sched_task_group;
P
Peter Zijlstra 已提交
684
#endif
685
	struct sched_dl_entity		dl;
L
Linus Torvalds 已提交
686

687
#ifdef CONFIG_UCLAMP_TASK
688 689 690
	/* Clamp values requested for a scheduling entity */
	struct uclamp_se		uclamp_req[UCLAMP_CNT];
	/* Effective clamp values used for a scheduling entity */
691 692 693
	struct uclamp_se		uclamp[UCLAMP_CNT];
#endif

694
#ifdef CONFIG_PREEMPT_NOTIFIERS
695 696
	/* List of struct preempt_notifier: */
	struct hlist_head		preempt_notifiers;
697 698
#endif

699
#ifdef CONFIG_BLK_DEV_IO_TRACE
700
	unsigned int			btrace_seq;
701
#endif
L
Linus Torvalds 已提交
702

703 704
	unsigned int			policy;
	int				nr_cpus_allowed;
705 706
	const cpumask_t			*cpus_ptr;
	cpumask_t			cpus_mask;
L
Linus Torvalds 已提交
707

P
Paul E. McKenney 已提交
708
#ifdef CONFIG_PREEMPT_RCU
709 710 711 712
	int				rcu_read_lock_nesting;
	union rcu_special		rcu_read_unlock_special;
	struct list_head		rcu_node_entry;
	struct rcu_node			*rcu_blocked_node;
713
#endif /* #ifdef CONFIG_PREEMPT_RCU */
714

P
Paul E. McKenney 已提交
715
#ifdef CONFIG_TASKS_RCU
716
	unsigned long			rcu_tasks_nvcsw;
717 718
	u8				rcu_tasks_holdout;
	u8				rcu_tasks_idx;
719
	int				rcu_tasks_idle_cpu;
720
	struct list_head		rcu_tasks_holdout_list;
P
Paul E. McKenney 已提交
721
#endif /* #ifdef CONFIG_TASKS_RCU */
P
Paul E. McKenney 已提交
722

723
	struct sched_info		sched_info;
L
Linus Torvalds 已提交
724

725
	struct list_head		tasks;
726
#ifdef CONFIG_SMP
727 728
	struct plist_node		pushable_tasks;
	struct rb_node			pushable_dl_tasks;
729
#endif
L
Linus Torvalds 已提交
730

731 732
	struct mm_struct		*mm;
	struct mm_struct		*active_mm;
733 734

	/* Per-thread vma caching: */
735
	struct vmacache			vmacache;
736

737 738
#ifdef SPLIT_RSS_COUNTING
	struct task_rss_stat		rss_stat;
739
#endif
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	int				exit_state;
	int				exit_code;
	int				exit_signal;
	/* The signal sent when the parent dies: */
	int				pdeath_signal;
	/* JOBCTL_*, siglock protected: */
	unsigned long			jobctl;

	/* Used for emulating ABI behavior of previous Linux versions: */
	unsigned int			personality;

	/* Scheduler bits, serialized by scheduler locks: */
	unsigned			sched_reset_on_fork:1;
	unsigned			sched_contributes_to_load:1;
	unsigned			sched_migrated:1;
	unsigned			sched_remote_wakeup:1;
756 757 758 759
#ifdef CONFIG_PSI
	unsigned			sched_psi_wake_requeue:1;
#endif

760 761 762 763 764 765 766 767 768 769
	/* Force alignment to the next boundary: */
	unsigned			:0;

	/* Unserialized, strictly 'current' */

	/* Bit to tell LSMs we're in execve(): */
	unsigned			in_execve:1;
	unsigned			in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
	unsigned			restore_sigmask:1;
770
#endif
T
Tejun Heo 已提交
771
#ifdef CONFIG_MEMCG
772
	unsigned			in_user_fault:1;
773
#endif
774
#ifdef CONFIG_COMPAT_BRK
775
	unsigned			brk_randomized:1;
776
#endif
777 778 779
#ifdef CONFIG_CGROUPS
	/* disallow userland-initiated cgroup migration */
	unsigned			no_cgroup_migration:1;
R
Roman Gushchin 已提交
780 781
	/* task is frozen/stopped (used by the cgroup freezer) */
	unsigned			frozen:1;
782
#endif
783 784 785 786
#ifdef CONFIG_BLK_CGROUP
	/* to be used once the psi infrastructure lands upstream. */
	unsigned			use_memdelay:1;
#endif
787

788
	unsigned long			atomic_flags; /* Flags requiring atomic access. */
789

790
	struct restart_block		restart_block;
791

792 793
	pid_t				pid;
	pid_t				tgid;
794

795
#ifdef CONFIG_STACKPROTECTOR
796 797
	/* Canary value for the -fstack-protector GCC feature: */
	unsigned long			stack_canary;
798
#endif
799
	/*
800
	 * Pointers to the (original) parent process, youngest child, younger sibling,
801
	 * older sibling, respectively.  (p->father can be replaced with
R
Roland McGrath 已提交
802
	 * p->real_parent->pid)
L
Linus Torvalds 已提交
803
	 */
804 805 806 807 808 809 810

	/* Real parent process: */
	struct task_struct __rcu	*real_parent;

	/* Recipient of SIGCHLD, wait4() reports: */
	struct task_struct __rcu	*parent;

L
Linus Torvalds 已提交
811
	/*
812
	 * Children/sibling form the list of natural children:
L
Linus Torvalds 已提交
813
	 */
814 815 816
	struct list_head		children;
	struct list_head		sibling;
	struct task_struct		*group_leader;
L
Linus Torvalds 已提交
817

R
Roland McGrath 已提交
818
	/*
819 820
	 * 'ptraced' is the list of tasks this task is using ptrace() on.
	 *
R
Roland McGrath 已提交
821
	 * This includes both natural children and PTRACE_ATTACH targets.
822
	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
R
Roland McGrath 已提交
823
	 */
824 825
	struct list_head		ptraced;
	struct list_head		ptrace_entry;
R
Roland McGrath 已提交
826

L
Linus Torvalds 已提交
827
	/* PID/PID hash table linkage. */
828 829
	struct pid			*thread_pid;
	struct hlist_node		pid_links[PIDTYPE_MAX];
830 831 832 833
	struct list_head		thread_group;
	struct list_head		thread_node;

	struct completion		*vfork_done;
L
Linus Torvalds 已提交
834

835 836
	/* CLONE_CHILD_SETTID: */
	int __user			*set_child_tid;
L
Linus Torvalds 已提交
837

838 839 840 841 842
	/* CLONE_CHILD_CLEARTID: */
	int __user			*clear_child_tid;

	u64				utime;
	u64				stime;
843
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
844 845
	u64				utimescaled;
	u64				stimescaled;
846
#endif
847 848
	u64				gtime;
	struct prev_cputime		prev_cputime;
849
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
850
	struct vtime			vtime;
851
#endif
852 853

#ifdef CONFIG_NO_HZ_FULL
854
	atomic_t			tick_dep_mask;
855
#endif
856 857 858 859 860 861 862 863 864 865 866 867 868
	/* Context switch counts: */
	unsigned long			nvcsw;
	unsigned long			nivcsw;

	/* Monotonic time in nsecs: */
	u64				start_time;

	/* Boot based time in nsecs: */
	u64				real_start_time;

	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
	unsigned long			min_flt;
	unsigned long			maj_flt;
L
Linus Torvalds 已提交
869

870
#ifdef CONFIG_POSIX_TIMERS
871 872
	struct task_cputime		cputime_expires;
	struct list_head		cpu_timers[3];
873
#endif
L
Linus Torvalds 已提交
874

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	/* Process credentials: */

	/* Tracer's credentials at attach: */
	const struct cred __rcu		*ptracer_cred;

	/* Objective and real subjective task credentials (COW): */
	const struct cred __rcu		*real_cred;

	/* Effective (overridable) subjective task credentials (COW): */
	const struct cred __rcu		*cred;

	/*
	 * executable name, excluding path.
	 *
	 * - normally initialized setup_new_exec()
	 * - access it with [gs]et_task_comm()
	 * - lock it with task_lock()
	 */
	char				comm[TASK_COMM_LEN];

	struct nameidata		*nameidata;

897
#ifdef CONFIG_SYSVIPC
898 899
	struct sysv_sem			sysvsem;
	struct sysv_shm			sysvshm;
900
#endif
901
#ifdef CONFIG_DETECT_HUNG_TASK
902
	unsigned long			last_switch_count;
903
	unsigned long			last_switch_time;
904
#endif
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	/* Filesystem information: */
	struct fs_struct		*fs;

	/* Open file information: */
	struct files_struct		*files;

	/* Namespaces: */
	struct nsproxy			*nsproxy;

	/* Signal handlers: */
	struct signal_struct		*signal;
	struct sighand_struct		*sighand;
	sigset_t			blocked;
	sigset_t			real_blocked;
	/* Restored if set_restore_sigmask() was used: */
	sigset_t			saved_sigmask;
	struct sigpending		pending;
	unsigned long			sas_ss_sp;
	size_t				sas_ss_size;
	unsigned int			sas_ss_flags;

	struct callback_head		*task_works;

928
#ifdef CONFIG_AUDIT
A
Al Viro 已提交
929
#ifdef CONFIG_AUDITSYSCALL
930 931
	struct audit_context		*audit_context;
#endif
932 933
	kuid_t				loginuid;
	unsigned int			sessionid;
A
Al Viro 已提交
934
#endif
935 936 937 938 939
	struct seccomp			seccomp;

	/* Thread group tracking: */
	u32				parent_exec_id;
	u32				self_exec_id;
L
Linus Torvalds 已提交
940

941 942
	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
	spinlock_t			alloc_lock;
L
Linus Torvalds 已提交
943

944
	/* Protection of the PI data structures: */
945
	raw_spinlock_t			pi_lock;
946

947
	struct wake_q_node		wake_q;
948

I
Ingo Molnar 已提交
949
#ifdef CONFIG_RT_MUTEXES
950
	/* PI waiters blocked on a rt_mutex held by this task: */
951
	struct rb_root_cached		pi_waiters;
952 953
	/* Updated under owner's pi_lock and rq lock */
	struct task_struct		*pi_top_task;
954 955
	/* Deadlock detection and priority inheritance handling: */
	struct rt_mutex_waiter		*pi_blocked_on;
I
Ingo Molnar 已提交
956 957
#endif

958
#ifdef CONFIG_DEBUG_MUTEXES
959 960
	/* Mutex deadlock detection: */
	struct mutex_waiter		*blocked_on;
961
#endif
962

963
#ifdef CONFIG_TRACE_IRQFLAGS
964 965 966 967 968 969 970 971 972 973 974 975 976
	unsigned int			irq_events;
	unsigned long			hardirq_enable_ip;
	unsigned long			hardirq_disable_ip;
	unsigned int			hardirq_enable_event;
	unsigned int			hardirq_disable_event;
	int				hardirqs_enabled;
	int				hardirq_context;
	unsigned long			softirq_disable_ip;
	unsigned long			softirq_enable_ip;
	unsigned int			softirq_disable_event;
	unsigned int			softirq_enable_event;
	int				softirqs_enabled;
	int				softirq_context;
977
#endif
978

I
Ingo Molnar 已提交
979
#ifdef CONFIG_LOCKDEP
980 981 982 983 984
# define MAX_LOCK_DEPTH			48UL
	u64				curr_chain_key;
	int				lockdep_depth;
	unsigned int			lockdep_recursion;
	struct held_lock		held_locks[MAX_LOCK_DEPTH];
I
Ingo Molnar 已提交
985
#endif
986

987
#ifdef CONFIG_UBSAN
988
	unsigned int			in_ubsan;
989
#endif
990

991 992
	/* Journalling filesystem info: */
	void				*journal_info;
L
Linus Torvalds 已提交
993

994 995
	/* Stacked block device info: */
	struct bio_list			*bio_list;
996

997
#ifdef CONFIG_BLOCK
998 999
	/* Stack plugging: */
	struct blk_plug			*plug;
1000 1001
#endif

1002 1003 1004 1005
	/* VM state: */
	struct reclaim_state		*reclaim_state;

	struct backing_dev_info		*backing_dev_info;
L
Linus Torvalds 已提交
1006

1007
	struct io_context		*io_context;
L
Linus Torvalds 已提交
1008

1009 1010 1011
#ifdef CONFIG_COMPACTION
	struct capture_control		*capture_control;
#endif
1012 1013
	/* Ptrace state: */
	unsigned long			ptrace_message;
1014
	kernel_siginfo_t		*last_siginfo;
L
Linus Torvalds 已提交
1015

1016
	struct task_io_accounting	ioac;
1017 1018 1019 1020
#ifdef CONFIG_PSI
	/* Pressure stall state */
	unsigned int			psi_flags;
#endif
1021 1022 1023 1024 1025 1026 1027
#ifdef CONFIG_TASK_XACCT
	/* Accumulated RSS usage: */
	u64				acct_rss_mem1;
	/* Accumulated virtual memory usage: */
	u64				acct_vm_mem1;
	/* stime + utime since last update: */
	u64				acct_timexpd;
L
Linus Torvalds 已提交
1028 1029
#endif
#ifdef CONFIG_CPUSETS
1030 1031 1032 1033 1034 1035
	/* Protected by ->alloc_lock: */
	nodemask_t			mems_allowed;
	/* Seqence number to catch updates: */
	seqcount_t			mems_allowed_seq;
	int				cpuset_mem_spread_rotor;
	int				cpuset_slab_spread_rotor;
L
Linus Torvalds 已提交
1036
#endif
1037
#ifdef CONFIG_CGROUPS
1038 1039 1040 1041
	/* Control Group info protected by css_set_lock: */
	struct css_set __rcu		*cgroups;
	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
	struct list_head		cg_list;
1042
#endif
1043
#ifdef CONFIG_X86_CPU_RESCTRL
1044
	u32				closid;
1045
	u32				rmid;
F
Fenghua Yu 已提交
1046
#endif
1047
#ifdef CONFIG_FUTEX
1048
	struct robust_list_head __user	*robust_list;
1049 1050 1051
#ifdef CONFIG_COMPAT
	struct compat_robust_list_head __user *compat_robust_list;
#endif
1052 1053
	struct list_head		pi_state_list;
	struct futex_pi_state		*pi_state_cache;
1054
#endif
1055
#ifdef CONFIG_PERF_EVENTS
1056 1057 1058
	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
	struct mutex			perf_event_mutex;
	struct list_head		perf_event_list;
1059
#endif
1060
#ifdef CONFIG_DEBUG_PREEMPT
1061
	unsigned long			preempt_disable_ip;
1062
#endif
1063
#ifdef CONFIG_NUMA
1064 1065
	/* Protected by alloc_lock: */
	struct mempolicy		*mempolicy;
1066
	short				il_prev;
1067
	short				pref_node_fork;
1068
#endif
1069
#ifdef CONFIG_NUMA_BALANCING
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	int				numa_scan_seq;
	unsigned int			numa_scan_period;
	unsigned int			numa_scan_period_max;
	int				numa_preferred_nid;
	unsigned long			numa_migrate_retry;
	/* Migration stamp: */
	u64				node_stamp;
	u64				last_task_numa_placement;
	u64				last_sum_exec_runtime;
	struct callback_head		numa_work;

	struct numa_group		*numa_group;
1082

1083
	/*
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	 * numa_faults is an array split into four regions:
	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
	 * in this precise order.
	 *
	 * faults_memory: Exponential decaying average of faults on a per-node
	 * basis. Scheduling placement decisions are made based on these
	 * counts. The values remain static for the duration of a PTE scan.
	 * faults_cpu: Track the nodes the process was running on when a NUMA
	 * hinting fault was incurred.
	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
	 * during the current scan window. When the scan completes, the counts
	 * in faults_memory and faults_cpu decay and these values are copied.
1096
	 */
1097 1098
	unsigned long			*numa_faults;
	unsigned long			total_numa_faults;
1099

1100 1101
	/*
	 * numa_faults_locality tracks if faults recorded during the last
1102 1103 1104
	 * scan window were remote/local or failed to migrate. The task scan
	 * period is adapted based on the locality of the faults with different
	 * weights depending on whether they were shared or private faults
1105
	 */
1106
	unsigned long			numa_faults_locality[3];
1107

1108
	unsigned long			numa_pages_migrated;
1109 1110
#endif /* CONFIG_NUMA_BALANCING */

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
#ifdef CONFIG_RSEQ
	struct rseq __user *rseq;
	u32 rseq_sig;
	/*
	 * RmW on rseq_event_mask must be performed atomically
	 * with respect to preemption.
	 */
	unsigned long rseq_event_mask;
#endif

1121
	struct tlbflush_unmap_batch	tlb_ubc;
1122

1123
	struct rcu_head			rcu;
1124

1125 1126
	/* Cache last used pipe for splice(): */
	struct pipe_inode_info		*splice_pipe;
1127

1128
	struct page_frag		task_frag;
1129

1130 1131
#ifdef CONFIG_TASK_DELAY_ACCT
	struct task_delay_info		*delays;
1132
#endif
1133

1134
#ifdef CONFIG_FAULT_INJECTION
1135
	int				make_it_fail;
1136
	unsigned int			fail_nth;
1137
#endif
1138
	/*
1139 1140
	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
	 * balance_dirty_pages() for a dirty throttling pause:
1141
	 */
1142 1143 1144 1145
	int				nr_dirtied;
	int				nr_dirtied_pause;
	/* Start of a write-and-pause period: */
	unsigned long			dirty_paused_when;
1146

A
Arjan van de Ven 已提交
1147
#ifdef CONFIG_LATENCYTOP
1148 1149
	int				latency_record_count;
	struct latency_record		latency_record[LT_SAVECOUNT];
A
Arjan van de Ven 已提交
1150
#endif
1151
	/*
1152
	 * Time slack values; these are used to round up poll() and
1153 1154
	 * select() etc timeout values. These are in nanoseconds.
	 */
1155 1156
	u64				timer_slack_ns;
	u64				default_timer_slack_ns;
1157

1158
#ifdef CONFIG_KASAN
1159
	unsigned int			kasan_depth;
1160
#endif
1161

1162
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1163 1164
	/* Index of current stored address in ret_stack: */
	int				curr_ret_stack;
1165
	int				curr_ret_depth;
1166 1167 1168 1169 1170 1171 1172

	/* Stack of return addresses for return function tracing: */
	struct ftrace_ret_stack		*ret_stack;

	/* Timestamp for last schedule: */
	unsigned long long		ftrace_timestamp;

1173 1174
	/*
	 * Number of functions that haven't been traced
1175
	 * because of depth overrun:
1176
	 */
1177 1178 1179 1180
	atomic_t			trace_overrun;

	/* Pause tracing: */
	atomic_t			tracing_graph_pause;
1181
#endif
1182

1183
#ifdef CONFIG_TRACING
1184 1185 1186 1187 1188
	/* State flags for use by tracers: */
	unsigned long			trace;

	/* Bitmask and counter of trace recursion: */
	unsigned long			trace_recursion;
1189
#endif /* CONFIG_TRACING */
1190

D
Dmitry Vyukov 已提交
1191
#ifdef CONFIG_KCOV
1192
	/* Coverage collection mode enabled for this task (0 if disabled): */
1193
	unsigned int			kcov_mode;
1194 1195 1196 1197 1198 1199 1200 1201 1202

	/* Size of the kcov_area: */
	unsigned int			kcov_size;

	/* Buffer for coverage collection: */
	void				*kcov_area;

	/* KCOV descriptor wired with this task or NULL: */
	struct kcov			*kcov;
D
Dmitry Vyukov 已提交
1203
#endif
1204

1205
#ifdef CONFIG_MEMCG
1206 1207 1208
	struct mem_cgroup		*memcg_in_oom;
	gfp_t				memcg_oom_gfp_mask;
	int				memcg_oom_order;
1209

1210 1211
	/* Number of pages to reclaim on returning to userland: */
	unsigned int			memcg_nr_pages_over_high;
1212 1213 1214

	/* Used by memcontrol for targeted memcg charge: */
	struct mem_cgroup		*active_memcg;
1215
#endif
1216

1217 1218 1219 1220
#ifdef CONFIG_BLK_CGROUP
	struct request_queue		*throttle_queue;
#endif

1221
#ifdef CONFIG_UPROBES
1222
	struct uprobe_task		*utask;
1223
#endif
K
Kent Overstreet 已提交
1224
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1225 1226
	unsigned int			sequential_io;
	unsigned int			sequential_io_avg;
K
Kent Overstreet 已提交
1227
#endif
P
Peter Zijlstra 已提交
1228
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1229
	unsigned long			task_state_change;
P
Peter Zijlstra 已提交
1230
#endif
1231
	int				pagefault_disabled;
1232
#ifdef CONFIG_MMU
1233
	struct task_struct		*oom_reaper_list;
1234
#endif
1235
#ifdef CONFIG_VMAP_STACK
1236
	struct vm_struct		*stack_vm_area;
1237
#endif
1238
#ifdef CONFIG_THREAD_INFO_IN_TASK
1239
	/* A live task holds one reference: */
1240
	refcount_t			stack_refcount;
1241 1242 1243
#endif
#ifdef CONFIG_LIVEPATCH
	int patch_state;
1244
#endif
1245 1246 1247
#ifdef CONFIG_SECURITY
	/* Used by LSM modules for access restriction: */
	void				*security;
1248
#endif
K
Kees Cook 已提交
1249

1250 1251
#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
	unsigned long			lowest_stack;
1252
	unsigned long			prev_lowest_stack;
1253 1254
#endif

K
Kees Cook 已提交
1255 1256 1257 1258 1259 1260
	/*
	 * New fields for task_struct should be added above here, so that
	 * they are included in the randomized portion of task_struct.
	 */
	randomized_struct_fields_end

1261 1262 1263 1264 1265 1266 1267 1268 1269
	/* CPU-specific state of this task: */
	struct thread_struct		thread;

	/*
	 * WARNING: on x86, 'thread_struct' contains a variable-sized
	 * structure.  It *MUST* be at the end of 'task_struct'.
	 *
	 * Do not put anything below here!
	 */
L
Linus Torvalds 已提交
1270 1271
};

A
Alexey Dobriyan 已提交
1272
static inline struct pid *task_pid(struct task_struct *task)
1273
{
1274
	return task->thread_pid;
1275 1276
}

1277 1278 1279 1280 1281
/*
 * the helpers to get the task's different pids as they are seen
 * from various namespaces
 *
 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
E
Eric W. Biederman 已提交
1282 1283
 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
 *                     current.
1284 1285 1286 1287
 * task_xid_nr_ns()  : id seen from the ns specified;
 *
 * see also pid_nr() etc in include/linux/pid.h
 */
1288
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1289

A
Alexey Dobriyan 已提交
1290
static inline pid_t task_pid_nr(struct task_struct *tsk)
1291 1292 1293 1294
{
	return tsk->pid;
}

1295
static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1296 1297 1298
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
}
1299 1300 1301

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{
1302
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1303 1304 1305
}


A
Alexey Dobriyan 已提交
1306
static inline pid_t task_tgid_nr(struct task_struct *tsk)
1307 1308 1309 1310
{
	return tsk->tgid;
}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
/**
 * pid_alive - check that a task structure is not stale
 * @p: Task structure to be checked.
 *
 * Test if a process is not yet dead (at most zombie state)
 * If pid_alive fails, then pointers within the task structure
 * can be stale and must not be dereferenced.
 *
 * Return: 1 if the process is alive. 0 otherwise.
 */
static inline int pid_alive(const struct task_struct *p)
{
1323
	return p->thread_pid != NULL;
1324
}
1325

1326
static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1327
{
1328
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1329 1330 1331 1332
}

static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
{
1333
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1334 1335 1336
}


1337
static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1338
{
1339
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1340 1341 1342 1343
}

static inline pid_t task_session_vnr(struct task_struct *tsk)
{
1344
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1345 1346
}

1347 1348
static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
E
Eric W. Biederman 已提交
1349
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1350 1351 1352 1353
}

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
E
Eric W. Biederman 已提交
1354
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
}

static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
{
	pid_t pid = 0;

	rcu_read_lock();
	if (pid_alive(tsk))
		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
	rcu_read_unlock();

	return pid;
}

static inline pid_t task_ppid_nr(const struct task_struct *tsk)
{
	return task_ppid_nr_ns(tsk, &init_pid_ns);
}

1374
/* Obsolete, do not use: */
1375 1376 1377 1378
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
	return task_pgrp_nr_ns(tsk, &init_pid_ns);
}
1379

1380 1381 1382
#define TASK_REPORT_IDLE	(TASK_REPORT + 1)
#define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)

1383
static inline unsigned int task_state_index(struct task_struct *tsk)
1384
{
1385 1386
	unsigned int tsk_state = READ_ONCE(tsk->state);
	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1387

1388 1389 1390 1391 1392
	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);

	if (tsk_state == TASK_IDLE)
		state = TASK_REPORT_IDLE;

1393 1394 1395
	return fls(state);
}

1396
static inline char task_index_to_char(unsigned int state)
1397
{
1398
	static const char state_char[] = "RSDTtXZPI";
1399

1400
	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1401

1402 1403 1404 1405 1406
	return state_char[state];
}

static inline char task_state_to_char(struct task_struct *tsk)
{
1407
	return task_index_to_char(task_state_index(tsk));
1408 1409
}

1410
/**
1411 1412
 * is_global_init - check if a task structure is init. Since init
 * is free to have sub-threads we need to check tgid.
1413 1414 1415
 * @tsk: Task structure to be checked.
 *
 * Check if a task structure is the first user space task the kernel created.
1416 1417
 *
 * Return: 1 if the task structure is init. 0 otherwise.
1418
 */
A
Alexey Dobriyan 已提交
1419
static inline int is_global_init(struct task_struct *tsk)
1420
{
1421
	return task_tgid_nr(tsk) == 1;
1422
}
1423

1424 1425
extern struct pid *cad_pid;

L
Linus Torvalds 已提交
1426 1427 1428
/*
 * Per process flags
 */
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
#define PF_IDLE			0x00000002	/* I am an IDLE thread */
#define PF_EXITING		0x00000004	/* Getting shut down */
#define PF_EXITPIDONE		0x00000008	/* PI exit done on shut down */
#define PF_VCPU			0x00000010	/* I'm a virtual CPU */
#define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
#define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
#define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
#define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
#define PF_DUMPCORE		0x00000200	/* Dumped core */
#define PF_SIGNALED		0x00000400	/* Killed by a signal */
#define PF_MEMALLOC		0x00000800	/* Allocating memory */
#define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
#define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
#define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
#define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
#define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1445 1446 1447
#define PF_KSWAPD		0x00020000	/* I am kswapd */
#define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
#define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1448 1449 1450 1451
#define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
#define PF_KTHREAD		0x00200000	/* I am a kernel thread */
#define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
#define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1452
#define PF_MEMSTALL		0x01000000	/* Stalled due to lack of memory */
1453
#define PF_UMH			0x02000000	/* I'm an Usermodehelper process */
1454
#define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1455
#define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1456
#define PF_MEMALLOC_NOCMA	0x10000000	/* All allocation request will have _GFP_MOVABLE cleared */
1457 1458
#define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
#define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
L
Linus Torvalds 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

/*
 * Only the _current_ task can read/write to tsk->flags, but other
 * tasks can access tsk->flags in readonly mode for example
 * with tsk_used_math (like during threaded core dumping).
 * There is however an exception to this rule during ptrace
 * or during fork: the ptracer task is allowed to write to the
 * child->flags of its traced child (same goes for fork, the parent
 * can write to the child->flags), because we're guaranteed the
 * child is not running and in turn not changing child->flags
 * at the same time the parent does it.
 */
1471 1472 1473 1474 1475
#define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math()			clear_stopped_child_used_math(current)
#define set_used_math()				set_stopped_child_used_math(current)

L
Linus Torvalds 已提交
1476 1477
#define conditional_stopped_child_used_math(condition, child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1478 1479 1480

#define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)

L
Linus Torvalds 已提交
1481 1482
#define copy_to_stopped_child_used_math(child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1483

L
Linus Torvalds 已提交
1484
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1485 1486
#define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
#define used_math()				tsk_used_math(current)
L
Linus Torvalds 已提交
1487

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
static inline bool is_percpu_thread(void)
{
#ifdef CONFIG_SMP
	return (current->flags & PF_NO_SETAFFINITY) &&
		(current->nr_cpus_allowed  == 1);
#else
	return true;
#endif
}

1498
/* Per-process atomic flags. */
1499 1500 1501
#define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
#define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
#define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1502 1503
#define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
#define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1504 1505
#define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
#define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1506
#define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1507

1508 1509 1510
#define TASK_PFA_TEST(name, func)					\
	static inline bool task_##func(struct task_struct *p)		\
	{ return test_bit(PFA_##name, &p->atomic_flags); }
1511

1512 1513 1514
#define TASK_PFA_SET(name, func)					\
	static inline void task_set_##func(struct task_struct *p)	\
	{ set_bit(PFA_##name, &p->atomic_flags); }
1515

1516 1517 1518 1519 1520 1521
#define TASK_PFA_CLEAR(name, func)					\
	static inline void task_clear_##func(struct task_struct *p)	\
	{ clear_bit(PFA_##name, &p->atomic_flags); }

TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1522

1523 1524 1525 1526 1527 1528 1529
TASK_PFA_TEST(SPREAD_PAGE, spread_page)
TASK_PFA_SET(SPREAD_PAGE, spread_page)
TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)

TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
TASK_PFA_SET(SPREAD_SLAB, spread_slab)
TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1530

1531 1532 1533 1534
TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)

1535 1536 1537 1538
TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)

1539 1540 1541
TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)

1542 1543 1544 1545 1546 1547 1548
TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)

TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)

1549
static inline void
1550
current_restore_flags(unsigned long orig_flags, unsigned long flags)
1551
{
1552 1553
	current->flags &= ~flags;
	current->flags |= orig_flags & flags;
1554 1555
}

1556 1557
extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
L
Linus Torvalds 已提交
1558
#ifdef CONFIG_SMP
1559 1560
extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
L
Linus Torvalds 已提交
1561
#else
1562
static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1563 1564
{
}
1565
static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
1566
{
1567
	if (!cpumask_test_cpu(0, new_mask))
L
Linus Torvalds 已提交
1568 1569 1570 1571
		return -EINVAL;
	return 0;
}
#endif
1572

1573 1574 1575 1576
#ifndef cpu_relax_yield
#define cpu_relax_yield() cpu_relax()
#endif

1577
extern int yield_to(struct task_struct *p, bool preempt);
1578 1579
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
1580

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 *
 * Return: The nice value [ -20 ... 0 ... 19 ].
 */
static inline int task_nice(const struct task_struct *p)
{
	return PRIO_TO_NICE((p)->static_prio);
}
1591

1592 1593
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
L
Linus Torvalds 已提交
1594
extern int idle_cpu(int cpu);
1595
extern int available_idle_cpu(int cpu);
1596 1597 1598
extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1599
extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1600
extern struct task_struct *idle_task(int cpu);
1601

1602 1603
/**
 * is_idle_task - is the specified task an idle task?
1604
 * @p: the task in question.
1605 1606
 *
 * Return: 1 if @p is an idle task. 0 otherwise.
1607
 */
1608
static inline bool is_idle_task(const struct task_struct *p)
1609
{
1610
	return !!(p->flags & PF_IDLE);
1611
}
1612

1613
extern struct task_struct *curr_task(int cpu);
1614
extern void ia64_set_curr_task(int cpu, struct task_struct *p);
L
Linus Torvalds 已提交
1615 1616 1617 1618

void yield(void);

union thread_union {
1619 1620 1621
#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
	struct task_struct task;
#endif
1622
#ifndef CONFIG_THREAD_INFO_IN_TASK
L
Linus Torvalds 已提交
1623
	struct thread_info thread_info;
1624
#endif
L
Linus Torvalds 已提交
1625 1626 1627
	unsigned long stack[THREAD_SIZE/sizeof(long)];
};

1628 1629 1630 1631 1632 1633
#ifndef CONFIG_THREAD_INFO_IN_TASK
extern struct thread_info init_thread_info;
#endif

extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];

1634 1635 1636 1637 1638 1639 1640 1641 1642
#ifdef CONFIG_THREAD_INFO_IN_TASK
static inline struct thread_info *task_thread_info(struct task_struct *task)
{
	return &task->thread_info;
}
#elif !defined(__HAVE_THREAD_FUNCTIONS)
# define task_thread_info(task)	((struct thread_info *)(task)->stack)
#endif

1643 1644 1645 1646 1647
/*
 * find a task by one of its numerical ids
 *
 * find_task_by_pid_ns():
 *      finds a task by its pid in the specified namespace
1648 1649
 * find_task_by_vpid():
 *      finds a task by its virtual pid
1650
 *
1651
 * see also find_vpid() etc in include/linux/pid.h
1652 1653
 */

1654
extern struct task_struct *find_task_by_vpid(pid_t nr);
1655
extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1656

1657 1658 1659 1660 1661
/*
 * find a task by its virtual pid and get the task struct
 */
extern struct task_struct *find_get_task_by_vpid(pid_t nr);

1662 1663
extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
1664
extern void wake_up_new_task(struct task_struct *tsk);
1665

L
Linus Torvalds 已提交
1666
#ifdef CONFIG_SMP
1667
extern void kick_process(struct task_struct *tsk);
L
Linus Torvalds 已提交
1668
#else
1669
static inline void kick_process(struct task_struct *tsk) { }
L
Linus Torvalds 已提交
1670 1671
#endif

1672
extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1673

1674 1675 1676 1677
static inline void set_task_comm(struct task_struct *tsk, const char *from)
{
	__set_task_comm(tsk, from, false);
}
1678

1679 1680 1681 1682 1683
extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
#define get_task_comm(buf, tsk) ({			\
	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
	__get_task_comm(buf, sizeof(buf), tsk);		\
})
L
Linus Torvalds 已提交
1684 1685

#ifdef CONFIG_SMP
1686
void scheduler_ipi(void);
R
Roland McGrath 已提交
1687
extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
L
Linus Torvalds 已提交
1688
#else
1689
static inline void scheduler_ipi(void) { }
1690
static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
R
Roland McGrath 已提交
1691 1692 1693
{
	return 1;
}
L
Linus Torvalds 已提交
1694 1695
#endif

1696 1697 1698
/*
 * Set thread flags in other task's structures.
 * See asm/thread_info.h for TIF_xxxx flags available:
L
Linus Torvalds 已提交
1699 1700 1701
 */
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1702
	set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1703 1704 1705 1706
}

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1707
	clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1708 1709
}

1710 1711 1712 1713 1714 1715
static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
					  bool value)
{
	update_ti_thread_flag(task_thread_info(tsk), flag, value);
}

L
Linus Torvalds 已提交
1716 1717
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1718
	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1719 1720 1721 1722
}

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1723
	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1724 1725 1726 1727
}

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1728
	return test_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
}

static inline void set_tsk_need_resched(struct task_struct *tsk)
{
	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

1741 1742 1743 1744 1745
static inline int test_tsk_need_resched(struct task_struct *tsk)
{
	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}

L
Linus Torvalds 已提交
1746 1747 1748 1749 1750 1751
/*
 * cond_resched() and cond_resched_lock(): latency reduction via
 * explicit rescheduling in places that are safe. The return
 * value indicates whether a reschedule was done in fact.
 * cond_resched_lock() will drop the spinlock before scheduling,
 */
1752
#ifndef CONFIG_PREEMPT
1753
extern int _cond_resched(void);
1754 1755 1756
#else
static inline int _cond_resched(void) { return 0; }
#endif
1757

1758
#define cond_resched() ({			\
1759
	___might_sleep(__FILE__, __LINE__, 0);	\
1760 1761
	_cond_resched();			\
})
1762

1763 1764 1765
extern int __cond_resched_lock(spinlock_t *lock);

#define cond_resched_lock(lock) ({				\
1766
	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1767 1768 1769
	__cond_resched_lock(lock);				\
})

1770 1771 1772 1773 1774 1775 1776 1777 1778
static inline void cond_resched_rcu(void)
{
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
	rcu_read_unlock();
	cond_resched();
	rcu_read_lock();
#endif
}

L
Linus Torvalds 已提交
1779 1780
/*
 * Does a critical section need to be broken due to another
N
Nick Piggin 已提交
1781 1782
 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
 * but a general need for low latency)
L
Linus Torvalds 已提交
1783
 */
N
Nick Piggin 已提交
1784
static inline int spin_needbreak(spinlock_t *lock)
L
Linus Torvalds 已提交
1785
{
N
Nick Piggin 已提交
1786 1787 1788
#ifdef CONFIG_PREEMPT
	return spin_is_contended(lock);
#else
L
Linus Torvalds 已提交
1789
	return 0;
N
Nick Piggin 已提交
1790
#endif
L
Linus Torvalds 已提交
1791 1792
}

1793 1794 1795 1796 1797
static __always_inline bool need_resched(void)
{
	return unlikely(tif_need_resched());
}

L
Linus Torvalds 已提交
1798 1799 1800 1801 1802 1803 1804
/*
 * Wrappers for p->thread_info->cpu access. No-op on UP.
 */
#ifdef CONFIG_SMP

static inline unsigned int task_cpu(const struct task_struct *p)
{
1805
#ifdef CONFIG_THREAD_INFO_IN_TASK
1806
	return READ_ONCE(p->cpu);
1807
#else
1808
	return READ_ONCE(task_thread_info(p)->cpu);
1809
#endif
L
Linus Torvalds 已提交
1810 1811
}

I
Ingo Molnar 已提交
1812
extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
L
Linus Torvalds 已提交
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826

#else

static inline unsigned int task_cpu(const struct task_struct *p)
{
	return 0;
}

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}

#endif /* CONFIG_SMP */

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
/*
 * In order to reduce various lock holder preemption latencies provide an
 * interface to see if a vCPU is currently running or not.
 *
 * This allows us to terminate optimistic spin loops and block, analogous to
 * the native optimistic spin heuristic of testing if the lock owner task is
 * running or not.
 */
#ifndef vcpu_is_preempted
# define vcpu_is_preempted(cpu)	false
#endif

1839 1840
extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1841

D
Dave Hansen 已提交
1842 1843 1844 1845
#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk)	TASK_SIZE
#endif

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
#ifdef CONFIG_RSEQ

/*
 * Map the event mask on the user-space ABI enum rseq_cs_flags
 * for direct mask checks.
 */
enum rseq_event_mask_bits {
	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
};

enum rseq_event_mask {
	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
};

static inline void rseq_set_notify_resume(struct task_struct *t)
{
	if (t->rseq)
		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
}

1870
void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1871

1872 1873
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
1874 1875
{
	if (current->rseq)
1876
		__rseq_handle_notify_resume(ksig, regs);
1877 1878
}

1879 1880
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
1881 1882 1883 1884
{
	preempt_disable();
	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
	preempt_enable();
1885
	rseq_handle_notify_resume(ksig, regs);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
}

/* rseq_preempt() requires preemption to be disabled. */
static inline void rseq_preempt(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/* rseq_migrate() requires preemption to be disabled. */
static inline void rseq_migrate(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/*
 * If parent process has a registered restartable sequences area, the
1904
 * child inherits. Only applies when forking a process, not a thread.
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
 */
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
	if (clone_flags & CLONE_THREAD) {
		t->rseq = NULL;
		t->rseq_sig = 0;
		t->rseq_event_mask = 0;
	} else {
		t->rseq = current->rseq;
		t->rseq_sig = current->rseq_sig;
		t->rseq_event_mask = current->rseq_event_mask;
	}
}

static inline void rseq_execve(struct task_struct *t)
{
	t->rseq = NULL;
	t->rseq_sig = 0;
	t->rseq_event_mask = 0;
}

#else

static inline void rseq_set_notify_resume(struct task_struct *t)
{
}
1931 1932
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
1933 1934
{
}
1935 1936
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
{
}
static inline void rseq_preempt(struct task_struct *t)
{
}
static inline void rseq_migrate(struct task_struct *t)
{
}
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
}
static inline void rseq_execve(struct task_struct *t)
{
}

#endif

1954 1955 1956 1957 1958 1959 1960 1961
void __exit_umh(struct task_struct *tsk);

static inline void exit_umh(struct task_struct *tsk)
{
	if (unlikely(tsk->flags & PF_UMH))
		__exit_umh(tsk);
}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
#ifdef CONFIG_DEBUG_RSEQ

void rseq_syscall(struct pt_regs *regs);

#else

static inline void rseq_syscall(struct pt_regs *regs)
{
}

#endif

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);

const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);

int sched_trace_rq_cpu(struct rq *rq);

const struct cpumask *sched_trace_rd_span(struct root_domain *rd);

L
Linus Torvalds 已提交
1986
#endif